JP3870407B2 - Inflow prediction device - Google Patents

Inflow prediction device Download PDF

Info

Publication number
JP3870407B2
JP3870407B2 JP20464299A JP20464299A JP3870407B2 JP 3870407 B2 JP3870407 B2 JP 3870407B2 JP 20464299 A JP20464299 A JP 20464299A JP 20464299 A JP20464299 A JP 20464299A JP 3870407 B2 JP3870407 B2 JP 3870407B2
Authority
JP
Japan
Prior art keywords
inflow
data
rainfall
amount
autoregressive model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20464299A
Other languages
Japanese (ja)
Other versions
JP2001032353A (en
Inventor
和也 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP20464299A priority Critical patent/JP3870407B2/en
Publication of JP2001032353A publication Critical patent/JP2001032353A/en
Application granted granted Critical
Publication of JP3870407B2 publication Critical patent/JP3870407B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、下水処理場のポンプ井に流入する下水または雨水ポンプ場に流入する雨水などの流入量予測を、精度良く行うことができる流入量予測装置に関する。
【0002】
【従来の技術】
従来、浸水防除のためには雨水排水施設の拡大、既存施設を生かした施設運用が必要であり、特に、既存施設の運用では、降雨量からポンプ井への流入量を予測し、その値に見合ったポンプ制御を行う方法が種々提案されている。例えば、降雨をもとに雨水排水路の設計に必要な雨水流出ハイドログラフを算出する修正RRL法を使用した流入量予測装置は、図3のようになっている。
図3は従来の流入量予測装置を示すブロック図である。
図において、1は雨の降雨量を測定する雨量計、3はポンプ井11に貯留した雨水・汚水を貯留量に応じて汲み上げ吐出する雨水・汚水ポンプ、12は雨量計1で計測された降雨量を蓄積する計測値蓄積装置、9は修正RRL法による流入量予測装置、8はポンプ運転指令装置であって、流入量予測装置9で演算された流入量から最適なポンプ運転指令を出力する。
特に、このような流入量予測装置9は、浸透域面積、流下時間、貯留量・流出量曲線を求め、有効降雨量、雨水流入水、流入量の演算を行う。浸透域面積は、排水面積に対する不浸透域面積、浸透域面積の割合を示すものである。
ここで、不浸透域面積、浸透域面積は、対象とする排水区域の航空写真に二つの乱数の組み合わせを適当な場所を原点としてプロットし、全プロット数に対する不浸透域プロット数、浸透域プロット数の割合をもって不浸透域面積、浸透域面積を算出するものである。
そして、有効降雨量は、図示しない有効面積演算装置で演算された浸透域と不浸透域から管きょに流入する降雨量を演算する。また、流下時間は、排水区域の管きょの位置、形状、管径、こう配などから、満流流速を使って各マンホール間の時間から求める。さらに、貯留量・流出量曲線は、管きょに流入した雨水の管内貯留を考慮に入れた貯留量・流出量の関係を求める。またさらに、雨水流入水は、有効降雨量と流下時間とを用いて、単位図の手法により算出すると共に、流入量は、貯留量・流出量曲線で求められた関数から連続式を解いて求めるようになっている。
【0003】
【発明が解決しようとする課題】
ところが、このような修正RRL法による流入量予測では、有効降雨量、流下時間、貯留量・流出曲線などを求めるために、浸透域、不浸透域、流下時間、貯留量・流入量の関係などを膨大なデータの算出が必要となり、その膨大なデータを随時修正しなければならないという問題があった。
このうち浸透域、不浸透域などは、住宅状況の変化、道路状況の変化によって、その値を随時修正しなければならず、住宅状況の変化、道路状況などの変化等の多くのパラメータを変更するには、多大な時間、人などの労力を必要とし、しかも常にパラメータを更新することは困難であるため、予測精度も悪くなるという問題があった。
本発明は、上記問題を解決するためになされたもので、浸透域、不浸透域、流下時間、貯留量・流入量の関係などの膨大なデータの算出を必要としない、また、住宅・道路状況などの変化等の多くのパラメータを変更せずに多大な時間、人などの労力を必要としない、予測精度の高い流入量予測装置を提供することを目的としている。
【0004】
【課題を解決するための手段】
上記問題を解決するため、請求項1記載の本発明は、下水処理場または雨水ポンプ場のポンプ井に流入する流入量を測定する流量計と、対象流域での降雨量を測定する雨量計と、
前記降雨量の計測値および前記流入量の計測値を蓄積する計測値蓄積装置と、
前記計測値蓄積装置で蓄積された降雨量および流入量から、直近の所定時間のデータ列を作成する直近データ作成装置と、
前記直近データ作成装置で作成されたデータ列に基づいて自己回帰モデルの自己回帰係数と白色ノイズベクトルの分散と最適次数の3つのパラメータを決定する自己回帰モデル作成装置と、
前記計測値蓄積装置のデータから流入量の予測値を算出するための直近のデータ列を作成する予測値算出データ作成装置と、
前記予測値算出データ作成装置で作成されたデータを、前記自己回帰モデル作成装置でパラメータを決定された前記自己回帰モデルに入力して前記流入量の予測値を演算する予測値演算装置、からなる流入量予測装置において、
前記直近データ作成装置で作成されたデータ列に基づいて、前記降雨量が観測されているかチェックする天候抽出装置と、
前記天候抽出装置でチェックされた降雨量およびそれと同時刻の流入量、および前記観測された降雨が一定期間続いた雨天期間の終了後数十分間において計測された流入量を前記自己回帰モデル作成装置に入力するデータ列として加工して追加してゆくデータ加工装置とを備え、
前記データ加工装置で加工されたデータ列を基に、前記自己回帰モデル作成装置が前記パラメータを決定するようにしたものである。
また、請求項2に記載の発明は、気象情報をもとに予測された数時間先の予測降雨データを、現在から1時点先の流入量を予測し終えた前記予測値演算装置の降雨の項に1時点ずつ置き換えて、その次の時点の流入量を1時点ずつ予測することを繰り返すことにより、前記降雨データを予測した前記数時間先における流入量の予測値を演算するようにしたものである。
上記手段により、本発明の流入量予測装置では、下水処理場のポンプ井または雨水ポンプ場に適した予測を行うことができ、降雨量が観測された降雨量と流入量、および降雨量が一定期間継続して観測された雨天期間の終了後数十分間において計測された流入量を使用してパラメータを決定していることから、降雨量と流入量の関係を明確に表現したモデルから流入量の予測を行うことができる。
【0005】
【発明の実施の形態】
以下、本発明の実施例を図に基づいて説明する。図1は、本発明の実施例を示す流入量予測装置のブロック図である。なお、従来と同じ構成要素については同じ符号を付してその説明を省略し、異なる点のみを説明する。本発明が従来技術と異なる構成は、以下のとおりである。図において、2はポンプ井11に流入する流量を測定する流量計、4は降雨量の計測値および流入量の計測値を蓄積する計測値蓄積装置、5は降雨量予測装置であって、気象庁、気象レーダなどのデータを基に計算された数時間先までの降雨量を数十分間隔で予測し、蓄積する。また、6はデータ作成装置であり、計測値蓄積装置4から入力されたデータを統計モデルに適用するためのデータ作成を行う。61は直近データ作成装置であり、計測値蓄積装置4に蓄積された降雨量と流入量の直近数十分のデータを作成する。62は天候抽出装置であり、直近数十分間、雨量計1において、降雨量が観測されているかをチェックする。63はデータ加工装置であり、自己回帰モデル作成装置71に入力するデータ列を作成する。天候抽出装置62においてチェックされた結果が晴天時はデータ列の加工を行わず、雨天時は、直近に計測された降雨量、流入量のみをデータ列に追加する。しかし、観測された降雨が一定期間続いた雨天期間が終了しても、しばらく雨の影響を受けるため雨天期間終了後、数十分間はデータの追加を行うようにしている。このようにしてデータの加工を行い、降雨量、流入量の関係を明確にモデル化できるようにしている。7は予測装置であり、データ作成装置6で作成されたデータ列を入力し、流入量の予測値を演算する。71は、自己回帰モデル作成装置で、データ加工装置63で作成したデータを入力して自己回帰モデルを作成する。この自己回帰モデルは、過去数十日の計測値を使用するようにしている。
今、時刻nにおけるプロセスの状態をk次元の全変数ベクトルX(n)、時刻nよりm時点前の全変数ベクトルをX(n-m)、白色ノイズベクトルをU(n)、自己回帰モデルの回帰係数をA(m)、自己回帰モデルの最適次数をMで表すと、その自己回帰表現は次のようになる。
【0006】
【数1】
【0007】
ここで、自己回帰モデルの作成とは、自己回帰係数、白色ノイズベクトルの分散および自己回帰モデルの最適次数という3つのパラメータの決定に帰結される。
