JP2014047670A - Control method and unit for nox aftertreatment device of engine including ozone generation means - Google Patents

Control method and unit for nox aftertreatment device of engine including ozone generation means Download PDF

Info

Publication number
JP2014047670A
JP2014047670A JP2012190022A JP2012190022A JP2014047670A JP 2014047670 A JP2014047670 A JP 2014047670A JP 2012190022 A JP2012190022 A JP 2012190022A JP 2012190022 A JP2012190022 A JP 2012190022A JP 2014047670 A JP2014047670 A JP 2014047670A
Authority
JP
Japan
Prior art keywords
ozone
flow rate
nox
engine
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012190022A
Other languages
Japanese (ja)
Inventor
Masumi Kinugawa
真澄 衣川
Shigeto Yabaneta
茂人 矢羽田
Yuki Tarusawa
祐季 樽澤
Keiji Noda
恵司 野田
Akira Shichi
明 志知
Yoshimi Kizaki
好美 木崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2012190022A priority Critical patent/JP2014047670A/en
Priority to DE201310109133 priority patent/DE102013109133A1/en
Publication of JP2014047670A publication Critical patent/JP2014047670A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/922Mixtures of carbon monoxide or hydrocarbons and nitrogen oxides
    • B01D53/927Successive elimination of carbon monoxide or hydrocarbons and nitrogen oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2046Periodically cooling catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/104Ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/30Ionic liquids and zwitter-ions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/12Methods and means for introducing reactants
    • B01D2259/122Gaseous reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/60Feed streams for electrical dischargers
    • C01B2201/62Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/38Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an ozone (O3) generator, e.g. for adding ozone after generation of ozone from air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/0601Parameters used for exhaust control or diagnosing being estimated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/12Parameters used for exhaust control or diagnosing said parameters being related to the vehicle exterior
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To provide a NOx aftertreatment device of an engine which can purify NOx immediately after start-up and speedily realizes a necessary and sufficient ozone supply flow rate in accordance with a change in a NOx flow rate without requiring a large-scale device.SOLUTION: A controller 4 of a NOx aftertreatment device 3 of an engine including ozone generation means 6 which supplies ozone to an exhaust pipe 2 of the engine 1: estimates flow rates of NO and NO; decides a target ozone flow rate corresponding to a total flow rate of the estimated flow rates of the NO and the NO; and operates the ozone generation means 6 to achieve the target ozone flow rate. The generated ozone is added to exhaust through an ozone supply passage 31. Then, NOx absorption means 5 removes HNOgenerated by the NO, the NOand moisture in the exhaust.

Description

本発明は、排気中のNOx成分を吸収分離する後処理装置、特にオゾン生成手段を含み、エンジンを冷始動した直後の冷温状態においてもNOx吸収分離能力を有するエンジン用後処理装置の制御方法および制御装置に関する。   The present invention relates to a post-treatment device that absorbs and separates NOx components in exhaust gas, in particular, an ozone generating means, and a control method for an engine post-treatment device that has NOx absorption and separation capability even in a cold state immediately after the engine is cold-started. The present invention relates to a control device.

エンジン、特に、ディーゼルエンジンから排出されるNOxの後処理装置においては、通常、触媒を使ってNOxの還元処理を行い、NOx成分を浄化する方式が一般的である。触媒は、NOxをリーン時に吸蔵または吸着しリッチ時に放出して浄化するNOx吸蔵還元型や吸着還元型触媒、尿素水を還元剤として排気に添加する選択還元型触媒が知られている。この技術においては、触媒が働く作動温度(約200℃以上)より低い温度においては、NOx浄化を達成し得ないので、これを実現する技術が求められている。   In an aftertreatment device for NOx discharged from an engine, in particular, a diesel engine, a system is generally used in which NOx reduction treatment is performed using a catalyst to purify the NOx component. As the catalyst, NOx occlusion reduction type and adsorption reduction type catalysts that store or adsorb NOx when lean and release and purify when rich, and selective reduction type catalysts that add urea water to the exhaust as a reducing agent are known. In this technique, since NOx purification cannot be achieved at a temperature lower than the operating temperature (about 200 ° C. or higher) at which the catalyst operates, a technique for realizing this is required.

また、NOx吸蔵還元型や吸着還元型触媒は、高価な白金等の貴金属を使う必要がある。他方、選択還元型触媒は卑金属を使用できるが、排気系に尿素水を調量・噴射供給する装置が必要となり、さらにアンモニアガスを大気中に放出しないためにアンモニア除去触媒が必要となることから、装置全体が高価となっている。このため、より安価に実現できる新しい方式のNOx後処理装置が求められている。   In addition, the NOx occlusion reduction type or adsorption reduction type catalyst needs to use expensive noble metals such as platinum. On the other hand, although the selective reduction catalyst can use base metal, a device for metering and injecting urea water to the exhaust system is required, and further, an ammonia removal catalyst is required in order not to release ammonia gas into the atmosphere. The whole device is expensive. Therefore, there is a need for a new type of NOx aftertreatment device that can be realized at a lower cost.

特許文献1には、オゾン発生器で生成したオゾン含有ガスを、オゾン吸着装置に供給し、窒素酸化物含有ガス流を反応器ダクトに供給する一方、窒素酸化物含有ガス流のスリップ流をオゾン吸着装置に供給してオゾンを脱着し、オゾン含有スリップ流を反応器ダクトに供給する一連の工程により、ガス流から窒素酸化物を除去する方式が提案されている。反応器ダクトにおいて、窒素酸化物はオゾンと反応してN25に転化され、空気中に水分が存在する場合は硝酸も生成する。N25と硝酸を含む流れは、さらに水性スクラバーに供給されて、水溶液と接触し、吸収除去される。 In Patent Document 1, an ozone-containing gas generated by an ozone generator is supplied to an ozone adsorption device, and a nitrogen oxide-containing gas stream is supplied to a reactor duct, while a slip stream of the nitrogen oxide-containing gas stream is converted into ozone. There has been proposed a method of removing nitrogen oxides from a gas stream by a series of steps of supplying an adsorber to desorb ozone and supplying an ozone-containing slip stream to a reactor duct. In the reactor duct, nitrogen oxides react with ozone and are converted to N 2 O 5, and nitric acid is also produced when moisture is present in the air. The stream containing N 2 O 5 and nitric acid is further fed to an aqueous scrubber where it contacts the aqueous solution and is absorbed and removed.

この特許文献1の方式では、高濃度のオゾンを排気に供給するため、シリカゲル等の構造収着剤材料を含むオゾン吸着装置を設けて、吸着装置へのオゾンの吸着工程と、脱離させて排気に供給する離脱工程を交互に行わせるようにしている。   In the method of Patent Document 1, in order to supply high-concentration ozone to exhaust gas, an ozone adsorption device including a structural sorbent material such as silica gel is provided, and the ozone adsorption process to the adsorption device and the desorption are performed. The separation process for supplying exhaust gas is alternately performed.

特開2001−187316号公報JP 2001-187316 A

特許文献1のような方式は、装置が大規模となるため、定置に設置されている大規模な燃焼装置の排煙のNOx除去には適しているが、使用負荷が頻繁に変化する車両用エンジンには適さない。また、このような装置構成では、オゾン供給流量を迅速に変化できず、排気の流量が時々刻々大きく変化し、NOx濃度も大きく変化する車両用エンジンに適用することは難しい。   A method such as Patent Document 1 is suitable for removing NOx from the flue gas of a large-scale combustion apparatus that is installed stationary because the apparatus is large-scale, but for vehicles in which the usage load changes frequently. Not suitable for engines. Further, such an apparatus configuration is difficult to apply to a vehicle engine in which the ozone supply flow rate cannot be changed rapidly, the exhaust flow rate changes greatly every moment, and the NOx concentration also changes greatly.

本発明の第1の目的は、エンジンを冷始動した直後の低温度からでもNOx浄化が可能であること、NOx浄化のために貴金属等の高価な触媒を使わないこと、あるいは、大規模な装置を必要とせず、装置コストを低減できること、これらの要件を満足し車両用エンジンに適した、新しい方式のNOx後処理装置を提供することにある。
本発明の第2の目的は、負荷変動の大きい車両用エンジンにも適合し、排気のNOx流量の変化に合わせて迅速にオゾン供給流量を追従でき、しかも、高濃度のオゾン生成が可能なオゾン生成手段を実現し、将来の厳しい排出ガス規制にも対応できる高い浄化性能を有するエンジン用後処理装置の制御方法および制御装置を提供することにある。
The first object of the present invention is that NOx purification can be performed even at a low temperature immediately after the engine is cold-started, an expensive catalyst such as a precious metal is not used for NOx purification, or a large-scale apparatus. Therefore, the present invention is to provide a new type of NOx aftertreatment device that can reduce the cost of the apparatus and satisfy these requirements and is suitable for a vehicle engine.
The second object of the present invention is an ozone which is suitable for a vehicular engine having a large load fluctuation, can quickly follow the ozone supply flow rate according to the change in the NOx flow rate of exhaust gas, and can generate high-concentration ozone. It is an object of the present invention to provide a control method and a control device for an engine aftertreatment device that realizes a generation means and has high purification performance that can cope with strict exhaust gas regulations in the future.

上記課題を解決するために、請求項1に記載の発明は、エンジンからの排気にオゾンを供給するオゾン生成手段を含むエンジン用NOx後処理装置の制御方法であって、
排気中のNOとNO流量を推定し、推定したNOとNOの合計流量に対応させてオゾン目標流量を決定し、決定した目標流量となるように上記オゾン生成手段を作動させて生成したオゾンを排気中に添加し、このオゾンと排気中のNOとNOと水分によって生成したHNOを排気から除去することを特徴とする。
In order to solve the above-mentioned problem, the invention according to claim 1 is a control method of an NOx aftertreatment device for an engine including an ozone generating means for supplying ozone to exhaust from the engine,
The NO and NO 2 flow rates in the exhaust gas are estimated, the ozone target flow rate is determined according to the estimated total flow rate of NO and NO 2 , and generated by operating the ozone generating means so as to be the determined target flow rate Ozone is added to the exhaust gas, and HNO 3 produced by the ozone, NO, NO 2 and moisture in the exhaust gas is removed from the exhaust gas.

上記課題を解決するために、請求項2に記載の発明は、エンジンの排気通路に接続するオゾン供給通路と、吸気通路に接続する空気流入通路を有し、流入する空気からオゾンを生成するオゾン生成手段を含み、NOxとオゾンの反応生成物をNOx吸収手段に吸収させるエンジン用NOx後処理装置の制御装置であって、
上記排気通路を流通する排気中のNOとNO流量を推定するNOx流量推定手段と、
上記NOx流量推定手段により推定したNOとNOの合計流量に対応させて、オゾン目標流量を決定する目標流量決定手段と、
上記目標流量決定手段で決定したオゾン目標流量となるように、上記オゾン生成手段を作動させる駆動手段とを備え、
上記オゾン生成手段で生成したオゾンを上記オゾン供給通路から排気中に添加し、添加したオゾンと排気中のNOとNOと水分によって生成したHNOを上記NOx吸収手段に吸収させて除去することを特徴とする。
In order to solve the above-mentioned problem, the invention according to claim 2 is an ozone which has an ozone supply passage connected to the exhaust passage of the engine and an air inflow passage connected to the intake passage, and generates ozone from the inflowing air. A control device for a NOx after-treatment device for an engine that includes a generation unit and causes the NOx absorption unit to absorb a reaction product of NOx and ozone,
NOx flow rate estimating means for estimating NO and NO 2 flow rates in the exhaust gas flowing through the exhaust passage;
Target flow rate determining means for determining the ozone target flow rate in correspondence with the total flow rate of NO and NO 2 estimated by the NOx flow rate estimating means;
Drive means for operating the ozone generation means so as to be the ozone target flow rate determined by the target flow rate determination means,
The ozone generated by the ozone generating means is added to the exhaust gas from the ozone supply passage, and HNO 3 generated by the added ozone, NO, NO 2 and moisture in the exhaust gas is absorbed by the NOx absorbing means and removed. It is characterized by.

請求項3に記載の装置は、上記オゾン供給通路が合流する上記排気通路の上流に酸化触媒または酸化触媒を担持したフィルタ手段が配置されており、
上記NOx流量推定手段は、排気中のNOとNO流量を、エンジンから排出される排気中のNO濃度推定値と、エンジン吸気流量と、上記酸化触媒または酸化触媒を担持したフィルタ手段の温度または排気温度を用いて推定したNO推定流量とNO推定流量として求める。
In the apparatus according to claim 3, filter means carrying an oxidation catalyst or an oxidation catalyst is arranged upstream of the exhaust passage where the ozone supply passage joins,
The NOx flow rate estimating means includes the NO and NO 2 flow rates in the exhaust gas, the NO concentration estimated value in the exhaust gas exhausted from the engine, the engine intake flow rate, the temperature of the filter means carrying the oxidation catalyst or the oxidation catalyst, or The estimated NO flow rate and NO 2 estimated flow rate estimated using the exhaust gas temperature are obtained.

請求項4に記載の装置において、上記目標流量決定手段は、請求項3の上記NOx流量推定手段にて推定された、NO推定流量の1.5当量比倍の流量とNO推定流量の0.5当量比倍の流量の合算値以上の値に対応してオゾン目標流量を決定し、このオゾン目標流量に基づいて上記オゾン生成手段が作動される。 5. The apparatus according to claim 4, wherein the target flow rate determining means is a flow rate of 1.5 equivalent ratio times NO estimated flow rate and 0 of NO 2 estimated flow rate estimated by the NOx flow rate estimating means of claim 3. The ozone target flow rate is determined corresponding to a value equal to or greater than the sum of the flow rates multiplied by .5 equivalent ratio, and the ozone generating means is operated based on the ozone target flow rate.

請求項5に記載の装置は、上記オゾン生成手段を通過するガス流量を推定するガス流量推定手段と、推定されたガス流量と上記目標流量決定手段で決定したオゾン目標流量から、上記オゾン生成手段が生成すべきオゾン濃度を求めるオゾン生成濃度算出手段を備え、このオゾン生成濃度となるように上記オゾン生成手段が作動される。   The apparatus according to claim 5 includes: a gas flow rate estimating unit configured to estimate a gas flow rate passing through the ozone generating unit; and an ozone target unit determined from the estimated gas flow rate and the ozone target flow rate determined by the target flow rate determining unit. Is provided with an ozone generation concentration calculating means for obtaining an ozone concentration to be generated, and the ozone generation means is operated so as to obtain this ozone generation concentration.

請求項6に記載の装置において、上記目標流量決定手段は、上記オゾン生成手段で生成されたオゾンが、NO、NO、水分と反応する前に消滅する比率を求め、該比率に応じてオゾン目標流量を修正する。 7. The apparatus according to claim 6, wherein the target flow rate determining means obtains a ratio at which the ozone generated by the ozone generating means disappears before reacting with NO, NO 2 , and moisture, and in accordance with the ratio, Correct the target flow rate.

