JP5184392B2 - Indirect measurement method of ozone concentration - Google Patents

Indirect measurement method of ozone concentration Download PDF

Info

Publication number
JP5184392B2
JP5184392B2 JP2009011097A JP2009011097A JP5184392B2 JP 5184392 B2 JP5184392 B2 JP 5184392B2 JP 2009011097 A JP2009011097 A JP 2009011097A JP 2009011097 A JP2009011097 A JP 2009011097A JP 5184392 B2 JP5184392 B2 JP 5184392B2
Authority
JP
Japan
Prior art keywords
ozone
concentration
gas
xenon
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009011097A
Other languages
Japanese (ja)
Other versions
JP2009198497A (en
Inventor
全 水野
茂 林田
智信 阿部
泰郎 巽
茂 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2009011097A priority Critical patent/JP5184392B2/en
Publication of JP2009198497A publication Critical patent/JP2009198497A/en
Application granted granted Critical
Publication of JP5184392B2 publication Critical patent/JP5184392B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

この発明は、オゾンを含有する流体が存在する試験設備や生産プロセスにおいて、高濃度に濃縮したオゾンの濃度を、間接的に測定する方法に関する。   The present invention relates to a method of indirectly measuring the concentration of ozone concentrated to a high concentration in a test facility or production process in which a fluid containing ozone exists.

液体オゾンを安全に取扱う方法として、He、Ne、Ar、Kr、Rn、CF、CHF、CClFなどの不活性ガス(以下、希釈ガスと言う)を液化した液化不活性ガス(以下、希釈液化ガスと言う)中にオゾンを溶解、混合し、これら不活性ガスを爆発抑制用ガスとして利用する方法がある。
しかし、希釈ガスの種類によって、その爆発抑制効果が異なっており、その効果は実際にそれぞれの条件で着火試験、自己分解試験を行ってみなければならない。
希釈ガスのうち、分子量の大きなものや比熱の大きなものは、爆発抑制効果が高いが、その分、高濃度にオゾンを濃縮しても自己分解または着火源があっても爆発、燃焼をおこさない。
このため、比較的爆発抑制効果の高いと推定される希釈ガスの効果を確認するためには、高濃度にオゾンを濃縮する必要がある。
As a method for safely handling liquid ozone, a liquefied inert gas (hereinafter referred to as a dilution gas) liquefied with an inert gas (hereinafter referred to as a dilution gas) such as He, Ne, Ar, Kr, Rn, CF 4 , CHF 3 , or CClF 3 is used . There is a method in which ozone is dissolved and mixed in a dilute liquefied gas), and these inert gases are used as explosion suppressing gases.
However, the explosion suppression effect differs depending on the type of dilution gas, and the effect must actually be subjected to an ignition test and a self-decomposition test under each condition.
Among dilution gases, those with large molecular weight and large specific heat have a high explosion-suppressing effect. However, even if ozone is concentrated to a high concentration, it will explode and burn even if there is an autolysis or ignition source. Absent.
For this reason, in order to confirm the effect of the dilution gas estimated to have a relatively high explosion suppression effect, it is necessary to concentrate ozone to a high concentration.

一方、オゾンの製造は通常、オゾナイザーを用い、常温で乾燥した酸素ガスに無声放電を行うなどの方法によって製造されるが、常温では一般的に高濃度のオゾンを製造することができず、多くはオゾン濃度が7容積%程度のオゾン・酸素混合ガスが得られるにすぎない。
オゾンをこれ以上の濃度に希釈液化ガス中に濃縮するためには、オゾナイザーからの混合ガスを希釈液化ガス中に導入し、オゾンを液化し、液化しない酸素ガスを真空ポンプ等で系外に排気する操作を繰り返す必要がある。
しかし、この操作では、酸素ガスの排出に伴って、オゾンガス、希釈液化ガスが気化した気化ガスが系外に微量排出され、また濃縮操作を繰り返すことで、最終的に希釈液化ガス中のオゾン濃度が不明確になってしまう。
On the other hand, ozone is usually manufactured by a method such as using an ozonizer and performing silent discharge on oxygen gas dried at room temperature. Only produces an ozone / oxygen mixed gas having an ozone concentration of about 7% by volume.
In order to concentrate ozone in diluted liquefied gas to a higher concentration, the mixed gas from the ozonizer is introduced into the diluted liquefied gas, ozone is liquefied, and oxygen gas that is not liquefied is exhausted out of the system by a vacuum pump or the like. It is necessary to repeat the operation.
However, in this operation, along with the discharge of oxygen gas, a small amount of vaporized gas vaporized from ozone gas and diluted liquefied gas is discharged out of the system, and the concentration of ozone in the diluted liquefied gas is finally achieved by repeating the concentration operation. Becomes unclear.