自己回帰係数A(m)は、要素をAij(m)とし、次の連立方程式をi=1,2,3,・・・・,kについて解くことにより求められる。但し、Xi、Xjの相互分散をRij()、自己回帰係数の要素をAij(m)とすると、次のようになる。
【0008】
【数2】
【0009】
上記の連立一次方程式を、i=1,2,...,kについて解けばAij(m)が求められる。
また、白色ノイズベクトルU(n)の要素をεi(n)とすると、その残差分散値σi2は次のようになる。
【0010】
【数3】
【0011】
なお、モデルの最適次数Mは予測誤差を表す下記の(4)式のMFPE(M)を最小にする値である。
【0012】
【数4】
【0013】
但し、Nはデータ数、‖dM‖はU(n)の分散共分散行列推定値である。またMFPEはMultiple Final Prediction Errorの頭文字である。
このようにして自己回帰係数、白色ノイズの分散および最適モデル次数が求められ、自己回帰モデルが作成される。従って、流入量の予測を行うために必要な、流入量と降雨量との関係式を自己回帰モデルから求めることができる。自己回帰モデルの更新は、直近のデータを使用することを目的に1日1回行う。
72は予測値算出データ作成装置であり、自己回帰モデル作成装置71で作成したモデルに入力するためのデータ列を作成する。
73は予測値演算装置であり、自己回帰モデル作成装置71で作成した自己回帰モデルと予測値算出データ作成装置72で作成したデータ列から統計的に類推可能な流入量の数十分先の予測値を演算する。自己回帰モデルを用いた時の数十分先の予測は次のように表される。
【0014】
【数5】
【0015】
但し、Q()p:時刻における流入量の予測値
Q():時刻における流入量の計測値
Rain():時刻におけるの降雨量
A11(m) :流入量の予測値に対する残差部分の自己回帰係数
A12(m) :流入量の予測値に対する降雨量の自己回帰係数
しかし、自己回帰モデルを用いた時の数十分先の予測は、1点先以上の予測を必要とする。そのため1点先以上の予測を行う際は、流入量は予測値を使用し、降雨量は前回の降雨量を使用する。また、数時間先まで予測した降雨量データがあれば、流入量の予測にそれを利用し、予測降雨データを、現在から 1 時点先の流入量を予測し終えた前記予測値演算装置の降雨の項に1時点ずつ置き換えて、その次の時点の流入量を 1 時点ずつ予測することを繰り返すことにより、数時間先の流入量も予測することができる。このようにして得られた流入量の予測値Q(0)p,Q(1)p・・・をポンプ運転指令装置8に出力する。
【0016】
次に、本発明の実施例による流入量予測装置について、簡単に流入量予測の方法をまとめて説明する。
まず、対象流域の降雨量、下水処理場のポンプ井11に流入する下水などの流入量をオンラインで計測して計測値蓄積装置4に蓄積する。この計測値蓄積装置4に蓄積された計測オンラインデータに基づいて、データ作成装置6により直近数時間のデータ列を作成・加工する。その後、この加工後のデータを基に自己回帰モデル作成装置71により自己回帰モデルを作成する。続いて、こうして作成された自己回帰モデル、予測値算出データ作成装置72のデータおよび降雨量予測装置5のデータを用いることにより予測値演算装置73で流入量の予測値を演算し、稼働後数週間における下水処理場のポンプ井などに適した流入量の予測を行う。
以上説明した流入量予測装置を適用して、実データを用いてシミュレーションを行った。図2は本発明の実施例による流入量予測装置の効果を確認する説明図であって、(a)は実データを用いてシミュレーションを行った流入量予測値と実測値のグラフ、(b)は流入量予測値と実測値グラフに対応した雨量の実測値である。図において、実践は実測値、破線はシミュレーションによる予測値を示している。シミュレーションの実施に際しては、直近数日のデータを使用しただけであるが、図に示すように流入量の実測値と予測値がよく一致していることがわかる。
したがって、本実施例による流入量予測装置は、対象流域の降雨量、下水処理場のポンプ井に流入する下水などの流入量の計測オンラインデータに基づいて、データ作成装置により直近数時間のデータ列を作成・加工し、この加工後のデータを基に自己回帰モデルを用いて稼働後数週間でその下水処理場のポンプ井などに適した流入量の予測を行えるようにしたので、過去の実績を基にした流入量予測を行う際の予測精度を向上させることができる。また、従来の修正RRL法を用いた流入量予測装置のように、浸透域、不浸透域、流下時間、貯留量・流入量の関係などの膨大なデータの算出を必要とせず、あるいは住宅・道路状況の変化等の多くのパラメータの変更を必要としないので、多大な時間、人などの労力を不要とすることができる。
なお、本実施例では、対象流域での降雨量の計測値を考慮した下水処理場のポンプ井に流入する下水の流入量を予測する流入量予測装置について述べたが、この他に雨水ポンプ場に流入する雨水の予測についても本流入量予測装置を用いることが可能である。
【0017】
【発明の効果】
以上述べたように本発明によれば、対象流域の降雨量、下水処理場のポンプ井に流入する下水などの流入量の計測オンラインデータに基づいて、データ作成装置により直近数時間のデータ列を作成・加工し、この加工後のデータを基に自己回帰モデルを用いて稼働後数週間でその下水処理場のポンプ場などに適した流入量の予測を行える流入量予測装置を構成したので、過去の実績を基にした流入量予測を行う際の予測精度を向上させる効果がある。また、従来のように浸透域、不浸透域、流下時間、貯留量・流入量の関係などの膨大なデータの算出を必要せず、あるいは住宅・道路状況などの変化等の多くのパラメータを変更する必要がないため、多大な時間、人などの労力を不要とすることができる。
【図面の簡単な説明】
【図1】本発明の実施例を示す流入量予測装置のブロック図である。
【図2】本発明による流入量予測装置の効果を確認する説明図であって、(a)は実データを用いてシミュレーションを行った流入量予測値と実測値のグラフ、(b)は流入量予測値と実測値グラフに対応した雨量の実測値である。
【図3】従来技術を示す流入量予測装置のブロック図である。
【符号の説明】
1 雨量計
2 流量計
3 雨水・汚水ポンプ
4 計測値蓄積装置
5 降雨量予測装置
6 データ作成装置
61 直近データ作成装置
62 天候抽出装置
63 データ加工装置
7 予測装置
71 自己回帰モデル作成装置
72 予測値算出データ作成装置
73 予測値演算装置
8 ポンプ運転指令装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an inflow amount prediction apparatus capable of accurately predicting an inflow amount of, for example, sewage flowing into a pump well of a sewage treatment plant or rainwater flowing into a rainwater pumping station.
[0002]
[Prior art]
Conventionally, in order to prevent inundation, it is necessary to expand rainwater drainage facilities and operate facilities that make use of existing facilities.In particular, in the operation of existing facilities, the amount of water flowing into the pump well is predicted from the amount of rainfall. Various methods for performing appropriate pump control have been proposed. For example, an inflow prediction apparatus using a modified RRL method for calculating a rainwater outflow hydrograph necessary for designing a rainwater drainage channel based on rainfall is as shown in FIG.
FIG. 3 is a block diagram showing a conventional inflow rate prediction apparatus.
In the figure, 1 is a rain gauge for measuring rainfall, 3 is a rainwater / sewage pump that pumps and discharges rainwater / sewage stored in a pump well 11 according to the storage volume, and 12 is a rainfall measured by the rainmeter 1. A measured value storage device for storing the amount, 9 is an inflow amount prediction device by the modified RRL method, and 8 is a pump operation command device, which outputs an optimal pump operation command from the inflow amount calculated by the inflow amount prediction device 9 .
