JP4180442B2 - 適応等化器 - Google Patents

適応等化器 Download PDF

Info

Publication number
JP4180442B2
JP4180442B2 JP2003149507A JP2003149507A JP4180442B2 JP 4180442 B2 JP4180442 B2 JP 4180442B2 JP 2003149507 A JP2003149507 A JP 2003149507A JP 2003149507 A JP2003149507 A JP 2003149507A JP 4180442 B2 JP4180442 B2 JP 4180442B2
Authority
JP
Japan
Prior art keywords
error
circuit
threshold
absolute value
decision data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003149507A
Other languages
English (en)
Other versions
JP2004356741A (ja
Inventor
秀樹 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003149507A priority Critical patent/JP4180442B2/ja
Publication of JP2004356741A publication Critical patent/JP2004356741A/ja
Application granted granted Critical
Publication of JP4180442B2 publication Critical patent/JP4180442B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、周波数選択性フェージング環境下におけるビット誤り率特性を改善する適応等化器に関するものである。
【0002】
【従来の技術】
ディジタル無線通信においては、電波が周囲の地形や地物から反射、回折、散乱を受け、これらのマルチパス伝搬による多重遅延波の影響で周波数選択性フェージングが発生することがある。この周波数選択性フェージング環境下では、受信信号強度が周波数依存性を持ち、波形歪みを生じることから、通常の同期検波や遅延検波を行った場合には所望のビット誤り率特性を得ることは難しい。周波数選択性フェージング環境下での特性を改善するための技術の一つとして、適応等化器が知られている。
【0003】
適応等化器を動作させるための適応アルゴリズムには、最小2乗平均アルゴリズム(以後、LMSアルゴリズムと称す)やゼロ・フォーシングアルゴリズムなどが知られている。これらのアルゴリズムには、ステップサイズパラメータと呼ばれる収束速度と残留誤差に係わるパラメータが存在する。ステップサイズパラメータを大きくすると収束速度が速くなるが残留誤差が大きくなり、ステップサイズパラメータを小さくすると残留誤差が小さくなるが収束速度が遅くなる。
【0004】
そこで、適応等化器の収束状態を判定できれば、最初はステップサイズパラメータを大きく設定し、その後、適応等化器が収束したときにステップサイズパラメータを小さく設定することによって、残留誤差を小さく抑えながら、収束速度を改善することが可能となる。
適応等化器の収束判定には様々な手法が考えられるが、以下の特許文献1には、タップ係数の変化量の差を固定の閾値と比較することで収束判定を実施する適応等化器が開示されている。
【0005】
【特許文献1】
特開昭61−116434号(第5頁から第6頁、図1)
【0006】
【発明が解決しようとする課題】
従来の適応等化器は以上のように構成されているので、タップ係数の変化量の差を固定の閾値と比較することで収束判定を実施する。しかし、搬送波電力対雑音電力比(以後、C/Nと称す)が変化したときにも、相対的にタップ係数の変化量が増減するため、そのタップ係数の変化量の差を固定の閾値と比較しても、正確な収束判定を行うことができなくなる課題があった。
【0007】
この発明は上記のような課題を解決するためになされたもので、C/Nが変化しても、正確な収束判定を実施することができる適応等化器を得ることを目的とする。
【0008】
【課題を解決するための手段】
この発明に係る適応等化器は、等化器から出力された軟判定データに対する硬判定を実施し、その判定結果を示す硬判定データと当該軟判定データの誤差を計算する誤差計算手段を設け、閾値設定手段が誤差計算手段により計算された誤差の絶対値が大きい程、大きな収束判定用の閾値を設定し、係数更新手段が最新のタップ係数の変化量の絶対値と1単位時間前のタップ係数の変化量の絶対値との差分が閾値設定手段により設定された閾値より小さければ、収束している旨を示す判定結果を出力し、その差分が上記閾値より大きければ、収束していない旨を示す判定結果を出力する収束判定処理を実施するようにしたものである。
【0009】
【発明の実施の形態】
以下、この発明の実施の一形態を説明する。
実施の形態1.
