JPS63313088A - Forecasting device for amount of rainfall - Google Patents
Forecasting device for amount of rainfallInfo
- Publication number
- JPS63313088A JPS63313088A JP62149099A JP14909987A JPS63313088A JP S63313088 A JPS63313088 A JP S63313088A JP 62149099 A JP62149099 A JP 62149099A JP 14909987 A JP14909987 A JP 14909987A JP S63313088 A JPS63313088 A JP S63313088A
- Authority
- JP
- Japan
- Prior art keywords
- rainfall
- density
- amount
- data
- calculating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005484 gravity Effects 0.000 claims abstract description 17
- 230000007704 transition Effects 0.000 abstract 2
- 238000000034 method Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000001932 seasonal effect Effects 0.000 description 3
- 235000020681 well water Nutrition 0.000 description 3
- 239000002349 well water Substances 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 210000005242 cardiac chamber Anatomy 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(n業、■−の利用分野)
本発明は雨水による浸水防除を目的とした雨水排水技術
に好適な降水浄予測装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Application of n Industry, ■-) The present invention relates to a precipitation purification prediction device suitable for rainwater drainage technology for the purpose of preventing flooding caused by rainwater.
(従来の技術)
近年における都市への人口集中による住宅の密集化や舗
装道路の言及につれて時雨が大地に浸透せずに直接下水
管路に集まる揚が増加してきている。これに伴ない、降
雨流出、すなわち降雨が流量となって下水管内を流れる
までに要する時間が短縮され、また、降雨量が多い場合
には、市街地の浸水も発生するようになってきている。(Prior Art) In recent years, as the population has concentrated in cities and the number of houses has become denser and paved roads have become more densely populated, there has been an increase in the amount of rainwater that collects directly into sewer pipes instead of penetrating into the ground. Along with this, rainfall runoff, that is, the time required for rainfall to become a flow rate and flow through sewer pipes, has been shortened, and when there is a large amount of rainfall, flooding of urban areas has also begun to occur.
一方、最近のvQ測結宋によれば、降雨はある地域に集
中することが判明されている。On the other hand, according to the recent vQ survey, it has been found that rainfall is concentrated in certain areas.
このような浸水を未然に防止するには雨水ポンプを活用
することが有効である。すなわち、降雨は地表から地下
の下水を軽てポーンプ所内のポンプ井にたまり、このポ
ンプによって主に河川に排出されるようになついる。Utilizing rainwater pumps is an effective way to prevent such flooding. In other words, rainfall flows from the surface of the ground to underground sewage, which accumulates in pump wells within the pumping station, and is discharged mainly into rivers by these pumps.
従って、雨水ポンプの運転は前述のように、降雨流出時
間の短縮化や降雨地域の集中環条により、迅速かつ適切
に行う必要がある。このため、ポンプ井に流入する雨水
の流量(流入流量)を適確に把持する必要がある。Therefore, as mentioned above, it is necessary to operate rainwater pumps quickly and appropriately by shortening the rain runoff time and concentrating rainwater areas. For this reason, it is necessary to accurately grasp the flow rate of rainwater flowing into the pump well (inflow flow rate).
流入流量はいわゆる流出解析法、特に大地へ浸透せずに
直接流出する降雨を取扱う都市流出解析法により降雨量
を入力として求めることが可能であり、この降雨量を予
測することによって将来における雨水ポンプの運転を適
確に行うことができる。The inflow flow rate can be determined by inputting the amount of rainfall using the so-called runoff analysis method, especially the urban runoff analysis method that deals with rainfall that directly flows out without penetrating into the ground.By predicting this amount of rainfall, future rainwater pumps can be calculated. can be operated accurately.
従来において、雨水ポンプの運転における降雨量の測定
は、例えば、池上市61計を複数個設置してこれら地上
雨f/l計により測定する方法が知られている。Conventionally, it has been known to measure the amount of rainfall during operation of a rainwater pump by, for example, installing a plurality of Ikegami City 61 meters and measuring with these above-ground rain f/l meters.
しかしなから、この従来例では広範囲に渡る地域のある
一点における降雨量は測定できるものの、集中的に分布
を把握することはできず、このため、ポンプ井の対象流
域の降雨分布を把握できないという問題点があった。However, although this conventional example can measure the amount of rainfall at one point over a wide area, it cannot centrally understand the distribution, and therefore it is not possible to understand the rainfall distribution in the target basin of the pump well. There was a problem.
また、上記従来例は降雨量の現在値を知るものであるか
ら、直接流出する時雨には迅速に対処づることができな
い。従って、上記従来例にあっては降雨量の予測は、゛
ポンプ運転者が制御所の窓から外の天候を観察し、出現
した黒雲(雨雲)を見て経験により得られた勘に従って
判定を下し、時雨前にポンプ井の水井を低位にさせるた
めにポンプを運転するようにしている。Furthermore, since the above-mentioned conventional example knows the current value of the amount of rainfall, it is not possible to quickly deal with seasonal rain that directly runs off. Therefore, in the conventional example described above, the amount of rainfall is predicted by ``the pump operator observing the weather outside from the window of the control center, observing the black clouds (rain clouds) that have appeared, and making judgments based on his intuition obtained from experience.'' The pumps are operated in order to bring the water level of the pump well to a lower level before the rains begin.