請求項7に記載の装置において、上記目標流量決定手段は、オゾンが消滅する上記比率を、排気温度に対応して決定する。   8. The apparatus according to claim 7, wherein the target flow rate determining means determines the ratio at which ozone disappears in correspondence with exhaust gas temperature.

請求項8に記載の装置は、請求項7の装置において、さらに、上記目標流量決定手段が、上記オゾンが消滅する上記比率を、上記オゾン供給通路の合流部における排気中の低級不飽和炭化水素の濃度に対応して決定する。   The apparatus according to claim 8 is the apparatus according to claim 7, wherein the target flow rate determining means determines the ratio at which the ozone disappears from the lower unsaturated hydrocarbon in the exhaust gas at the junction of the ozone supply passage. It is determined according to the concentration.

請求項9に記載の装置において、上記目標流量決定手段で決定した上記オゾン目標流量を、大気中の湿度の情報に基づいて修正する修正手段を備える。   The apparatus according to claim 9, further comprising a correcting unit that corrects the ozone target flow rate determined by the target flow rate determining unit based on information on humidity in the atmosphere.

請求項10に記載の装置は、請求項5〜8の装置において、上記オゾン生成手段の上流の上記空気流入通路に、湿度除去手段と酸素富化手段が設置され、上記オゾン生成手段に流入するガス中の酸素濃度の変化に基づいてオゾン生成濃度を修正する修正手段を備える。   The apparatus according to claim 10 is the apparatus according to claims 5 to 8, wherein a humidity removing means and an oxygen enriching means are installed in the air inflow passage upstream of the ozone generating means and flows into the ozone generating means. Correction means for correcting the ozone generation concentration based on a change in the oxygen concentration in the gas is provided.

請求項1の制御方法によれば、エンジンの排気系にオゾンを生成して添加するNOx後処理装置を配置し、運転状態により変動するNOとNO流量に対応させて、予めオゾン目標流量を決定して、オゾン生成手段を作動させる。オゾン生成手段は、例えば放電プラズマを用いて供給電力に応じたオゾンを制御性よく生成することができ、NOとNO流量の変化に追従させて、オゾン目標流量を維持することができる。オゾンは、排気中のNOおよびNOと反応してNを生成し、Nは排気中の水分と容易に反応してHNOに変換される。このHNOを吸収剤と接触させることにより排気から除去することができる。 According to the control method of claim 1, the NOx aftertreatment device that generates and adds ozone to the exhaust system of the engine is arranged, and the ozone target flow rate is set in advance in accordance with the NO and NO 2 flow rates that vary depending on the operation state. Once determined, the ozone generating means is activated. The ozone generating means can generate ozone according to the supplied power with good controllability using, for example, discharge plasma, and can maintain the ozone target flow rate by following changes in the NO and NO 2 flow rates. Ozone reacts with NO and NO 2 in the exhaust to generate the N 2 O 5, N 2 O 5 is converted to HNO 3 readily reacts with moisture in the exhaust gas. This HNO 3 can be removed from the exhaust by contacting with the absorbent.

この方式によれば、大規模な装置や高価な触媒を必要とせず、エンジン始動直後から効率よくNOxを浄化することが可能である。よって、NOx変動の大きい車両用エンジンに好適に使用されて、エンジン負荷が高い場合でも必要十分なオゾンを排気に供給し、高い浄化性能を実現できる。   According to this method, it is possible to efficiently purify NOx immediately after starting the engine without requiring a large-scale device or an expensive catalyst. Therefore, it is suitably used for a vehicle engine having a large NOx fluctuation, and even when the engine load is high, necessary and sufficient ozone can be supplied to the exhaust gas to achieve high purification performance.

請求項2の制御装置は、請求項1の制御方法を実現するために、オゾン生成手段に吸気通路の空気を導入してオゾンを生成し、オゾン供給通路から排気に供給する。この時、NOx流量推定手段がエンジンから排出されるNOとNOの合計流量を推定し、目標流量決定手段が決定したオゾン目標流量となるように、駆動手段がオゾン生成手段を作動させるので、必要十分なオゾンを供給することができる。排気はオゾン供給通路の合流部でオゾンと混合されて反応し、生成するHNOは合流部下流に配置されるNOx吸収手段を通過する間に除去される。よって、エンジンの運転状態に応じてオゾンを効率よく生成し、エンジンから排出されるNOxを浄化することができる。 In order to realize the control method of the first aspect, the control device of the second aspect introduces air in the intake passage into the ozone generation means to generate ozone, and supplies the ozone from the ozone supply passage to the exhaust. At this time, the NOx flow rate estimating unit estimates the total flow rate of NO and NO 2 discharged from the engine, and the drive unit operates the ozone generating unit so that the ozone target flow rate determined by the target flow rate determining unit is reached. Necessary and sufficient ozone can be supplied. The exhaust gas is mixed with ozone and reacts at the merging portion of the ozone supply passage, and the generated HNO 3 is removed while passing through the NOx absorbing means disposed downstream of the merging portion. Therefore, ozone can be efficiently generated according to the operating state of the engine, and NOx discharged from the engine can be purified.

本発明の第1実施形態におけるエンジン用NOx後処理装置の制御装置の全体構成図である。It is a whole block diagram of the control apparatus of the NOx aftertreatment device for engines in a 1st embodiment of the present invention. 第1実施形態におけるエンジン用NOx後処理装置のオゾン生成手段の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the ozone production | generation means of the NOx aftertreatment apparatus for engines in 1st Embodiment. 高電圧発生装置が生成する高電圧パルスの周波数が低い場合の波形と高い場合の波形を示す模式図である。It is a schematic diagram which shows a waveform when the frequency of the high voltage pulse which a high voltage generator produces | generates is low, and a waveform when it is high. 第1実施形態におけるコントローラに内蔵された制御プログラムの要部を示すフローチャートである。It is a flowchart which shows the principal part of the control program incorporated in the controller in 1st Embodiment. エンジン回転数と噴射量と排気のNO濃度の関係を示す図である。It is a figure which shows the relationship between engine rotation speed, injection amount, and NO density | concentration of exhaust_gas | exhaustion. 吸気流量と排気温度とNOからのNO転化比率の関係を示す図である。It is a diagram showing the relationship between NO 2 conversion ratio from the intake air flow exhaust temperature and NO. 排気温度とオゾン消滅係数の関係を示す図である。It is a figure which shows the relationship between exhaust temperature and an ozone extinction coefficient. 吸気流量と排気温度と排気圧力の関係を示す図である。It is a figure which shows the relationship between an intake air flow rate, exhaust temperature, and exhaust pressure. 空気中の湿度と放電装置へ印加する高電圧周波数、オゾン生成濃度の関係を示す図である。It is a figure which shows the relationship between the humidity in air, the high voltage frequency applied to a discharge device, and ozone generation density | concentration. 空気中の湿度と生成するオゾン濃度に対応する湿度係数の関係を示す図である。It is a figure which shows the relationship between the humidity coefficient corresponding to the humidity in air, and the ozone concentration to produce | generate. 修正オゾン生成濃度に対応する周波数の流量特性を示す図である。It is a figure which shows the flow volume characteristic of the frequency corresponding to correction ozone production | generation density | concentration. 本発明の第2実施形態におけるエンジン用NOx後処理装置の制御装置の全体構成図である。It is a whole block diagram of the control apparatus of the NOx aftertreatment device for engines in a 2nd embodiment of the present invention. 第2実施形態における酸素富化手段の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the oxygen enrichment means in 2nd Embodiment. 所定の分離係数の酸素富化膜において、上下流圧力比と下流の酸素富化空気の酸素濃度の関係を示す図である。It is a figure which shows the relationship between the upstream / downstream pressure ratio and the oxygen concentration of downstream oxygen-enriched air in an oxygen-enriched membrane having a predetermined separation coefficient. 第2実施形態におけるコントローラに内蔵された制御プログラムの要部を示すフローチャートである。It is a flowchart which shows the principal part of the control program incorporated in the controller in 2nd Embodiment. 図14Aに示すフローチャートの続きのフローチャートである。It is a flowchart following the flowchart shown in FIG. 14A. 酸素濃度と酸素富化係数の関係を示す図である。It is a figure which shows the relationship between oxygen concentration and an oxygen enrichment coefficient.

(第1実施形態)
図1、2に本発明を適用した、オゾン生成手段を含むエンジン用NOx後処理装置(以下、NOx後処理装置と略称する)の第1実施形態を示す。図1においてエンジン1は、ターボチャージャー(過給機)15を備えるディーゼルエンジンで、本実施形態のNOx後処理装置3の制御装置は、エンジン1から排出される排気中のNOxを処理する。排気通路としての排気管2の途中に、フィルタ手段であるDPF(ディーゼルパティキュレートフィルタ)21が配置され、その下流に、排気冷却手段22と、NOx後処理装置3を構成するNOx吸収手段5が配置される。排気冷却手段22とNOx吸収手段5の間の排気管2aに合流する通路が設けられ、NOx後処理装置3のオゾン生成手段6に接続されてオゾン供給通路61となる。
(First embodiment)
1 and 2 show a first embodiment of an engine NOx aftertreatment device (hereinafter abbreviated as NOx aftertreatment device) including an ozone generating means to which the present invention is applied. In FIG. 1, the engine 1 is a diesel engine provided with a turbocharger (supercharger) 15, and the control device of the NOx aftertreatment device 3 of the present embodiment processes NOx in the exhaust discharged from the engine 1. A DPF (diesel particulate filter) 21 serving as a filter means is disposed in the middle of the exhaust pipe 2 serving as an exhaust passage, and an exhaust cooling means 22 and a NOx absorption means 5 constituting the NOx aftertreatment device 3 are disposed downstream thereof. Be placed. A passage that joins the exhaust pipe 2 a between the exhaust cooling means 22 and the NOx absorption means 5 is provided, and is connected to the ozone generation means 6 of the NOx aftertreatment device 3 to become an ozone supply passage 61.

エンジン1は、吸気入口16から空気を取り込む。空気は、ターボチャージャー15のコンプレッサ14で加圧され、加圧により高温となった空気は、吸気通路としての吸気管18に設置したインタークーラー19で冷却された後、吸気マニホールド10に送られ、各ポートからエンジン1の燃焼室に吸入される。エンジン1の燃焼室では空気と燃料が混合され、燃焼する。燃焼によってエンジン1のピストンが押し下げられ、エンジン出力軸11の回転力として動力を生み出す。   The engine 1 takes in air from the intake inlet 16. The air is pressurized by the compressor 14 of the turbocharger 15, and the air that has become hot due to the pressurization is cooled by an intercooler 19 installed in an intake pipe 18 as an intake passage, and then sent to the intake manifold 10. It is sucked into the combustion chamber of the engine 1 from the port. In the combustion chamber of the engine 1, air and fuel are mixed and burned. The piston of the engine 1 is pushed down by the combustion, and power is generated as the rotational force of the engine output shaft 11.

燃焼を終わった排気は、エンジン1の燃焼室から排気マニホールド12に排気される。その後、排気はターボチャージャー15のコンプレッサ14と直結したタービン13を回して、空気を加圧する仕事をした後、排気管2に排出される。排気はここでDPF21を通過し、排気中のパティキュレートマター(PM)をDPF21によってろ過捕集する。同時に、排気が通過するDPF21表面にコーティングされた酸化触媒によって、HC成分やCO成分も浄化される。その後、排気は、排気冷却手段22を通り、冷却されて通常では排気温度が100℃〜180℃の間に下がる。   The exhaust after the combustion is exhausted from the combustion chamber of the engine 1 to the exhaust manifold 12. After that, the exhaust gas is discharged to the exhaust pipe 2 after rotating the turbine 13 directly connected to the compressor 14 of the turbocharger 15 to pressurize the air. The exhaust passes through the DPF 21 here, and particulate matter (PM) in the exhaust is filtered and collected by the DPF 21. At the same time, the HC component and the CO component are also purified by the oxidation catalyst coated on the surface of the DPF 21 through which the exhaust passes. Thereafter, the exhaust passes through the exhaust cooling means 22 and is cooled, so that the exhaust temperature usually falls between 100 ° C. and 180 ° C.

ここで用いるDPF21は、セラミックで形成された多孔質の壁がフィルタとして働く、公知のウォールフロータイプの排気フィルタである。排気冷却手段22は、公知のランキンサイクル方式の排熱回収システムであり、例えば、排気の冷却で得た熱エネルギーは冷媒を蒸発させ高圧ガスとなってガスタービンを回し、ガスタービンと直結した発電機により電気エネルギーに変換されバッテリーに蓄えられるというようなものである。   The DPF 21 used here is a known wall flow type exhaust filter in which a porous wall formed of ceramic works as a filter. The exhaust cooling means 22 is a known Rankine cycle exhaust heat recovery system. For example, the heat energy obtained by cooling the exhaust gas evaporates the refrigerant to become a high-pressure gas, rotates the gas turbine, and is directly connected to the gas turbine. It is like being converted into electrical energy by a machine and stored in a battery.

冷却された排気は、NOx後処理装置3に導入されて、オゾン供給通路61が合流する排気管2aを通過し、さらにNOx吸収手段5を通過する。ここで、排気中に含まれるNOxは、オゾン生成手段6から供給されるオゾン含有空気中のオゾンと反応し、NOx吸収手段5内においてNOx吸収液と接触して吸収される。ここまででPM、HC、CO、そしてNOxが除去され、クリーンな排気となって排気管出口23から大気中に排出される。   The cooled exhaust gas is introduced into the NOx aftertreatment device 3, passes through the exhaust pipe 2 a where the ozone supply passage 61 joins, and further passes through the NOx absorption means 5. Here, the NOx contained in the exhaust gas reacts with ozone in the ozone-containing air supplied from the ozone generating means 6 and is absorbed in contact with the NOx absorbing liquid in the NOx absorbing means 5. Up to this point, PM, HC, CO, and NOx are removed, and the exhaust becomes clean and exhausted from the exhaust pipe outlet 23 into the atmosphere.

オゾン生成手段6は、放電プラズマを用いて空気からオゾンを生成し、オゾン含有空気として送出するもので、詳細構成については後述する。オゾン生成手段6は、内部にオゾンが生成される放電空間部を有する通路を形成し、その一端側は排気管2aに合流するオゾン供給通路61に、他端側は吸気管18から分岐する空気流入通路62に接続される。空気流入通路62は、コンプレッサ14によって過給され、インタークーラー19で冷却された空気を導入するため、吸気スロットル17の直上流に開口している。空気流入通路62の途中には、上流から固定絞り38、ブロア39が配置され、オゾン生成手段6に至る。これにより、エンジン1の運転負荷が高く、エンジン1から高濃度のNOxが排出される場合でも必要充分なオゾンを生成して排気に供給できるように、過給された空気をオゾン生成手段6に導入する。ブロア39は図示しない電気モータで駆動される公知の構成で、エンジン1が低回転で運転され、過給圧が生じない場合でも生成したオゾンを排気に導くように働き、オゾン供給通路61から排気管2aへの流れを形成する。   The ozone generating means 6 generates ozone from air using discharge plasma and sends it out as ozone-containing air, and the detailed configuration will be described later. The ozone generating means 6 forms a passage having a discharge space part in which ozone is generated inside, and one end side thereof is an ozone supply passage 61 that joins the exhaust pipe 2a, and the other end side is air that branches from the intake pipe 18. Connected to the inflow passage 62. The air inflow passage 62 is opened immediately upstream of the intake throttle 17 in order to introduce the air supercharged by the compressor 14 and cooled by the intercooler 19. In the middle of the air inflow passage 62, a fixed throttle 38 and a blower 39 are arranged from the upstream and reach the ozone generating means 6. Thereby, even when the operating load of the engine 1 is high and high concentration NOx is discharged from the engine 1, the supercharged air is supplied to the ozone generating means 6 so that necessary and sufficient ozone can be generated and supplied to the exhaust gas. Introduce. The blower 39 is a known configuration that is driven by an electric motor (not shown). The blower 39 operates to guide the generated ozone to the exhaust even when the engine 1 is operated at a low speed and no supercharging pressure is generated. A flow to the tube 2a is formed.