オゾンを濃縮する際に、オゾン濃縮槽の上部または前段において蒸留塔などを用いて液体オゾンと酸素ガスを完全に分離し、オゾン混合液体中に酸素ガスが全く入っていない混合液を作ることも可能であるが、これらオゾン中から酸素ガスを完全に取り除くための設備は非常に大型、高コストであり、また連続的に運転をしなければ酸素分離は達成できないため、単に希釈ガスの爆発抑制効果を計測する目的に合致しない。
ところで、オゾン含有ガス中のオゾン濃度の測定方法には、非特許文献1に記載のヨウ化カリウム溶液を用いた滴定による方法(ヨウ素法)、紫外線吸収による方法(紫外線吸収法)、インジゴ法(特許文献3)などがある。
その他、混合ガス密度測定値あるいは混合液密度測定値からの推定方法、または温度・圧力測定から気液平衡曲線を利用した推定方法などがある。
When concentrating ozone, liquid ozone and oxygen gas can be completely separated using a distillation column or the like in the upper part of the ozone concentrating tank, or a mixture containing no oxygen gas in the ozone mixture can be made. Although it is possible, the equipment for completely removing oxygen gas from ozone is very large and expensive, and oxygen separation cannot be achieved without continuous operation. It does not meet the purpose of measuring the effect.
By the way, as a measuring method of the ozone concentration in the ozone-containing gas, there are a titration method (iodine method), an ultraviolet absorption method (ultraviolet absorption method), an indigo method (non-patent document 1) described in Non-Patent Document 1. Patent Document 3) and the like.
In addition, there are an estimation method from a mixed gas density measurement value or a mixed liquid density measurement value, an estimation method using a gas-liquid equilibrium curve from a temperature / pressure measurement, and the like.

これら測定方法は、測定可能なオゾン濃度域が比較的低濃度であったり、人為的操作が複雑であったり、十分な精度で測定ができないものが多い。
手軽に濃度を測定する方法としては、サンプリングしたオゾン混合液体を気化させ、酸化マンガン、金属銅などのオゾン分解触媒を用いてオゾンを酸素に温和な条件で分解した後に、酸素濃度計で計測してオゾン濃度を推算する方法があるが、この方法では、オゾン混合液中に酸素が溶解している場合には使用できない。
また、質量分析計を利用する方法もあるが、同様に酸素とオゾンの区別はつけることができないため、酸素の溶解分だけ、オゾン濃度が高く計測される。
In many of these measuring methods, the measurable ozone concentration range is relatively low, man-made operations are complicated, and measurement cannot be performed with sufficient accuracy.
A simple method to measure the concentration is to vaporize the sampled ozone mixture liquid, decompose ozone into oxygen under a mild condition using an ozone decomposition catalyst such as manganese oxide or metallic copper, and then measure with an oximeter. Although there is a method for estimating the ozone concentration, this method cannot be used when oxygen is dissolved in the ozone mixture.
In addition, there is a method using a mass spectrometer, but similarly, since it is impossible to distinguish between oxygen and ozone, the ozone concentration is measured as high as the dissolved oxygen.

「オゾンの基礎と応用」杉光英俊著、光琳、P138(1996)"Basics and Applications of Ozone" by Hidetoshi Sugimitsu, Mitsuaki, P138 (1996)

特開2005−040668号公報Japanese Patent Laying-Open No. 2005-040668 特開2006−272090号公報JP 2006-272090 A 特開2004−361244号公報JP 2004-361244 A

本発明における課題は、オゾンを安全に取り扱うために用いられるヘリウム、CFなどからなる希釈ガスの爆発抑制効果を確認するためのオゾンを高濃度に濃縮する試験設備や、生産プロセスなどのオゾンを濃縮する工程が含まれるプロセスにおいて、このプロセス中の濃縮されたオゾンの濃度を正確、簡便、安全に知ることができるようにすることにある。 The problem in the present invention is that test equipment for concentrating ozone at a high concentration for confirming the explosion suppression effect of dilution gas composed of helium, CF 4, etc. used for safely handling ozone, ozone for production process, etc. In the process including the step of concentrating, the object is to make it possible to know the concentration of concentrated ozone in the process accurately, simply and safely.