図1はこの発明の実施の形態1による適応等化器を示す構成図であり、図において、等化器1は受信信号であるベースバンド信号の信号列とタップ係数更新回路6により更新されたタップ係数を積和演算して、その演算結果である軟判定データを出力する。判定器2は等化器1から出力された軟判定データに対する硬判定を実施し、その硬判定結果を示す硬判定データを出力する。複素減算器3は等化器1から出力された軟判定データと判定器2から出力された硬判定データとの複素減算を実施して、その減算結果である誤差信号を出力する。なお、判定器2及び複素減算器3から誤差計算手段が構成されている。
【0010】
閾値設定回路4は複素減算器3から出力された誤差信号に応じて収束判定用の閾値を設定する閾値設定手段を構成している。収束判定回路5は閾値設定回路4により設定された閾値とタップ係数更新回路6により更新されたタップ係数の変化量の差とを比較して収束判定を実施する。タップ係数更新回路6は収束判定回路5の判定結果を考慮して、ベースバンド信号の信号列と複素減算器3から出力された誤差信号とからタップ係数を更新する。なお、収束判定回路5及びタップ係数更新回路6から係数更新手段が構成されている。
【0011】
図2は閾値設定回路4の内部構成を示す構成図であり、図において、絶対値算出回路11は複素減算器3から出力された誤差信号の絶対値を算出し、平均化回路12は絶対値算出回路11により算出された誤差信号の絶対値の平均値を求める。設定回路13は予め平均値と閾値の対応関係を示すテーブルを記憶し、そのテーブルを参照して、平均化回路12により求められた平均値に対応する閾値を出力する。
【0012】
図3は収束判定回路5の内部構成を示す構成図であり、図において、メモリ21はタップ係数更新回路6により更新されたタップ係数を格納し、複素減算器22はタップ係数更新回路6により更新された最新のタップ係数とメモリ21に格納されている1単位時間前のタップ係数との複素減算を実施する。絶対値算出回路23は複素減算器22の複素減算結果であるタップ係数の変化量の絶対値を算出し、メモリ24はタップ係数の変化量の絶対値を格納する。
【0013】
減算器25は絶対値算出回路23により算出された最新のタップ係数の変化量の絶対値とメモリ24に格納されている1単位時間前のタップ係数の変化量の絶対値との減算を実施して、その変化量の絶対値の差分を出力する。コンパレータ26は減算器25から出力された変化量の絶対値の差分と閾値設定回路4により設定された閾値を比較し、その変化量の絶対値の差分の方が小さい場合には“収束”、大きい場合には“未収束”を示す判定結果を出力する。
なお、メモリ21、複素減算器22、絶対値算出回路23、メモリ24、減算器25及びコンパレータ26は、タップ係数の個数と同数だけ用意されている。多数決回路27は各タップのコンパレータ26から出力された判定結果の多数決判定を実施し、“収束”の判定結果の方が多い場合には“収束”、“未収束”の方が多い場合には“未収束”を示す判定結果をタップ係数更新回路6に出力する。
【0014】
次に動作について説明する。
この実施の形態1では、説明の便宜上、変調方式として4相位相変調(以後、QPSKと称す)を用いる場合を例にして説明する。
等化器1は、ベースバンド信号を受信すると、そのベースバンド信号を蓄積し、そのベースバンド信号におけるフェージングの影響を軽減するため、過去数シンボル分の信号列とタップ係数更新回路6により更新されたタップ係数を積和演算して、その演算結果である軟判定データを出力する。
【0015】
ここで、時刻nにおけるベースバンド信号をu(n)、時刻nにおけるk番目のタップ係数をh(k,n)、時刻nにおける軟判定データをy(n)、等化器1のタップ数をMとすると、y(n)は式(1)のように表される。ただし、*は複素共役、×は複素乗算を表す。
【数1】
Figure 0004180442
【0016】
判定器2は、等化器1から軟判定データを受けると、その軟判定データに対する硬判定を実施し、その硬判定結果を示す硬判定データを出力する。
例えば、QPSKの信号点を(±X,±X)とすると、軟判定データの実部が正ならば硬判定データの実部を+X、軟判定データの実部が負ならば硬判定データの実部を−Xとして出力する。また、軟判定データの虚部が正ならば硬判定データの虚部を+X、軟判定データの虚部が負ならば硬判定データの虚部を−Xとして出力する。
【0017】
複素減算器3は、判定器2が硬判定データを出力すると、等化器1から出力された軟判定データと判定器2から出力された硬判定データとの複素減算を実施して、その減算結果である誤差信号を出力する。
ここで、時刻nにおける硬判定データをd(n)、時刻nにおける誤差信号をe(n)とすると、e(n)は式(2)のように表される。ただし、−は複素減算を表している。
e(n)=d(n)−y(n) (2)
【0018】
閾値設定回路4は、複素減算器3から誤差信号を受けると、その誤差信号の絶対値が大きい程、大きな閾値を設定する。
即ち、閾値設定回路4の絶対値算出回路11は、複素減算器3から出力された誤差信号の絶対値を算出する。
例えば、時刻nにおける誤差信号の実部をe_I(n)、虚部をe_Q(n)、時刻nにおける誤差信号の絶対値を|e(n)|とすると、|e(n)|は式(3)のように表される。
