JP4181783B2 - Ozone gas concentration measurement method - Google Patents

Ozone gas concentration measurement method Download PDF

Info

Publication number
JP4181783B2
JP4181783B2 JP2002062781A JP2002062781A JP4181783B2 JP 4181783 B2 JP4181783 B2 JP 4181783B2 JP 2002062781 A JP2002062781 A JP 2002062781A JP 2002062781 A JP2002062781 A JP 2002062781A JP 4181783 B2 JP4181783 B2 JP 4181783B2
Authority
JP
Japan
Prior art keywords
ozone gas
ozone
concentration
decomposition
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002062781A
Other languages
Japanese (ja)
Other versions
JP2003262627A (en
Inventor
国彦 小池
吾一 井上
貞紀 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Corp
Original Assignee
Iwatani Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani Corp filed Critical Iwatani Corp
Priority to JP2002062781A priority Critical patent/JP4181783B2/en
Publication of JP2003262627A publication Critical patent/JP2003262627A/en
Application granted granted Critical
Publication of JP4181783B2 publication Critical patent/JP4181783B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、オゾンガス濃度の測定方法に関し、特に、発生したオゾンを濃縮して得られる高濃度オゾンガスの濃度測定方法に関する。
【0002】
【従来の技術】
オゾンガスは強い酸化力を有しており、半導体製造分野等では、酸化膜形成等の用途が見込まれるが、従来、純酸素ガスを原料として高能力のオゾン発生器を使用しても、10vol %程度の濃度のオゾンガスしか生成できなかった。そこで、近年、オゾン発生器で発生したオゾンガスを濃縮し、高濃度のオゾンガスに形成する技術が種々提案されている。
【0003】
しかし、酸化膜形成等の作業では、供給するオゾンガス濃度は形成される酸化膜の膜厚や性質に大きく影響することから、供給されるオゾンガス濃度を知ることは重要な要請となっている。
【0004】
【発明が解決しようとする課題】
ところが、従来、濃縮された高濃度オゾンガスの濃度を測定するものは確立しておらず、実際に供給されるオゾンの濃度を正確に知ることはできなった。
【0005】
本発明は、このような点に着目して、供給されるオゾンガス源に貯留されているオゾンガスの濃度を測定する方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上述の目的を達成するために、請求項1に記載した発明は、オゾンガス源に貯留されているオゾンガスをその濃度を12 vol %以上の高濃度状態で分解容器内に13 . kPa 以下の圧力で封入し、封入されたオゾンガスを分解容器内で強制分解させることで封入オゾンガスの全量を瞬時に酸素へと分解させ、分解後の上昇圧力と上昇温度から封入オゾンガスの濃度を検知するように構成したものである。
【0007】
請求項2に記載した発明は、封入されたオゾンガスを分解容器内で強制分解させる際に分解容器内に火花を発生させて強制着火するようにしたものである
【0008】
【発明の作用】
本発明は、分解容器内に大気圧未満の圧力で封入されたオゾンガスを強制分解させて、封入オゾンガスの全量を酸素に分解させ、分解後の上昇圧力と上昇温度から封入されたオゾンガスの濃度を知るようにしていることから、100vol %のオゾンが全量酸素ガスに分解すると体積が1.5倍、つまり圧力が1.5倍となることから、その圧力上昇率を知ることで、元のオゾンガス濃度を知ることができることになる。また、その際、検出した温度に基づき圧力を温度補正することでより正確なオゾンガス濃度を検出することができることになる。
【0009】
【発明の実施の形態】
図は本発明方法を適用するオゾン濃度測定システムの一例を示すガス略流れ図である。
このオゾン濃度測定システムは、オゾンガス源から供給されるオゾンガスの濃度を検出するもので、空気分離装置や酸素ガス貯蔵容器等の酸素ガス源(1)から導出された酸素ガスをオゾン発生器(2)に通して発生させたオゾンガスを吸着式のオゾン濃縮装置(3)に導入して濃縮し、このオゾン濃縮装置(3)から取り出したオゾンガスを分解容器(4)内に導入後封止し、分解容器(4)内で導入されたオゾンガスに直流電気火花を発生させて、導入されたオゾンガスを瞬時に酸素に強制分解させ、分解操作前後での圧力差から導入されたオゾンガスの濃度を検出するものである。この場合、オゾン濃縮装置(3)がオゾンガス源となる。
【0010】
図中符号(5)は直流電気火花を発生させる着火エネルギー付与回路、(6)は吸着式オゾン濃縮装置(3)にオゾンガスを吸着させる際に吸着されなかった酸素ガス等を導出する導出ライン、(7)は吸着式オゾン濃縮装置(3)からオゾンガスを離脱させる際に使用する減圧ライン、(8)は減圧ライン(7)に配置した吸引ポンプ、(10)は吸着式オゾン濃縮装置(3)の内圧を検出する圧力計、(11)は分解容器(4)の内圧を検出する圧力計、(12)は分解容器(4)の内部温度を検出する温度センサーである。
【0011】
導入されたオゾンガスを強制分解させると、温度一定の定容下では、
2O3 →3O2
となることから、100%オゾンガスの場合には、1.5倍の圧力上昇を伴なうことから、オゾンガスを導入した際の分解容器(4)内の圧力をP1、強制分解操作後の容器内圧力をP2とした場合、温度が一定であれば、その導入されたオゾンガス濃度(xvol%)は、
x(vol%)={(P2−P1)/(1.5P1−P1)}×100
で求めることができる。
【0012】
なお、分解させるとその分解熱でガス温度が上昇することから、温度が落ち着いてから圧力測定することになるが、高圧封入したオゾンガスを分解させるとその温度上昇が大きく、冷却して元の温度まで低下するのに時間がかかることになる。このため、分解容器(4)にオゾンガスの圧力をできるだけ低圧にして封入する。
【0013】
ちなみに、オゾン濃度が60 vol%の場合、封入圧力が絶対圧で4kPa(30Torr)であると、温度上昇は1〜2℃程度であるが、封入圧力が絶対圧で66.5kPa(500Torr)であると、30℃程度の温度上昇となる。したがって、封入圧力を絶対圧で13.3kPa(100Torr)程度以下にすることにより、温度上昇を6℃以下に抑えることができ、元の温度に戻すまでの冷却時間を短縮することができることになる。また、検出温度から分解後の圧力を補正することもできる。さらに、オゾン濃度が80 vol%の場合には、2kPa(15Torr)でも急激に分解反応することを確かめている。
【0014】
上述のオゾン濃度測定システムでは、分解容器(4)内に付与する着火エネルギーとして、直流電気火花を使用したが、交流電気火花やニクロム線加熱等の電気エネルギーを使用しても良い。さらに、上述のオゾン濃度測定システムでは、発生させたオゾンガスを濃縮する装置としてオゾンを選択吸着する吸着剤を使用して吸着する吸着式オゾン濃縮装置を使用したが、液化による液化方式で濃縮するようにしても良い。さらに、このオゾン濃度測定方式は、測定するオゾンガスとしてオゾン発生器(2)で発生したオゾンガスや、オゾン貯蔵容器に貯蔵されているオゾンガスの濃度を測定することもできる。この場合、オゾン発生器(2)やオゾン貯蔵容器がオゾンガス源となる。
【0015】
[実験例]
オゾン発生器(2)で発生させた5vol %のオゾンガスを吸着式オゾン濃縮装置(3)に大気圧、−90℃でオゾンガスを飽和吸着させ、その後、6.65kPa(50Torr)まで減圧して、オゾン濃縮操作を行った。その後、略6.65kPa(Torr)を保ちながら−70℃まで昇温させてオゾンガスを吸着剤から脱着させ、脱着した高濃度オゾンガスを分解容器(4)に約5.32kPa(40Torr)で回収し、密閉静置させた。ついで着火エネルギー付与回路(5)のコンデンサに蓄えた電荷を7kVに昇圧して放電させることで、分解容器(4)内に直流火花を発生させ、分解容器(4)内に回収したオゾンガスを強制着火させて、全量を酸素ガスへ分解させた。
【0016】
その結果は以下のとおりであった。
【表1】