かかる課題を解決するため、
請求項1にかかる発明は、オゾンを濃縮した流体中のオゾン濃度を間接的に測定する方法であって、
前記流体は、酸素からオゾナイザ−により製造された希薄オゾンに、該希薄オゾンの濃度と等量もしくは等量比のキセノンとヘリウム、ネオン、アルゴン、クリプトン、ラドン、テトラフルオロメタン、トリフルオロメタン、クロロトリフルオロメタンのうち少なくともいずれか1つの希釈ガスを添加してからオゾンが高濃度になるように濃縮したものであり、
前記流体中のキセノン濃度を測定することにより、オゾン濃度を間接的に測定することを特徴とするオゾン濃度の間接測定方法である。
To solve this problem,
The invention according to claim 1 is a method for indirectly measuring the ozone concentration in a fluid enriched with ozone,
The fluid includes dilute ozone produced from oxygen by an ozonizer, and xenon and helium, neon, argon, krypton, radon, tetrafluoromethane, trifluoromethane, chlorotrifluoromethane in an equivalent or equivalent ratio to the concentration of the dilute ozone. After adding at least one dilution gas of romethane, it is concentrated so that ozone becomes high concentration,
An ozone concentration indirect measurement method, wherein the ozone concentration is indirectly measured by measuring the xenon concentration in the fluid.

本発明によれば、希釈ガス中でオゾンが高濃度に濃縮されてなる流体中のオゾン濃度を正確に、簡便に、かつ安全に測定することができる。   According to the present invention, it is possible to accurately, simply and safely measure the ozone concentration in a fluid in which ozone is concentrated to a high concentration in a dilution gas.

本発明の間接測定方法の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the indirect measurement method of this invention. 酸素、クリプトン、テトラフルオロメタン、オゾン、キセノン、トリフルオロメタンの飽和蒸気圧力曲線である。It is a saturated vapor pressure curve of oxygen, krypton, tetrafluoromethane, ozone, xenon, and trifluoromethane. 本発明の間接測定方法が適用されるプロセスの例を示す概略構成図である。It is a schematic block diagram which shows the example of the process to which the indirect measurement method of this invention is applied.

本発明は、図2に示すような温度変化に伴う飽和蒸気圧力がオゾンとほとんど同じである不活性希ガスのキセノンを濃度指標用のガスとして用い、これの既知量をオゾンを含む流体に添加し、ついでこの混合流体を希釈ガス中においてオゾンを濃縮し、得られた濃縮オゾン混合流体中のキセノン濃度を計測することにより前記濃縮オゾン混合流体中のオゾン濃度を推定する方法である。   In the present invention, an inert rare gas xenon having a saturated vapor pressure accompanying the temperature change as shown in FIG. 2 is almost the same as ozone is used as a concentration indicator gas, and a known amount thereof is added to a fluid containing ozone. Then, this mixed fluid is a method of estimating the ozone concentration in the concentrated ozone mixed fluid by concentrating ozone in a dilution gas and measuring the xenon concentration in the obtained concentrated ozone mixed fluid.

すなわち、オゾンとキセノンとは上述のように温度変化に伴う飽和蒸気圧力のほぼ同じであるので、オゾンの希釈液化ガス中での液化、濃縮のプロセスを経てもキセノンはオゾンと同様の挙動を取ることになる。このため、このようなプロセスの途中においてオゾンがプロセス系外に放散されたとしても、キセノンも同様にその同量が放散されることになって、プロセス後の流体中のキセノン濃度を知れば、間接的にオゾン濃度を正確に知ることができる。   That is, since ozone and xenon have substantially the same saturated vapor pressure as the temperature changes as described above, xenon behaves like ozone even after the process of liquefaction and concentration in diluted liquefied gas of ozone. It will be. For this reason, even if ozone is diffused out of the process system in the middle of such a process, the same amount of xenon will be diffused as well, and knowing the xenon concentration in the fluid after the process, The ozone concentration can be known accurately indirectly.