(発明が解決しようとする問題点)
このように、従来における降雨量予測は、降雨分布を適
確に把握することができず、また、ポンプ運転者の勘に
よつ降雨量の予測を立ててポンプの運転が行われており
、ポンプ運転を迅速かつ適切に行うことができないとい
う問題点があった。(Problems to be Solved by the Invention) As described above, conventional rainfall prediction cannot accurately grasp rainfall distribution, and also relies on the pump operator's intuition to predict rainfall. The problem is that the pump cannot be operated quickly and appropriately.
本発明はF記問題点に鑑みてなされたものであり、雨水
ポンプ運転に好適に降雨量予測装置を提供することにあ
る。The present invention has been made in view of the problem described in F, and it is an object of the present invention to provide a rainfall amount prediction device suitable for rainwater pump operation.
[発明の構成]
(問題点を解決するための手段)
上記目的を達成するために本発明は、所定時間開隔でレ
ーダ雨量計から得られる雨滴データを地上雨量計から得
られる雨量データにより較正して所定時間間隔毎に時雨
量分布図を作成する手段と、
作成された各降雨量分布図における各降雨量重心点及び
各降雨密度を算出する手段と、隣り合う各時刻間におけ
る前記降雨量重心点の各1分に基づいて降雨量重心点の
各移動速度データを算出し、算出された各移動速度デー
タから降雨量重心点の移動軌跡を求める手段と、前記降
雨M重心点の移動軌跡を降雨量の予測対象領域のm6点
に平行移動させ、予測対象領域の移動軌跡を得る手段と
、
隣り合う時刻間における前記時雨密度の各差分データを
粋出し、算出された各差分データから降雨密度の変移軌
跡を求める手段と、
降雨量重心点の移動速度データに基づいて将来にお()
る移動速度予測値を算出するとともに、前記降雨密度の
変移軌跡から将来の降雨密度予測値を口出する手段と、
前記予測対象領域の移動軌跡上を予測対象領域の重心点
から前記移動速度予測値分だけさかのぼった地点の領域
における降雨M平均値を求める手段と、
求められた降雨量平均値に降雨密度予測値から求められ
る変化係数を乗じて予測対象領域の降雨母子測値を口出
する手段と、
を有することを特徴とする。[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention calibrates raindrop data obtained from a radar rain gauge at predetermined intervals with rainfall data obtained from a ground rain gauge. means for creating hourly rainfall distribution maps at predetermined time intervals; means for calculating each rainfall center point and each rainfall density in each created rainfall distribution map; and means for calculating the rainfall amount between adjacent times. Means for calculating each moving speed data of the rainfall centroid point based on each minute of the centroid point, and determining a moving trajectory of the rainfall centroid point from each calculated moving speed data, and a moving trajectory of the rainfall M centroid point. means to obtain a movement locus of the prediction target area by moving parallel to the m6 point of the rainfall prediction target area; In the future () based on the method of determining the density change trajectory and the movement speed data of the rainfall centroid.
means for calculating a predicted moving speed value based on a trajectory of change in the rainfall density, and calculating a predicted moving speed value in the future based on a trajectory of change in the rainfall density; Means for calculating the average value of rainfall M in the area of a point that has gone back by the amount of time, and multiplying the average value of rainfall by the change coefficient calculated from the predicted rainfall density value to determine the measured rainfall value for the prediction target area. It is characterized by having means and.
(作用)
レーダ雨量計では所定時間間隔で雨滴データが得られ、
この雨滴データが地上雨量計で得られる雨量データによ
り較正されて降雨量分布図が作成される。各降雨量分布
図から各降雨量重心点及び各l!3山密度が算出される
。(Function) A radar rain gauge obtains raindrop data at predetermined time intervals.
This raindrop data is calibrated with rainfall data obtained from a ground rain gauge to create a rainfall distribution map. From each rainfall distribution map, each rainfall centroid point and each l! Three peak density is calculated.
そして、降雨量重心点の移動速度データから降雨量重心
点の移動軌跡を求め、この移動軌跡を降2雨ムの予測対
象領域の中心点に平行移動させて予測対像領域の移動軌
跡を得る。Then, the movement trajectory of the rainfall centroid point is determined from the movement speed data of the rainfall centroid point, and this movement trajectory is translated in parallel to the center point of the prediction target area of the rainfall to obtain the movement trajectory of the predicted target area. .