Figure 0004181783
【0017】
【発明の効果】
本発明では、測定対象となるオゾンガスを分解容器内に封入し、分解容器内に着火エネルギーを作用させて分解容器内に封入されているオゾンガスの全量を酸素ガスに瞬時に分解させ、分解後の圧力と封入圧力との圧力差から、導入されたオゾンガスの濃度を検出するように構成しているので、測定対象となっているオゾンガスの濃度を、効率よく正確に検出することができる。また、その際、検出した温度に基づき圧力を温度補正することでより正確なオゾンガスの濃度を検出することができることになる。
【0018】
さらに、分解容器への封入圧力を大気圧未満の圧力にしているので、オゾンガスの分解後での上昇温度幅を小さくすることができ、分解容器が元の温度に戻る間での時間をより短時間にすることができ、濃度測定に要する作業時間を短時間にすることができる。
【図面の簡単な説明】
【図1】オゾン濃度測定システムの一例を示すガス略流れ図である。
【符号の説明】
4…分解容器。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring ozone gas concentration, and more particularly, to a method for measuring the concentration of high-concentration ozone gas obtained by concentrating generated ozone.
[0002]
[Prior art]
Ozone gas has a strong oxidizing power. In the semiconductor manufacturing field, etc., it is expected to be used for oxide film formation. Conventionally, even if a high-capacity ozone generator is used as a raw material, pure oxygen gas is 10 vol%. Only ozone gas with a moderate concentration could be produced. Therefore, in recent years, various techniques for concentrating ozone gas generated by an ozone generator to form high-concentration ozone gas have been proposed.
[0003]
However, in operations such as oxide film formation, it is important to know the ozone gas concentration to be supplied because the ozone gas concentration to be supplied greatly affects the thickness and properties of the oxide film to be formed.
[0004]
[Problems to be solved by the invention]
However, there has been no established method for measuring the concentration of concentrated high-concentration ozone gas, and it has been impossible to accurately know the concentration of ozone actually supplied.
[0005]
This invention pays attention to such a point, and it aims at providing the method of measuring the density | concentration of the ozone gas stored in the ozone gas source supplied.
[0006]
[Means for Solving the Problems]
To achieve the above object, the present invention is 13 ozone gas reserved in the ozone gas source its concentration in the decomposition vessel at high concentration of more than 12 vol%. 3 kPa below the pressure according to claim 1 It is configured to detect the concentration of the enclosed ozone gas from the rising pressure and temperature after decomposition, by instantaneously decomposing the enclosed ozone gas into oxygen by forcibly decomposing the enclosed ozone gas in the decomposition vessel It is a thing.
[0007]
According to the second aspect of the present invention, when the enclosed ozone gas is forcibly decomposed in the decomposition container, a spark is generated in the decomposition container to forcibly ignite .
[0008]
[Effects of the Invention]
The present invention forcibly decomposes ozone gas enclosed in a decomposition vessel at a pressure lower than atmospheric pressure, decomposes the entire amount of the enclosed ozone gas into oxygen, and determines the concentration of the ozone gas enclosed from the increased pressure and temperature after decomposition. As we know, when 100 vol% of ozone is decomposed into oxygen gas, the volume is 1.5 times, that is, the pressure is 1.5 times. By knowing the pressure increase rate, the original ozone gas You will know the concentration. At that time, more accurate ozone gas concentration can be detected by correcting the pressure based on the detected temperature.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The figure is a schematic gas flow diagram showing an example of an ozone concentration measuring system to which the method of the present invention is applied.
This ozone concentration measuring system detects the concentration of ozone gas supplied from an ozone gas source. Oxygen gas derived from an oxygen gas source (1) such as an air separation device or an oxygen gas storage container is converted into an ozone generator (2 ) Is introduced into the adsorption-type ozone concentrator (3) and concentrated, and the ozone gas taken out from the ozone concentrator (3) is introduced into the decomposition vessel (4) and sealed. A direct current spark is generated in the ozone gas introduced in the decomposition vessel (4), the introduced ozone gas is instantaneously forcedly decomposed into oxygen, and the concentration of the introduced ozone gas is detected from the pressure difference before and after the decomposition operation. Is. In this case, the ozone concentrator (3) serves as an ozone gas source.
[0010]
In the figure, reference numeral (5) is an ignition energy applying circuit for generating a DC electric spark, and (6) is a lead-out line for deriving oxygen gas that has not been adsorbed when adsorbing ozone gas to the adsorption ozone concentrator (3). (7) is a decompression line used to desorb ozone gas from the adsorption ozone concentrator (3), (8) is a suction pump disposed in the decompression line (7), and (10) is an adsorption ozone concentrator (3 ) Is a pressure gauge for detecting the internal pressure of the decomposition vessel (4), and (12) is a temperature sensor for detecting the internal temperature of the decomposition vessel (4).