図1は、本発明のオゾン濃度の間接測定方法の一例を示すものである。
図1中、符号1は液化濃縮槽を示し、この液化濃縮槽1には冷凍機2が付設されており、液化濃縮槽1に導入されたガスを液化できるようになっている。
希釈ガス供給源3からは希釈ガスとして例えばテトラフルオロメタン(以下、CFと表記する)が常温ガス状で液化濃縮槽1に導入される。液化濃縮槽1内は冷凍機2により予め、例えば130Kに冷却されており、導入されたCFガスは液化して、液化状態で液化濃縮槽1に溜められる。
希釈ガスには、これ以外にヘリウム、ネオン、アルゴン、クリプトン、ラドン、トリフルオロメタン、クロロトリフルオロメタンのうち少なくともいずれか1つが用いられる。
FIG. 1 shows an example of an indirect method for measuring ozone concentration according to the present invention.
In FIG. 1, reference numeral 1 denotes a liquefaction concentration tank. A refrigeration machine 2 is attached to the liquefaction concentration tank 1 so that the gas introduced into the liquefaction concentration tank 1 can be liquefied.
From the dilution gas supply source 3, for example, tetrafluoromethane (hereinafter referred to as CF 4 ) is introduced into the liquefaction and concentration tank 1 in the form of a normal temperature gas as a dilution gas. The inside of the liquefaction concentration tank 1 is cooled to, for example, 130 K in advance by the refrigerator 2, and the introduced CF 4 gas is liquefied and stored in the liquefaction concentration tank 1 in a liquefied state.
In addition, at least one of helium, neon, argon, krypton, radon, trifluoromethane, and chlorotrifluoromethane is used as the dilution gas.

液化濃縮槽1に導入されるCF量は、液化濃縮槽内が許容する量であればよいが、液化濃縮槽1内が一定圧力になったら、CFが液化するまで一旦導入を停止することが望ましい。
液化濃縮槽1内に必要量のCF液が溜まったならば、酸素ガス供給源4からの高純度酸素ガスが常温でオゾナイザー5に送られる。オゾナイザー5では供給された酸素の一部がオゾンに変換され、例えばオゾン濃度3〜7容積%のオゾンが希薄なオゾン・酸素混合ガスが生成され、このオゾン・酸素混合ガスは液化濃縮槽1に導入される。
The amount of CF 4 introduced into the liquefying and concentrating tank 1 may be an amount allowed in the liquefying and concentrating tank, but once the inside of the liquefying and concentrating tank 1 reaches a constant pressure, the introduction is temporarily stopped until CF 4 is liquefied. It is desirable.
When a necessary amount of CF 4 liquid is accumulated in the liquefaction concentration tank 1, high-purity oxygen gas from the oxygen gas supply source 4 is sent to the ozonizer 5 at room temperature. In the ozonizer 5, a part of the supplied oxygen is converted into ozone, for example, ozone / oxygen mixed gas having a diluted ozone concentration of 3 to 7% by volume is generated, and this ozone / oxygen mixed gas is supplied to the liquefied concentration tank 1. be introduced.

この際、オゾナイザー5から導出されるオゾン・酸素混合ガス中のオゾン濃度を紫外吸収スペクトル法などによるオゾン濃度計6で計測する。計測されたオゾン濃度は調節計7に送られ、調節計7からの制御信号がキセノン流量調整弁8に送られる。
キセノン流量調整弁8には、キセノンガス供給源9からのキセノンガスが送られ、その流量が前記オゾン濃度に対応して調整されたうえ、オゾン・酸素混合ガスに添加される。
At this time, the ozone concentration in the ozone / oxygen mixed gas derived from the ozonizer 5 is measured by an ozone concentration meter 6 using an ultraviolet absorption spectrum method or the like. The measured ozone concentration is sent to the controller 7, and a control signal from the controller 7 is sent to the xenon flow rate adjusting valve 8.
Xenon gas from a xenon gas supply source 9 is sent to the xenon flow rate adjusting valve 8 and the flow rate thereof is adjusted in accordance with the ozone concentration and added to the ozone / oxygen mixed gas.

キセノンガスの添加濃度は、オゾン・酸素混合ガス中のオゾン濃度と等量もしくは等量比とされる。ここでの等量比とは、例えばオゾン濃度が5容積%であれば、キセノンガスの添加量を0.5容量%となるようにすること言う。キセノンの濃度はオゾン濃度1〜1/10とされ、酸素が共存する場合には、キセノン濃度を20モル%以下とすることが好ましい。   The addition concentration of the xenon gas is equal to or equal to the ozone concentration in the ozone / oxygen mixed gas. The equivalence ratio here means that, for example, if the ozone concentration is 5% by volume, the amount of xenon gas added is 0.5% by volume. The concentration of xenon is set to an ozone concentration of 1 to 1/10. When oxygen coexists, the xenon concentration is preferably 20 mol% or less.