一方、降雨密度の差分データから降雨密度の変移軌跡が
求められる。この変移軌跡からは将来のある時刻におけ
る降雨密度予測値が得られ、また前記移動速度データか
ら将来の同時刻における移動速度予測値が得られる。On the other hand, the trajectory of changes in rainfall density can be determined from the difference data of rainfall density. From this trajectory of change, a predicted value of rainfall density at a certain time in the future can be obtained, and from the moving speed data, a predicted value of moving speed at the same time in the future can be obtained.
次に、予測対象領域の移動軌跡上を予測対象領域の重心
点から移動速度予測4分だけさかのぼった地点の領域に
おける降雨量平均値が求められ、この降雨量平均値に降
雨密度予測値から求められる変化係数が乗ぜられて降雨
間予測値が算出されている。Next, the average rainfall value in the area of the predicted travel speed of 4 minutes is calculated from the center of gravity of the prediction target area on the movement trajectory of the prediction target area, and this rainfall average value is calculated from the predicted rainfall density value. The predicted value between rainfalls is calculated by multiplying by the change coefficient.
(実施例)
第1図は本発明に係る装;霞の一実施例の構成を示すブ
ロック図である。(Embodiment) FIG. 1 is a block diagram showing the configuration of an embodiment of a device according to the present invention.
本実施例は、レーダ雨量計1及び地上山苗計2で得られ
る雨滴分布データC及び雨量データEとに1工づいて降
雨量予測装置により短時間間隔で降雨量予測曲線Rを得
、この降雨量予測曲線Rをポンプ運転装賀4に供給する
らのである。なお、図中5はデータを送信装置、6はデ
ータ受信装置を示ず。In this example, a rainfall prediction curve R is obtained at short intervals by a rainfall prediction device based on raindrop distribution data C and rainfall data E obtained by a radar rain gauge 1 and a ground seedling gauge 2. The rainfall prediction curve R is supplied to the pump operation controller 4. Note that in the figure, 5 does not indicate a data transmitting device, and 6 does not indicate a data receiving device.
レーダ雨量計1は空中の雨滴の多少に依存した反01電
波の強度を降雨データに変換して出力する。The radar rain gauge 1 converts the intensity of anti-01 radio waves, which depends on the amount of raindrops in the air, into rainfall data and outputs the data.
このレーダ雨量計1は、前述した時雨集中現蒙を把握す
るために広範囲に渡る面内雨量分布を得るものである。This radar rain gauge 1 is used to obtain a wide range of rainfall distribution in order to understand the above-mentioned seasonal rainfall concentration.
例えば、5分あるいは10分程度の所定時間間隔で半径
数百キロメートルの地域を数万個に分割したメツシュに
おける1雨分布データ(メツシュデータ)を出力する。For example, one piece of rain distribution data (mesh data) in a mesh divided into tens of thousands of areas with a radius of several hundred kilometers is output at predetermined time intervals of about 5 or 10 minutes.
すなわち、時間間隔を八を分とし、時刻を離散時間にで
表わし、時刻Ko +1 >K>Koにおいて降雨量予
測装H3を作動させるものとする。そのときまでに、過
去のある時刻に=Ko KE+(Kp≧2)から現在
まで(Kp+1)組の降雨FrSデータが得られる。That is, it is assumed that the time interval is 8 minutes, the time is expressed as a discrete time, and the rainfall forecasting device H3 is activated at time Ko +1 >K>Ko. By that time, (Kp+1) sets of rainfall FrS data are obtained from =Ko KE+ (Kp≧2) at a certain time in the past to the present (Kp+1).
第2図は上記レーダ雨量計1で得られるメツシュア−夕
の一例を示しており、各メツシュ〈例えば数キロメート
ル四方)毎の降雨データ(降雨量が零のメツシュをOと
表示)が得られている。なお、図中7は下水管路網によ
り集水される降雨の対象流域、8は対象流域7のポンプ
井に設置されたポンプ所及び9はポンプ所8からの排水
が流出される河川である。Figure 2 shows an example of a mesh obtained by the radar rain gauge 1, in which rainfall data is obtained for each mesh (for example, several kilometers square) (a mesh with zero rainfall is indicated as O). There is. In the figure, 7 is the target basin for rainfall collected by the sewage pipe network, 8 is the pump station installed in the pump well in target basin 7, and 9 is the river from which the wastewater from pump station 8 flows out. .
地上雨沿計2はレーダ1で得られた降雨データを修正す
るために用いられるもので、上記対象流域7を含む地域
に渡りN個設置される。所定時間間隔で各設置か所の雨
量データ(降雨の地表面分布データ)Ei (i =
1.2.・・・、N)を降雨量予測装置3に供給してい
る。The ground rain gauges 2 are used to correct the rainfall data obtained by the radar 1, and N pieces are installed over the area including the target watershed 7. Rainfall data (rainfall surface distribution data) Ei (i =
1.2. ..., N) are supplied to the rainfall amount prediction device 3.