In particular, the inflow amount predicting device 9 as described above calculates an infiltration region area, a downflow time, a storage amount / outflow amount curve, and calculates an effective rainfall amount, a rainwater inflow water, and an inflow amount. The infiltration area indicates the ratio of the impermeable area to the drainage area and the infiltration area.
Here, the impervious area and infiltrated area are plotted on the aerial photograph of the target drainage area using a combination of two random numbers as the origin, and the number of impervious area plots and infiltrated area plots against the total number of plots. The impervious area and the infiltrated area are calculated at a ratio of numbers.
And the effective rainfall calculates the rainfall which flows into the pipe from the seepage area and the impermeability area calculated by an effective area calculation device (not shown). In addition, the flow-down time is obtained from the time between each manhole using the full flow velocity from the position, shape, pipe diameter, gradient, etc. of the drainage pipe. Furthermore, the storage volume / runoff curve calculates the relationship between the storage volume and runoff volume taking into account the in-pipe storage of rainwater flowing into the pipe. Furthermore, rainwater inflow water is calculated by the unit diagram method using the effective rainfall and flow time, and the inflow is obtained by solving a continuous equation from the function obtained from the storage and outflow curves. It is like that.
[0003]
[Problems to be solved by the invention]
However, in the inflow forecast using the modified RRL method, in order to obtain the effective rainfall, runoff time, storage volume / outflow curve, etc., the relationship between the infiltration zone, non-penetration zone, rundown time, storage volume / inflow volume, etc. There is a problem that it is necessary to calculate a large amount of data, and that the large amount of data must be corrected at any time.
Of these, the infiltration and non-permeability areas must be corrected as needed due to changes in housing conditions and road conditions, and many parameters such as changes in housing conditions and changes in road conditions are changed. Therefore, it takes a lot of time and manpower, and it is difficult to always update the parameters, so that there is a problem that the prediction accuracy is deteriorated.
The present invention has been made to solve the above-described problems, and does not require calculation of enormous data such as the permeation zone, the non-penetration zone, the flow time, the relationship between the storage amount and the inflow amount, and houses and roads. It is an object of the present invention to provide an inflow amount prediction device with high prediction accuracy that does not require a great amount of time and labor without changing many parameters such as changes in conditions.
[0004]
[Means for Solving the Problems]
In order to solve the above problem, the present invention described in claim 1 includes a flow meter for measuring an inflow amount flowing into a pump well of a sewage treatment plant or a rainwater pumping station, a rain meter for measuring a rainfall amount in a target basin, ,
A measured value storage device for storing the measured value of the rainfall and the measured value of the inflow;
From the rainfall and inflow accumulated in the measurement value accumulation device, a latest data creation device that creates a data string of the latest predetermined time;
An autoregressive model creating apparatus for determining three parameters of an autoregressive coefficient of an autoregressive model, a variance of a white noise vector, and an optimal order based on a data string created by the latest data creating apparatus;
A predicted value calculation data creation device that creates a most recent data string for calculating a predicted value of the inflow amount from the data of the measurement value storage device;
A prediction value calculation device that inputs data generated by the prediction value calculation data generation device to the autoregression model whose parameters are determined by the autoregression model generation device and calculates a prediction value of the inflow amount; In the inflow prediction device,