このオゾン・酸素・キセノン混合ガスは液化濃縮槽1に回分供給される。液化濃縮槽1に導入されたオゾン・酸素・キセノン混合ガスは冷却され、沸点の高いオゾンおよびキセノンは液化し、液化濃縮槽1内に溜まっているCF液中に溶解し、沸点の低い酸素は液化濃縮槽1の気相に残り、液化濃縮槽1の底部には、CF・オゾン・キセノン混合液体が溜まる。液化濃縮槽1の気相の酸素ガスは、液化濃縮槽1に接続された真空ポンプ10により系外に排出される。
この操作を複数回繰り返すことで、オゾンの濃縮が行われ、液化濃縮槽1に導入したオゾン・酸素・キセノン混合ガス中のオゾン濃度、例えば5容量%よりも高い濃度、例えば50〜70容積%の濃縮が可能となる。
This ozone / oxygen / xenon mixed gas is supplied to the liquefaction concentration tank 1 in batches. The ozone / oxygen / xenon mixed gas introduced into the liquefying and concentrating tank 1 is cooled, and ozone and xenon having a high boiling point are liquefied and dissolved in the CF 4 liquid accumulated in the liquefying and concentrating tank 1 to generate oxygen having a low boiling point. Remains in the gas phase of the liquefaction concentration tank 1, and a mixed liquid of CF 4 , ozone, and xenon accumulates at the bottom of the liquefaction concentration tank 1. The gaseous oxygen gas in the liquefaction concentration tank 1 is discharged out of the system by the vacuum pump 10 connected to the liquefaction concentration tank 1.
By repeating this operation a plurality of times, ozone is concentrated and the ozone concentration in the ozone / oxygen / xenon mixed gas introduced into the liquefied concentration tank 1 is higher than, for example, 5% by volume, for example, 50 to 70% by volume. Can be concentrated.

液化濃縮槽1でのオゾンおよびキセノンの液化は液化濃縮槽1内の圧力が一定になったことで完了したかどうかを判別可能であるが、本発明では液化が十分ではない状態で気相の酸素ガスを真空ポンプで排気しても、オゾン濃度の推定には影響がない。   It is possible to determine whether or not the liquefaction of ozone and xenon in the liquefaction concentration tank 1 has been completed because the pressure in the liquefaction concentration tank 1 has become constant. Exhausting oxygen gas with a vacuum pump has no effect on the estimation of ozone concentration.

液化濃縮槽1に溜まったCF・オゾン・キセノン混合液体中のオゾン濃度の測定は、この混合液体の一部を抜き出し、気化器11に送って気化し、さらにこれをオゾン分解槽12に送って、酸化マンガン、金属銅などの分解触媒によってこれに含まれるオゾンを分解して酸素とする。オゾン分解槽12からの混合ガスはガス分析計13に送られ、これに含まれるキセノン濃度が計測される。ガス分析計13には、質量分析計などが用いられる。 Measurement of the ozone concentration in the CF 4 / ozone / xenon mixed liquid collected in the liquefying and concentrating tank 1 is conducted by extracting a part of the mixed liquid, sending it to the vaporizer 11 and vaporizing it, and further sending it to the ozone decomposition tank 12. Then, ozone contained therein is decomposed into oxygen by a decomposition catalyst such as manganese oxide or metallic copper. The mixed gas from the ozonolysis tank 12 is sent to the gas analyzer 13 and the concentration of xenon contained therein is measured. As the gas analyzer 13, a mass spectrometer or the like is used.

さらに、ガス分析計13で計測されたキセノン濃度からオゾン濃度を換算する。キセノンガスの添加濃度がオゾン濃度と等量であれば、キセノン濃度がそのままオゾン濃度となり、等量比であればその比を乗ずればオゾン濃度が得られる。
キセノン濃度の測定は、質量分析計でおこなうことができるが、そのほかの方法でもかまわない。またオゾンによる影響がなければ、ガス分析計13の前段でオゾンを分解する必要は必ずしもない。
Further, the ozone concentration is converted from the xenon concentration measured by the gas analyzer 13. If the addition concentration of the xenon gas is equal to the ozone concentration, the xenon concentration becomes the ozone concentration as it is, and if the equivalence ratio is multiplied by the ratio, the ozone concentration is obtained.
Xenon concentration can be measured with a mass spectrometer, but other methods are also acceptable. Moreover, if there is no influence by ozone, it is not always necessary to decompose ozone at the front stage of the gas analyzer 13.