降雨聞予測装43には、上記地上雨量計2で得られる由
煩データE(の今回の降雨事象よりも以前の事象におい
てレーダ雨flst1との相関関係が調べられて予め第
3図に示すような関係式が保持され(いる。また、通常
メツシュ数は数万個あり、地上山伝計2の個数Nよりも
はるかに多いもので、メツシュ数をN個に分割したメツ
シュ群に対し地上山Mt計2毎に個別に関係が得られて
いる。そして、この降雨量予測装置は第4図及び第5図
のフローヂャートに示すような降雨量予測曲線を行って
いる。The rainfall forecasting device 43 uses data E obtained from the above-mentioned ground rain gauge 2 to determine its correlation with the radar rain flst1 in events prior to the current rainfall event, as shown in FIG. 3. In addition, the number of meshes is usually tens of thousands, which is much larger than the number N of the above-ground mountain measurement 2, and the above-ground mountain A relationship is obtained individually for each Mt total 2. This rainfall prediction device performs rainfall prediction curves as shown in the flowcharts of FIGS. 4 and 5.
第4図及び第5図に示すように上記酵爾吊予測装置で実
行される処理は四部に大別されている。As shown in FIGS. 4 and 5, the processing executed by the above-mentioned fermentation prediction device is roughly divided into four parts.
第一部の処理は過去の(Kp+1)組の面内データそれ
ぞれについての個別L!FJである。また、第二部は隣
接する時刻間にお番ノる面内データ処理である。さらに
、第三部は過去の(Kp+1>組のデータを同時に扱う
処理である。そして、第四部は時刻(Ko+KF>まで
のKF個の降雨膿予測演りである。The first part of the processing is the individual L! for each of the past (Kp+1) sets of in-plane data. It is FJ. Furthermore, the second part is in-plane data processing that takes place between adjacent times. Furthermore, the third part is a process that simultaneously handles the past (Kp+1> sets of data.The fourth part is a prediction performance of KF rainfall events up to time (Ko+KF>).
第一部では、時刻Ko−Kflまで順に処理するものと
し、まず、レーダ雨量計による雨滴分布図CKoについ
てづでに過去の降雨事客について得られるN個の地上雨
量計のデータEi (i =1.2゜・・・、N)と
それに対応するメツシュデータ群Ci(メツシュデータ
数は数万個あり、それをN個に分割した。i =1.2
.・・・、N)との関係から、分布図のメツシュデータ
を修正し、降雨ω分布図D keを作成する。In the first part, processing is performed sequentially from time Ko to Kfl. First, data Ei (i = 1.2°..., N) and the corresponding mesh data group Ci (there are tens of thousands of mesh data, which were divided into N pieces. i = 1.2
.. ..., N), the mesh data of the distribution map is corrected, and a rainfall ω distribution map Dke is created.
次に作成された降雨量分布図りに。の降雨fMffi心
点QkO(xl(、、Vgo )を求める。これは降雨
量が0でないメツシュで構成される平面について、メツ
シュの属性としての降雨量をメツシュ重みとして扱う点
が単なる小心と異なる点である。また、降雨量がOでな
いメツシュの個数がrnl<、とすればその面積和は単
位メツシュの面積を、S u = X、A・VQとする
と30 =mに。e xu * V、Aとなり、メツシ
ュデータの降雨量Ij u =1.2.・・・、 m
g。)で表ね(m、。・×1・ytt)で口出される。Next, the rainfall distribution map created. Find the center point QkO(xl(,,Vgo) of the rainfall fMffi.This differs from a simple centroid in that, for a plane composed of meshes where the amount of rainfall is not 0, the amount of rainfall as an attribute of the mesh is treated as the mesh weight. In addition, if the number of meshes whose rainfall is not O is rnl<, then the sum of the areas is 30 = m, where the area of the unit mesh is S u = X, A・VQ. e xu * V, A, and the rainfall amount of the mesh data Ij u = 1.2..., m
g. ) is expressed as (m,.・×1・ytt).
次に、時刻(Ko−1)の雨滴の分布図C1−1を読出
して、上述の演算をして降雨量分布図Dico−+の作
成、降雨m重心点Gko−lの算出及び降雨量密度RK
o−Iの算出の各処理が実行される。Next, the raindrop distribution map C1-1 at time (Ko-1) is read out, and the above-mentioned calculations are performed to create a rainfall distribution map Dico-+, calculate the gravity center point Gko-l of the rainfall m, and calculate the rainfall density. R.K.
Each process of calculating o-I is executed.
このようにして、時刻(Ko−にρ)の雨滴分布図cK
6−に9 までのそれぞれの時刻において降雨量分布
図DKの作成、降雨口重心慮GK(7)算出及び降雨量
密度R,の算出処理が実行される。In this way, the raindrop distribution map cK at time (Ko- to ρ)
At each time from 6 to 9, the creation of the rainfall distribution map DK, the calculation of the center of gravity of the rain outlet GK (7), and the calculation of the rainfall density R are executed.