A weather extraction device for checking whether the rainfall is observed based on the data string created by the latest data creation device;
Wherein said rainfall checked in weather extraction device and the inflow of it at the same time, and the measured observed rainfall over certain periods lasted rain period ends after several tens of minutes the flow Iriryou autoregressive model With a data processing device that processes and adds as a data string to be input to the creation device ,
The autoregressive model creation apparatus determines the parameter based on the data string processed by the data processing apparatus.
Further, according to the second aspect of the present invention, the predicted rainfall data predicted several hours ahead based on weather information is used to calculate the amount of rainfall of the predicted value calculation apparatus that has predicted the inflow amount one point ahead from the present . By replacing each term with a point in time and repeatedly predicting the amount of inflow at the next point in time, the predicted value of the amount of inflow in the several hours ahead that predicted the rainfall data was calculated It is.
By the above means, the inflow prediction device of the present invention can perform prediction suitable for the pump well or storm water pumping station of the sewage treatment plant, and the rainfall amount, the inflow amount, and the rainfall amount where the rainfall amount is observed are constant. Since the parameters are determined using the inflow measured for several tens of minutes after the end of the rainy period, the inflow from a model that clearly expresses the relationship between rainfall and inflow. Quantity predictions can be made.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of an inflow amount prediction apparatus showing an embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the same component as the past, the description is abbreviate | omitted, and only a different point is demonstrated. The configuration in which the present invention differs from the prior art is as follows. In the figure, 2 is a flow meter for measuring the flow rate flowing into the pump well 11, 4 is a measured value storage device for storing the measured value of the rainfall amount and the measured value of the inflow amount, and 5 is a rainfall amount predicting device, Predicts and accumulates several tens of minutes of rainfall up to several hours ahead based on data such as weather radar. Reference numeral 6 denotes a data creation device that creates data for applying the data input from the measured value storage device 4 to the statistical model. 61 is the latest data creation device, which creates the most recent data of the rainfall amount and the inflow amount accumulated in the measurement value accumulation device 4. Reference numeral 62 denotes a weather extraction device, which checks whether rainfall has been observed in the rain gauge 1 for the last several tens of minutes . Reference numeral 63 denotes a data processing device that creates a data string to be input to the autoregressive model creation device 71. When the result checked by the weather extraction device 62 is clear, the data string is not processed, and when it is raining, only the rainfall amount and the inflow amount measured most recently are added to the data string. However, even if the rainy season, where the observed rainfall lasts for a certain period , is affected by the rain for a while, data is added for several tens of minutes after the rainy season. In this way, the data is processed so that the relationship between rainfall and inflow can be clearly modeled. Reference numeral 7 denotes a prediction device, which inputs a data string created by the data creation device 6 and calculates a predicted value of the inflow amount. Reference numeral 71 denotes an autoregressive model creation device that inputs data created by the data processing device 63 and creates an autoregressive model. This autoregressive model uses measured values for the past several tens of days.
Now, the state of the process at time n is the k-dimensional all variable vector X (n), all variable vectors m times before time n are X (nm), white noise vector is U (n), autoregressive model If the regression coefficient is represented by A (m) and the optimum order of the autoregressive model is represented by M, the autoregressive expression is as follows.