【数2】
Figure 0004180442
ここでは、誤差信号の絶対値を用いる場合について説明したが、誤差信号の絶対値の2乗を用いるようにしてもよい。
【0019】
閾値設定回路4の平均化回路12は、絶対値算出回路11が誤差信号の絶対値を算出すると、その誤差信号の絶対値の平均値を求める。
例えば、平均化にKシンボルの移動平均を用いる場合、時刻nにおける誤差信号の絶対値の平均値を|e(n)|aveとすると、|e(n)|aveは式(4)のように表される。
【数3】
Figure 0004180442
【0020】
閾値設定回路4の設定回路13は、予め、平均値が大きい程、大きな閾値が対応付けられている平均値と閾値の対応関係を示すテーブルを記憶し、そのテーブルを参照して、平均化回路12により求められた平均値に対応する閾値を出力する。
ここでは、テーブルを参照して、平均値に対応する閾値を出力するものについて示したが、これに限るものではなく、例えば、単調に増加する一次関数や二次関数に平均化回路12により求められた平均値を代入して、その平均値に対応する閾値を算出するようにしてもよい。
【0021】
収束判定回路5は、上記のようにして閾値設定回路4が閾値を設定すると、その閾値とタップ係数更新回路6により更新されたタップ係数の変化量の差とを比較して収束判定を実施する。
即ち、収束判定回路5の複素減算器22は、タップ係数更新回路6により更新された最新のタップ係数とメモリ21に格納されている1単位時間前のタップ係数との複素減算を実施する。
例えば、時刻nにおけるk番目のタップ係数の変化量をhdif(k,n)とすると、hdif(k,n)は式(5)のように表される。ただし、−は複素減算を表す。
dif(k,n)=h(k,n)−h(k,n−1) (5)
k=1,2,・・・,M
【0022】
収束判定回路5の絶対値算出回路23は、複素減算器22の複素減算結果であるタップ係数の変化量の絶対値を算出し、そのタップ係数の変化量の絶対値をメモリ24に格納する。
例えば、時刻nにおけるk番目のタップ係数の変化量の実部をhdif_I(k,n)、虚部をhdif_Q(k,n)、時刻nにおけるk番目のタップ係数の変化量の絶対値を|hdif(k,n)|とすると、|hdif(k,n)|は式(6)のように表される。
【数4】
Figure 0004180442
【0023】
収束判定回路5の減算器25は、絶対値算出回路23により算出された最新のタップ係数の変化量の絶対値とメモリ24に格納されている1単位時間前のタップ係数の変化量の絶対値との減算を実施して、その変化量の絶対値の差分を出力する。
例えば、時刻nにおけるk番目のタップ係数変化量の絶対値の差を|hdif(k,n)|difとすると、|hdif(k,n)|difは式(7)のように表される。
Figure 0004180442
【0024】
収束判定回路5のコンパレータ26は、減算器25から出力された変化量の絶対値の差分と閾値設定回路4により設定された閾値を比較し、その変化量の絶対値の差分の方が小さい場合には“収束”、大きい場合には“未収束”を示す判定結果を各タップの収束判定結果として出力する。
収束判定回路5の多数決回路27は、各タップのコンパレータ26から収束判定結果を受けると、それらの収束判定結果の多数決判定を実施し、“収束”の判定結果の方が多い場合には“収束”、“未収束”の方が多い場合には“未収束”を示す判定結果をタップ係数更新回路6に出力する。
【0025】
タップ係数更新回路6は、収束判定回路5の判定結果を考慮して、ベースバンド信号の信号列と複素減算器3から出力された誤差信号とから、LMSアルゴリズムなどの適応アルゴリズムにしたがってタップ係数を更新する。適応アルゴリズムにLMSアルゴリズムを用いる場合、タップ係数は式(8)に従って更新される。ただし、μはステップサイズパラメータ、+は複素加算を表している。
Figure 0004180442
【0026】
なお、タップ係数更新回路6は、収束判定回路5の判定結果が“未収束”を示している間は、ステップサイズパラメータμを大きな値に設定し、収束判定回路5の判定結果が“収束”を示すと、ステップサイズパラメータμを小さな値に設定することにより、残留誤差を小さく抑えながら、収束速度を改善する。
収束判定回路5の判定結果は、ビットタイミング再生回路や搬送波再生回路など、他の復調回路の制御などにも利用可能である。
【0027】
以上で明らかなように、この実施の形態1によれば、硬判定データと軟判定データの誤差に応じて収束判定用の閾値を設定する閾値設定回路4を設けるように構成したので、収束判定回路5がC/Nの値に応じた収束判定用の閾値で収束状態を判定することができるようになり、その結果、C/Nが変化しても、正確な収束判定を実施することができる効果を奏する。
【0028】
実施の形態2.
図4はこの発明の実施の形態2による適応等化器を示す構成図であり、図において、図1と同一符号は同一または相当部分を示すので説明を省略する。
閾値設定回路4aは図1の閾値設定回路4と同様にして収束判定用の閾値を設定する閾値設定手段を構成し、内部の平均化回路12により求められた誤差信号の絶対値の平均値も出力する(図5を参照)。