第二部では、隣接時刻の加工データ対2種について変分
を計算する。まず、隣接する時刻Koと時刻Ko−1の
降雨m重心点GKoとGKo−1間の移動距離、すなわ
ち移動速度■Kを計算し、つぎに降雨量iRえ。とRK
o司の差分、△Rkを口出する。In the second part, variations are calculated for two types of processed data pairs at adjacent times. First, calculate the moving distance between the center of gravity GKo and GKo-1 of the rainfall m at the adjacent times Ko and Ko-1, that is, the moving speed ■K, and then calculate the amount of rainfall iR. and R.K.
Oji's difference, △Rk, is mentioned.
これは(Kp+1)個のデータを用いて隣接時刻のデー
タ対について演算するので、Kp個データが得られる。Since this operation is performed on pairs of data at adjacent times using (Kp+1) pieces of data, Kp pieces of data are obtained.
第三部では、時刻Koから時刻Ko−KDまでの降雨量
の動的挙動の特徴を把握する演算である。The third part is a calculation for grasping the characteristics of the dynamic behavior of the rainfall amount from time Ko to time Ko-KD.
降雨域の移動方向を予測するために、まず、降雨域を代
表させる点として降雨重心点GKを算出しであるので、
重心点の移動軌跡を直線で把握し、近い将来もその直線
に沿って重心点が移動するものと考えられる。この場合
、現在時刻に−Koの重心点GK6を重視し、時刻がさ
かのぼるに従い、重視度が低下していくと考え、稀薄係
数(1: orgetting factor)とい
う重み係数を用いて最小2乗法を適用する。In order to predict the direction of movement of the rain area, first, we calculate the rainfall centroid point GK as a point that represents the rain area.
The locus of movement of the center of gravity is understood as a straight line, and it is thought that the center of gravity will move along that straight line in the near future. In this case, it is assumed that emphasis is placed on the centroid point GK6 of -Ko at the current time, and as the time goes back, the importance level decreases, and the method of least squares is applied using a weighting factor called a rarefaction factor (1: orgetting factor). do.
すなわち、直線f啼への重心点G2からの垂線距離の2
乗に稀薄係数ωl′ce−Kを乗算して時刻に0から時
刻Ko−Kpまで(Kp+1)の和を最小にするように
直線!、を決定する。この直線f〜が得られると、次に
、対°象流域7の面重心点PKOを通る平行な直線fB
を第6図のように作成する。In other words, 2 of the perpendicular distance from the center of gravity G2 to the straight line f
A straight line that minimizes the sum of (Kp+1) from time 0 to time Ko-Kp by multiplying the power by the rarefaction coefficient ωl'ce-K! , determine. Once this straight line f~ is obtained, next, a parallel straight line fB passing through the surface center of gravity PKO of the target watershed 7
Create as shown in Figure 6.
すなわち、この直FilfB上に沿って近い将来の数十
分間にわたり、降雨域が移動するものと考えられる。そ
の移動速度は過去のデータV3の変化の特性を接続する
ものとし、その特性を表わす曲線/v を曲線あてはめ
、すなわち曲線について最小2乗法を適用して求める。That is, it is thought that the rain area will move along this direct FilfB for several tens of minutes in the near future. The moving speed is determined by connecting the characteristics of changes in past data V3, and fitting a curve /v representing the characteristics, that is, applying the method of least squares to the curve.
この場合、曲線の次数は時刻Kpの値に依存するが、−
次、二次、三次のごとく数種とし、その中から、より良
い次数を評価指標AIC(赤池情報針基準)により、選
定する。同様に、降雨密度差分ΔRKについて、曲線あ
てはめを実行し、曲IIfにを得る。In this case, the order of the curve depends on the value of time Kp, but −
There are several types, such as second order, second order, and third order, and from among them, the better order is selected using the evaluation index AIC (Akaike Information Needle Criterion). Similarly, curve fitting is performed for the rainfall density difference ΔRK to obtain the curve IIf.
第四部は、降雨吊子測部である。予測する時間は数時間
であり、ここでは離数時刻に=Ko +K「までとする
。The fourth part is the rainfall gauge section. The time to predict is several hours, and here it is assumed that the time is until =Ko +K'' at the release time.
まず、降雨m予測のための準備をする。予測期間におけ
る移動速度vkは曲線j’v を外挿し、第7図のよう
に時刻(Ko+1>のときの4tiVKo++を読取る
。また、降雨密度差分ΔRKについても、第8図のよう
に、曲線fa を外挿し、時刻(K。First, preparations are made for predicting rainfall m. The moving speed vk during the prediction period is determined by extrapolating the curve j'v and reading 4tiVKo++ at time (Ko+1>) as shown in Figure 7.Also, for the rainfall density difference ΔRK, as shown in Figure 8, the curve fa Extrapolate the time (K.