一般に販売されているオゾン濃度計の測定濃度範囲は最大でも15容積%程度であるが、この測定方法では、キセノンを導入するオゾン・酸素混合ガス中のオゾン濃度の1/10量のキセノンを導入することで、CF・オゾン・キセノン混合液体中のオゾン濃度が50容積%以上の場合もその濃度を推定することができる。 The measurement concentration range of a commercially available ozone densitometer is about 15% by volume at the maximum, but this measurement method introduces xenon that is 1/10 of the ozone concentration in the ozone / oxygen mixed gas into which xenon is introduced. By doing so, even when the ozone concentration in the CF 4 / ozone / xenon liquid mixture is 50% by volume or more, the concentration can be estimated.

ところで、キセノンをオゾン・酸素混合ガスに添加しない場合には、液化濃縮槽1の気相の酸素ガスを真空ポンプ10で排気する際に、酸素ガスに同伴して、希釈ガスの一部や液化しなかったオゾンが系外に排出され、真空排気操作とオゾン導入操作が複数回重なることで、液化濃縮槽1底部の前記混合液体中のオゾン濃度が正確に推定できない。
さらに、前記混合液体中に酸素ガスが微量溶解するため、質量分析計や該混合液体をオゾン分解槽を通したあとに酸素ガスを計測すると、該混合液体中に溶解している酸素ガスもオゾンとして加算されてしまう。
By the way, when xenon is not added to the ozone / oxygen mixed gas, when the gas phase oxygen gas in the liquefying and concentrating tank 1 is exhausted by the vacuum pump 10, a part of the dilution gas or liquefaction is accompanied by the oxygen gas. The ozone that has not been discharged is discharged out of the system, and the evacuation operation and the ozone introduction operation are repeated a plurality of times, so that the ozone concentration in the mixed liquid at the bottom of the liquefaction concentration tank 1 cannot be estimated accurately.
Furthermore, since a small amount of oxygen gas is dissolved in the mixed liquid, when the oxygen gas is measured after passing the mass spectrometer or the mixed liquid through the ozonolysis tank, the oxygen gas dissolved in the mixed liquid is also ozone. Will be added.

これに対して、本発明では、キセノンを等量または等量比で予めオゾン・酸素混合ガスに添加させておくと、オゾンと飽和圧力がほぼ同じキセノンの混合液中の濃度を測定することで、オゾンの濃度を推定することが可能となる。
キセノンの飽和蒸気圧力は、オゾンのそれよりわずかに小さいため、液化に際してキセノンの方が若干液化しやすい。そのため、流体中の実際のオゾン濃度は、測定されたキセノン濃度よりもわずかに小さい値になる。しかし、キセノン濃度をオゾン濃度と読み替えた場合、実際のオゾン濃度がそれ以下であるので、安全側になり、プロセス管理に使用した場合にも、保安上の問題とはならない。
On the other hand, in the present invention, when xenon is added to the ozone / oxygen mixed gas in an equal amount or an equal ratio in advance, the concentration in the mixed liquid of xenon having substantially the same saturation pressure as ozone is measured. The ozone concentration can be estimated.
Since the saturated vapor pressure of xenon is slightly smaller than that of ozone, xenon is slightly liquified when liquefied. Therefore, the actual ozone concentration in the fluid is slightly smaller than the measured xenon concentration. However, when xenon concentration is read as ozone concentration, since the actual ozone concentration is lower than that, it becomes safer and does not pose a safety problem when used for process management.

以上のようにしてオゾンが濃縮され、かつそのオゾン濃度が求められたCF・オゾン・キセノン混合液体は、希釈ガスであるCFの爆発抑制効果の測定に供される。 The CF 4 / ozone / xenon mixed liquid in which ozone is concentrated and the ozone concentration is determined as described above is used for measurement of the explosion suppression effect of CF 4 as a dilution gas.