収束判定回路7は閾値設定回路4aにより設定された閾値と閾値設定回路4aの平均化回路12により求められた誤差信号の絶対値の平均値から収束判定を実施する。なお、収束判定回路7は係数更新手段を構成している。
【0029】
図6は収束判定回路7の内部構成を示す構成図であり、図において、メモリ31は閾値設定回路4aの平均化回路12により求められた誤差信号の絶対値の平均値を格納し、減算器32は平均化回路12により求められた最新の平均値とメモリ31に格納されている1単位時間前の平均値との減算を実施して誤差信号の変化量を出力する。絶対値算出回路33は減算器32から出力された誤差信号の変化量の絶対値を算出する。平均化回路34は絶対値算出回路33により算出された誤差信号の変化量の絶対値を平均化し、その絶対値の平均値を出力する。コンパレータ35は平均化回路34から出力された絶対値の平均値と閾値設定回路4aにより設定された閾値を比較し、その絶対値の平均値の方が小さい場合には“収束”、大きい場合には“未収束”を示す判定結果を出力する。
【0030】
上記実施の形態1では、収束判定回路5が閾値設定回路4により設定された閾値とタップ係数更新回路6により更新されたタップ係数の変化量の差とを比較して収束判定を実施するものについて示したが、収束判定回路7が閾値設定回路4aにより設定された閾値と誤差信号の変化量とを比較して収束判定を実施するようにしてもよい。
【0031】
具体的には、収束判定回路7の減算器32は、閾値設定回路4aの平均化回路12により求められた最新の誤差信号の絶対値の平均値と、メモリ31に格納されている1単位時間前の平均値との減算を実施して、誤差信号の変化量を出力する。
収束判定回路7の絶対値算出回路33は、減算器32が誤差信号の変化量を出力すると、その誤差信号の変化量の絶対値を算出する。
例えば、時刻nにおける誤差信号の絶対値の平均値を|e(n)|ave、時刻nにおける誤差信号の変化量の絶対値を|edif(n)|とすると、|edif(n)|は式(9)のように表される。
Figure 0004180442
【0032】
収束判定回路7の平均化回路34は、絶対値算出回路33が誤差信号の変化量の絶対値を算出すると、その誤差信号の変化量の絶対値を平均化して、その変化量の絶対値の平均値を出力する。例えば、平均化にK’シンボルの移動平均を用いる場合、時刻nにおける変化量の絶対値の平均値を|edif(n)|aveとすると、|edif(n)|aveは式(10)のように表される。
【数5】
Figure 0004180442
【0033】
収束判定回路7のコンパレータ35は、平均化回路34が変化量の絶対値の平均値を出力すると、その変化量の絶対値の平均値と閾値設定回路4aにより設定された閾値を比較し、その絶対値の平均値の方が小さい場合には“収束”、大きい場合には“未収束”を示す判定結果をタップ係数更新回路6に出力する。
【0034】
以上で明らかなように、この実施の形態2によれば、上記実施の形態1と同様に、C/Nが変化しても、正確な収束判定を実施することができる。
また、収束判定回路7は一組のコンパレータ35等を搭載すればよく、上記実施の形態1における収束判定回路5のように、タップ係数の個数だけコンパレータ26等の組を用意する必要がないので、上記実施の形態1よりも回路規模を小さくすることができる効果を奏する。
【0035】
【発明の効果】
以上のように、この発明によれば、等化器から出力された軟判定データに対する硬判定を実施し、その判定結果を示す硬判定データと当該軟判定データの誤差を計算する誤差計算手段を設け、閾値設定手段が誤差計算手段により計算された誤差の絶対値が大きい程、大きな収束判定用の閾値を設定し、係数更新手段が最新のタップ係数の変化量の絶対値と1単位時間前のタップ係数の変化量の絶対値との差分が閾値設定手段により設定された閾値より小さければ、収束している旨を示す判定結果を出力し、その差分が上記閾値より大きければ、収束していない旨を示す判定結果を出力する収束判定処理を実施するように構成したので、C/Nの値に応じた収束判定用の閾値で収束状態を判定することができるようになり、その結果、C/Nが変化しても、正確な収束判定を実施することができる効果がある。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による適応等化器を示す構成図である。
【図2】 閾値設定回路の内部構成を示す構成図である。
【図3】 収束判定回路の内部構成を示す構成図である。
【図4】 この発明の実施の形態2による適応等化器を示す構成図である。
【図5】 閾値設定回路の内部構成を示す構成図である。
【図6】 収束判定回路の内部構成を示す構成図である。
【符号の説明】
1 等化器、2 判定器(誤差計算手段)、3 複素減算器(誤差計算手段)、4 閾値設定回路(閾値設定手段)、4a 閾値設定回路(閾値設定手段)、5 収束判定回路(係数更新手段)、6 タップ係数更新回路(係数更新手段)、7 収束判定回路(係数更新手段)、11 絶対値算出回路、12 平均化回路、13 設定回路、21 メモリ、22 複素減算器、23 絶対値算出回路、24 メモリ、25 減算器、26 コンパレータ、27 多数決回路、31メモリ、32 減算器、33 絶対値算出回路、34 平均化回路、35 コンパレータ。