れら2つの値は予測期間において変らないものとする。It is assumed that these two values do not change during the prediction period.
以上は予測作業−の前段部であり、最新の降雨量分布図
DKoを読出して、このメツシュデータ相互間の関係は
変らないものとして、以下の後21部に入る。The above is the first part of the prediction work, and after reading out the latest rainfall distribution map DKo and assuming that the relationship between the mesh data does not change, the next part 21 begins.
まず、降雨域が対象流域7の頭上に来るであろう予測軌
跡は直線fB上であり、移動速度はVKofflである
から、対象流域の重心点PK、が基点となり、速度■K
eヤ、だけさかのぼった上流地点Pト。旧を1qる。こ
の地点PKo+lを内部に有するメツシュを中心に対象
流域7を構成するメツシュ群と同一の形状のメツシュに
おける降雨量を平均してvk−offとする。ここで、
時雨密度差分が値△R3゜+1だけ変化することを考慮
して、変化係数正し、改めて、これを降雨IRにoff
とする。同様にして、時刻Ko+2における降雨υ予測
値RKo+1を求めるため、直線fB上の基点P4+1
から速度■に。旧だけ上流の地点Pに、+2を得て、
前述の処理を行う。この演算を繰返し、時刻Ko+KF
を得ることにより、演算終了となる。出力としては、第
9図のごとく、降雨量曲線全体、すなわち、実績値と予
測値を結合させた形で、(Kp +1+KF)個のデー
タからなる降雨量曲線Rである。First, the predicted trajectory where the rain area will come above the target watershed 7 is on the straight line fB, and the moving speed is VKoffl, so the center of gravity of the target watershed PK is the base point, and the speed ■K
The upstream point P is just a few steps back. Take 1q of the old one. The average amount of rainfall in a mesh having the same shape as the mesh group forming the target watershed 7 centered around the mesh having this point PKo+l inside is set as vk-off. here,
Considering that the hourly rainfall density difference changes by the value △R3゜+1, correct the change coefficient and turn this off to the rainfall IR.
shall be. Similarly, in order to obtain the predicted rainfall value RKo+1 at time Ko+2, base point P4+1 on the straight line fB
From speed ■. Only the old point gets +2 to the upstream point P,
Perform the process described above. Repeating this operation, time Ko+KF
By obtaining this, the calculation ends. As shown in FIG. 9, the output is the entire rainfall amount curve, that is, the rainfall amount curve R consisting of (Kp +1+KF) pieces of data in the form of a combination of actual values and predicted values.
予測装置3の出力を運転@置4に渡すことにより、装置
4では、流出解析を行ない流入流量曲線を予測可能とな
る。この流入流量とポンプ井水位tlのデータとを組合
せた運転アルゴリズムが構成可能であるから、流入流針
に依存したポンプ吐出量の決定が容易となり、さらに、
ポンプ井水位から、所定目標水位への水位修正もMU4
11出来るようになる。By passing the output of the prediction device 3 to the operation@station 4, the device 4 can perform outflow analysis and predict the inflow flow rate curve. Since it is possible to configure an operation algorithm that combines this inflow flow rate and pump well water level tl data, it is easy to determine the pump discharge rate depending on the inflow flow needle, and furthermore,
MU4 also adjusts the water level from the pump well water level to the specified target water level.
11. Be able to do it.
なお、レーダ雨量計1は数百キロメートルの半径を観測
領域としメツシュが一辺数キロメートルとなっているが
、より精度を高めるために、メツシュの一辺数百メート
ルで観測領域半径数キロメートルのものも使用可能であ
る。これらの2種のレーダ雨量計を同時に用いることも
考えられ、この場合には、粗いメツシュデータを用いて
、第4図、第5図の第一部から第三部までを演算し、第
四部において時雨ω分布図Dk0を読出づとぎに綱かい
メツシュデータを適用することにすれば、降雨予測fi
aRKをより正確なものとすることが可能となる。Note that radar rain gauge 1 has an observation area with a radius of several hundred kilometers and a mesh with a side of several kilometers, but in order to increase accuracy, a mesh with a radius of several hundred meters on a side and an observation area of several kilometers in radius is also used. It is possible. It is also possible to use these two types of radar rain gauges at the same time. In this case, coarse mesh data is used to calculate the first to third parts of Figures 4 and 5, and the fourth part is calculated. If we apply the mesh data every time we read out the seasonal rainfall ω distribution map Dk0, the rainfall prediction fi
It becomes possible to make aRK more accurate.
[発明の効果]
以上説明したように本発明によれば、レーダ雨量計から
の雨滴分布データと地上雨捌計からの゛雨宿データのみ
によって短時間間隔の最新の降雨量を予測することが可
能となる。[Effects of the Invention] As explained above, according to the present invention, it is possible to predict the latest rainfall amount at short intervals using only raindrop distribution data from a radar rain gauge and rain shelter data from a ground rain gauge. It becomes possible.