また、17Oなどの酸素同位体の濃縮方法においては、図3に示すように、高純度酸素を管21からオゾナイザー22に導入して、オゾン・酸素混合ガスとし、これに管23からのCFなどの希釈ガスを混合したうえ、これを第1蒸留塔24に送り、酸素を分離、除去する。第1蒸留塔24からのオゾン・希釈ガス混合ガスはついで光セル25に送られ、ここで特定波長のレーザ光が照射されて17Oを含むオゾンが選択的に分解されて、17Oを含む酸素となり、17Oを含む酸素とオゾンと希釈ガスとの混合ガスが第2蒸留塔26に送られ、17Oを含む酸素が分離されてその塔頂から導出され、塔底からは残余のオゾンと希釈ガスとの混合ガスが導出されるプロセスが、例えば特開2005−40668号公報に開示されている。 In addition, in the method for concentrating oxygen isotopes such as 17 O, as shown in FIG. 3, high-purity oxygen is introduced into the ozonizer 22 from the tube 21 to form an ozone / oxygen mixed gas. After the diluent gas such as 4 is mixed, it is sent to the first distillation column 24 to separate and remove oxygen. The ozone / diluted gas mixed gas from the first distillation column 24 is then sent to the optical cell 25, where it is irradiated with laser light of a specific wavelength, and ozone containing 17 O is selectively decomposed to contain 17 O. It becomes oxygen, and a mixed gas of oxygen containing 17 O, ozone, and a dilution gas is sent to the second distillation column 26, oxygen containing 17 O is separated and led out from the top of the column, and residual ozone from the bottom of the column For example, Japanese Patent Application Laid-Open No. 2005-40668 discloses a process in which a mixed gas of gas and a dilution gas is derived.

このプロセスでは、第1蒸留塔24から導出されるオゾン・希釈ガス混合ガス中のオゾン濃度あるいは第2蒸留塔26から導出されるオゾン・希釈ガス混合ガス中のオゾン濃度が高濃度になると予想される。これらの混合ガス中のオゾン濃度を測定する場合においても、本発明の間接測定方法が適用できる。   In this process, it is expected that the ozone concentration in the ozone / dilution gas mixed gas derived from the first distillation column 24 or the ozone concentration in the ozone / dilution gas mixed gas derived from the second distillation column 26 will be high. The The indirect measurement method of the present invention can also be applied when measuring the ozone concentration in these mixed gases.

すなわち、オゾナイザー22から導出されるオゾン・酸素混合ガス中のオゾン濃度を計測し、このオゾン濃度と等量または等量比のキセノンを管28から添加する。そして、第1蒸留塔24から導出されるオゾン・希釈ガス・キセノン混合ガス中のキセノン濃度あるいは第2蒸留塔26から導出されるオゾン・希釈ガス・キセノン混合ガス中のキセノン濃度を先と同様にして計測し、このキセノン濃度からオゾン濃度を算出する。   That is, the ozone concentration in the ozone / oxygen mixed gas derived from the ozonizer 22 is measured, and xenon having the same amount or an equivalent ratio as this ozone concentration is added from the tube 28. Then, the xenon concentration in the ozone / dilution gas / xenon mixed gas derived from the first distillation column 24 or the xenon concentration in the ozone / dilution gas / xenon mixed gas derived from the second distillation column 26 is set in the same manner as described above. The ozone concentration is calculated from this xenon concentration.

1・・液化濃縮槽、2・・冷凍機、3・・希釈ガス供給源、4・・酸素ガス供給源、5・・オゾナイザー、6・・オゾン濃度計、7・・調節計、8・・キセノン流量調整弁、9・・キセノンガス供給源、10・・真空ポンプ、11・・気化器、12・・オゾン分解槽、13・・ガス分析計 1 .... Liquefaction concentrating tank, 2 .... Refrigerator, 3 .... Dilution gas supply source, 4 .... Oxygen gas supply source, 5 .... Ozonizer, 6 .... Ozone concentration meter, 7 .... Regulator, 8 .... Xenon flow control valve, 9 ... xenon gas supply source, 10 ... vacuum pump, 11 ... vaporizer, 12 ... ozonolysis tank, 13 ... gas analyzer

Claims (1)