排気管2aにおいて、オゾン供給通路61から供給されるオゾン(O)は、排気中のNOx(NO、NO)と、下記反応式(a)〜(c)に示す化学反応を起こして、硝酸の前駆体であるNに変換される。さらに生成したNは、下記反応式(d)に示すように、排気中の水分(HO)と再度反応して、HNOに変換される。
NO+O → NO+O・・・(a)
NO+O → NO+O・・・(b)
NO+NO → N・・・(c)
+HO → 2HNO・・・(d)
In the exhaust pipe 2a, ozone (O 3 ) supplied from the ozone supply passage 61 causes a chemical reaction represented by the following reaction formulas (a) to (c) with NOx (NO, NO 2 ) in the exhaust, It is converted to N 2 O 5 which is a precursor of nitric acid. Further, the produced N 2 O 5 reacts again with moisture (H 2 O) in the exhaust gas and is converted to HNO 3 as shown in the following reaction formula (d).
NO + O 3 → NO 2 + O 2 (a)
NO 2 + O 3 → NO 3 + O 2 (b)
NO 2 + NO 3 → N 2 O 5 (c)
N 2 O 5 + H 2 O → 2HNO 3 (d)

反応生成物であるHNOは、NOx吸収手段5に至ってNOx吸収液によって吸収され、排気から分離される。NOx吸収液としては、HNOを吸収分離可能な液体であれば特に制限されず、例えば、水またはアルカリ性水用液を使用することができる。また、NOx吸収液の別の例として、HNOを化学吸着するイオン液体を用いることが考えられる。この場合、イオン液体は、図示しない貯蔵手段に蓄えられており、NOx吸収手段5との間で循環路を形成する(図中、矢印)。そしてNOx吸収手段5の入口51から内部の気液接触部へ送られ、排気と接触させてHNOを吸着する。その後、NOx吸収手段5の出口52から、図示しない液体回収手段に送られたイオン液体を分離回収し、貯蔵手段へに再び戻す。 The reaction product HNO 3 reaches the NOx absorbing means 5 and is absorbed by the NOx absorbing liquid and separated from the exhaust gas. The NOx absorbing liquid is not particularly limited as long as it is a liquid capable of absorbing and separating HNO 3. For example, water or an alkaline water liquid can be used. As another example of the NOx absorbing liquid, it is conceivable to use an ionic liquid that chemically adsorbs HNO 3 . In this case, the ionic liquid is stored in a storage unit (not shown), and forms a circulation path with the NOx absorption unit 5 (arrow in the figure). And sent from the inlet 51 of the NOx absorbing means 5 into the interior of the gas-liquid contact portion is contacted with the exhaust adsorbs HNO 3. Thereafter, the ionic liquid sent to the liquid recovery means (not shown) is separated and recovered from the outlet 52 of the NOx absorption means 5 and returned to the storage means again.

図1において、吸気系には、吸気入口16の直下流に吸気流量センサ45が配置される。また、吸気スロットル17のスロットル開度を検出するスロットル開度センサ44が配置され、吸気マニホールド10の合流部には吸気管圧力センサ40が配置される。エンジン1の出力軸11の近傍には、エンジン回転数を測る回転数センサ41が配置され、排気系には、DPF21の下流に排気温度を測る排気温度センサ42が配置される。また、外気の湿度を直接的または間接的に測る湿度センサ43が配置される。以上述べた各センサは、測定した情報をそれぞれ電気信号に変換して、接続された電気線を通して制御装置であるコントローラ4に送る。   In FIG. 1, an intake flow rate sensor 45 is disposed in the intake system immediately downstream of the intake inlet 16. Further, a throttle opening sensor 44 for detecting the throttle opening of the intake throttle 17 is disposed, and an intake pipe pressure sensor 40 is disposed at the junction of the intake manifold 10. In the vicinity of the output shaft 11 of the engine 1, a rotational speed sensor 41 that measures the engine rotational speed is arranged, and in the exhaust system, an exhaust temperature sensor 42 that measures the exhaust temperature is arranged downstream of the DPF 21. In addition, a humidity sensor 43 that directly or indirectly measures the humidity of the outside air is arranged. Each sensor described above converts the measured information into an electric signal and sends it to the controller 4 which is a control device through a connected electric wire.

コントローラ4は、マイクロコンピュータを内蔵して制御を行う公知の構成を有する。また、コントローラ4は、ブロア64、オゾン生成手段6および排気冷却手段22、NOx吸収手段5と電気的操作可能に接続されている。そして、入力された電気信号に基づいて、予めマイクロコンピュータにプログラムされた情報処理および操作プログラムに基づいてブロア39、オゾン生成手段6および排気冷却手段22、NOx吸収手段5の制御を行う。   The controller 4 has a known configuration in which a microcomputer is incorporated for control. The controller 4 is connected to the blower 64, the ozone generation means 6, the exhaust cooling means 22, and the NOx absorption means 5 so as to be electrically operable. Based on the input electrical signal, the blower 39, the ozone generation means 6, the exhaust cooling means 22, and the NOx absorption means 5 are controlled based on the information processing and operation program previously programmed in the microcomputer.

本実施形態のNOx後処理装置3は、オゾン生成手段6で生成したオゾンを貯蔵することなく、直接排気管2aに供給して、排気中のNOxと反応させる。ここで、NOxからNへの反応とHNOへの反応は、常温においても容易に起こる反応であるから、排気温度に影響されず排気中のNOxを浄化できる。この方式は、簡易な構成で、公知のNOx吸蔵還元型触媒や尿素添加選択還元型触媒が働かない、エンジン始動時や軽負荷運転時で排気温度が低い場合でも用いることができるから、本発明の第1の目的は達成できる。 The NOx aftertreatment device 3 of the present embodiment supplies ozone generated directly by the ozone generating means 6 directly to the exhaust pipe 2a and causes it to react with NOx in the exhaust. Here, since the reaction from NOx to N 2 O 5 and the reaction from HNO 3 occurs easily even at room temperature, NOx in the exhaust gas can be purified without being influenced by the exhaust gas temperature. Since this method has a simple configuration, a known NOx storage reduction catalyst or urea addition selective reduction catalyst does not work, and can be used even when the exhaust gas temperature is low during engine start or light load operation. The first object can be achieved.

<オゾン生成手段の構成例>
また、この方式は、本発明の第2の目的にも適合し、排気のNOx流量の変化に合わせて迅速にオゾン供給流量を追従できる。この目的を実現するコンパクトなオゾン生成手段6の具体的構成に関して、次に説明を行う。
図2に本実施形態のオゾン生成手段6の断面図を示す。オゾン生成手段6は、内部が断面コ字状の通路60となっており、一端側の空気入口602に続く通路60aと、他端側の空気出口601に至る通路60bが、接続通路60cを介して連通している。空気入口602は図1の空気流入通路62に、空気出口601は図1のオゾン供給通路61に、それぞれ接続している。
<Configuration example of ozone generating means>
This method is also suitable for the second object of the present invention, and can quickly follow the ozone supply flow rate in accordance with the change in the NOx flow rate of the exhaust gas. Next, a specific configuration of the compact ozone generating means 6 that realizes this object will be described.
FIG. 2 shows a cross-sectional view of the ozone generating means 6 of the present embodiment. The ozone generating means 6 has a U-shaped passage 60 inside, and a passage 60a leading to the air inlet 602 on one end side and a passage 60b leading to the air outlet 601 on the other end side through the connection passage 60c. Communicate. The air inlet 602 is connected to the air inflow passage 62 in FIG. 1, and the air outlet 601 is connected to the ozone supply passage 61 in FIG.

通路60は、オゾン生成手段6の筐体を構成するコ字断面の通路壁603、604の間に形成され、外側の通路壁604に沿って、図の上下対称位置に、第1の沿面放電装置3Aと第2の沿面放電装置3Bが設置されている。第1の沿面放電装置3Aと第2の沿面放電装置3Bは、それぞれセラミックボディ30の表面に形成された放電電極32と、セラミックボディ30の内部に埋設された誘導電極31を有している。第1、第2の沿面放電装置3A、3Bにおいて、セラミックボディ30表面の放電電極32は、図の手前から奥に至る複数の線として構成され、それら複数の線が電気的に接続されている。   The passage 60 is formed between the passage walls 603 and 604 having a U-shaped cross section constituting the casing of the ozone generating means 6, and the first creeping discharge is formed along the outer passage wall 604 at a vertically symmetrical position in the drawing. A device 3A and a second creeping discharge device 3B are installed. Each of the first creeping discharge device 3 </ b> A and the second creeping discharge device 3 </ b> B has a discharge electrode 32 formed on the surface of the ceramic body 30 and an induction electrode 31 embedded in the ceramic body 30. In the first and second creeping discharge devices 3A and 3B, the discharge electrode 32 on the surface of the ceramic body 30 is configured as a plurality of lines extending from the front of the figure to the back, and the plurality of lines are electrically connected. .

第1の沿面放電装置3Aにおいて、放電電極32と誘導電極31は導線33a、33bを介して、装置外部の第1の高電圧発生装置34に接続されている。同様に、第2の沿面放電装置3Bは、導線33a、33bを介して、装置外部の第2の高電圧発生装置36に接続されている。これら導線33a、33bは、接続通路60cの外側の通路壁604を貫通して外部へ取り出され、絶縁部材35によってオゾン生成手段6の筐体とは電気的に絶縁されている。駆動手段となるサブコントローラ37は、コントローラ4からの制御信号に基づいて、これら第1、第2の高電圧発生装置34、36が作動か不作動かの制御および第1、第2の高圧電源発生装置34、36が生成する高電圧パルスの周波数の制御を行なう。   In the first creeping discharge device 3A, the discharge electrode 32 and the induction electrode 31 are connected to a first high-voltage generator 34 outside the device via lead wires 33a and 33b. Similarly, the second creeping discharge device 3B is connected to a second high voltage generator 36 outside the device via conductors 33a and 33b. These conducting wires 33a and 33b penetrate the passage wall 604 outside the connection passage 60c and are taken out to the outside, and are electrically insulated from the casing of the ozone generating means 6 by the insulating member 35. Based on the control signal from the controller 4, the sub-controller 37 serving as a driving means controls whether the first and second high voltage generators 34 and 36 are activated or deactivated and generates the first and second high-voltage power supplies. The frequency of the high voltage pulse generated by the devices 34 and 36 is controlled.

本実施形態において、空気入口602から流入した空気は、まず、通路壁603と第1の沿面放電装置3Aとの間に形成される通路60aを通る。そして、接続通路60cを通って、通路壁603と第2の沿面放電装置3Bとの間に形成される通路60bを通る。その後、空気は空気出口601から流出する。ここで、高電圧パルスが、オゾン生成手段6の放電電極32と誘導電極31の間に印加されると、放電電極32周辺のセラミックボディ30の表面に沿面放電プラズマが発生し、図2に模式的に示した放電空間部としての沿面放電ゾーン63を生成する。図2では1つの放電電極32についてのみ沿面放電ゾーンを示しているが、印加されるすべての放電電極32において沿面放電ゾーン63が生成する。この沿面放電ゾーン63において空気中の酸素(O)が励起され、周囲の酸素分子と化学反応を生じてオゾン(O)が生成される。 In the present embodiment, the air flowing in from the air inlet 602 first passes through the passage 60a formed between the passage wall 603 and the first creeping discharge device 3A. And it passes along the channel | path 60b formed between the channel | path wall 603 and the 2nd creeping discharge apparatus 3B through the connection channel | path 60c. Thereafter, the air flows out from the air outlet 601. Here, when a high voltage pulse is applied between the discharge electrode 32 and the induction electrode 31 of the ozone generating means 6, creeping discharge plasma is generated on the surface of the ceramic body 30 around the discharge electrode 32, which is schematically shown in FIG. A creeping discharge zone 63 as a discharge space portion shown in FIG. In FIG. 2, the creeping discharge zone is shown only for one discharge electrode 32, but the creeping discharge zone 63 is generated in all the applied discharge electrodes 32. Oxygen (O 2 ) in the air is excited in the creeping discharge zone 63 and generates a chemical reaction with surrounding oxygen molecules to generate ozone (O 3 ).

図3に、第1、第2の高電圧発生装置34、36が生成する高電圧パルスの周波数が低い場合の波形45と高い場合の波形46を模式的に示す。高電圧パルスの周波数は、連続的に制御される。高電圧パルスの時間幅は一定になっており、周波数が低い場合は消費電力が小さく、周波数が高い場合は消費電力が大きくなる。周波数を変化させることは消費電力を変化させていることと等価である。
高電圧パルスの周波数を上げていくとオゾン生成濃度が高まり、周波数を下げるとオゾン生成濃度は低下する。したがって、コントローラ4に入力される各種信号を基に、排気中のNOx流量に応じたオゾン生成濃度となるように、サブコントローラ37で第1、第2の高電圧発生装置34、36を制御するとよい。
FIG. 3 schematically shows a waveform 45 when the frequency of the high voltage pulse generated by the first and second high voltage generators 34 and 36 is low and a waveform 46 when the frequency is high. The frequency of the high voltage pulse is continuously controlled. The time width of the high voltage pulse is constant. When the frequency is low, the power consumption is small, and when the frequency is high, the power consumption is large. Changing the frequency is equivalent to changing the power consumption.
Increasing the frequency of the high voltage pulse increases the ozone generation concentration, and decreasing the frequency decreases the ozone generation concentration. Therefore, when the sub-controller 37 controls the first and second high-voltage generators 34 and 36 so that the ozone generation concentration according to the NOx flow rate in the exhaust gas is obtained based on various signals input to the controller 4. Good.