その結果、流出解析法の演算機能を有するポンプ運転装
置と組合せて使用することにより、レーダ雨分計データ
と地上山母計データから数時間光までの短時間間隔降雨
量曲線を出力するまで、この曲線データを入力とする流
出解析法の演算が可能となり、流入流量曲線・を輝出す
ることが出来る。As a result, by using it in combination with a pump operating device that has the calculation function of the runoff analysis method, it is possible to output short-time interval rainfall curves up to several hours of light from radar rain gauge data and ground mountain base meter data. It becomes possible to calculate the outflow analysis method using this curve data as input, and the inflow flow rate curve can be highlighted.
このことにより、以下のような利点が得られる。This provides the following advantages.
すなわち、本来の流入流量に応じてポンプを運転するア
ルゴリズムを構成出来ることであり、ボンブナ1水位と
合せ、2変吊を用い、さらに種々の側面を考慮した多種
の運転アルゴリズムを用意出来ることになり、対処寸べ
き問題に適した運転方法の採用が実現する。その−例が
ポンプ台数u制御において、ポンプ運転の変更台数を極
めて少なくした安全な方法が実現できる。In other words, it is possible to configure an algorithm to operate the pump according to the original inflow flow rate, and in addition to the 1 water level of the bomb, it is possible to use 2 variable suspensions and prepare a variety of operation algorithms that take into account various aspects. , it is possible to adopt a driving method that is suitable for the problem that needs to be addressed. An example of this is the control of the number of pumps u, which can realize a safe method in which the number of pump operations is changed to an extremely small number.
また、降雨ハ予測を数時間光まで行うことができるので
、ポンプ運転によるポンプ井水位翅化も数時間光に把握
出来、心腔に応じて迅速な処理を施すことが可能となる
。In addition, since rainfall can be predicted up to several hours of light, changes in pump well water level due to pump operation can be detected over several hours of light, making it possible to perform prompt treatment depending on the heart chamber.
第1図は本発明に係る一実施例の構成を示すブロック図
、第2図はレーダ雨量計で得られるメツシュデータの説
明図、第3図はレーダ雨量計と地上雨量計の関係説明図
、第4図及び第5図は本発明の降雨量予測装置で実行さ
れる9!l埋手順を示1“フローチ1?−ト、第6図は
対象流域の重心点を通過づる降雨域小心点の予測軌跡の
作成手順の説明図、第7図は時雨1型心点の移動速度の
予測曲線を示す図、第8図は時雨密度変化の予測曲線を
示す図、第9図は本発明に係る降雨量予測装置の出力例
を示す図である。
1・・・レーダ雨量計 2・・・地上山是旧3・・・降
雨量予測装置FIG. 1 is a block diagram showing the configuration of an embodiment according to the present invention, FIG. 2 is an explanatory diagram of mesh data obtained by a radar rain gauge, FIG. 3 is an explanatory diagram of the relationship between the radar rain gauge and the ground rain gauge, and FIG. 4 and 5 are 9! executed by the rainfall forecasting device of the present invention. Figure 6 is an explanatory diagram of the procedure for creating a predicted trajectory of the hypocenter of the rainfall area that passes through the center of gravity of the target watershed, and Figure 7 is the movement of the center of the Shigure type 1 type. FIG. 8 is a diagram showing a prediction curve of speed, FIG. 8 is a diagram showing a prediction curve of hourly rainfall density change, and FIG. 9 is a diagram showing an output example of the rainfall prediction device according to the present invention. 1... Radar rain gauge 2... Ground mountain is old 3... Rainfall prediction device
Claims (1)
地上雨量計から得られる雨量データにより較正して所定
時間間隔毎に降雨量分布図を作成する手段と、 作成された各降雨量分布図における各降雨量重心点及び
各降雨密度を算出する手段と、 隣り合う各時刻間における前記降雨量重心点の各差分に
基づいて降雨量重心点の各移動速度データを算出し、算
出された各移動速度データから降雨量重心点の移動軌跡
を求める手段と、 前記降雨量重心点の移動軌跡を降雨量の予測対象領域の
重心点に平行移動させ、予測対象領域の移動軌跡を得る
手段と、 隣り合う時刻間における前記降雨密度の各差分データを
算出し、算出された各差分データから降雨密度の変移軌
跡を求める手段と、 降雨量重心点の移動速度データに基づいて将来における
移動速度予測値を算出するとともに、前記降雨密度の変
移軌跡から将来の降雨密度予測値を算出する手段と、 前記予測対象領域の移動軌跡上を予測対象領域の重心点
から前記移動速度予測値分だけさかのぼった地点の領域
における降雨量平均値を求める手段と、 求められた降雨量平均値に降雨密度予測値から求められ
る変化係数を乗じて予測対象領域の降雨量予測値を算出
する手段と、 を有することを特徴とする降雨量予測装置。[Scope of Claims] Means for creating a rainfall distribution map at each predetermined time interval by calibrating raindrop data obtained from a radar rain gauge at predetermined time intervals with rainfall data obtained from a ground rain gauge; means for calculating each rainfall centroid point and each rainfall density in a rainfall distribution map; calculating each movement speed data of the rainfall centroid point based on each difference of the rainfall centroid point between adjacent times; means for determining a movement trajectory of a rainfall gravity center point from each calculated movement speed data; means for calculating each difference data of the rainfall density between adjacent times, and determining a change locus of rainfall density from each calculated difference data; means for calculating a predicted moving speed value and a predicted future rainfall density value from a trajectory of change in