[0011]
When the introduced ozone gas is forcibly decomposed, under a constant volume at a constant temperature,
2O 3 → 3O 2
Therefore, in the case of 100% ozone gas, the pressure rises by a factor of 1.5. Therefore, when the ozone gas is introduced, the pressure in the decomposition vessel (4) is P 1 , after the forced decomposition operation. If the container pressure was P 2, when the temperature is constant, the introduced ozone gas concentration (xVOL%) is
x (vol%) = {(P 2 −P 1 ) / (1.5P 1 −P 1 )} × 100
Can be obtained.
[0012]
Since the gas temperature rises due to the heat of decomposition when decomposed, the pressure will be measured after the temperature has settled down.However, when ozone gas enclosed in high pressure is decomposed, the temperature rises greatly, and the original temperature is reduced by cooling. It will take time to decrease. For this reason, the ozone gas is sealed in the decomposition vessel (4) at as low a pressure as possible.
[0013]
By the way, when the ozone concentration is 60 vol%, if the enclosed pressure is 4 kPa (30 Torr) in absolute pressure, the temperature rise is about 1 to 2 ° C, but the enclosed pressure is 66.5 kPa (500 Torr) in absolute pressure. If it exists, the temperature rises by about 30 ° C. Therefore, by setting the sealed pressure to 13.3 kPa (100 Torr) or less in absolute pressure, the temperature rise can be suppressed to 6 ° C. or less, and the cooling time to return to the original temperature can be shortened. . Moreover, the pressure after decomposition | disassembly can also be correct | amended from detected temperature. Furthermore, when the ozone concentration is 80 vol%, it has been confirmed that a rapid decomposition reaction occurs even at 2 kPa (15 Torr).
[0014]
In the above ozone concentration measurement system, a direct current electric spark is used as the ignition energy applied to the decomposition vessel (4). However, an electric energy such as an alternating current spark or nichrome wire heating may be used. Furthermore, in the above-mentioned ozone concentration measurement system, an adsorption type ozone concentrating device that adsorbs using an adsorbent that selectively adsorbs ozone is used as a device for concentrating the generated ozone gas, but it is concentrated by a liquefaction method by liquefaction. Anyway. Furthermore, this ozone concentration measurement method can also measure the concentration of ozone gas generated by the ozone generator (2) as the ozone gas to be measured or the concentration of ozone gas stored in the ozone storage container. In this case, the ozone generator (2) and the ozone storage container serve as the ozone gas source.
[0015]
[Experimental example]
5 vol% ozone gas generated by the ozone generator (2) is adsorbed to the adsorption-type ozone concentrator (3) at atmospheric pressure and −90 ° C. by saturated adsorption, and then reduced to 6.65 kPa (50 Torr), Ozone concentration operation was performed. Thereafter, the temperature is raised to −70 ° C. while maintaining approximately 6.65 kPa (Torr), the ozone gas is desorbed from the adsorbent, and the desorbed high-concentration ozone gas is collected in the decomposition vessel (4) at about 5.32 kPa (40 Torr). And allowed to stand still. Next, by boosting the charge stored in the capacitor of the ignition energy application circuit (5) to 7 kV and discharging it, a direct current spark is generated in the decomposition vessel (4), and the ozone gas collected in the decomposition vessel (4) is forced. The whole amount was decomposed into oxygen gas by ignition.
[0016]
The results were as follows.
[Table 1]
Figure 0004181783
[0017]
【The invention's effect】
In the present invention, the ozone gas to be measured is enclosed in a decomposition container, and the ignition energy is allowed to act in the decomposition container to instantaneously decompose the total amount of ozone gas enclosed in the decomposition container into oxygen gas. Since the concentration of the introduced ozone gas is detected from the pressure difference between the pressure and the sealed pressure, the concentration of the ozone gas to be measured can be detected efficiently and accurately. At that time, the temperature of the pressure is corrected based on the detected temperature, whereby a more accurate ozone gas concentration can be detected.
[0018]
Furthermore, since the pressure enclosed in the decomposition vessel is set to a pressure lower than atmospheric pressure, the temperature rise after ozone gas decomposition can be reduced, and the time required for the decomposition vessel to return to the original temperature can be shortened. The working time required for concentration measurement can be shortened.
[Brief description of the drawings]
FIG. 1 is a schematic gas flow diagram showing an example of an ozone concentration measurement system.
[Explanation of symbols]
4 ... Decomposition container.