本実施形態のオゾン生成手段6は、第1の沿面放電装置3Aと第1の高電圧発生装置34に加えて、さらに高濃度のオゾンを効率的に生成するために、第2の沿面放電装置3Bと第2の高電圧電源発生装置36を備えている。第1、第2の高電圧発生装置34、36は独立に制御することができ、比較的低い濃度のオゾンを発生する場合には、第1の沿面放電装置3Aと第1の高電圧電源発生装置34を作動させて、オゾン生成を実施する。さらに、エンジンの加速運転や高負荷運転によって、一時的に多量のNOxが排出され、それを処理するために高濃度のオゾン生成が必要となった場合、加えて第2の沿面放電装置3Bと第2の高電圧電源発生装置36を同時に作動させる。   In addition to the first creeping discharge device 3A and the first high-voltage generator 34, the ozone generating means 6 of the present embodiment includes a second creeping discharge device in order to efficiently generate a higher concentration of ozone. 3B and a second high voltage power generator 36 are provided. The first and second high voltage generators 34 and 36 can be controlled independently, and when generating a relatively low concentration of ozone, the first creeping discharge device 3A and the first high voltage power source are generated. The device 34 is activated to perform ozone generation. Further, when a large amount of NOx is temporarily discharged due to acceleration operation or high-load operation of the engine, and high-concentration ozone generation is necessary to process it, in addition to the second creeping discharge device 3B, The second high voltage power generator 36 is activated simultaneously.

本実施形態では、オゾン生成手段6のコ字状の通路60に沿って、上流側に第1の沿面放電装置3Aを、下流側に第2の沿面放電装置3Bを配置している。流入する空気は、第1の沿面放電装置3Aを通過した後に、第2の沿面放電装置3Bを通過するので、オゾン生成のチャンスが2回与えられ、高濃度のオゾン生成が可能となる。したがって、コンパクトな装置構成で、エンジン1の運転状態に応じて作動させる電極面積と電力を変化させ、必要量のオゾンを効率よく生成することができる。   In the present embodiment, along the U-shaped passage 60 of the ozone generating means 6, the first creeping discharge device 3A is disposed on the upstream side, and the second creeping discharge device 3B is disposed on the downstream side. Since the inflowing air passes through the first creeping discharge device 3A and then passes through the second creeping discharge device 3B, two chances of generating ozone are given, and high-concentration ozone can be generated. Therefore, it is possible to efficiently generate a necessary amount of ozone by changing the electrode area and power to be operated according to the operating state of the engine 1 with a compact device configuration.

本実施形態のオゾン生成手段6は、同一構成の2つの沿面放電装置3A、3Bを対称配置した構成としたが、必ずしもこれに限るものではなく、沿面放電装置を3つ以上としたり、あるいは個々の沿面放電装置の電極面積を変えたりすることもできる。沿面放電装置の総電極面積は、対象とするエンジン1に応じて、必要なオゾン供給流量が得られるように、適宜設定される。   The ozone generating means 6 of the present embodiment has a configuration in which two creeping discharge devices 3A and 3B having the same configuration are symmetrically arranged. However, the present invention is not limited to this, and there are three or more creeping discharge devices, or individual It is also possible to change the electrode area of the creeping discharge device. The total electrode area of the creeping discharge device is appropriately set according to the target engine 1 so as to obtain a necessary ozone supply flow rate.

<第1実施形態のオゾン流量の制御>
図1、2に示した本実施形態のNOx後処理装置を用いたオゾン供給流量の制御方法について、次に説明する。
図4にコントローラ4に内蔵された制御プログラムの要部を示す。制御プログラムの動作をスタートしたら、まず、ステップ101において、回転数センサ41によって測定される現在のエンジン回転数と、エンジン1の負荷状態を表す噴射量を取り込む。次いで、ステップ102において、エンジン回転数と噴射量に基づいて、図5に示す予めプログラムされているマップから、エンジン1が排出する排気のNO濃度を求める。図5に示されるように、一般に低負荷低回転ではNO濃度が低く、高負荷高回転の運転状態となるほどNO濃度が高くなる。
<Control of Ozone Flow Rate of First Embodiment>
A method for controlling the ozone supply flow rate using the NOx post-treatment device of the present embodiment shown in FIGS.
FIG. 4 shows a main part of the control program built in the controller 4. When the operation of the control program is started, first, in step 101, the current engine speed measured by the speed sensor 41 and the injection amount indicating the load state of the engine 1 are captured. Next, at step 102, the NO concentration of the exhaust gas discharged from the engine 1 is obtained from the pre-programmed map shown in FIG. 5 based on the engine speed and the injection amount. As shown in FIG. 5, generally, the NO concentration is low at low load and low rotation, and the NO concentration increases as the operation state is high load and high rotation.

ステップ103において、吸気流量センサ45で測定される現在の吸気流量と、排気温度センサ42で測定されるDPF21下流の排気温度を取り込む。ステップ104において、吸気流量と排気温度に基づいて、図6Aに示す予めプログラムされているマップから、DPF21を通過した排気中のNOが触媒反応によりNOに転化する比率を検索する。図6Aに示されるように、一般に吸気流量が小さいほど、また排気温度が高いほど、NO転化比率が高くなる。 In step 103, the current intake flow rate measured by the intake flow rate sensor 45 and the exhaust temperature downstream of the DPF 21 measured by the exhaust temperature sensor 42 are captured. In step 104, based on the intake air flow rate and the exhaust gas temperature, a ratio in which NO in the exhaust gas that has passed through the DPF 21 is converted to NO 2 by the catalytic reaction is retrieved from a pre-programmed map shown in FIG. 6A. As shown in FIG. 6A, generally, the smaller the intake flow rate and the higher the exhaust gas temperature, the higher the NO 2 conversion ratio.

ステップ105において、これまで得た情報に基づいて、NOx後処理装置3に流入するNO流量とNO流量を、次式を用いて計算により求める(NOx流量推定手段)。ここで、エンジン吸気流量>>燃料流量であるとき、排気流量は吸気流量とほぼ等しいという関係を用いて、吸気流量を使用している。
(NO流量)=(吸気流量)×(100−(NO転化比率))×(エンジン排出NO濃度)/108
(NO流量)=(吸気流量)×(NO転化比率)×(エンジン排出NO濃度)/108
In step 105, based on the information obtained so far, the NO flow rate and NO 2 flow rate flowing into the NOx aftertreatment device 3 are obtained by calculation using the following equations (NOx flow rate estimating means). Here, when the engine intake flow rate >> the fuel flow rate, the intake flow rate is used using the relationship that the exhaust flow rate is substantially equal to the intake flow rate.
(NO flow rate) = (intake flow rate) × (100− (NO 2 conversion ratio)) × (engine exhaust NO concentration) / 10 8
(NO 2 flow rate) = (intake flow rate) × (NO 2 conversion ratio) × (engine exhaust NO concentration) / 10 8

次にステップ106に進んで、オゾン目標流量を計算により求める(目標流量決定手段)。オゾン(O)とNO、NO、HOからHNOができる反応は、上述した下記の化学反応式(a)〜(d)で示される。
NO+O → NO+O・・・(a)
NO+O → NO+O・・・(b)
NO+NO → N・・・(c)
+HO → 2HNO・・・(d)
以上の化学反応式から、NO:1モルからHNO:1モルを生成するために、1.5モルのOを必要とすることが分かる。また、NO:1モルからHNO:1モルを生成するために0.5モルのOを必要とすることが分かる。
Next, the routine proceeds to step 106, where the ozone target flow rate is obtained by calculation (target flow rate determining means). The reaction for producing HNO 3 from ozone (O 3 ) and NO, NO 2 , H 2 O is represented by the following chemical reaction formulas (a) to (d).
NO + O 3 → NO 2 + O 2 (a)
NO 2 + O 3 → NO 3 + O 2 (b)
NO 2 + NO 3 → N 2 O 5 (c)
N 2 O 5 + H 2 O → 2HNO 3 (d)
From the above chemical reaction formula, it can be seen that 1.5 mol of O 3 is required to generate 1 mol of HNO 3 from 1 mol of NO. It can also be seen that 0.5 mol of O 3 is required to produce 1 mol of HNO 3 from 1 mol of NO 2 .

(オゾン)は有害な物質であるから、排気に混じって大気に放出されないようにするためには、排気中のNO、NOの反応に必要な当量のOを生成して供給することが望ましい。したがって、Oの目標流量は下記の関係式を用いて算出する。
(O目標流量)’=κ×{1.5×(O分子量/NO分子量)×(NO流量)+0.5×(O分子量/NO分子量)×(NO流量)}
ここでκは係数値であって、反応が理想的に進むのであればκ=1でよいが、NO、NO、水分、オゾンの反応は、条件によっては与えられた短時間に完全に反応が進むとは限らない。したがって、κ=1〜2.5の間の数値を選び、オゾン目標流量を決めてもよい。
Since O 3 (ozone) is a harmful substance, in order to prevent it from being released into the atmosphere when mixed with exhaust gas, it generates and supplies an equivalent amount of O 3 required for the reaction of NO and NO 2 in the exhaust gas. It is desirable. Therefore, the target flow rate of O 3 is calculated using the following relational expression.
(O 3 target flow rate) ′ = κ × {1.5 × (O 3 molecular weight / NO molecular weight) × (NO flow rate) + 0.5 × (O 3 molecular weight / NO 2 molecular weight) × (NO 2 flow rate)}
Here, κ is a coefficient value, and if the reaction proceeds ideally, κ = 1 may be used. However, the reaction of NO, NO 2 , moisture, and ozone may be completely reacted in a given time depending on conditions. Does not always advance. Therefore, a numerical value between κ = 1 to 2.5 may be selected to determine the ozone target flow rate.

さらに好適には、次に述べる修正プロセスを追加すると排気の温度変化に対し、安定にオゾンを供給することができる。すなわち、排気温度が比較的高い場合、排気に供給されたオゾンの一部は、時間経過とともにNO、NO、水分と反応する前に消滅してしまうものが存在する。図6Bは、排気に添加されたオゾンが2秒経過の後に消滅する比率を示している。通常は、冷却手段22によって排気は冷却され、排気温度が100〜180℃となるように制御されている。この場合でも、140℃以上になると無視しえない比率のオゾンの消滅が起こることがわかる。したがって、図6Bに示す関係に基づいて、排気温度に基づきオゾン消滅係数を求め、下記の修正を加える。
(O目標流量)=(O目標流量)’/{1−(オゾン消滅係数)}
More preferably, when a correction process described below is added, ozone can be stably supplied with respect to a change in exhaust gas temperature. That is, when the exhaust gas temperature is relatively high, some ozone supplied to the exhaust gas disappears over time before reacting with NO, NO 2 , and moisture. FIG. 6B shows the ratio at which ozone added to the exhaust gas disappears after 2 seconds. Normally, the exhaust is cooled by the cooling means 22 and the exhaust temperature is controlled to be 100 to 180 ° C. Even in this case, it can be seen that when the temperature is 140 ° C. or higher, ozone disappears at a ratio that cannot be ignored. Therefore, based on the relationship shown in FIG. 6B, the ozone extinction coefficient is obtained based on the exhaust temperature, and the following correction is made.
(O 3 target flow rate) = (O 3 target flow rate) '/ {1- (ozone extinction coefficient)}

また、本発明者らの研究によれば、オゾンが供給される排気中に低級な不飽和炭化水素が存在する場合、この低級不飽和炭化水素とオゾンが優先的に反応し、オゾンを消滅させてしまうことを突き止めている。低級不飽和炭化水素は、活性状態にある酸化触媒または酸化触媒を担持したDPF21を通すことによって、浄化されるが、エンジンの低温始動後の暖機運転においては、低級不飽和炭化水素が十分浄化されないおそれがある。この場合、オゾン供給通路61が合流するオゾン供給位置に低級不飽和炭化水素がもたらされ、目的のNO、NOとの反応に供すべきオゾンを奪ってしまうことになる。
したがって、エンジンの運転状態によっては、酸化触媒または酸化触媒を担持したDPF21を通過後の低級不飽和炭化水素がオゾンの消滅を起こすことから、その関係に基づいて、例えば低級不飽和炭化水素の濃度を推定し、その推定値に基づいてオゾン消滅係数を求める手段を設けることもできる。そして、排気温度が高温となった場合に起こるオゾン消滅係数と合わせて合算のオゾン消滅係数を求めて、O目標流量を求めてもよい。
Further, according to the study by the present inventors, when lower unsaturated hydrocarbons exist in the exhaust gas supplied with ozone, the lower unsaturated hydrocarbons and ozone react preferentially to eliminate ozone. To find out. Lower unsaturated hydrocarbons are purified by passing the oxidation catalyst in an active state or DPF 21 supporting the oxidation catalyst, but the lower unsaturated hydrocarbons are sufficiently purified in the warm-up operation after the engine is started at a low temperature. There is a risk that it will not be. In this case, the lower unsaturated hydrocarbon is brought to the ozone supply position where the ozone supply passage 61 joins, and the ozone to be used for the reaction with the target NO and NO 2 is deprived.
Therefore, depending on the operating state of the engine, the lower unsaturated hydrocarbon after passing through the oxidation catalyst or the DPF 21 supporting the oxidation catalyst causes the disappearance of ozone. Based on this relationship, for example, the concentration of the lower unsaturated hydrocarbon It is also possible to provide means for estimating the ozone extinction coefficient based on the estimated value. Then, the total ozone extinction coefficient may be obtained together with the ozone extinction coefficient that occurs when the exhaust gas temperature becomes high, and the O 3 target flow rate may be obtained.

次にステップ107に進み、オゾン生成手段6に流入する空気流量Gozを求める(ガス流量推定手段)。オゾン生成手段6を単純な固定絞りと見做すと、空気流量Gozは下記(1)式で表される。
[(1):オゾン生成手段6を固定絞りと見做した流量式]
Goz=Coz×Aoz×{2gγ(Poz−Pe)}1/2
ここで、Coz:オゾン生成手段6の等価絞り流量係数
Aoz:オゾン生成手段6の等価の絞り断面積
g :重力の加速度
γ :空気の比重量
Poz:オゾン生成手段6の上流圧力
Pe :排気圧力
Coz、Aoz、gは予め与えられる。
γは、γ=γo×(Poz/Po)×(Ta/To)から求める。
ここで、γo:標準状態の比重量
Po :標準状態圧力
Ta :空気温度
To :標準状態温度
γo、Po、Toは予め与えられる。Taは図示しない空気温度センサから求める。
排気圧力Peは、吸気流量Gaと排気温度Teの関数として与えられるので、図7に示すマップの形で予め関係を記憶させておき、マップから検索する。図7に示すように、一般に、吸気流量Gaが多くまたは排気温度Teが高いほど、排気圧力Peが高くなる。
Next, it progresses to step 107 and calculates | requires the air flow rate Goz which flows in into the ozone production | generation means 6 (gas flow rate estimation means). When the ozone generating means 6 is regarded as a simple fixed throttle, the air flow rate Goz is expressed by the following equation (1).
[(1): Flow rate formula assuming ozone generation means 6 as a fixed throttle]
Goz = Coz × Aoz × {2 gγ (Poz-Pe)} 1/2
Here, Coz: equivalent throttle flow coefficient of ozone generating means 6
Aoz: Equivalent diaphragm cross section of ozone generating means 6
g: Acceleration of gravity
γ: Specific weight of air
Poz: upstream pressure of ozone generating means 6
Pe: Exhaust pressure Coz, Aoz, g are given in advance.
γ is obtained from γ = γo × (Poz / Po) × (Ta / To).
Where γo: specific weight in standard state
Po: Standard state pressure
Ta: Air temperature
To: Standard state temperatures γo, Po, To are given in advance. Ta is obtained from an air temperature sensor (not shown).
Since the exhaust pressure Pe is given as a function of the intake flow rate Ga and the exhaust temperature Te, the relationship is stored in advance in the form of a map shown in FIG. 7 and retrieved from the map. As shown in FIG. 7, in general, the exhaust pressure Pe increases as the intake flow rate Ga increases or the exhaust temperature Te increases.

オゾン生成手段6の上流圧力Pozと空気流量Gozは、(1)式と以下に示す(2)、(3)、(4)式を連立させて解くことができる。
[(2):固定絞り38の流量式]
Gor=Cor×Aor ×{2gγ’(Pi−Poz)}1/2
γ’ =γo×(Pi/Po)×(Ta/To)
ここで、Gor:固定絞り38を通過する流量
Cor:固定絞り38の流量係数
Aor:固定絞り38の断面積
Pi:吸気スロットル17の上流圧力
The upstream pressure Poz and the air flow rate Goz of the ozone generating means 6 can be solved by combining the equation (1) and the following equations (2), (3), and (4).
[(2): Flow rate of fixed throttle 38]
Gor = Cor * Aor * {2g [gamma] '(Pi-Poz)} 1/2
γ ′ = γo × (Pi / Po) × (Ta / To)
Where Gor: flow rate through the fixed throttle 38
Cor: Flow coefficient of fixed throttle 38
Aor: cross-sectional area of the fixed throttle 38
Pi: upstream pressure of intake throttle 17

[(3):固定絞り38とオゾン生成手段6間の圧力変化式]
空気流入通路62の途中にあるブロア39は、アイドル運転時のようにコンプレッサ14による過給が行われないときに、排気圧力に打ち勝ってオゾン生成手段6からのオゾンを含む空気を、排気管2aに送るために使用するものであり、過給圧がある状態ではブロア39は停止させている。したがって、一つの容積と見做して立式すると、
(dPoz/dt)×(Voz/R/Ta)=Gor−Goz
ここで、Voz:固定絞り38とオゾン生成手段6間の容積
R :気体定数
[(3): Pressure change equation between fixed throttle 38 and ozone generating means 6]
The blower 39 in the middle of the air inflow passage 62 overcomes the exhaust pressure and exhausts air containing ozone from the ozone generating means 6 when the turbocharger 14 is not supercharged during idle operation. The blower 39 is stopped when there is a supercharging pressure. Therefore, if you stand as a single volume,
(dPoz / dt) × (Voz / R / Ta) = Gor−Goz
Here, Voz: volume between the fixed throttle 38 and the ozone generating means 6
R: Gas constant

[(4):コンプレッサ14と吸気スロットル17間の圧力Piの変化式]
固定絞り38から流出する流量Gorは、吸気流量Gaや吸気スロットル17を通過する流量と比べて充分に小さいとすると、下記の関係式を導ける。
(dPi/dt)×(Vi/R/Ta)=Ga−Cth×Ath×{2 gγ”(Pi−Ps)}1/2
γ”=γo×(Pi/Po)×(Ta/To)
ここで、Pi:吸気スロットル17の上流圧力
Ps:吸気圧力
Vi:コンプレッサ14と吸気スロットル17間の容積
Cth:吸気スロットル17の流量係数
Ath:吸気スロットル17の断面積
Cth×Athはスロットル開度センサ44が検出するスロットル開度の関数として求めることができる。吸気流量Gaと吸気圧力Psは吸気流量センサ45と吸気圧力センサ40により検出する。したがって、(4)式からPiを求めることができ、求めたPiを(1)〜(3)式に導入すれば、オゾン生成手段6の上流圧力Pozとオゾン生成手段6に流入する空気流量Gozを求めることができる。
[(4): Formula for changing pressure Pi between compressor 14 and intake throttle 17]
If the flow rate Gor flowing out from the fixed throttle 38 is sufficiently smaller than the intake flow rate Ga and the flow rate passing through the intake throttle 17, the following relational expression can be derived.
(DPi / dt) * (Vi / R / Ta) = Ga-Cth * Ath * {2 g [gamma] "(Pi-Ps)} 1/2
γ ″ = γo × (Pi / Po) × (Ta / To)
Where Pi: upstream pressure of the intake throttle 17
Ps: Intake pressure
Vi: Volume between the compressor 14 and the intake throttle 17
Cth: Flow rate coefficient of intake throttle 17
Ath: Cross-sectional area of the intake throttle 17 Cth × Ath can be obtained as a function of the throttle opening detected by the throttle opening sensor 44. The intake flow rate Ga and the intake pressure Ps are detected by the intake flow rate sensor 45 and the intake pressure sensor 40. Therefore, Pi can be obtained from the equation (4), and if the obtained Pi is introduced into the equations (1) to (3), the upstream pressure Poz of the ozone generating means 6 and the air flow rate Goz flowing into the ozone generating means 6 Can be requested.

このように(1)〜(4)式を基礎方程式として、吸気流量Ga、吸気圧力Ps、スロットル開度と排気温度Teを入力して最終的にオゾン生成手段6に流入する空気流量Gozを求める伝達関数モデルを構築し、空気の伝達遅れをシミュレートして過渡運転時においても正しく空気流量Gozを推定することができる。
アイドル運転時のように、過給圧がかからないでブロア39を作動させて空気を送っている場合には、上述したような複雑な空気流量Gozを求めるプロセスは必要ではない。ブロア39によって一定の流量の空気がオゾン生成手段6に送られているとして、オゾン生成手段6に流入する空気流量Gozを求めてもよい。以上のようにして、オゾン生成手段6に流入する空気流量Gozを求め、次のステップ108に進む。
As described above, using the equations (1) to (4) as basic equations, the intake air flow rate Ga, the intake pressure Ps, the throttle opening degree, and the exhaust gas temperature Te are input, and the air flow rate Goz finally flowing into the ozone generating means 6 is obtained. By constructing a transfer function model and simulating air transfer delay, the air flow rate Goz can be estimated correctly even during transient operation.
When the air is sent by operating the blower 39 without applying supercharging pressure as in the idling operation, the process for obtaining the complicated air flow rate Goz as described above is not necessary. Assuming that a constant flow rate of air is being sent to the ozone generator 6 by the blower 39, the air flow rate Goz flowing into the ozone generator 6 may be obtained. As described above, the air flow rate Goz flowing into the ozone generating means 6 is obtained, and the process proceeds to the next step 108.

ステップ108において、ステップ106で求めたオゾン(O)目標流量を、ステップ107で求めたオゾン生成手段6に流入する空気流量Gozで除算することによって、オゾン生成手段6において生成すべきオゾン(O)生成濃度を算出する(オゾン生成濃度算出手段)。
次にステップ109に進む。現在の大気の湿度として、湿度センサ43が測定した情報を取り込み、湿度レベルに応じて、ステップ108で求めたオゾン生成濃度を修正する(オゾン生成濃度の修正手段)。
図8に、第1の沿面放電装置3Aによってオゾンを生成させた場合の、湿度と周波数、オゾン濃度の関係を示す。図示されるように、湿度が高くなるとオゾン生成濃度は低下する方向にある。いかなる湿度になった場合においても目標のオゾン濃度を正しく生成させるために、図8の特性を基に作った図9の湿度係数−湿度−オゾン濃度の3次元マップによって、そのときのオゾン濃度と湿度から修正のための湿度係数を求め、オゾン濃度に湿度係数を乗じて修正オゾン生成濃度を得る。
In step 108, the ozone (O 3 ) target flow rate obtained in step 106 is divided by the air flow rate Goz flowing into the ozone generation unit 6 obtained in step 107, so that the ozone (O 3 ) Calculate the production concentration (ozone production concentration calculation means).
Next, the routine proceeds to step 109. The information measured by the humidity sensor 43 is taken in as the current atmospheric humidity, and the ozone generation concentration obtained in step 108 is corrected according to the humidity level (ozone generation concentration correction means).
FIG. 8 shows the relationship between humidity, frequency, and ozone concentration when ozone is generated by the first creeping discharge device 3A. As shown in the drawing, the ozone generation concentration tends to decrease as the humidity increases. In order to correctly generate the target ozone concentration at any humidity, the three-dimensional map of humidity coefficient-humidity-ozone concentration shown in FIG. 9 based on the characteristics shown in FIG. A humidity coefficient for correction is obtained from the humidity, and the corrected ozone generation density is obtained by multiplying the ozone concentration by the humidity coefficient.

次に判断ステップ110に進み、ステップ109で得た修正オゾン生成濃度が、予め設定した判定値以上か否かを判定する。修正オゾン生成濃度が判定値以上(YES)の場合は、ステップ111に進む。判定値は、第1、第2の沿面放電装置3A、3Bを同時に作動させるか否かを判断するための基準となる値で、図10のマップBに示す第1の沿面放電装置3Aのオゾン生成濃度範囲で、適宜設定される。修正オゾン生成濃度が判定値以上の場合は、図10のマップAに基づいて、対応する周波数を選定する。マップAには、第1、第2の沿面放電装置3A、3Bを同時に作動させた場合の、湿度0%における周波数と生成オゾン濃度の関係がプログラムされている。図10に示されるように、この関係は第1、第2の沿面放電装置3A、3Bを通過する流量によって変わるので、マップAは、修正オゾン生成濃度と流量と周波数の関係を3次元マップで与えるのが望ましい。次にステップ112に進み、求めた周波数で第1、第2の高電圧電源34、36を作動させ、第1、第2の沿面放電装置3A、3Bに所定の高電圧パルスを印加することにより、オゾンを生成させる。   Next, the process proceeds to a determination step 110, where it is determined whether or not the corrected ozone generation concentration obtained in step 109 is greater than or equal to a predetermined determination value. If the corrected ozone generation concentration is equal to or higher than the determination value (YES), the process proceeds to step 111. The determination value is a value used as a reference for determining whether or not the first and second creeping discharge devices 3A and 3B are operated simultaneously, and the ozone of the first creeping discharge device 3A shown in the map B of FIG. It is set as appropriate within the production concentration range. When the corrected ozone generation concentration is equal to or higher than the determination value, the corresponding frequency is selected based on the map A in FIG. The map A is programmed with the relationship between the frequency and the generated ozone concentration at 0% humidity when the first and second creeping discharge devices 3A and 3B are operated simultaneously. As shown in FIG. 10, since this relationship changes depending on the flow rates passing through the first and second creeping discharge devices 3A and 3B, the map A is a three-dimensional map showing the relationship between the corrected ozone generation concentration, the flow rate, and the frequency. It is desirable to give. Next, proceeding to step 112, the first and second high-voltage power supplies 34 and 36 are operated at the determined frequency, and a predetermined high-voltage pulse is applied to the first and second creeping discharge devices 3A and 3B. , Generate ozone.

ステップ110において、ステップ109で得た修正オゾン生成濃度が判定値未満(NO)の場合は、ステップ113に進む。ステップ111では、修正オゾン生成濃度から、図10のマップBに基づいて対応する周波数を選定する。マップBは第1の沿面放電装置3Aを作動させた場合の、湿度0%における周波数と生成オゾン濃度の関係をプログラムしてある。なお、沿面放電装置3Aを通過する流量によって関係が変わるので、マップBは、修正オゾン生成濃度と流量と周波数の関係を3次元マップで与えるのが望ましい。次にステップ114に進み、求めた周波数で第1の高電圧電源34を作動させ、第1の沿面放電装置3Aに所定の高電圧パルスを印加することにより、オゾンを生成させる。その後、この一連のプログラムは一旦終了する。予め決められた繰り返しルールにより、このプログラムは繰り返され、時間経過とともにオゾン生成濃度が制御される。   In step 110, if the corrected ozone generation concentration obtained in step 109 is less than the determination value (NO), the process proceeds to step 113. In step 111, the corresponding frequency is selected from the corrected ozone generation concentration based on the map B in FIG. Map B is programmed with the relationship between the frequency and the generated ozone concentration at 0% humidity when the first creeping discharge device 3A is operated. Since the relationship varies depending on the flow rate passing through the creeping discharge device 3A, it is desirable that the map B provides a relationship between the corrected ozone generation concentration, the flow rate, and the frequency as a three-dimensional map. Next, it progresses to step 114, the 1st high voltage power supply 34 is operated with the calculated | required frequency, and ozone is produced | generated by applying a predetermined high voltage pulse to the 1st creeping discharge apparatus 3A. Thereafter, this series of programs is temporarily terminated. This program is repeated according to a predetermined repetition rule, and the ozone generation concentration is controlled over time.

本実施形態のオゾン生成手段6は、第1、第2の沿面放電装置3A、3Bに高電圧を印加して放電によってオゾンを生成させる場合、電圧を印加し、放電が始まってからオゾンが生成されるまでの応答遅れは極めて短い。この特性を利用して、応答遅れの大きい空気流量については、伝達関数モデルを作ってその遅れを正確に把握し、オゾン目標流量をその遅れた空気流量で除算することにより、オゾン生成濃度を求めることができる。そのオゾン生成濃度を実現するように、オゾン生成手段6を作動させることによって、オゾン目標流量を、空気流量の遅れの影響を受けることなく供給できるという優れた効果が得られる。別の方法として、オゾン目標流量と空気流量と周波数の関係を3次元マップとして周波数を求める方法を用いてもよい。   The ozone generation means 6 of this embodiment applies ozone to the first and second creeping discharge devices 3A and 3B to generate ozone by discharge, and generates ozone after the discharge starts. The response delay until it is done is extremely short. Using this characteristic, for the air flow rate with a large response delay, a transfer function model is created to accurately grasp the delay, and the ozone generation concentration is obtained by dividing the ozone target flow rate by the delayed air flow rate. be able to. By operating the ozone generation means 6 so as to realize the ozone generation concentration, an excellent effect that the ozone target flow rate can be supplied without being affected by the delay of the air flow rate is obtained. As another method, a method of obtaining a frequency by using a relationship between the ozone target flow rate, the air flow rate, and the frequency as a three-dimensional map may be used.

また、本実施形態のオゾン生成手段6は、第1、第2の沿面放電装置3A、3Bを通路60に沿って直列に配置し、独立に制御可能である。したがって、一定時間幅の高電圧パルスの周波数を変えることにより、さらに、第1、第2の沿面放電装置3A、3Bによる放電の有無を選択し、これらを任意に組み合わせてオゾン生成を実施することによって、低濃度から高濃度まで広い範囲にわたって要求されるオゾン濃度を実現するオゾン生成手段6を提供することができる。   Moreover, the ozone generation means 6 of this embodiment can arrange | position the 1st, 2nd surface discharge apparatus 3A, 3B in series along the channel | path 60, and can control it independently. Accordingly, by changing the frequency of the high voltage pulse having a certain time width, the presence or absence of discharge by the first and second creeping discharge devices 3A and 3B is further selected, and ozone generation is performed by arbitrarily combining these. Thus, it is possible to provide the ozone generating means 6 that realizes the ozone concentration required over a wide range from the low concentration to the high concentration.

また、オゾン生成手段6に流入する空気を、吸気スロットル17の上流から取り入れる空気流入通路32を設けたことによって、O分圧を高めた、過給された空気を導入できるので、より高濃度のオゾン生成が可能となる。よって、本実施形態のオゾン生成手段6を備えるNOx後処理装置3は、運転状態により変動するNOx排出量に対応し、必要なオゾンを速やかに生成してオゾン供給通路31から排気に供給し、NOxを浄化することができるという優れた効果を得ることができる。 Further, by providing the air inflow passage 32 for taking in the air flowing into the ozone generating means 6 from the upstream side of the intake throttle 17, it is possible to introduce the supercharged air having a higher O 2 partial pressure, so that the concentration is higher. Ozone generation becomes possible. Therefore, the NOx aftertreatment device 3 provided with the ozone generating means 6 of the present embodiment corresponds to the NOx emission amount that varies depending on the operating state, quickly generates necessary ozone, and supplies it to the exhaust from the ozone supply passage 31. An excellent effect that NOx can be purified can be obtained.

この実施形態においては、オゾン生成手段6の第1、第2の沿面放電装置3A、3Bに印加する高電圧パルスの周波数を変えて、生成するオゾン濃度を変化させるようにしたが、他の方法を採用してもよい。ここでは、消費する電力を制御してオゾン濃度を制御するという広義の概念を実施する例として周波数の制御を示しているが、周波数のみに限定するものではない。例えば、周波数に加えて高電圧パルスの電圧値をも可変として、オゾン濃度を変化実現する方法もある。   In this embodiment, the ozone concentration to be generated is changed by changing the frequency of the high voltage pulse applied to the first and second creeping discharge devices 3A and 3B of the ozone generating means 6, but other methods are also used. May be adopted. Here, frequency control is shown as an example of implementing the broad concept of controlling the power consumption and controlling the ozone concentration, but it is not limited to only the frequency. For example, there is a method of realizing a change in ozone concentration by changing the voltage value of the high voltage pulse in addition to the frequency.

(第2実施形態)
図11に本発明の第2実施形態を示す。本実施形態のエンジン1およびNOx後処理装置3の基本構成は、図1の第1実施形態と同様であり、異なる部分について主に説明する。図11において、NOx後処理装置3は、排気冷却手段22とNOx吸収手段5の間の排気管2aに合流しオゾン含有空気を吹き込むオゾン供給通路61を有し、吸気スロットル17上流の過給された空気をオゾン生成手段6に取り込む空気流入通路62の途中に、湿気除去手段9と酸素富化空気生成手段(酸素富化手段)8を有している。上流に位置する湿気除去手段9の湿気分離フィルタ91は、分離した湿気を吸気流量センサ45下流の吸気管18に戻す通路92に、下流に位置する酸素富化空気生成手段8は、酸素貧化空気を吸気マニホールド10に戻す通路65に、それぞれ接続されている。
(Second Embodiment)
FIG. 11 shows a second embodiment of the present invention. The basic configurations of the engine 1 and the NOx aftertreatment device 3 of the present embodiment are the same as those of the first embodiment of FIG. 1, and different portions will be mainly described. In FIG. 11, the NOx aftertreatment device 3 has an ozone supply passage 61 that joins the exhaust pipe 2a between the exhaust cooling means 22 and the NOx absorption means 5 and blows in ozone-containing air, and is supercharged upstream of the intake throttle 17. In the middle of the air inflow passage 62 for taking in the air into the ozone generating means 6, a moisture removing means 9 and an oxygen enriched air generating means (oxygen enriching means) 8 are provided. The moisture separation filter 91 of the moisture removing means 9 located upstream is connected to the passage 92 for returning the separated moisture to the intake pipe 18 downstream of the intake flow sensor 45, and the oxygen-enriched air generating means 8 located downstream is oxygen-poor. Each is connected to a passage 65 for returning air to the intake manifold 10.

オゾン生成手段6の直上流には、バキュームポンプ66が配置され、酸素富化空気生成手段8とバキュームポンプ66の間の通路83から分岐する通路64の通路端に、バキュームポンプ入口圧力を測定する圧力センサ67が配置されている。圧力センサ67の測定情報は電気信号に変換されてコントローラ4に送られ、バキュームポンプ66の作動がコントローラ4で制御される。以上説明した空気流入通路62以外の構成は、図1に示した第1実施形態と同じである。   A vacuum pump 66 is disposed immediately upstream of the ozone generating means 6, and the vacuum pump inlet pressure is measured at the passage end of the passage 64 branched from the passage 83 between the oxygen-enriched air generating means 8 and the vacuum pump 66. A pressure sensor 67 is arranged. The measurement information of the pressure sensor 67 is converted into an electrical signal and sent to the controller 4, and the operation of the vacuum pump 66 is controlled by the controller 4. The configuration other than the air inflow passage 62 described above is the same as that of the first embodiment shown in FIG.

湿気除去手段9は、オゾン生成手段6に流入する湿気でオゾンの生成効率が低下するのを抑制する。湿気分離フィルタ91は、湿気を容易に透過し、空気を透過しにくい公知の湿気(水蒸気)透過膜を使ったフィルタであり、空気流入通路62からオゾン生成手段6に流入する空気中の湿気分を分離する。湿気透過膜により分離した湿気分は、コンプレッサ14によって加圧される過給圧を利用して、通路92から吸気流量センサ45の下流に戻している。   The moisture removing unit 9 suppresses a decrease in ozone generation efficiency due to moisture flowing into the ozone generating unit 6. The moisture separation filter 91 is a filter using a known moisture (water vapor) permeable membrane that easily transmits moisture and does not easily transmit air. The moisture separation filter 91 is a moisture component in the air flowing into the ozone generating means 6 from the air inflow passage 62. Isolate. The moisture component separated by the moisture permeable membrane is returned to the downstream side of the intake flow rate sensor 45 from the passage 92 using the supercharging pressure pressurized by the compressor 14.

図12に、酸素富化空気生成手段8の断面図を示す。酸素富化空気生成手段8のカバー筐体81とベース筐体80は一端開口の筒状体で、開口端面を衝合することによって内部空間が形成されている。衝合部の外周フランジ部にはシール材82が配置されて、カバー筐体81とベース筐体80の間を外部から密閉している。酸素富化空気生成手段8の内部空間には、図の上下方向に3個の酸素富化膜エレメント70が積層して配設される。ここでは分かりやすく説明するために中央の1個のみ図示し、他の2個は想像線で描いてある。
酸素富化膜エレメント70は、エレメントベース筐体71とカバーエレメント筐体72、そして両者に挟まれ固定された酸素富化膜73から構成されている。酸素富化膜73は、カバーエレメント筐体72内の上部空間とエレメントベース筐体71内の下部空間との間を区画している。ベースエレメント筐体71には、図の右側部に筒状の突き出し部76が設けてあり、この突き出し部76は、ベース筐体80内を左右に仕切る壁部に空けられた貫通穴75に挿入嵌合されている。嵌合部は突き出し部76外周に装着したシール部材77によって密閉されている。
FIG. 12 shows a cross-sectional view of the oxygen-enriched air generating means 8. The cover casing 81 and the base casing 80 of the oxygen-enriched air generating means 8 are cylindrical bodies with one end opening, and an internal space is formed by abutting the opening end faces. A sealing material 82 is disposed on the outer peripheral flange portion of the abutting portion, and seals between the cover housing 81 and the base housing 80 from the outside. In the internal space of the oxygen-enriched air generating means 8, three oxygen-enriched membrane elements 70 are stacked in the vertical direction in the figure. Here, only one in the center is shown for easy understanding, and the other two are drawn with imaginary lines.
The oxygen-enriched membrane element 70 includes an element base casing 71, a cover element casing 72, and an oxygen-enriched film 73 that is sandwiched and fixed therebetween. The oxygen-enriched film 73 partitions the upper space in the cover element housing 72 and the lower space in the element base housing 71. The base element casing 71 is provided with a cylindrical protruding portion 76 on the right side of the figure, and this protruding portion 76 is inserted into a through hole 75 formed in a wall portion that partitions the inside of the base casing 80 to the left and right. It is mated. The fitting portion is sealed by a seal member 77 attached to the outer periphery of the protruding portion 76.

カバー筐体81の閉鎖端面(図の左端面)と酸素富化膜エレメント70の間には、空気通路となる空間が形成され、カバー筐体81の上端面に空気入口78が開口している。同様に、ベース筐体80は、貫通穴75を設けた壁部と閉鎖端面の間に空気通路となる空間を有し、ベース筐体80の下端面に空気出口79が開口している。
水蒸気分離フィルタ91によって水蒸気成分が分離された乾いた空気は、空気入口78から酸素富化空気生成手段8の筐体内部に入り、各酸素富化膜エレメント70の左端側に達する。この乾いた空気は、カバーエレメント筐体72の左側面に設けた穴から、エレメント筐体内部に入り、 上部空間内を図の左方から右方に移動する。そして移動中に酸素富化膜73と接触し、空気中に含まれる酸素の一部が透過して下部空間に抜ける。
A space serving as an air passage is formed between the closed end surface (the left end surface in the figure) of the cover housing 81 and the oxygen-enriched membrane element 70, and an air inlet 78 is opened at the upper end surface of the cover housing 81. . Similarly, the base housing 80 has a space serving as an air passage between the wall portion provided with the through hole 75 and the closed end surface, and an air outlet 79 is opened at the lower end surface of the base housing 80.
The dry air from which the water vapor component has been separated by the water vapor separation filter 91 enters the inside of the casing of the oxygen-enriched air generating means 8 from the air inlet 78 and reaches the left end side of each oxygen-enriched membrane element 70. This dry air enters the element casing through a hole provided on the left side surface of the cover element casing 72, and moves in the upper space from the left to the right in the figure. During the movement, it comes into contact with the oxygen-enriched film 73, and a part of oxygen contained in the air permeates and escapes into the lower space.

酸素富化膜73を隔てた下部空間は、図11で示したバキュームポンプ66が動作することによって生じた負圧がかかっている。酸素富化膜73の上部空間を図の右方に移動した空気は、酸素の一部が取り除かれているので、酸素貧化空気となっている。この酸素貧化空気は、カバーエレメント筐体72の右側面に設けた穴を抜けて、ベース筐体80の上端面に開口する酸素貧化空気出口85に集められ、図11に示す酸素貧化空気の通路65を通ってエンジンの吸気マニホールド10に送られる。
酸素富化膜73を通って生成された酸素富化空気は、下部空間を図の右方に移動して、ベースエレメント筐体71の右側部から突き出し部76内の貫通した通路74を抜けて酸素富化空気出口79に集められる。そして、図1に示す酸素富化空気の通路83を通ってバキュームポンプ66によって吸引・吐出され、オゾン生成手段6に流入する。
The lower space across the oxygen-enriched film 73 is under a negative pressure generated by the operation of the vacuum pump 66 shown in FIG. The air that has moved to the right in the figure in the upper space of the oxygen-enriched film 73 is oxygen-poor air because part of the oxygen has been removed. This oxygen-depleted air passes through a hole provided on the right side surface of the cover element casing 72 and is collected at an oxygen-depleted air outlet 85 opened at the upper end surface of the base casing 80, and is shown in FIG. It is routed through the air passage 65 to the intake manifold 10 of the engine.
The oxygen-enriched air generated through the oxygen-enriched film 73 moves in the lower space to the right in the figure, and passes through the passage 74 in the projecting portion 76 from the right side of the base element casing 71. Collected at oxygen enriched air outlet 79. Then, it is sucked and discharged by the vacuum pump 66 through the oxygen-enriched air passage 83 shown in FIG.

図13は、酸素富化膜73を通すことによってどの程度酸素濃度の上昇が可能になるかを表した特性図である。図中の分離係数は、酸素とそれ以外の成分(空気の場合は窒素)が膜を透過する質量速度の比率を表している。ここで分離係数が5ということは、酸素の透過速度が窒素の透過速度の5倍ある透過膜の特性を持っていることを示している。図の横軸は、酸素富化膜73の上下流圧力比、すなわち、下流の酸素分圧を分子に置き、上流の酸素分圧を分母に置いたときの圧力比を対数軸で表している。図の縦軸は、酸素富化膜73の下流に生成する酸素富化空気の酸素濃度を表している。この結果は、圧力比0.1にしたときに、上流の空気の酸素濃度21%に対し酸素富化空気の酸素濃度を53%に高められることを表している。このような酸素富化膜73は、高分子樹脂膜材料を用いて作られるものが好適である。   FIG. 13 is a characteristic diagram showing how much the oxygen concentration can be increased by passing the oxygen-enriched film 73. The separation factor in the figure represents the ratio of the mass velocity at which oxygen and other components (nitrogen in the case of air) permeate the membrane. Here, a separation factor of 5 indicates that the membrane has the characteristics of a permeable membrane in which the oxygen transmission rate is five times the nitrogen transmission rate. The horizontal axis of the figure represents the upstream / downstream pressure ratio of the oxygen-enriched film 73, that is, the pressure ratio when the downstream oxygen partial pressure is placed in the numerator and the upstream oxygen partial pressure is placed in the denominator on the logarithmic axis. . The vertical axis in the figure represents the oxygen concentration of oxygen-enriched air generated downstream of the oxygen-enriched film 73. This result indicates that when the pressure ratio is 0.1, the oxygen concentration of the oxygen-enriched air can be increased to 53% with respect to the oxygen concentration of the upstream air of 21%. Such an oxygen-enriched film 73 is preferably made of a polymer resin film material.

<第2実施形態のオゾン流量の制御>
図11、12に示した本実施形態のNOx後処理装置を用いたオゾン供給流量の制御方法について、次に説明する。
図14A、14Bに、第2実施形態に適用するコントローラ4に内蔵された制御プログラムの要部を示す。図4の第1実施形態について説明した内容と変わらない部分は説明を省いて、異なる部分の説明を行う。図14Aのステップ201〜206は、図4のステップ101〜105と同じであり、同様にして、各種センサ情報からエンジン1の運転状態を知り、NOx後処理装置3に流入する排気中のNOx流量を算出して、供給するオゾン目標流量を計算により求める。
<Control of Ozone Flow Rate of Second Embodiment>
Next, a method of controlling the ozone supply flow rate using the NOx aftertreatment device of the present embodiment shown in FIGS. 11 and 12 will be described.
14A and 14B show a main part of a control program built in the controller 4 applied to the second embodiment. Parts that are the same as those described in the first embodiment of FIG. 4 are not described, and different parts are described. Steps 201 to 206 in FIG. 14A are the same as steps 101 to 105 in FIG. 4. Similarly, the NOx flow rate in the exhaust gas flowing into the NOx aftertreatment device 3 by knowing the operating state of the engine 1 from various sensor information. And the ozone target flow rate to be supplied is calculated.

図14Aのステップ207において、吸気圧Ps、吸気流量Ga、スロットル開度センサ44が検出するスロットル開度から、酸素富化空気生成手段8の入口圧力Piを求める。酸素富化空気生成手段8の入口圧力Piを求める式は、上述した第1実施形態の(4)式と同じ式を用いることができる。
次にステップ208において、酸素富化空気生成手段の入口圧力Piと出口圧力Pvから酸素富化空気の酸素濃度を求める。
一般に、A気体とB気体の2成分気体の場合、透過後の気体中のA気体モル%yAは下記の式で与えられる(参考:「特許支援流通チャート 気体膜分離装置」1.気体膜分離装置の概要 第4頁:独立行政法人工業所有権総合情報館 発行)。
A=50[C−{C2−4(xA/100)αAB/γ/(αAB−1)}0.5
C=[1+{(xA/100)+γ}(αAB−1)]/γ/(αAB−1)
ここで、xA:透過前のA気体モル%
αAB:分離係数
γ:膜上下流圧力比
透過前の酸素濃度21%であるから、分離係数αABと膜上下流圧力比γを上式に入力し、透過後の酸素モル%yAを求め、酸素濃度に換算すれば、酸素富化空気の酸素濃度を求めることができる。
In step 207 of FIG. 14A, the inlet pressure Pi of the oxygen-enriched air generating means 8 is obtained from the intake pressure Ps, the intake flow rate Ga, and the throttle opening detected by the throttle opening sensor 44. As a formula for obtaining the inlet pressure Pi of the oxygen-enriched air generating means 8, the same formula as the formula (4) in the first embodiment described above can be used.
Next, at step 208, the oxygen concentration of the oxygen-enriched air is determined from the inlet pressure Pi and the outlet pressure Pv of the oxygen-enriched air generating means.
In general, in the case of a two-component gas of A gas and B gas, A gas mol% y A in the gas after permeation is given by the following formula (Reference: “Patent Assistance Flow Chart Gas Membrane Separator”. Outline of the separation device Page 4: Issued by the Industrial Property General Information Center.
y A = 50 [C- {C 2 -4 (x A / 100) α AB / γ / (α AB −1)} 0.5 ]
C = [1 + {(x A / 100) + γ} (α AB −1)] / γ / (α AB −1)
Where x A : mol% of A gas before permeation
α AB : Separation factor
γ: membrane upstream / downstream pressure ratio Since the oxygen concentration before permeation is 21%, the separation factor α AB and the membrane upstream / downstream pressure ratio γ are input into the above equation to obtain the oxygen mol% y A after permeation, and the oxygen concentration If converted, the oxygen concentration of the oxygen-enriched air can be obtained.

次にステップ209に進み、オゾン生成手段6に流入する酸素富化空気の流量Gozを求める(ガス流量推定手段)。オゾン生成手段6を単純な固定絞りと見做すと、酸素富化空気流量Gozは下記(5)式で表される。
[(5):オゾン生成手段を固定絞りと見做した流量式]
Goz=Coz×Aoz×{2gγe(Poz−Pe)}1/2
ここで、Coz:オゾン生成手段6の等価絞り流量係数
Aoz:オゾン生成手段6の等価の絞り断面積
g :重力の加速度
γe :空気の比重量
Poz:オゾン生成手段6の上流圧力
Pe :排気圧力
Coz、Aoz、gは予め与えられる。
γeは γe=γeo×(Poz/Po)×(Ta/To)から求める。
ここで、γeo:標準状態の比重量
Po :標準状態圧力
Ta :空気温度
To :標準状態温度
γeo、Po、Toは予め与えられる。Taは図示しない空気温度センサから求める。
排気圧力Peは吸気流量Gaと排気温度Teの関数として与えられる。上述した図7に示すマップの形で予め関係を記憶させておき、マップから検索することができる。
Next, the routine proceeds to step 209, where the flow rate Goz of the oxygen-enriched air flowing into the ozone generating means 6 is obtained (gas flow rate estimating means). When the ozone generating means 6 is regarded as a simple fixed throttle, the oxygen-enriched air flow rate Goz is expressed by the following equation (5).
[(5): Flow rate formula considering ozone generation means as fixed throttle]
Goz = Coz × Aoz × {2 gγe (Poz-Pe)} 1/2
Here, Coz: equivalent throttle flow coefficient of ozone generating means 6
Aoz: Equivalent diaphragm cross section of ozone generating means 6
g: Acceleration of gravity
γe: Specific weight of air
Poz: upstream pressure of ozone generating means 6
Pe: Exhaust pressure Coz, Aoz, g are given in advance.
γe is obtained from γe = γeo × (Poz / Po) × (Ta / To).
Where γeo: specific weight in standard state
Po: Standard state pressure
Ta: Air temperature
To: Standard state temperature γeo, Po, To are given in advance. Ta is obtained from an air temperature sensor (not shown).
The exhaust pressure Pe is given as a function of the intake flow rate Ga and the exhaust temperature Te. The relationship can be stored in advance in the form of the map shown in FIG. 7 and retrieved from the map.

オゾン生成手段6の上流圧力Poz、酸素富化空気流量Gozは、(5)式と以下に示す(6)式、(7)式を連立させて解くことができる。
[(6):バキュームポンプ66の吐出流量Gp]
Gp=γe×(Pv/Po) ×(Ta/To) ×Vp×{1+Cp−Cp(Poz/Pv)1/κ}×Np
ここで、Pv:酸素富化空気生成手段8の下流圧力
Vp:1回転当りのポンプ吸込み容積
Cp:ポンプ締切比
Poz:オゾン生成手段上流圧力
κ:比熱比
Np:ポンプ回転数
Vp、Cp、κは予め与えられ、ポンプ回転数Npは一定と与える。
[(7):バキュームポンプ66とオゾン生成手段6間の圧力変化式]
(dPoz/dt)×(Voz/R/Ta)=Gp−Goz
ここで、Voz:バキュームポンプ66とオゾン生成手段6間の容積
R :気体定数
The upstream pressure Poz and the oxygen-enriched air flow rate Goz of the ozone generating means 6 can be solved by combining the equation (5) with the following equations (6) and (7).
[(6): Discharge flow rate Gp of vacuum pump 66]
Gp = γe × (Pv / Po) × (Ta / To) × Vp × {1 + Cp−Cp (Poz / Pv) 1 / κ } × Np
Where Pv: downstream pressure of the oxygen-enriched air generating means 8
Vp: Pump suction volume per rotation
Cp: Pump cutoff ratio
Poz: Ozone generating means upstream pressure
κ: Specific heat ratio
Np: Pump speed Vp, Cp, and κ are given in advance, and the pump speed Np is given to be constant.
[(7): Pressure change equation between vacuum pump 66 and ozone generating means 6]
(DPoz / dt) × (Voz / R / Ta) = Gp−Goz
Here, Voz: volume between the vacuum pump 66 and the ozone generating means 6
R: Gas constant

次にステップ210に進み、ステップ206で求めたオゾン目標流量を、ステップ209で求めた酸素富化空気流量Gozで除算することにより、オゾン生成濃度を求める(オゾン生成濃度算出手段)。
ステップ211において、ステップ208で求めた酸素富化空気の酸素濃度から酸素富化係数を求め、オゾン生成濃度の修正を行う(オゾン生成濃度の修正手段)。図15に酸素濃度と酸素富化係数の関係を示す。酸素富化空気生成手段8により、流入する空気の酸素濃度が増すと、オゾン生成手段6において同じ高電圧パルス周波数を与えても、生成するオゾン濃度は大気(酸素濃度21%)を与えている場合よりも増加する。したがって、図15に示すように、大気の酸素濃度21%で作動される場合を富化係数1とし、酸素濃度21%よりも高い濃度で作動される場合は、1よりも小さい酸素富化係数を掛け合わせて補正する必要がある。酸素濃度が80%以上の場合は、酸素濃度21%の場合に対し2倍のオゾン濃度のオゾン含有空気を生成させることができるので、酸素富化係数0.5を与えている。ステップ210で求めたオゾン生成濃度を、酸素富化係数により補正することで、修正オゾン生成濃度を求める。
Next, proceeding to step 210, the ozone generation concentration is determined by dividing the ozone target flow rate determined in step 206 by the oxygen-enriched air flow rate Goz determined in step 209 (ozone generation concentration calculation means).
In step 211, the oxygen enrichment coefficient is obtained from the oxygen concentration of the oxygen-enriched air obtained in step 208, and the ozone generation concentration is corrected (ozone generation concentration correction means). FIG. 15 shows the relationship between the oxygen concentration and the oxygen enrichment coefficient. When the oxygen concentration of the inflowing air is increased by the oxygen-enriched air generation means 8, even if the same high voltage pulse frequency is given in the ozone generation means 6, the generated ozone concentration gives the atmosphere (oxygen concentration 21%). More than the case. Therefore, as shown in FIG. 15, the enrichment factor is 1 when operated at an oxygen concentration of 21% in the atmosphere, and the oxygen enrichment factor smaller than 1 when operated at a concentration higher than 21%. It is necessary to correct by multiplying. When the oxygen concentration is 80% or more, ozone-containing air having an ozone concentration twice that of the oxygen concentration of 21% can be generated, and therefore an oxygen enrichment coefficient of 0.5 is given. The corrected ozone generation concentration is determined by correcting the ozone generation concentration determined in step 210 using the oxygen enrichment coefficient.

次に、図14Bの判断ステップ212に進み、修正オゾン生成濃度が所定値以上か否かを判定する。これ以降のステップ213〜216は、図4のステップ110〜114に対応するもので、既に述べた第1実施形態の場合と同様となるので、説明を省略する。   Next, the process proceeds to a determination step 212 in FIG. 14B to determine whether or not the corrected ozone generation concentration is equal to or higher than a predetermined value. Subsequent steps 213 to 216 correspond to steps 110 to 114 in FIG. 4 and are the same as those in the first embodiment described above, and thus the description thereof is omitted.

以上述べたように、第2実施形態では、湿気除去手段9の湿気分離フィルタ91によって空気中の湿気成分を減じ、乾燥した空気をオゾン生成手段6に導入することにより、高濃度のオゾンを安定して生成できる利点が得られる。また、酸素富化空気生成手段8を用いて高酸素濃度の空気をオゾン生成手段6に送ることにより、さらに高濃度のオゾン生成を可能にすることができ、その分小型で搭載性のよいNOx後処理装置3を設計することが可能になる。   As described above, in the second embodiment, the moisture component in the air is reduced by the moisture separation filter 91 of the moisture removing means 9, and the dry air is introduced into the ozone generating means 6, thereby stabilizing high concentration ozone. The advantage that can be generated is obtained. Further, by sending high-oxygen-concentrated air to the ozone-generating means 6 using the oxygen-enriched air generating means 8, it is possible to generate ozone with a higher concentration. The post-processing device 3 can be designed.

本実施形態においても、放電開始からオゾン生成までの応答遅れが極めて短い放電プラズマの特性を利用して、運転状態の変化に追従して応答性よく、要求されるオゾン生成濃度を実現できる。また、応答遅れの大きい空気流量については、伝達関数モデルによりその遅れを正確に把握してオゾン生成濃度を求め、さらに酸素富化空気の酸素濃度によってオゾン生成濃度を修正することができる。その修正されたオゾン生成濃度を実現するように、オゾン生成手段6を作動させることによって、オゾン目標流量を、空気流量の遅れの影響を受けることなく供給し、NOxを浄化するという優れた効果を得ることができる。   Also in the present embodiment, the required ozone generation concentration can be realized with good responsiveness following the change in the operating state by utilizing the characteristics of the discharge plasma that has a very short response delay from the start of discharge to the generation of ozone. For an air flow rate with a large response delay, the ozone generation concentration can be obtained by accurately grasping the delay by the transfer function model, and the ozone generation concentration can be corrected by the oxygen concentration of the oxygen-enriched air. By operating the ozone generation means 6 so as to realize the corrected ozone generation concentration, the ozone target flow rate is supplied without being affected by the delay of the air flow rate, and the excellent effect of purifying NOx is obtained. Can be obtained.

本発明のエンジン用NOx後処理装置の制御装置は、小型で低コストであり、環境温度や運転状態の変化が大きいエンジンであっても高い浄化性能を有するので、使用環境が厳しくスペース的な制約の大きい車両用エンジンに好適に使用されるが、車両用またはディーゼルエンジンに限らず任意のエンジンに適用することができる。   The control device for the NOx aftertreatment device for an engine according to the present invention is small and low cost, and has high purification performance even in an engine having a large change in environmental temperature and operating condition. However, the present invention can be applied to any engine, not limited to a vehicle or a diesel engine.

1 エンジン
18 吸気管(吸気通路)
2、2a 排気管(排気通路)
21 DPF(フィルタ手段)
3 NOx後処理装置
31 オゾン供給通路
32 空気流入通路
37 サブコントローラ(駆動手段)
4 コントローラ(制御装置)
5 NOx吸収手段
6 オゾン生成手段
8 酸素富化空気生成手段(酸素富化手段)
9 湿気除去手段
91 湿気分離フィルタ
1 Engine 18 Intake pipe (intake passage)
2, 2a Exhaust pipe (exhaust passage)
21 DPF (filter means)
3 NOx aftertreatment device 31 Ozone supply passage 32 Air inflow passage 37 Sub controller (drive means)
4 Controller (control device)
5 NOx absorption means 6 Ozone generation means 8 Oxygen-enriched air generation means (oxygen enrichment means)
9 Moisture removal means 91 Moisture separation filter

Claims (10)

エンジン(1)からの排気にオゾンを供給するオゾン生成手段(6)を含むエンジン用NOx後処理装置(3)の制御方法であって、
排気中のNOとNO流量を推定し、推定したNOとNOの合計流量に対応させてオゾン目標流量を決定し、決定した目標流量となるように上記オゾン生成手段を作動させて生成したオゾンを排気中に添加し、このオゾンと排気中のNOとNOと水分によって生成したHNOを排気から除去することを特徴とするオゾン生成手段を含むエンジン用NOx後処理装置の制御方法。
A control method for an engine NOx aftertreatment device (3) including ozone generating means (6) for supplying ozone to exhaust from the engine (1),
The NO and NO 2 flow rates in the exhaust gas are estimated, the ozone target flow rate is determined according to the estimated total flow rate of NO and NO 2 , and generated by operating the ozone generating means so as to be the determined target flow rate A control method for a NOx aftertreatment device for an engine including an ozone generating means, wherein ozone is added to exhaust gas, and HNO 3 generated by the ozone, NO, NO 2 and moisture in the exhaust gas is removed from the exhaust gas.
エンジンの排気通路(2)に接続するオゾン供給通路(31)と、吸気通路(18)に接続する空気流入通路(32)を有し、流入する空気からオゾンを生成するオゾン生成手段を含み、NOxとオゾンの反応生成物をNOx吸収手段(5)に吸収させるエンジン用NOx後処理装置の制御装置(4)であって、
上記排気通路を流通する排気中のNOとNO流量を推定するNOx流量推定手段(ステップ105、205)と、
上記NOx流量推定手段により推定したNOとNOの合計流量に対応させて、オゾン目標流量を決定する目標流量決定手段(ステップ106、206)と、
上記目標流量決定手段で決定したオゾン目標流量となるように、上記オゾン生成手段を作動させる駆動手段(37)とを備え、
上記オゾン生成手段で生成したオゾンを上記オゾン供給通路から排気中に添加し、添加したオゾンと排気中のNOとNOと水分によって生成したHNOを上記NOx吸収手段に吸収させて除去することを特徴とするオゾン生成手段を含むエンジン用NOx後処理装置の制御装置。
An ozone supply passage (31) connected to the exhaust passage (2) of the engine and an air inflow passage (32) connected to the intake passage (18), including ozone generating means for generating ozone from the inflowing air; A control device (4) for a NOx aftertreatment device for an engine that causes the NOx absorption means (5) to absorb a reaction product of NOx and ozone,
NOx flow rate estimating means (steps 105 and 205) for estimating NO and NO 2 flow rates in the exhaust gas flowing through the exhaust passage;
Target flow rate determination means (steps 106 and 206) for determining the ozone target flow rate in correspondence with the total flow rate of NO and NO 2 estimated by the NOx flow rate estimation means;
Drive means (37) for operating the ozone generation means so as to be the ozone target flow rate determined by the target flow rate determination means,
The ozone generated by the ozone generating means is added to the exhaust gas from the ozone supply passage, and HNO 3 generated by the added ozone, NO, NO 2 and moisture in the exhaust gas is absorbed by the NOx absorbing means and removed. A control device for an NOx aftertreatment device for an engine including ozone generating means.
上記オゾン供給通路が合流する上記排気通路の上流に、酸化触媒または酸化触媒を担持したフィルタ手段(21)が配置されており、
上記NOx流量推定手段は、排気中のNOとNO流量を、エンジンから排出される排気中のNO濃度推定値と、エンジン吸気流量と、上記酸化触媒または酸化触媒を担持したフィルタ手段の温度または排気温度を用いて推定したNO推定流量とNO推定流量として求める請求項2記載のオゾン生成手段を含むエンジン用NOx後処理装置の制御装置。
Filter means (21) carrying an oxidation catalyst or an oxidation catalyst is arranged upstream of the exhaust passage where the ozone supply passage joins,
The NOx flow rate estimating means includes the NO and NO 2 flow rates in the exhaust gas, the NO concentration estimated value in the exhaust gas exhausted from the engine, the engine intake flow rate, the temperature of the filter means carrying the oxidation catalyst or the oxidation catalyst, or The control device for the NOx aftertreatment device for an engine including the ozone generation means according to claim 2, which is obtained as an estimated NO flow rate and an estimated NO 2 flow rate estimated using the exhaust gas temperature.
上記目標流量決定手段は、上記NOx流量推定手段にて推定された、NO推定流量の1.5当量比倍の流量とNO推定流量の0.5当量比倍の流量の合算値以上の値に対応してオゾン目標流量を決定し、このオゾン目標流量に基づいて上記オゾン生成手段が作動される請求項2または3記載のオゾン生成手段を含むエンジン用NOx後処理装置の制御装置。 The target flow rate determining means, estimated by the NOx flow rate estimation means, NO estimated flow rate of 1.5 equivalent ratio times the flow rate and the NO 2 estimated flow rate of 0.5 equivalent ratio times the flow rate sum over values of The control device for the engine NOx aftertreatment device including the ozone generation means according to claim 2, wherein the ozone target flow rate is determined corresponding to the ozone target flow rate, and the ozone generation means is operated based on the ozone target flow rate. 上記オゾン生成手段を通過するガス流量を推定するガス流量推定手段(ステップ107、209)と、推定されたガス流量と上記目標流量決定手段で決定したオゾン目標流量から、上記オゾン生成手段が生成すべきオゾン濃度を求めるオゾン生成濃度算出手段(ステップ108、210)を備え、このオゾン生成濃度となるように上記オゾン生成手段が作動される請求項2ないし4のいずれか1項に記載のオゾン生成手段を含むエンジン用NOx後処理装置の制御装置。   The ozone generation unit generates the gas flow rate estimation unit (steps 107 and 209) for estimating the gas flow rate passing through the ozone generation unit, and the estimated gas flow rate and the ozone target flow rate determined by the target flow rate determination unit. 5. Ozone generation according to any one of claims 2 to 4, further comprising ozone generation concentration calculation means (steps 108 and 210) for determining a power ozone concentration, wherein the ozone generation means is operated so as to obtain the ozone generation concentration. A control device for an engine NOx aftertreatment device including means. 上記目標流量決定手段は、上記オゾン生成手段で生成されたオゾンが、NO、NO、水分と反応する前に消滅する比率を求め、該比率に応じてオゾン目標流量を修正する請求項2ないし5のいずれか1項に記載のオゾン生成手段を含むエンジン用NOx後処理装置の制御装置。 The target flow rate determining means obtains a ratio at which ozone generated by the ozone generating means disappears before reacting with NO, NO 2 , and moisture, and corrects the ozone target flow rate according to the ratio. 6. A control device for a NOx aftertreatment device for an engine comprising the ozone generation means according to any one of 5 above. 上記目標流量決定手段は、オゾンが消滅する上記比率を、排気温度に対応して決定する請求項6記載のオゾン生成手段を含むエンジン用NOx後処理装置の制御装置。   7. The control device for an engine NOx aftertreatment device including the ozone generation means according to claim 6, wherein the target flow rate determination means determines the ratio at which ozone disappears in accordance with exhaust gas temperature. 上記目標流量決定手段は、オゾンが消滅する上記比率を、上記オゾン供給通路の合流部(2a)における排気中の低級不飽和炭化水素の濃度に対応して決定する請求項7記載のオゾン生成手段を含むエンジン用NOx後処理装置の制御装置。   The ozone generating means according to claim 7, wherein the target flow rate determining means determines the ratio at which ozone disappears in accordance with the concentration of lower unsaturated hydrocarbons in the exhaust gas at the junction (2a) of the ozone supply passage. A control device for a NOx aftertreatment device for an engine including: 上記目標流量決定手段で決定した上記オゾン目標流量を、大気中の湿度の情報に基づいて修正する修正手段(ステップ109)を備える請求項2ないし8のいずれか1項に記載のオゾン生成手段を含むエンジン用NOx後処理装置の制御装置。   The ozone generating means according to any one of claims 2 to 8, further comprising correcting means (step 109) for correcting the ozone target flow rate determined by the target flow rate determining means based on information on humidity in the atmosphere. Including a control device for an NOx aftertreatment device for an engine. 上記オゾン生成手段の上流の上記空気流入通路に、湿度除去手段(9)と酸素富化手段(8)が設置され、上記オゾン生成手段に流入するガス中の酸素濃度の変化に基づいてオゾン生成濃度を修正する修正手段(ステップ211)を備える請求項5ないし8のいずれか1項に記載のオゾン生成手段を含むエンジン用NOx後処理装置の制御装置。   Humidity removal means (9) and oxygen enrichment means (8) are installed in the air inflow passage upstream of the ozone generation means, and ozone is generated based on a change in oxygen concentration in the gas flowing into the ozone generation means. The control device for the engine NOx aftertreatment device including the ozone generation unit according to any one of claims 5 to 8, further comprising a correction unit (step 211) for correcting the concentration.
JP2012190022A 2012-08-30 2012-08-30 Control method and unit for nox aftertreatment device of engine including ozone generation means Pending JP2014047670A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012190022A JP2014047670A (en) 2012-08-30 2012-08-30 Control method and unit for nox aftertreatment device of engine including ozone generation means
DE201310109133 DE102013109133A1 (en) 2012-08-30 2013-08-23 Controlling nitrous oxide treating device by estimating nitric oxide and nitrogen dioxide flow rates in exhaust gas, determining ozone flow rate based on total flow rate of nitric oxide and nitrogen dioxide, and operating ozone generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012190022A JP2014047670A (en) 2012-08-30 2012-08-30 Control method and unit for nox aftertreatment device of engine including ozone generation means

Publications (1)

Publication Number Publication Date
JP2014047670A true JP2014047670A (en) 2014-03-17

Family

ID=50098555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012190022A Pending JP2014047670A (en) 2012-08-30 2012-08-30 Control method and unit for nox aftertreatment device of engine including ozone generation means

Country Status (2)

Country Link
JP (1) JP2014047670A (en)
DE (1) DE102013109133A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016070181A (en) * 2014-09-30 2016-05-09 日野自動車株式会社 Ozone generating quantity control device
JP2016102420A (en) * 2014-11-27 2016-06-02 株式会社デンソー Electronic control device
DE102016109072A1 (en) 2015-08-27 2017-03-02 Denso Corporation Fault diagnosis system for an ozone delivery device
WO2020083233A1 (en) * 2018-10-22 2020-04-30 上海必修福企业管理有限公司 Exhaust gas treatment system and method
US10780395B2 (en) 2017-12-04 2020-09-22 Ricardo Inc. Pollutant treatment process and apparatus
JP2020169640A (en) * 2019-04-02 2020-10-15 株式会社デンソー Exhaust emission control system
CN113366203A (en) * 2018-10-22 2021-09-07 上海必修福企业管理有限公司 Engine tail gas ozone purification system and method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131325A (en) * 1974-09-11 1976-03-17 Mitsubishi Electric Corp Jidosha no haikigasuchu no chitsusosankabutsujokyoho
JPH0624710A (en) * 1992-07-03 1994-02-01 Ebara Corp Ozone generator
JP2002106327A (en) * 2000-10-02 2002-04-10 Nissan Motor Co Ltd Control device of internal combustion engine
JP2007113459A (en) * 2005-10-19 2007-05-10 Toyota Motor Corp Exhaust emission control system
JP2007132241A (en) * 2005-11-09 2007-05-31 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2008223576A (en) * 2007-03-12 2008-09-25 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2009057279A (en) * 2008-11-10 2009-03-19 Toshiba Corp Ozone generator
JP2009264285A (en) * 2008-04-25 2009-11-12 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2011245368A (en) * 2010-05-24 2011-12-08 Toyota Motor Corp Discharge reaction apparatus
JP2012159029A (en) * 2011-01-31 2012-08-23 Toyota Central R&D Labs Inc Apparatus and method for producing nitrogen dioxide, and exhaust emission control system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136284A (en) 1999-12-09 2000-10-24 The Boc Group, Inc. Process for the removal of nitrogen oxides from gas streams

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131325A (en) * 1974-09-11 1976-03-17 Mitsubishi Electric Corp Jidosha no haikigasuchu no chitsusosankabutsujokyoho
JPH0624710A (en) * 1992-07-03 1994-02-01 Ebara Corp Ozone generator
JP2002106327A (en) * 2000-10-02 2002-04-10 Nissan Motor Co Ltd Control device of internal combustion engine
JP2007113459A (en) * 2005-10-19 2007-05-10 Toyota Motor Corp Exhaust emission control system
JP2007132241A (en) * 2005-11-09 2007-05-31 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2008223576A (en) * 2007-03-12 2008-09-25 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2009264285A (en) * 2008-04-25 2009-11-12 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2009057279A (en) * 2008-11-10 2009-03-19 Toshiba Corp Ozone generator
JP2011245368A (en) * 2010-05-24 2011-12-08 Toyota Motor Corp Discharge reaction apparatus
JP2012159029A (en) * 2011-01-31 2012-08-23 Toyota Central R&D Labs Inc Apparatus and method for producing nitrogen dioxide, and exhaust emission control system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016070181A (en) * 2014-09-30 2016-05-09 日野自動車株式会社 Ozone generating quantity control device
JP2016102420A (en) * 2014-11-27 2016-06-02 株式会社デンソー Electronic control device
DE102016109072A1 (en) 2015-08-27 2017-03-02 Denso Corporation Fault diagnosis system for an ozone delivery device
JP2017044165A (en) * 2015-08-27 2017-03-02 株式会社デンソー Failure diagnosis system of ozone supply device
US10780395B2 (en) 2017-12-04 2020-09-22 Ricardo Inc. Pollutant treatment process and apparatus
US11305231B2 (en) 2017-12-04 2022-04-19 Ricardo Uk Limited Pollutant treatment process and apparatus
WO2020083233A1 (en) * 2018-10-22 2020-04-30 上海必修福企业管理有限公司 Exhaust gas treatment system and method
WO2020083231A1 (en) * 2018-10-22 2020-04-30 上海必修福企业管理有限公司 Exhaust treatment system and method
WO2020083212A1 (en) * 2018-10-22 2020-04-30 上海必修福企业管理有限公司 Exhaust treatment system and method
CN113366203A (en) * 2018-10-22 2021-09-07 上海必修福企业管理有限公司 Engine tail gas ozone purification system and method
CN113366203B (en) * 2018-10-22 2023-08-15 上海必修福企业管理有限公司 Engine tail gas ozone purification system and method
JP2020169640A (en) * 2019-04-02 2020-10-15 株式会社デンソー Exhaust emission control system

Also Published As

Publication number Publication date
DE102013109133A1 (en) 2014-03-06

Similar Documents

Publication Publication Date Title
JP2014047670A (en) Control method and unit for nox aftertreatment device of engine including ozone generation means
WO2012124531A1 (en) Exhaust gas purification device
KR101326348B1 (en) Exhaust purification system of internal combustion engine
JP4888216B2 (en) Exhaust gas purification device for internal combustion engine
CN103052771B (en) The Exhaust gas purifying device of internal-combustion engine
JP5719857B2 (en) Exhaust purification system and ozone generator
JP5456943B2 (en) Exhaust gas purification device
CN102797536A (en) Method for determining load of particulate filter
CN102933807B (en) Internal combustion engine exhaust gas purification device
JP5761139B2 (en) NOx aftertreatment device for engine including ozone generating means
WO2017038194A1 (en) Exhaust gas purification system for internal combustion engine
JP2012193620A (en) Exhaust gas purification device
CN103154459B (en) Exhaust gas purification device for internal combustion engine
KR101673352B1 (en) METHOD OF CALCULATING NH3 MASS GENERATED IN LEAN NOx TRAP OF EXHAUST PURIFICATION DEVICE AND EXHAUST PURIFICATION DEVICE
CN105492733B (en) Emission control system for internal combustion engine
JP2010249100A (en) Exhaust emission control device of internal combustion engine
JP5392411B1 (en) Exhaust gas purification device for internal combustion engine
JP5561059B2 (en) Exhaust gas purification device for internal combustion engine
JP2009281290A (en) Exhaust gas purifier for internal combustion engine
JP6147563B2 (en) Exhaust purification system and exhaust purification method
JP5952533B2 (en) Exhaust gas purification device
WO2005047681A1 (en) Exhaust gas purification device for internal combustion engine and method of exhaust gas purification
JP5782710B2 (en) Exhaust gas purification apparatus and exhaust gas purification method for internal combustion engine
JP5257549B1 (en) Exhaust gas purification device for internal combustion engine
JP2015031256A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150203

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150311

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161004