[0006]
[Expression 1]
[0007]
Here, the creation of the autoregressive model results in the determination of three parameters: the autoregressive coefficient, the variance of the white noise vector, and the optimal order of the autoregressive model.
The autoregressive coefficient A (m) is determined by solving the following simultaneous equations for i = 1, 2, 3,..., K with the element Aij (m). However, when the mutual dispersion of Xi and Xj is Rij () and the element of the autoregressive coefficient is Aij (m), the following is obtained.
[0008]
[Expression 2]
[0009]
Aij (m) can be obtained by solving the above simultaneous linear equations for i = 1, 2,..., K.
If the element of the white noise vector U (n) is εi (n), the residual variance value σi 2 is as follows.
[0010]
[Equation 3]
[0011]
Note that the optimal order M of the model is a value that minimizes MFPE (M) in the following equation (4) representing the prediction error.
[0012]
[Expression 4]
[0013]
Here, N is the number of data, and ‖d M ‖ is the variance-covariance matrix estimate of U (n). MFPE is an acronym for Multiple Final Prediction Error.
In this way, the autoregressive coefficient, the variance of white noise, and the optimal model order are obtained, and an autoregressive model is created. Therefore, a relational expression between the inflow and the rainfall necessary for predicting the inflow can be obtained from the autoregressive model. The autoregressive model is updated once a day for the purpose of using the latest data.
Reference numeral 72 denotes a predicted value calculation data creation device that creates a data string to be input to the model created by the autoregressive model creation device 71.
73 is a predicted value calculation device, which predicts several tens of minutes ahead of the inflow that can be statistically estimated from the autoregressive model created by the autoregressive model creating device 71 and the data string created by the predicted value calculation data creating device 72. Calculate the value. A prediction several tens of minutes ahead using the autoregressive model is expressed as follows.
[0014]
[Equation 5]
[0015]
Q ( n ) p: predicted value of inflow at time n Q ( n ): measured value of inflow at time n
Rain ( n ): Rainfall at time n
A 11 (m): Autoregressive coefficient of the residual part with respect to the predicted value of inflow
A 12 (m): Rainfall autoregressive coefficient relative to the inflow prediction value However, forecasting several tens of minutes ahead using the autoregressive model requires more than one point. Therefore, when forecasting more than one point ahead, the predicted value is used for the inflow and the previous rainfall is used for the rainfall. Further, if there is rainfall data predicted to several hours later, by using it to predict the inflow, the predicted rainfall data, the predicted value calculation unit has finished predict the inflow of one time point away from the current rainfall substituting one point in sections by repeating to predict the inflow of the next time one time, it is possible inflow of several hours ahead also predicted. The predicted inflow values Q (0) p, Q (1) p,... Thus obtained are output to the pump operation command device 8.
[0016]
Next, an inflow amount prediction method according to an embodiment of the present invention will be briefly described.
First, the rainfall amount in the target basin and the inflow amount of sewage flowing into the pump well 11 of the sewage treatment plant are measured online and accumulated in the measured value accumulation device 4. Based on the measurement online data stored in the measurement value storage device 4, a data string for the latest several hours is created and processed by the data creation device 6. Thereafter, an autoregressive model is created by the autoregressive model creation device 71 based on the processed data. Subsequently, by using the autoregressive model thus created, the data of the predicted value calculation data creating device 72 and the data of the rainfall amount predicting device 5, the predicted value of the inflow is calculated by the predicted value calculating device 73, and the number after operation Estimate inflow volume suitable for pump wells of sewage treatment plants during the week.