the rainfall density; means for calculating an average rainfall amount in a region of a point that is traced back by the amount of time; and means for calculating a predicted rainfall value for a prediction target area by multiplying the determined average rainfall value by a change coefficient determined from the predicted rainfall density value; A rainfall forecasting device comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62149099A JPS63313088A (en) | 1987-06-17 | 1987-06-17 | Forecasting device for amount of rainfall |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62149099A JPS63313088A (en) | 1987-06-17 | 1987-06-17 | Forecasting device for amount of rainfall |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63313088A true JPS63313088A (en) | 1988-12-21 |
JPH0476637B2 JPH0476637B2 (en) | 1992-12-04 |
Family
ID=15467675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62149099A Granted JPS63313088A (en) | 1987-06-17 | 1987-06-17 | Forecasting device for amount of rainfall |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63313088A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0545454A (en) * | 1991-08-14 | 1993-02-23 | Toshiba Corp | Radar apparatus for rainfall |
CN102426400A (en) * | 2011-11-03 | 2012-04-25 | 中国科学院合肥物质科学研究院 | Rainfall information inversion correcting method of laser raindrop spectrograph |
JP2018205214A (en) * | 2017-06-07 | 2018-12-27 | 大成建設株式会社 | Rainfall prediction device |
-
1987
- 1987-06-17 JP JP62149099A patent/JPS63313088A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0545454A (en) * | 1991-08-14 | 1993-02-23 | Toshiba Corp | Radar apparatus for rainfall |
CN102426400A (en) * | 2011-11-03 | 2012-04-25 | 中国科学院合肥物质科学研究院 | Rainfall information inversion correcting method of laser raindrop spectrograph |
JP2018205214A (en) * | 2017-06-07 | 2018-12-27 | 大成建設株式会社 | Rainfall prediction device |
Also Published As
Publication number | Publication date |
---|---|
JPH0476637B2 (en) | 1992-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Majidi et al. | Simulation of rainfall-runoff process using Green-Ampt method and HEC-HMS model (Case study: Abnama Watershed, Iran) | |
JPH0833157B2 (en) | Operation control device for rainwater pump | |
CN110646867A (en) | Urban drainage monitoring and early warning method and system | |
US6474153B1 (en) | Predicting system and predicting method configured to predict inflow volume of rainwater | |
CN113762618A (en) | Lake water level forecasting method based on multi-factor similarity analysis | |
CN114511990A (en) | Debris flow probability measuring and calculating method and debris flow multi-factor cooperative monitoring and early warning method | |
Putnam | Effect of urban development on floods in the Piedmont Province of North Carolina | |
CN113792367B (en) | PySWMM-based drainage system multi-source inflow infiltration and outflow dynamic estimation method | |
Basnet et al. | Comparative study of design discharge calculation approaches: a case study on Padhu Khola, Kaski, Nepal | |
CN111552763B (en) | Urban non-point source pollution load monitoring method | |
JP2955413B2 (en) | Rainwater inflow prediction device using neural network | |
JP4399122B2 (en) | Rainwater inflow prediction device | |
JPS63313088A (en) | Forecasting device for amount of rainfall | |
Vieux et al. | Rainfall accuracy considerations using radar and rain gauge networks for rainfall-runoff monitoring | |
JP4182460B2 (en) | Inflow sewage prediction device | |
JPS59150841A (en) | Estimation and regulation of flow amount of confluence type drainage | |
Kadaryanti et al. | Analysis of the effect of land use on flood height in Balikpapan city (case study: Posindo sub-basin) | |
JP3437700B2 (en) | Pump station inflow prediction support device | |
Neupane et al. | Modeling of urban storm water drainage using HYKAS for Lamachaur, Pokhara, Nepal | |
Veenhuis et al. | The effects of urbanization on floods in the Austin metropolitan area, Texas | |
Thomas | APPLICATION OF THE DR3M WATERSHED MODEL ON A SMALL URBAN BASIN 1 | |
JP3176174B2 (en) | Pump station rainwater inflow prediction device | |
JP2000056835A (en) | Device and method for predicting rate of inflow of rainwater | |
JP2018018413A (en) | Sewage unknown water simple evaluation method | |
Hanif et al. | Direct runoff hydrograph model’s collation for a Pakistan’s region |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071204 Year of fee payment: 15 |