Claims (2)

オゾンガス源からオゾン濃度が12 vol %以上の高濃度オゾンガスを分解容器(4)にオゾンガス封入圧力が13 . kPa 以下の状態で封入し、分解容器(4)内に封入されているオゾンガスに着火エネルギーを作用させてオゾンガスを強制分解させることによりオゾンガスの全量を酸素に分解させ、分解後の分解容器(4)内の上昇圧力と上昇温度から封入オゾンガスの濃度を検知するようにしたオゾンガス濃度測定方法。 Ozone gas filling pressure in the decomposition vessel (4) the high concentration ozone gas over 12 vol% ozone concentration from an ozone gas source is encapsulated with 13. 3 kPa following states, ignition ozone gas enclosed in the decomposition vessel (4) in The concentration of ozone gas is determined by decomposing the total amount of ozone gas into oxygen by forcibly decomposing ozone gas by applying energy and detecting the concentration of the enclosed ozone gas from the rising pressure and temperature in the decomposition vessel (4) after decomposition. Method. 分解容器(4)内に火花を発生させ、強制着火させることでオゾンガスを強制分解させる請求項1に記載したオゾンガス濃度測定方法。The ozone gas concentration measuring method according to claim 1, wherein ozone gas is forcibly decomposed by generating sparks in the decomposition container (4) and forcibly igniting.
JP2002062781A 2002-03-08 2002-03-08 Ozone gas concentration measurement method Expired - Lifetime JP4181783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002062781A JP4181783B2 (en) 2002-03-08 2002-03-08 Ozone gas concentration measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002062781A JP4181783B2 (en) 2002-03-08 2002-03-08 Ozone gas concentration measurement method