A simulation was performed using actual data by applying the inflow amount prediction apparatus described above. FIG. 2 is an explanatory view for confirming the effect of the inflow amount prediction apparatus according to the embodiment of the present invention, wherein (a) is a graph of the inflow amount prediction value and the actual measurement value obtained by simulation using actual data, and (b). Is the measured value of rainfall corresponding to the predicted inflow and the measured value graph. In the figure, practice indicates actual measurement values, and broken lines indicate simulation prediction values. In carrying out the simulation, only the data for the last few days was used, but it can be seen that the measured value of the inflow and the predicted value are in good agreement as shown in the figure.
Therefore, the inflow prediction apparatus according to the present embodiment is based on the measurement online data of the rainfall in the target basin, the inflow of sewage flowing into the pump well of the sewage treatment plant, and the data sequence of the most recent hours by the data creation device. In the past few weeks, the inflow volume suitable for the pump well of the sewage treatment plant can be predicted using the autoregressive model based on the data after processing. The prediction accuracy at the time of performing the inflow amount prediction based on can be improved. Moreover, unlike the conventional inflow prediction device using the modified RRL method, it is not necessary to calculate enormous data such as the relationship between infiltration area, impermeability area, flow down time, storage volume / inflow volume, Since it is not necessary to change many parameters such as changes in road conditions, a great deal of time and labor can be eliminated.
In addition, although the present Example described the inflow amount prediction apparatus which estimates the inflow amount of the sewage which flows into the pump well of the sewage treatment plant in consideration of the measured value of the rainfall amount in the target basin, the rainwater pump station It is possible to use this inflow amount predicting apparatus for the prediction of rainwater flowing into the water.
[0017]
【The invention's effect】
As described above, according to the present invention, based on the measurement online data of the rainfall of the target basin, the inflow of sewage flowing into the pump well of the sewage treatment plant, the data sequence of the most recent hours is generated by the data creation device. Created and processed, and constructed an inflow prediction device that can predict the inflow suitable for the pumping station of the sewage treatment plant within a few weeks after operation using the autoregressive model based on the data after processing, There is an effect of improving the prediction accuracy when performing the inflow amount prediction based on the past results. In addition, there is no need to calculate a huge amount of data such as the relationship between the permeation zone, non-penetration zone, flow-down time, storage volume / inflow volume, and many parameters such as changes in housing / road conditions are changed. Since it is not necessary to do this, a great deal of time and labor can be eliminated.
[Brief description of the drawings]
FIG. 1 is a block diagram of an inflow amount prediction apparatus showing an embodiment of the present invention.
2A and 2B are explanatory diagrams for confirming the effect of the inflow amount prediction device according to the present invention, in which FIG. 2A is a graph of an inflow amount predicted value and a measured value obtained by simulation using actual data, and FIG. It is an actual measurement value of rainfall corresponding to the predicted amount and actual value graph.
FIG. 3 is a block diagram of an inflow amount prediction apparatus showing a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rain gauge 2 Flow meter 3 Rainwater / sewage pump 4 Measurement value storage device 5 Rainfall prediction device 6 Data creation device 61 Recent data creation device 62 Weather extraction device 63 Data processing device 7 Prediction device 71 Autoregressive model creation device 72 Predicted value Calculation data creation device 73 Predicted value calculation device 8 Pump operation command device