オゾンを濃縮した流体中のオゾン濃度を間接的に測定する方法であって、
前記流体は、酸素からオゾナイザ−により製造されたオゾンに、該オゾンの濃度と等量もしくは等量比のキセノンとヘリウム、ネオン、アルゴン、クリプトン、ラドン、テトラフルオロメタン、トリフルオロメタン、クロロトリフルオロメタンのうち少なくともいずれか1つの流体を添加してからオゾンが高濃度になるように濃縮したものであり、
前記流体中のキセノン濃度を測定することにより、オゾン濃度を間接的に測定することを特徴とするオゾン濃度の間接測定方法。
A method for indirectly measuring ozone concentration in a fluid enriched with ozone,
The fluid is composed of oxygen produced by an ozonizer from oxygen, xenon and helium, neon, argon, krypton, radon, tetrafluoromethane, trifluoromethane, chlorotrifluoromethane in the same or equivalent ratio as the ozone concentration. After adding at least one of these fluids, the ozone is concentrated to a high concentration,
A method for indirectly measuring ozone concentration, wherein the ozone concentration is indirectly measured by measuring the xenon concentration in the fluid.
JP2009011097A 2008-01-23 2009-01-21 Indirect measurement method of ozone concentration Active JP5184392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009011097A JP5184392B2 (en) 2008-01-23 2009-01-21 Indirect measurement method of ozone concentration

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008013144 2008-01-23
JP2008013144 2008-01-23
JP2009011097A JP5184392B2 (en) 2008-01-23 2009-01-21 Indirect measurement method of ozone concentration

Publications (2)

Publication Number Publication Date
JP2009198497A JP2009198497A (en) 2009-09-03
JP5184392B2 true JP5184392B2 (en) 2013-04-17

Family

ID=41142107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009011097A Active JP5184392B2 (en) 2008-01-23 2009-01-21 Indirect measurement method of ozone concentration

Country Status (1)

Country Link
JP (1) JP5184392B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5425483B2 (en) * 2008-01-31 2014-02-26 大陽日酸株式会社 Process control method for safe handling of ozone

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09243601A (en) * 1996-03-07 1997-09-19 Nkk Corp Instruments for measuring very small amount of organic compound in exhaust gas
JP2001074680A (en) * 1999-09-08 2001-03-23 Teeiku Wan Sogo Jimusho:Kk Method and apparatus for indirect measurement of concentration of ozone contained in liquid or gas
JP4181783B2 (en) * 2002-03-08 2008-11-19 岩谷産業株式会社 Ozone gas concentration measurement method
JP4009523B2 (en) * 2002-11-14 2007-11-14 岩谷産業株式会社 Ozone gas concentration measuring method and ozone gas concentration measuring device

Also Published As

Publication number Publication date
JP2009198497A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
US10103507B2 (en) System for reclaiming, rebalancing and recirculating laser gas mixtures used in a high energy laser system
WO2017072863A1 (en) Laser gas purifying system
JP2007010149A (en) Filling method of low-temperature liquefied gas
JP6457013B2 (en) Excimer laser oscillator with gas recycling function
JP5184392B2 (en) Indirect measurement method of ozone concentration
US11949203B2 (en) Gas management system
JP2020521121A (en) Analytical method for trace contaminants in cryogenic liquids
JP5254078B2 (en) Method and apparatus for decomposing and discharging ozone mixture
JP6993257B2 (en) Hydrogen concentration method and equipment
Tanaka Control of dehumidification using polymer permeable membrane and its application to tritium removal system design
Michalski et al. Dissociation energies of six NO 2 isotopologues by laser induced fluorescence spectroscopy and zero point energy of some triatomic molecules
JP7310031B2 (en) Gas separation method and gas separation device
JP5425483B2 (en) Process control method for safe handling of ozone
JP5620705B2 (en) Oxygen isotope enrichment method and oxygen isotope enrichment apparatus
US11949202B2 (en) Gas management system
Koffend et al. Photochemistry and kinetics of the O* 2–HI system
EP4389262A1 (en) Oxygen isotope concentration method and oxygen isotope concentration apparatus
US20230386853A1 (en) Etching gas, method for producing same, etching method, and method for producing semiconductor device
EP4231333A1 (en) Etching gas, method for producing same, etching method, and method for producing semiconductor element
Akulov et al. Experimental determination of the difference of the beta-decay constants for atomic and molecular tritium
JP2017128459A (en) Manufacturing method of hydrogen peroxide
Pritt Jr et al. Quenching of I*(5 2 P 1/2) by DF
KR20220005530A (en) Measurement method of fluorine gas concentration in halogen fluoride-containing gas by ultraviolet spectroscopy
JP2011212610A (en) Method for concentrating oxygen isotope
JP2010194496A (en) Method and apparatus for concentrating oxygen isotope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130116

R150 Certificate of patent or registration of utility model

Ref document number: 5184392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250