Publications (2)

Publication Number Publication Date
JP2003262627A JP2003262627A (en) 2003-09-19
JP4181783B2 true JP4181783B2 (en) 2008-11-19

Family

ID=29196373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002062781A Expired - Lifetime JP4181783B2 (en) 2002-03-08 2002-03-08 Ozone gas concentration measurement method

Country Status (1)

Country Link
JP (1) JP4181783B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4609206B2 (en) * 2005-07-04 2011-01-12 住友化学株式会社 Steam self-decomposition propagation evaluation apparatus and evaluation method
JP5184392B2 (en) * 2008-01-23 2013-04-17 大陽日酸株式会社 Indirect measurement method of ozone concentration
JP5272516B2 (en) * 2008-05-23 2013-08-28 株式会社明電舎 Process control method and process control system
JP5239053B2 (en) * 2008-05-23 2013-07-17 株式会社明電舎 Method and apparatus for measuring ozone concentration

Also Published As

Publication number Publication date
JP2003262627A (en) 2003-09-19

Similar Documents

Publication Publication Date Title
JP4181783B2 (en) Ozone gas concentration measurement method
Feulner et al. A multimethod investigation of the adsorption of NO on Ru (001): II. Δφ, thermal desorption and LEED results
JP2014047670A (en) Control method and unit for nox aftertreatment device of engine including ozone generation means
US20130112157A1 (en) Ozone-aided combustion system and method
TW491961B (en) Method for analyzing impurities in gas and its analyzer
JP2006513403A5 (en)
JP5584887B2 (en) Ozone gas concentration method and apparatus
TW593774B (en) F2 gas generating apparatus, F2 gas generating method and F2 gas
JP6271561B2 (en) Method and apparatus for acquiring hydrogen
Davidson et al. Direct determination of the helium 3 content of atmospheric air by mass spectrometry
Gray et al. Semi-conductivity and Catalysis in the Nickel Oxide System.
TWM547760U (en) Hydrogen generator
Cessna Polarization Admittance Study of Lithium Corrosion in Propylene Carbonate Solutions
Ermolin Toward a method of quantitative separation of helium-neon mixtures
JP3825854B2 (en) Concentration method of ozone gas
Dalbeck et al. TDS study of the anodic layer on emersed polycrystalline platinum
SU1157324A1 (en) Method of electric current cleaning of substance from electronegative impurities
JP6057810B2 (en) Volume resistivity measurement method
JPH05261246A (en) Deodorizing device and operating method therefor
CN114288808B (en) Method for improving desorption performance of purple phosphazene-based gas sensor
JPS6465450A (en) Method and apparatus for detecting trace impurities in impure inert gas
KR0170928B1 (en) Process for preparation of hydrogen by electrolysis of vapor using glow discharge and apparatus therefor
JP2000234190A (en) Carbon dioxide concentrating method and device therefor
CN206669098U (en) A kind of Depressure valve
JPS52108374A (en) Recovery of solvent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4181783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term