Claims (2)

下水処理場または雨水ポンプ場のポンプ井に流入する流入量を測定する流量計と、対象流域での降雨量を測定する雨量計と、
前記降雨量の計測値および前記流入量の計測値を蓄積する計測値蓄積装置と、
前記計測値蓄積装置で蓄積された降雨量および流入量から、直近の所定時間のデータ列を作成する直近データ作成装置と、
前記直近データ作成装置で作成されたデータ列に基づいて自己回帰モデルの自己回帰係数と白色ノイズベクトルの分散と最適次数の3つのパラメータを決定する自己回帰モデル作成装置と、
前記計測値蓄積装置のデータから流入量の予測値を算出するための直近のデータ列を作成する予測値算出データ作成装置と、
前記予測値算出データ作成装置で作成されたデータを、前記自己回帰モデル作成装置で前記パラメータを決定された前記自己回帰モデルに入力して前記流入量の予測値を演算する予測値演算装置、からなる流入量予測装置において、
前記直近データ作成装置で作成されたデータ列に基づいて、前記降雨量が観測されているかチェックする天候抽出装置と、
前記天候抽出装置でチェックされた降雨量およびそれと同時刻の流入量、および前記観測された降雨が一定期間続いた雨天期間の終了後数十分間において計測された流入量を前記自己回帰モデル作成装置に入力するデータ列として加工して追加してゆくデータ加工装置とを備え、
前記データ加工装置で加工されたデータ列を基に、前記自己回帰モデル作成装置が前記パラメータを決定する
ことを特徴とする流入量予測装置。
A flow meter for measuring the amount of inflow flowing into the pump well of the sewage treatment plant or rainwater pumping station, a rain meter for measuring the amount of rainfall in the target basin,
A measured value storage device for storing the measured value of the rainfall and the measured value of the inflow;
From the rainfall and inflow accumulated in the measurement value accumulation device, a latest data creation device that creates a data string of the latest predetermined time;
An autoregressive model creating apparatus for determining three parameters of an autoregressive coefficient of an autoregressive model, a variance of a white noise vector, and an optimal order based on a data string created by the latest data creating apparatus;
A predicted value calculation data creation device that creates a most recent data string for calculating a predicted value of the inflow amount from the data of the measurement value storage device;
From the predicted value calculation device that calculates the predicted value of the inflow amount by inputting the data created by the predicted value calculation data creation device to the autoregressive model in which the parameter is determined by the autoregressive model creation device In the inflow amount prediction device
A weather extraction device for checking whether the rainfall is observed based on the data string created by the latest data creation device;
The autoregressive model is created based on the amount of rainfall checked by the weather extraction device and the amount of inflow at the same time, and the amount of inflow measured in the tens of minutes after the end of the rainy period in which the observed rainfall has continued for a certain period of time. A data processing device that processes and adds as a data string to be input to the device,
The inflow prediction apparatus, wherein the autoregressive model creation apparatus determines the parameter based on a data string processed by the data processing apparatus.
気象情報をもとに予測された数時間先の予測降雨データを、現在から1時点先の流入量を予測し終えた前記予測値演算装置の降雨の項に1時点ずつ置き換えて、その次の時点の流入量を1時点ずつ予測することを繰り返すことにより、前記降雨データを予測した前記数時間先における流入量の予測値を演算することを特徴とする請求項1記載の流入量予測装置。  The forecasted rainfall data predicted several hours ahead based on weather information is replaced one by one with the rainfall term of the forecast value calculation device that has finished predicting the inflow volume one point ahead from the present, and the next The inflow amount prediction apparatus according to claim 1, wherein a predicted value of the inflow amount in the several hours ahead in which the rainfall data is predicted is calculated by repeatedly predicting the inflow amount at each time point.
JP20464299A 1999-07-19 1999-07-19 Inflow prediction device Expired - Lifetime JP3870407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20464299A JP3870407B2 (en) 1999-07-19 1999-07-19 Inflow prediction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20464299A JP3870407B2 (en) 1999-07-19 1999-07-19 Inflow prediction device

Publications (2)

Publication Number Publication Date
JP2001032353A JP2001032353A (en) 2001-02-06
JP3870407B2 true JP3870407B2 (en) 2007-01-17

Family

ID=16493866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20464299A Expired - Lifetime JP3870407B2 (en) 1999-07-19 1999-07-19 Inflow prediction device

Country Status (1)

Country Link
JP (1) JP3870407B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101821599B1 (en) * 2016-02-15 2018-01-25 유찬호 System and method for predict times of disaster in real time

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101821599B1 (en) * 2016-02-15 2018-01-25 유찬호 System and method for predict times of disaster in real time

Also Published As

Publication number Publication date
JP2001032353A (en) 2001-02-06

Similar Documents

Publication Publication Date Title
Ramly et al. Application of HEC-GeoHMS and HEC-HMS as rainfall–runoff model for flood simulation
JP6207889B2 (en) Inundation prediction system, inundation prediction method and program
CN106777460B (en) Method for determining pipe diameter and gradient of urban rainwater pipe network based on SWMM hydraulic model
KR101545335B1 (en) Pump control system and method for rainfall water discharge of reservoir using artificial neural network and fuzzy logic
JP2000257140A (en) Rain water inflow forecasting device and rain water inflow forecasting method
JP2021182408A (en) Method for predicting water level in sewage pipe sewer
CN115471078B (en) Flood risk point assessment method and device based on urban water affair system
JP3839361B2 (en) Rainwater runoff coefficient prediction method, rainwater inflow prediction method, rainwater runoff coefficient prediction program, and rainwater inflow forecast program
Nandalal et al. Event based modeling of a watershed using HEC-HMS
JP3870407B2 (en) Inflow prediction device
JP4182460B2 (en) Inflow sewage prediction device
CN116050037B (en) Urban drainage system liquid level indirect monitoring and analyzing method based on directed topology network
JP3906096B2 (en) Drain pump operation support device and drain pump control device
JP3279703B2 (en) Inflow water prediction method and inflow water prediction device
JPH06102911A (en) Method and device for predicting inflow water rate in drainage pump place
JP4407420B2 (en) Water distribution prediction device
JP2002322727A (en) Operation support system
Shekar Rainfall-Runoff Modelling of a River Basin Using HEC HMS: A Review Study
CN109190829B (en) Method for dynamically calculating rainfall infiltration amount and groundwater outflow amount
JP2000056835A (en) Device and method for predicting rate of inflow of rainwater
CN115130264B (en) Urban waterlogging prediction method and system based on runoff coupling simulation
Branisavljevic et al. Real-time runoff prediction based on data assimilation and model bias reduction
JP2864818B2 (en) Operation support equipment for rainwater discharge facilities
Hellmers Computation of backwater effects in surface waters of tidal lowland catchments including control structures–An efficient and re-usable method implemented in the hydrological open source model Kalypso-NA (4.0)
JPH0476637B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061008

R150 Certificate of patent or registration of utility model

Ref document number: 3870407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141027

Year of fee payment: 8

EXPY Cancellation because of completion of term