Claims (3)

  1. 受信信号の信号列とタップ係数を積和演算して、その演算結果である軟判定データを出力する等化器と、上記等化器から出力された軟判定データに対する硬判定を実施し、その判定結果を示す硬判定データと当該軟判定データの誤差を計算する誤差計算手段と、上記誤差計算手段により計算された誤差の絶対値が大きい程、大きな収束判定用の閾値を設定する閾値設定手段と、最新のタップ係数の変化量の絶対値と1単位時間前のタップ係数の変化量の絶対値との差分が上記閾値設定手段により設定された閾値より小さければ、収束している旨を示す判定結果を出力し、上記差分が上記閾値より大きければ、収束していない旨を示す判定結果を出力する収束判定処理を実施し、上記収束判定処理の判定結果を考慮して上記受信信号の信号列と上記誤差計算手段により計算された誤差から上記タップ係数を更新する係数更新手段とを備えた適応等化器。
  2. 受信信号の信号列とタップ係数を積和演算して、その演算結果である軟判定データを出力する等化器と、上記等化器から出力された軟判定データに対する硬判定を実施し、その判定結果を示す硬判定データと当該軟判定データの誤差を計算する誤差計算手段と、上記誤差計算手段により計算された誤差の絶対値が大きい程、大きな収束判定用の閾値を設定する閾値設定手段と、上記誤差計算手段により計算された誤差の変化量の絶対値の平均値が上記閾値設定手段により設定された閾値より小さければ、収束している旨を示す判定結果を出力し、上記平均値が上記閾値より大きければ、収束していない旨を示す判定結果を出力する収束判定処理を実施し、上記収束判定処理の判定結果を考慮して上記受信信号の信号列と上記誤差計算手段により計算された誤差から上記タップ係数を更新する係数更新手段とを備えた適応等化器。
  3. 誤差計算手段により計算された誤差の絶対値を算出する絶対値算出回路と、上記絶対値算出回路により算出された誤差の絶対値の平均値を求める平均化回路と、上記平均化回路により求められた平均値が大きい程、大きな閾値を設定する設定回路とから閾値設定手段が構成されていることを特徴とする請求項1または請求項2記載の適応等化器。
JP2003149507A 2003-05-27 2003-05-27 適応等化器 Expired - Fee Related JP4180442B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003149507A JP4180442B2 (ja) 2003-05-27 2003-05-27 適応等化器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003149507A JP4180442B2 (ja) 2003-05-27 2003-05-27 適応等化器

Publications (2)

Publication Number Publication Date
JP2004356741A JP2004356741A (ja) 2004-12-16
JP4180442B2 true JP4180442B2 (ja) 2008-11-12

Family

ID=34045600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003149507A Expired - Fee Related JP4180442B2 (ja) 2003-05-27 2003-05-27 適応等化器

Country Status (1)

Country Link
JP (1) JP4180442B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10181315B2 (en) * 2014-06-13 2019-01-15 Cirrus Logic, Inc. Systems and methods for selectively enabling and disabling adaptation of an adaptive noise cancellation system

Also Published As

Publication number Publication date
JP2004356741A (ja) 2004-12-16

Similar Documents

Publication Publication Date Title
JP4523294B2 (ja) 通信装置
EP0966113B1 (en) Method and apparatus for performing equalisation in a radio receiver
JP2960165B2 (ja) 適応フィルタの更新係数を最適化する方法
EP1422850A1 (en) Multi-pass interference removal apparatus and multi-pass interference removal method
US5068873A (en) Equalizer
US6952570B2 (en) Wireless communication receiver that determines frequency offset
JP4314099B2 (ja) Ofdm受信装置
JP3859386B2 (ja) 波形等化器、波形等化装置及び受信装置
US20050232347A1 (en) Apparatus and method for noise enhancement reduction in an adaptive equalizer
CN112511473B (zh) 一种自动步长lms时域均衡滤波器及其实现方法
JP2009232439A (ja) 受信装置、受信方法、およびプログラム
US6434193B1 (en) Apparatus and method for waveform equalization coefficient generation
EP0838111B1 (en) Carrier recovery for digitally phase modulated signals, using a known sequence
US7447261B2 (en) Adaptive frequency equalizer
JP4180442B2 (ja) 適応等化器
JP4686252B2 (ja) 波形等化装置、波形等化方法および集積回路
US8040944B2 (en) Adaptive digital filter, signal processing method, FM receiver, and program
JP2007151046A (ja) 通信装置
JP2000124840A (ja) 適応等化器
US20020167999A1 (en) Equalizer, receiver, and equalization method and reception method
US20060029126A1 (en) Apparatus and method for noise enhancement reduction in an adaptive equalizer
JP6746029B2 (ja) 無線通信システム、干渉抑圧方法、制御回路およびプログラム記憶媒体
JP4486008B2 (ja) 受信装置
JP4851637B1 (ja) 等化装置及び等化方法
JP4795274B2 (ja) 適応等化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071022

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071022

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080827

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees