JP4178997B2 - Functional fiber assembly and molded body using the same - Google Patents

Functional fiber assembly and molded body using the same Download PDF

Info

Publication number
JP4178997B2
JP4178997B2 JP2003053142A JP2003053142A JP4178997B2 JP 4178997 B2 JP4178997 B2 JP 4178997B2 JP 2003053142 A JP2003053142 A JP 2003053142A JP 2003053142 A JP2003053142 A JP 2003053142A JP 4178997 B2 JP4178997 B2 JP 4178997B2
Authority
JP
Japan
Prior art keywords
fiber
functional
fiber assembly
component
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003053142A
Other languages
Japanese (ja)
Other versions
JP2004262022A (en
Inventor
雅美 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
JNC Fibers Corp
Original Assignee
Chisso Polypro Fiber Co Ltd
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Polypro Fiber Co Ltd, Chisso Corp filed Critical Chisso Polypro Fiber Co Ltd
Priority to JP2003053142A priority Critical patent/JP4178997B2/en
Publication of JP2004262022A publication Critical patent/JP2004262022A/en
Application granted granted Critical
Publication of JP4178997B2 publication Critical patent/JP4178997B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、機能性材料が熱接着された繊維集合体及びそれを用いた成形体に関する。
【0002】
【従来の技術】
繊維製品に吸湿性、脱臭性、抗菌性等の機能を付与するためには、繊維の原料樹脂に機能性材料を練り込んで繊維状にする技術が知られている(例えば、特許文献1参照)。しかし、この技術では、殺菌作用を有する金属イオンを保持したゼオライトを樹脂に添加混合するため、大部分の該ゼオライトが繊維内部に埋没して添加量に見合った性能が得られない欠点があった。さらに、長期間性能を維持するためには、前記ゼオライトを多量に添加する必要があり、その場合、紡糸性の悪化や繊維強度の低下等の問題があった。
【0003】
前述の技術以外では、ゼオライト及び雲母からなる担体に抗菌性金属イオンを担持させた微粉体をウレタン系やアクリル系の有機溶剤やエマルジョンのようなバインダー成分と混合して、布地に付着させる方法が提案されている(例えば、特許文献2参照)。しかし、この技術では前記微粉体がバインダー成分に埋没するため、その表面への露出が少なく、前記微粉体の性能が充分に発揮されないといった欠点があった。さらに、長期間性能を維持するためには、前記微粉体を多量に使用する必要があった。また、バインダー成分を用いることで、バインダー成分と前記微粉体との混合設備が必要であり、製造工程が増え製造コストが高くなるといった問題があった。
【0004】
また、ゼオライトのように比重が高い物質は、低粘度のバインダー液を使用すると沈降してしまうので、バインダー液にこのような物質を均一に分散させるためには、高粘度のバインダー液を使用しなければならない。高粘度のバインダー液を用いることで、乾燥工程に時間がかかるばかりでなく、得られる布地の風合いが固くなる問題や、バインダーが繊維間の隙間をふさぎ、通気性を低下させるといった問題が生じてしまう。
【0005】
【特許文献1】
特開昭59−133235号公報(第2頁)
【特許文献2】
特開平04−194074号公報(第1頁)
【0006】
【本発明が解決しようとする課題】
本発明の課題は、機能性材料の有する、吸湿性、消臭性、脱臭性、抗菌性等の機能を損なうことなく、これらを充分に発揮させることができ、かつ加工性や強度に優れ、通気性の良好な機能性繊維集合体及びそれを使用した成形品を提供することである。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意検討を重ねた。その結果、以下の構成を採用することにより、課題を解決することを見出し、この知見に基づいて本発明を完成させるに至った。
【0008】
以下、本発明は次の構成を有する。
(1)機能性材料と繊維集合体とが熱接着されてなる機能性繊維集合体であって、該機能性繊維集合体は、ポリオレフィンを不飽和カルボン酸及び不飽和カルボン酸無水物から選ばれる少なくとも1種を含むビニルモノマー(以下、これらを変性剤という。)でグラフト重合させた変性ポリオレフィンを含む樹脂で構成されている熱接着性繊維からなることを特徴とする機能性繊維集合体。
(2)熱接着性繊維が、第1成分と第2成分とからなる熱接着性複合繊維であり、第1成分が変性ポリオレフィンを含む樹脂であり、第2成分が該第1成分より融点の高い樹脂であり、第1成分が熱接着性複合繊維表面の少なくとも一部を長さ方向に連続して形成している熱接着性複合繊維である前記(1)項記載の機能性繊維集合体。
(3)変性剤が、無水マレイン酸、アクリル酸及びメタクリル酸から選ばれる少なくとも1種である前記(1)項または前記(2)項記載の機能性繊維集合体。
(4)熱接着性繊維が、長繊維である前記(1)〜(3)のいずれか1項記載の機能性繊維集合体。
(5)機能性材料が、機能性無機材料である前記(1)〜(4)のいずれか1項記載の機能性繊維集合体。
(6)機能性無機材料が、ゼオライト、リン酸カルシウム及びリン酸アルミニウムから選ばれる少なくとも1種である前記(5)項記載の機能性繊維集合体。
(7)前記(1)〜(6)のいずれか1項記載の機能性繊維集合体を用いた成形体。
【0009】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明で用いられる繊維集合体は、変性ポリオレフィンを含む樹脂から構成された熱接着性繊維からなる。前記熱接着性繊維としては、変性ポリオレフィンを含む樹脂からなる単一繊維が利用できる。また、変性ポリオレフィンを含む樹脂を第1成分とし、第1成分よりも融点の高い樹脂を第2成分とし、第1成分が熱接着性繊維表面の少なくとも一部を長さ方向に連続して形成されている熱接着性複合繊維が利用できる。なお、熱接着性複合繊維の第2成分にも変性ポリオレフィンを含む樹脂を使用してもよい。また、熱接着性複合繊維とすることで、繊維集合体を成形加工する際の、加熱や圧縮等による繊維または繊維集合体の大幅な溶融変形を防ぎ、繊維形状が保持されるために、通気性、弾力性、強度等が維持できるため望ましい。さらに、熱接着性複合繊維の第1成分だけに変性ポリオレフィンを用いた場合には、単一繊維に比べて、繊維表面近くの成分に変性ポリオレフィンを含ませることができるため、少ない変性ポリオレフィンの使用量で機能を発揮させることができる。また、変性ポリオレフィンを第1成分と第2成分の両成分に用いた場合には、第1成分と第2成分との層間接着強力を増やし両成分の剥離を防ぐ効果がある。
【0010】
変性ポリオレフィンに用いられる変性剤は、不飽和カルボン酸及び不飽和カルボン酸無水物から選ばれる少なくとも1種を含むビニルモノマーであり、具体的にはマレイン酸、アクリル酸、メタクリル酸等から選択される不飽和カルボン酸、またはそれらの不飽和カルボン酸の無水物である。しかし、これら以外の他のビニルモノマーを含有させてもよい。
【0011】
他のビニルモノマーとしては、ラジカル重合性に優れた汎用モノマーを使用することができる。例えばメタクリル酸メチル、メタクリル酸エチル、メタクリル酸2−ヒドロキシエチル、メタクリル酸ジメチルアミノエチル等のメタクリル酸エステル類または同様なアクリル酸エステル等を挙げることができる。
【0012】
変性ポリオレフィン中の不飽和カルボン酸または不飽和カルボン酸無水物は、機能性材料等の他素材との接着性に直接寄与する成分である。また、他のビニルモノマーは、接着成分を樹脂中へ均一分散させる効果と、極性の少ないポリオレフィンに極性を付与し他素材との親和性を向上させる効果があり、接着性に間接的に寄与する成分である。
【0013】
これらのビニルモノマーをポリオレフィンにグラフト重合する方法は、公知の方法で行うことができる。例えば、ポリオレフィン、ビニルモノマー及びラジカル開始剤を溶融混練して重合する方法や反応槽内で重合する方法等が挙げられる。
【0014】
ポリオレフィン中のグラフト重合された変性剤の量は、赤外吸収スペクトルを測定することで算出することができる。例えば、変性ポリオレフィンが、ポリエチレンを無水マレイン酸でグラフト重合させた変性ポリエチレンの場合には、以下の操作によって、グラフト重合された変性剤の量を測定することができる。
変性ポリエチレンを沸騰キシレンに溶解させ、その溶解液を3倍量の常温のアセトンに注ぎ、充分に冷却する。この液の濾過物を更にアセトンで洗浄し、真空乾燥することで、未反応の無水マレイン酸が除去された粉末状の変性ポリエチレンが得られる。この粉末をフィルム成形し、それを用いてフーリエ変換赤外吸収スペクトルを測定することで無水マレイン酸のグラフト量が算出できる。
【0015】
変性ポリオレフィンの主鎖ポリマーとなるポリオレフィンとしては、ポリエチレン、ポリプロピレン等が好ましく用いられる。ポリエチレンとしては、エチレンのホモポリマー、またはエチレンと他のα−オレフィンとのコポリマーを用いることができる。具体的には、密度が0.910〜0.925g/cmの低密度ポリエチレン、0.926〜0.940g/cmの直鎖状低密度ポリエチレン、0.941〜0.980g/cmの高密度ポリエチレンの汎用品を用いることができる。これらの融点は100〜135℃程度である。しかし、これらより密度が低いポリエチレンも市販されており、使用することができる。ポリプロピレンとしては、プロピレンのホモポリマー、またはプロピレンとプロピレン以外のエチレン、1−ブテン等のα−オレフィンとのコポリマーを用いることができる。これらの融点は130〜170℃程度である。なお、これらポリマーの中で、融点範囲やグラフト重合の容易性を考慮するとポリエチレンが好ましく用いられる。
【0016】
本発明に用いられる変性ポリオレフィンは、それ単独で用いるだけでなく、変性ポリオレフィンの2種以上の混合物、変性ポリオレフィンの主鎖ポリマーと同種ポリマーとの混合物、または変性ポリオレフィンの主鎖ポリマーと異種ポリマーとの混合物として用いることができる。変性ポリオレフィンを単独で用いる場合や混合物として用いる場合には、熱接着性繊維中の変性剤のグラフト量が0.001〜2モル/kgの範囲であればよい。この範囲であれば、公知の紡糸装置で問題なく生産でき、しかも機能性材料との接着性を発揮できる。
【0017】
第1成分より融点が高い第2成分の樹脂としては、ポリエチレン、ポリプロピレン、ポリエステル、ポリアミド等の結晶性ポリマーやポリエステル、ポリアミド等の非晶性ポリマーを用いることができる。これらのポリマーの中では、紡糸性、耐薬品性、融点等の点を考慮して、結晶性プロピレンホモポリマー、またはプロピレンと、エチレン、1−ブテン等のα−オレフィンとのコポリマーである結晶性プロピレンコポリマーが好ましく用いられる。また、ポリエチレンテレフタレートを用いた場合には、強度や耐熱性に優れた繊維集合体が得られる。即ち、付加価値または要求性能に応じて、第2成分を選択すればよい。
【0018】
本発明に用いられる第1成分、第2成分には、本発明の効果を妨げない範囲内で必要に応じて、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、造核剤、エポキシ安定剤、滑剤、抗菌剤、難燃剤、帯電防止剤、顔料、可塑剤、親水剤を適宜添加してもよい。また本発明で用いられる繊維集合体には必要に応じ、界面活性剤等の付着処理を行ってもよい。
【0019】
本発明に用いられる繊維集合体は、短繊維や長繊維からなり、各々単体で繊維集合体を形成してもよく、それらを混合または層状に組み合わせてもよい。また、形成する樹脂構成が異なる繊維やその他の繊維類が混合または層状に組み合わされていてもよい。
【0020】
繊維の断面形状としては、円形の他、楕円形、ブーメラン形、クロス形等の異形断面が挙げられ、各断面形状の繊維を組み合わせて繊維集合体を形成してもよい。複合繊維の場合は、並列型、多分割型、同心鞘芯型または偏心鞘芯型等の複合形態が挙げられ、各複合形態の繊維を組み合わせて繊維集合体を形成してもよい。また、2成分からなる複合繊維の場合、第1成分と第2成分の容積割合(繊維断面積をその測定に採用した場合にはその断面積の割合に相当する)は、通常、第1成分:第2成分の容量比で10:90〜90:10、より好ましくは30:70〜70:30の範囲にすることが好ましい。容積比が10:90〜90:10の範囲であれば、接着性と紡糸性が良好になる。特に容積比が30:70〜70:30の範囲であれば、熱加工等の処理を施した場合に、芯成分が繊維形状を強固に保持できるために好ましい。なお、複合形態として上記の2成分タイプだけでなく3成分以上にしても本発明の効果を満たすことができる。また、第1成分のみを使用して熱接着性繊維や繊維集合体としてもよいが、用途によっては成形体加工後の通気性や物性が必要になるので、熱接着性繊維を熱加工時の熱により繊維形状が保持されやすい2成分や3成分といった複合形態に加工することが好ましい。
【0021】
本発明に用いられる繊維集合体を構成する繊維の繊度は、用途に応じて適宜選択すればよく、通常、0.01〜100dtex程度が用いられる。接着性や生産性を考慮すると、0.01〜20dtexが好ましく、0.01〜10dtexがより好ましい。
【0022】
本発明で用いられる繊維集合体が不織布である場合、その目付は、原料として用いる樹脂の種類や用途に応じて適宜選択すればよいが、通気性や生産性を考慮すると、5〜100g/mが好ましく、5〜50g/mが特に好ましい。
【0023】
本発明でいう機能性材料とは、吸湿性、脱臭性、消臭性、抗菌性等の機能を有する材料や、磁力、放射線、遠赤外線等の微量のエネルギーを放射する性質を有する材料である。本発明では、これらの機能を有する多孔質物質、吸着性物質、イオン交換性物質が好ましく利用でき、例えば、活性炭、木炭粉、竹炭粉、備長炭粉、多孔質セルロース、機能性無機材料等が挙げられる。
【0024】
本発明でいう機能性無機材料とは、吸湿性、脱臭性、消臭性、抗菌性等の機能を有する無機材料や、磁力、放射線、遠赤外線等の微量のエネルギーを放射する性質を有する無機材料である。本発明では、これらの機能を有する無機材料からなる多孔質物質、吸着性物質、イオン交換性物質が好ましく利用でき、例えば、リン酸3カルシウム、ハイドロキシアパタイト等のリン酸カルシウム系化合物、リン酸ジルコニウム、リン酸チタニウム、リン酸亜鉛、リン酸アルミニウム、珪酸、珪酸カルシウム、珪酸アルミニウム、珪酸亜鉛、珪酸ジルコニウム、酸化チタン、ガラス、天然ゼオライト、合成ゼオライト、人工ゼオライト、シリカゲル、セラミックス等を挙げることができる。上記無機材料には、従来から知られている、抗菌性、消臭性を有する、銀、銅、亜鉛等の金属、金属イオン、金属塩等が担持されていてもよい。磁力、放射線、遠赤外線等の微量のエネルギーを放射する性質を有する機能性無機材料としては、例えば、モナザイト、バストネサイト、チルケライト、ホルマナイト、マグネタイト、ピスタサイト、サマルスキー石、コルンブ石、チタン磁鉄鉱、ガドリン石、カツレン石、ジルコン、アルミナ、シリカ等を挙げることができる。
【0025】
上記機能性材料の平均粒子径は、用途に応じて適宜選択すればよいが、0.1〜200μmであることが好ましい。特に好ましくは0.5〜50μmである。平均粒子径が、0.1〜200μmであれば粒子が凝集し難く、均一に分散させやすくなり、また、0.1〜200μmであれば機能性材料の比表面積が充分に広く、機能が充分に発揮される。特に0.5〜50μmであると樹脂への分散性も良好で、比表面積も充分であるので好ましい。
【0026】
本発明において、繊維集合体と機能性材料との重量比は、用途に応じて適宜選択すればよいが、繊維集合体が不織布の場合は、1m当たりの機能性材料の付着重量(目付)が、0.1g/m以上とすることが好ましい。特に好ましくは、0.5〜100g/mである。目付が0.1g/m以上であれば、機能を発揮するために充分な量の機能性材料を繊維または繊維集合体に熱接着することができる。特に目付が0.5〜100g/mであれば、機能性材料と繊維または繊維集合体とが良好に接着でき、機能性材料が脱落することがない。また、繊維集合体が不織布以外の場合はその形状により、機能性材料の付着量は変化するが、繊維集合体の0.1〜1000重量%の範囲の付着量であればよい。
【0027】
以下、本発明の繊維集合体の製造方法について一般的製糸方法を用いた場合で説明する。原料の樹脂としては、例えば、無水マレイン酸と直鎖状低密度ポリエチレンとを混合してグラフト重合した変性ポリオレフィンを含む樹脂を第1成分として用い、第1成分より融点の高い結晶性ポリプロピレンを第2成分として用いる。これらの樹脂を、鞘芯型複合紡糸口金を備えた、一般的な熱溶融紡糸機により紡糸する。このとき、口金直下において、クエンチ装置の送風によって、吐出する半溶融状態の樹脂を冷却し、固化させ、未延伸状態の熱接着性繊維(以下、未延伸糸という。)を製造する。このとき、必要に応じて表面処理剤を付着してもよい。溶融した樹脂の吐出量及び未延伸糸の引取速度を任意に設定し、目標繊度に対して1.1〜5倍程度の繊維径の未延伸糸とする。得られた未延伸糸は一般的な延伸機で延伸することで延伸糸(延伸加工を施しているが、捲縮加工を施していない状態の繊維)とすることができる。通常の場合、30〜120℃に加熱した延伸ロールにおいて、未延伸糸の入り口側と、その出口側ロールの速度比が1:1.1〜1:5の範囲となるように延伸処理を施す。必要に応じて、延伸処理によって得られた延伸糸にタッチロールやスプレー等で表面処理剤(油剤)を付着した後、ボックス型の捲縮加工機で捲縮を付与する。捲縮を付与された延伸糸を乾燥機で、50〜120℃の温度により乾燥し、用途に合わせて任意の繊維長に押し切りカッターで切断して使用する。このようにして得られた熱接着性繊維を、一般的に知られるカーディング法、エアレイド法、抄紙法等の方法でウェブとして、得られたウェブを一般的に知られるポイントボンド法、熱風加熱法、高圧水流法、ニードルパンチ法または超音波接着法等の加工法で繊維集合体としてもよく、さらにこれらを組み合わせてもよい。また、延伸糸を短くカットせずに長繊維であるトウの状態から繊維集合体へと加工してもよく、例えば、トウを熱処理して棒状の成形体としてもよく、開繊法により開繊したトウを熱処理して不織布としてもよい。
【0028】
以下、本発明の繊維集合体を製造する方法について、スパンボンド法を例にして説明する。原料の樹脂としては、例えば、無水マレイン酸をグラフト重合した直鎖状低密度ポリエチレンを含有した樹脂を第1成分として用い、第1成分より融点の高い結晶性ポリプロピレンを第2成分として用いる。2機の押出機を有する汎用の複合スパンボンド紡糸機を使用し、それぞれの押出機にそれぞれの樹脂を投入し、高温に保温した複合紡糸口金から溶融樹脂を長繊維として吐出させる。吐出した長繊維群をエアサッカーに導入して牽引延伸し、続いてエアサッカーから長繊維群を排出させ、コンベア上に捕集する。このときサクションコンベア上に、直接、長繊維ウェブとして長繊維群を捕集する方法や、コンベア上に捕集する前に開繊し、その後、捕集する方法がある。開繊する方法としては、例えば長繊維群の排出の途中で一対の振動する羽根状物(フラップ)の間に長繊維群を通過させる方法、長繊維群を反射板等に衝突させる方法またはコロナ帯電法により長繊維群を帯電させる方法が挙げられる。捕集した長繊維ウェブを、サクションコンベアで搬送し、熱処理加工を施す。熱処理加工としては、例えば、加熱された凹凸ロールと平滑ロールとで構成されたポイントボンド加工機で、加圧されたロール間にウェブを導入し、前記凹凸ロールの凸部に対応する区域において、第1成分を溶融または軟化して長繊維相互間を熱融着させることで行われる(ポイントボンド法)。これにより繊維集合体が得られる。このとき、繊維集合体の目付は、紡糸吐出速度(時間当たりの吐出量)やサクションコンベアの移動速度等の設定で調節することができる。なお、繊維集合体の加工は、ポイントボンド法に限らず、熱風加熱法、高圧水流法、ニードルパンチ法または超音波接着法等の方法で行ってもよく、さらにこれらを組み合わせてもよい。
【0029】
以下、本発明に用いられる繊維集合体を製造する方法について、メルトブロー法を例にして説明する。2機の押出機を有する汎用の複合メルトブロー紡糸機を使用し、スパンボンド法と同様に、第1成分と第2成分とをそれぞれの押出機に投入し、高温に保温された、吐出孔が横一列に並んだ複合メルトブロー紡糸口金より吐出させ、吐出孔の両側より高温、高速の熱風を吹き付けることで、細繊化された長繊維群をサクションコンベアやサクションドラム上に長繊維ウェブとして捕集する。メルトブロー法で得られるウェブは、熱融着しているので、ウェブの状態でも取扱い上は問題ないレベルの強度を持つ。そのため、熱加工せずにそのまま使用することができる。しかし、用途に応じて、スパンボンド法と同様に、さらにポイントボンド法等の加工を施してもよい。
【0030】
熱接着性繊維からなる繊維集合体の製造方法のなかでも、特にスパンボンド法は引張強度等の機械的物性に優れた繊維集合体を容易に得られるという特徴をもつ。また、スパンボンド法やメルトブロー法では、溶融紡糸して得られる長繊維をそのまま開繊及び集積して繊維集合体へと加工できるので、生産性に非常に優れ、安価に製造でき好ましい。さらに、スパンボンド法やメルトブロー法を用いることで、繊維集合体と機能性材料とを接着させるときに、接着力を低下させる恐れのある表面処理剤(油剤)を使用せずに繊維集合体を製造することができる。このため、表面処理を必要とする一般的紡糸方法により得られた繊維集合体と比較して、繊維集合体と機能性材料との接着力に優れ、機能性材料の脱落が生じにくい繊維集合体を製造できる。
【0031】
また、スパンボンド法で得られた繊維集合体と、メルトブロー法で得られた繊維集合体とを積層し、ポイントボンド加工機等で接合した繊維集合体の積層物も本発明の機能性繊維集合体に利用できる。積層物としては、例えば、SM(スパンボンド不織布/メルトブロー不織布の積層物)、SMS(スパンボンド不織布/メルトブロー不織布/スパンボンド不織布の積層物)、SMMS(スパンボンド不織布/メルトブロー不織布/メルトブロー不織布/スパンボンド不織布の積層物)等が挙げられる。これらの他にも、スパンボンド法やメルトブロー法による繊維集合体と、一般的紡糸法により得られる熱接着性繊維をカーディング法、エアレイド法、抄紙法等で繊維集合体とを積層した積層物も繊維集合体として利用できる。
【0032】
繊維集合体が積層物の場合、積層されている全ての繊維集合体に本発明で用いられる変性剤が含まれていてもよいが、機能性材料を付着させる層に変性剤を含有させ、機能性材料を接着させた層を一部に使用した繊維集合体の積層物としてもよい。この場合、機能性材料を付着させた繊維集合体の熱接着性繊維中に、変性剤が0.001〜2モル/kg含まれていればよい。
【0033】
本発明に用いられる熱接着性繊維を用いた繊維集合体には、上記の熱接着性繊維以外の繊維が混合されていてもよい。例えば、ポリエステル、ポリアミド、ポリプロピレン、ポリエチレン等の合成繊維、パルプ、木綿、羊毛等の天然繊維、レーヨン等の半合成繊維が利用できる。さらに本発明に用いられる熱接着性繊維以外の繊維で構成された繊維集合体と、本発明に用いられる熱接着性繊維を使用した繊維集合体と、本発明の機能性繊維集合体とを組み合わせて、積層物にしてもよい。
【0034】
本発明で用いられる繊維集合体または機能性繊維集合体には、必要に応じて熱処理時または熱処理後に2次加工を施すことができ、これにより任意の形状の成形体にすることが可能になる。例えば、長繊維をウェブ段階で束にし、これに熱処理等を施し、繊維交点を接着することで、ロッド状等の様々な形状の成形体とすることができ、また繊維集合体を任意の形状の容器に充填して熱処理等を行い繊維交点を接着することで、様々な形状の成形体とすることができる。
【0035】
本発明の機能性繊維集合体の製造方法としては、粉末状にした機能性材料を溶剤中に分散させて、公知のロールコート方式、グラビアロール方式、スクリーン方式、ドクター方式、スプレー方式等で、前記繊維集合体の表面に塗布し、その後、溶剤を熱乾燥し、加熱処理させることで、繊維集合体に機能性材料を熱接着させる方法が挙げられる。また、繊維集合体に直接粉末状の機能性材料を散布し、熱ロール、エンボスロール/フラットロールに代表されるポイントボンド加工機等の熱圧着装置で繊維集合体と機能性材料とを熱圧着する方法、スルーエア加工機等の熱風加熱加工装置で熱風を使用して繊維集合体と機能性材料とを熱接着する方法、遠赤外線を使用したヒーター等で加熱して繊維集合体と機能性材料とを熱接着する方法等も利用できる。
【0036】
また、公知のカーディング法、エアレイド法、スパンボンド法やメルトブロー法等で得られた熱処理前の繊維集合体に機能性材料を散布した後に、公知の熱加工方法によって、繊維集合体と機能性材料とを接着することで、機能性繊維集合体を得ることができる。具体的には、ポイントボンド加工機等の熱圧着装置で繊維集合体と機能性材料とを熱圧着する方法、スルーエア加工機等の熱風加熱加工装置で熱風により繊維集合体と機能性材料とを熱接着する方法、遠赤外線を使用したヒーターを備えた加熱加工装置等で繊維集合体と機能性材料とを熱接着する方法等が利用できる。
【0037】
さらに、公知のカーディング法、エアレイド法、スパンボンド法、メルトブロー法等で得られた熱処理前の繊維集合体上に機能性材料を散布して、その上から公知のカーディング法、エアレイド法、スパンボンド法、メルトブロー法等で得られた繊維集合体を積層し、機能性材料を挟んだ積層構造にした後に、公知の熱加工方法によって、繊維集合体と機能性材料とを接着することで、機能性繊維集合体を得ることができる。具体的には、ポイントボンド加工機等の熱圧着装置で繊維集合体と機能性材料とを熱圧着する方法、スルーエア加工機等の熱風加熱加工装置で熱風を使用して繊維集合体と機能性材料とを接着する方法、遠赤外線を使用したヒーターを備えた加熱加工装置等で繊維集合体と機能性材料とを接着する方法等が利用できる。
【0038】
機能性材料が粉末状の場合、繊維集合体を構成する熱接着性繊維に含まれている変性剤による機能性材料の接着効果により、粉末状の機能性材料と繊維集合体とが良好に接着するため、機能性材料の脱落が非常に少ない。さらに、機能性材料を熱接着した繊維集合体同士を積層または、機能性材料を熱接着していない繊維集合体とで積層したものは、変性剤による機能性材料の接着効果のほか、繊維集合体により挟まれることにより、機能性材料の脱落が生じにくくなるので好ましい。
【0039】
本発明の機能性繊維集合体を使用した成形体としては、上記のようにして得られた機能性繊維集合体からなる不織布、シート、筒状物、箱状物、球状物、フィルター、印刷物が挙げられる。特に、不織布やシートに加工することで、テーブルクロス、カーテン、カーペット、マット、毛布、布団、布団カバー、まくら、まくらカバー、衣装カバー、自動車の内外装材、自動車、自転車、オートバイのカバー、靴の中敷、内張り地、かばん、風呂敷、クッション、ぬいぐるみ等衣料品関連の材料、網戸、障子紙、襖紙、壁紙等の紙代替、家具、冷蔵庫、靴箱、畳用基材、畳やじゅうたんの下敷き、床下、屋根裏、押し入れ内等の除湿、消臭材、エアコンや空気清浄機、浄水器等のフィルター類等家庭生活用品の材料、農作物や植物の虫除け、日よけ用カバー、農業用シート、産業用の液体用フィルターや気体用フィルター等、多岐にわたり使用できる。
【0040】
本発明の筒状物とは、成形体の横断面の形状が、円形または楕円形等の円筒状の成形体や、横断面の形状が、3角形または4角形以上の多角形をした角形筒状の成形体である。これら筒状に加工する方法としては、例えば、任意の太さのステンレス製巻芯に機能性繊維集合体を任意の外径に巻き取り、これに公知の熱加工方法を施す製造方法等を挙げることができる。この方法を用いることで、筒状の成形体を得ることができる。
【0041】
本発明の印刷物は、機能性繊維集合体およびそれを用いた成形体に、公知のロールコート方式、グラビアロール方式、スクリーン方式、ドクター方式、スプレー方式等で印刷することで得られる。印刷物が不織布やシートである場合には、消臭、除湿等の機能を持つカレンダーやポスター等として利用できる。
【0042】
【実施例】
以下、本発明を実施例及び比較例によって詳細に説明するが、本発明はこれらによって何ら限定されるものではない。なお、実施例、比較例中における物性の測定方法は以下の通りである。
【0043】
メルトフローレート:JIS K 7210に準拠し、ポリプロピレン系樹脂は表1の条件14、ポリエチレン系樹脂は表1の条件4の設定で測定した(条件14の場合はMFR、条件4の場合はMIと表記した。単位:g/10分)。
固有粘度:ポリエチレンテレフタレートについては、フェノールと四塩化エタンの等重量混合溶媒にて、濃度0.5g/100ml、温度20℃の条件で固有粘度を測定した(IVと表記)。
目付:繊維集合体、不織布、機能性繊維集合体等を25cm角に切り出し、その重量を秤量し、単位面積あたりの重量(g/m)を求めた。
担持量:機能性材料を熱接着した繊維集合体、不織布を25cm角に切り出し、その重量を秤量し熱接着前の重量を除いて、機能性材料の単位面積あたりの重量(g/m)を求めた。
【0044】
アンモニア除去率の測定:テスト方法はテドラーバックを用いて行い、初期アンモニア濃度60ppm、設定温度35℃、機能性不織布400cm(20cm×20cm)として、24時間放置後の残留アンモニア濃度をアンモニア検知管で測定し、次式を用いてアンモニア除去率を求めた。
(((初期アンモニア濃度)−(残留アンモニア濃度))/(初期アンモニア濃度))×100(%)
【0045】
機能性材料保持率:機能性材料を不織布に熱接着加工した後、得られた機能性繊維集合体(その不織布)にエアーを吹き付けて、未接着の機能性材料を除去した。機能性材料が不織布に残留した量を測定し、次式を用いてその比率を算出した。
((未接着の機能性材料除去後の機能性材料の重量)/(熱接着加工後の機能性材料の重量))×100(%)
【0046】
通気性:
機能性材料付着加工後の通気度が加工前の80%以上の場合を◎
機能性材料付着加工後の通気度が加工前の60%以上、80%未満の場合を○
機能性材料付着加工後の通気度が加工前の50%以上、60%未満の場合を△
機能性材料付着加工後の通気度が加工前の50%未満の場合を×
加工性:繊維工程及び付着工程において
工程が少なく加工が簡単な場合を◎
工程は多いが加工が簡単にできる場合を○
工程は少ないが加工に専用の装置や技術を要する場合を△
工程が多く煩雑で加工に専用の装置や技術を要する場合を×
【0047】
実施例、比較例では、以下の樹脂を用いて試験を行った。
PP:結晶性ポリプロピレン(プロピレンホモポリマー、MFR36、融点161℃)
HDPE:高密度ポリエチレン(エチレンホモポリマー、Mw/Mn=4.2、MI30、融点132℃、密度0.955g/cm
LLDPE:直鎖状低密度ポリエチレン(エチレン−ブテン−1コポリマー、Mw/Mn=3.5、MI20、融点122℃、密度0.920g/cm
変性PE(変性ポリエチレン):高密度ポリエチレン(エチレンホモポリマー、Mw/Mn=4.0、MI2.0、融点132℃、密度0.960g/cm)を主鎖ポリマーとして無水マレイン酸をグラフト重合したコポリマー(無水マレイン酸含量0.2モル/Kg)
PET:ポリエチレンテレフタレート(IV0.63、融点255℃)
【0048】
実施例、比較例では熱接着性繊維を構成する樹脂の組合せを以下のようにした。また、それぞれの組合せによって得られた繊維集合体中の変性剤含有量(モル/kg)は、表1に示した。なお、繊維集合体中の変性剤含有量は、原料に用いた変性PEと他の成分の比率から算出した値である。
樹脂構成A:第1成分として変性PE10重量%とHDPE90重量%との混合物を用い、第2成分としてPPを用いて、第1成分を鞘側、第2成分を芯側とした。
樹脂構成B:第1成分として変性PE10重量%とLLDPE90重量%との混合物を用い、第2成分としてPPを用いて、第1成分を鞘側、第2成分を芯側とした。
樹脂構成C:第1成分として変性PE6重量%とLLDPE94重量%との混合物を用い、第2成分としてPPを用いて、第1成分を鞘側、第2成分を芯側とした。
樹脂構成D:第1成分として変性PE15重量%とHDPE85重量%との混合物を用い、第2成分としてPPを用いて、第1成分を鞘側、第2成分を芯側とした。
樹脂構成E:変性PE10重量%とHDPE90重量%との混合物のみを用いた。
樹脂構成F:第1成分として変性PE6重量%とLLDPE94重量%との混合物を用い、第2成分としてPETを用いて、第1成分を鞘側、第2成分を芯側とした。
樹脂構成G:第1成分としてHDPEを用い、第2成分としてPPを用いて、第1成分を鞘側、第2成分を芯側とした。
樹脂構成H:第1成分としてLLDPE100重量%を用い、第2成分としてPPを用いて、第1成分を鞘側、第2成分を芯側とした。
樹脂構成I:第1成分として変性PE0.5重量%とLLDPE99.5重量%との混合物を用い、第2成分としてPPを用いて、第1成分を鞘側、第2成分を芯側とした。
【0049】
実施例、比較例では機能性材料の構成を以下の組合せのようにした。また、それぞれの機能性材料の平均粒子径(μm)は、表2に示した。
機能性材料構成L:人工ゼオライト。
機能性材料構成M:ハイドロキシアパタイト。
機能性材料構成N:リン酸アルミニウム。
機能性材料構成O:モナザイト鉱石と人工ゼオライトとの重量比1:1の混合物。
機能性材料構成P:リン酸アルミニウムとジルコンセラミックとの重量比1:1の混合物。
【0050】
実施例、比較例の繊維集合体を構成する熱接着性繊維のうち長繊維については、公知のスパンボンド法またはメルトブロー法によって作製し、短繊維については、公知の複合繊維紡糸法で得られたトウを延伸し、任意の長さにカットすることで作製した。
【0051】
スパンボンド法を用いた繊維集合体の製造方法。
2機の押出機を有する複合スパンボンド紡糸機を使用して、繊維集合体を製造した。原料の樹脂(前記の樹脂または樹脂組成物)を、鞘芯型複合紡糸口金を用い、それぞれの押出機に投入し、芯成分の紡糸温度を260℃とし、鞘成分の紡糸温度を260℃として、第1成分と第2成分との複合比を50:50に設定して、紡糸口金から溶融樹脂を長繊維として吐出させた。吐出した長繊維群をエアサッカーで牽引延伸し、サクションコンベア上に排出させ長繊維ウェブとして捕集した。なお、このときの繊度が3dtex/fとなるようにエアサッカーの牽引速度を調節した。得られた長繊維ウェブをコンベアで搬送し、加熱された凹凸ロールと平滑ロールとで構成されたポイントボンド加工機のロール間で加圧した。これにより、凹凸ロールの凸部に対応する区域において第1成分が溶融または軟化して長繊維相互間が熱融着された繊維集合体を得た。なお、繊維集合体の目付が表3記載の各目付となるように繊維の種類に応じてサクションコンベア移動速度及びポイントボンド加工機のロール速度を調節した。
上記のようにして得られた繊維集合体に実施例のように機能性材料を熱接着して機能性繊維集合体とした。
【0052】
メルトブロー法を用いた繊維集合体の製造方法。
孔径0.3mm、孔数501個の紡糸口が一列に並んだメルトブロー用鞘芯型複合紡糸口金を用い、芯成分の紡糸温度を290℃とし、鞘成分の紡糸温度260℃として、第1成分と第2成分の複合比を50:50に設定して、紡糸口から押し出されたポリマーを380℃の加圧空気によってネットコンベヤーに吹き付けることで長繊維ウェブを得た。得られた長繊維ウェブを、ネットコンベヤーで移送しながら遠赤外線ヒーターで145℃に加熱し、この区域において第1成分が溶融または軟化して長繊維相互間が熱融着された繊維集合体を得た。なお、繊維集合体の目付が表3記載の各目付となるように繊維の種類に応じてネットコンベア移動速度を調節した。上記のようにして得られた繊維集合体に実施例のように、機能性材料を熱接着して機能性繊維集合体とした。
【0053】
一般的な複合繊維紡糸法を用いた繊維集合体の製造方法。
孔径が0.6mmの鞘芯型複合紡糸口金を備えた複合紡糸装置で、芯成分の紡糸温度を260℃とし、鞘成分の紡糸温度を260℃として、第1成分と第2成分の複合比を50:50に設定して、1000m/minの引取り速度により紡糸し、単糸繊度が4.0dtex/fの同心鞘芯型複合未延伸糸を得た。次にこの複合未延伸糸を延伸倍率2.4倍、延伸温度95℃の条件で延伸し、機械捲縮を付与し、80℃で乾燥させた後、用途に応じた繊維長にカッターで切断し、短繊維を製造した。ミニチュアカード機用の繊維は25mm、エアレイド機用の繊維は5mmに切断した。得られた短繊維を、ミニチュアカード機またはエアレイド機でウェブとした後、熱風循環式乾燥器で145℃、5分間の熱処理を施して繊維集合体とした。
上記のようにして得られた繊維集合体に実施例のように機能性材料を熱接着して機能性繊維集合体とした。
【0054】
実施例1
樹脂構成Aを使用し、前述のスパンボンド法により紡糸し、ポイントボンド加工機(ロール温度120℃、線圧80N/mm)で処理して、目付30g/mの繊維集合体を得た。次いで、人工ゼオライト(機能性材料構成L)を溶剤(20重量%メタノール溶液)に5重量%スラリーとなるように調整し、充分に攪拌させた後に、前記繊維集合体の表面にグラビアロール方式で塗布し、溶剤を乾燥除去した後、130℃のオーブンで処理することで、9.5g/mの人工ゼオライトが繊維集合体表面に熱接着した機能性繊維集合体を得た。スラリーの調整や塗布等の手間は必要であったが、得られた機能性繊維集合体はアンモニアを100%除去でき、通気性は良好であった。
【0055】
実施例2
樹脂構成Bを使用して、前述のスパンボンド法により紡糸し、ポイントボンド加工機(ロール温度116℃、線圧80N/mm)で処理して、目付20g/mの繊維集合体を得た。次いで人工ゼオライト(機能性材料構成L)を目開き149μm(100メッシュ)の篩に入れて、繊維集合体上に均一になるように散布し、温度130℃、圧力0.1MPaで熱プレス処理することで3.9g/mのゼオライトが繊維集合体表面に熱接着した機能性繊維集合体を得た。得られた機能性繊維集合体はアンモニアを100%除去でき、通気性が良好で、しかも加工が容易であった。
【0056】
実施例3
樹脂構成Cを使用して、前述のスパンボンド法により紡糸し、ポイントボンド加工機(ロール温度116℃、線圧80N/mm)で処理して、30g/mの繊維集合体を得た。次いで、ハイドロキシアパタイト(機能性材料構成M)を目開き149μm(100メッシュ)の篩に入れて、繊維集合体上に均一になるように散布し、温度140℃、圧力0.2MPaで熱プレス処理することで11g/mのハイドロキシアパタイトが繊維集合体表面に熱接着した機能性繊維集合体を得た。得られた機能性繊維集合体はアンモニアを100%除去でき、通気性が良好で、しかも加工が容易であった。
【0057】
実施例4
樹脂構成Dを使用して、前述のメルトブロー法により紡糸し、20g/mの繊維集合体を得た。次いで、モナザイト鉱石と人工ゼオライトの混合物(機能性材料構成O)を目開き149μm(100メッシュ)の篩に入れて、繊維集合体上に均一になるように散布し、フラットロール/フラットロール(132℃/132℃)、線圧20N/mmに設定した熱圧着装置で処理することで5.7g/mのモナザイト鉱石と人工ゼオライトとの混合物(機能性材料構成O)が繊維集合体表面に熱接着した機能性繊維集合体を得た。得られた機能性繊維集合体はアンモニアを100%除去でき、通気性が良好で、しかも加工が容易であった。
【0058】
実施例5
樹脂構成Fを使用して、前述のスパンボンド法により紡糸し、ポイントボンド加工機(ロール温度116℃、線圧80N/mm)で処理して、10g/mの繊維集合体を得た。次いで、リン酸アルミニウム(機能性材料構成N)を目開き149μm(100メッシュ)の篩に入れて、繊維集合体上に均一になるように散布し、温度135℃に設定したオーブンで30秒間処理することで5.8g/mのリン酸アルミニウムが繊維集合体表面に熱接着した機能性繊維集合体を得た。得られた機能性繊維集合体はアンモニアを100%除去でき、通気性が良好で、しかも加工が容易であった。
【0059】
実施例6
樹脂構成Aを使用して、前述の一般的な複合繊維紡糸法により得られた短繊維を、ミニチュアカード機でウェブにし、ポイントボンド加工機(ロール温度120℃、線圧80N/mm)で処理して、15g/mの繊維集合体を得た。次いで、リン酸アルミニウムとジルコンセラミックスの混合物(機能性材料構成P)を目開き149μm(100メッシュ)の篩に入れて、繊維集合体上に均一になるように散布し、温度150℃に設定したオーブンで10秒間処理することで8.5g/mのリン酸アルミニウムとジルコンセラミックスの混合物(重量比1:1で混合したもの)が繊維集合体表面に熱接着した機能性繊維集合体を得た。得られた機能性繊維集合体はアンモニアを100%除去でき、通気性が良好で、しかも加工が容易であった。
【0060】
実施例7
樹脂構成Eを使用して、前述の一般的な複合繊維紡糸法により得られた短繊維をミニチュアカード機でウェブにし、ポイントボンド加工機(ロール温度124℃、線圧20N/mm)で処理して、20g/mの繊維集合体を得た。次いで、人工ゼオライト(機能性材料構成L)を目開き149μm(100メッシュ)の篩に入れて、繊維集合体上に均一になるように散布し、エンボスロール/フラットロール(130℃/130℃)、線圧20N/mmに設定した熱圧着装置で処理することで5.5g/mの人工ゼオライトが繊維集合体表面に熱接着した機能性繊維集合体を得た。得られた機能性繊維集合体はアンモニアを100%除去でき、しかも加工が容易であった。
【0061】
実施例8
樹脂構成Aを使用して前述のスパンボンド法により紡糸し、10g/mとし、次いで、人工ゼオライト(機能性材料構成L)を目開き149μm(100メッシュ)の篩に入れて、繊維集合体上に均一になるように散布した。さらに、この繊維集合体上に、樹脂構成Aを使用して前述の一般的な複合繊維紡糸法により得られた短繊維をエアレイド機で処理して繊維集合体の積層物とした。このとき人工ゼオライト担持量を除いた繊維集合体の積層物の目付は25g/mとした。このようにして得られた人工ゼオライトを散布した繊維集合体と繊維集合体の積層物を、温度145℃に設定した熱風循環式オーブンで45秒間処理することで8g/mの人工ゼオライトを積層物間に熱接着した機能性繊維集合体を得た。得られた機能性繊維集合体はアンモニアを100%除去でき、しかも通気性が良好であり、粉落ちも生じなかった。
【0062】
実施例9
樹脂構成Iを使用して、前述のスパンボンド法により紡糸し、ポイントボンド加工機(ロール温度116℃、線圧80N/mm)で処理して、20g/mの繊維集合体を得た。次いで人工ゼオライト(機能性材料構成L)を目開き149μm(100メッシュ)の篩に入れて、繊維集合体上に均一になるように散布し、温度130℃、圧力0.1MPaで熱プレス処理することで5g/mの人工ゼオライトが繊維集合体表面に熱接着した機能性繊維集合体を得た。これは、変性剤が少ないために機能性材料と繊維集合体が少量しか接着しておらず、エアーを吹き付けると大部分の人工ゼオライトが脱落し、わずかに1g/mの人工ゼオライトが熱接着して、機能性繊維集合体表面に残っていただけであった。この機能性繊維集合体は人工ゼオライトの脱落があったが、通気性が良好で加工が容易であり、しかもアンモニアを80%除去できた。
【0063】
実施例10
実施例4で得られた機能性繊維集合体を使用して、市販のエアコンに使用されているフィルターに合うようにカットし、エアコンのフィルターに代えてエアコンに設置したところ、部屋の異臭が減り、心地よく、好適な室内環境になった。
【0064】
実施例11
実施例1で得られた機能性繊維集合体を赤外線ヒーターで145℃の温度に加熱しながら、直径30mmのステンレス製パイプに機能性繊維集合体の厚みが15mmになるまで巻取り、冷却した後、ステンレス製パイプを抜取った。得られた成形体を、150mmにカットして、内径30mm、外径60mm、長さ150mmの筒状物を得た。得られた筒状物を冷蔵庫内に入れたところ、冷蔵庫内の臭気が低減し好適な使用状況になった。
【0065】
実施例12
実施例1で得られた機能性不織布に、グラビア印刷方式で図柄をプリントして、ポスターを作製した。このポスターを部屋に貼ったところ、部屋の異臭と湿度が減り好適な室内環境になった。
【0066】
比較例1
樹脂構成Hを使用して、前述のメルトブロー法により紡糸し、遠赤外線を使用した熱処理機で、145℃、5分間加熱処理し、30g/mの不織布(繊維集合体)を得た。次いで、人工ゼオライト(機能性材料構成L)を目開き149μm(100メッシュ)の篩に入れて、不織布上にほぼ均一に散布し、得られた不織布を温度150℃に設定したオーブンで10秒間処理して5g/mの人工ゼオライトが繊維集合体に熱接着した機能性繊維集合体を得た。これは、繊維に変性剤が添加されていないため、機能性材料と繊維集合体とが接着しておらず、エアーを吹き付けると人工ゼオライトがほとんど脱落し、わずかに0.1g/mの人工ゼオライトが熱接着して、繊維集合体表面に残っていただけであった。この機能性繊維集合体は通気性が良好で、しかも加工が容易であったが、アンモニアを少量しか除去できず、充分な性能を有していなかった。
【0067】
比較例2
樹脂構成Gを使用して、前述のスパンボンド法により紡糸し、ポイントボンド加工機(ロール温度120℃、線圧80N/mm)で処理して、20g/mの繊維集合体を得た。次いで、ハイドロキシアパタイト(機能性材料構成M)10重量%、ポリカルボン酸アンモニウム塩(分散剤)及びポリビニルアルコール(結合剤)1重量%を純水88.9重量%に加え攪拌して分散液を作製し、上記繊維集合体に含浸し、140℃に設定した熱風乾燥機を通し、繊維集合体に15.2g/mのハイドロキシアパタイトが接着した機能性繊維集合体を得た。この機能性繊維集合体は通気性が良好であったが、分散液製造工程が複雑であり、通気性も悪く、アンモニアの除去率は40%と低く充分な性能ではなかった。
【0068】
比較例3
樹脂構成Gを使用して、前述の一般的な複合繊維紡糸法により得られた短繊維をミニチュアカード機でウェブにし、スルーエア加工機で140℃、2分間熱処理することで、30g/mの繊維集合体を得た。次いで、人工ゼオライト(機能性材料構成L)5重量%とアクリル固形分25重量%との水系エマルジョン液をスプレーガンで、繊維集合体に120g/mとなるように吹き付けて、140℃に設定した熱風乾燥機を通し、10.0g/mの人工ゼオライトが接着した機能性繊維集合体を得た。この不織布のアンモニア除去率は60%であるが、機能性繊維集合体の通気性が不良で、エマルジョン製造工程が煩雑であった。
【0069】
比較例4
樹脂構成Bを使用して、第1成分には、さらに20重量%の人工ゼオライト(機能性材料構成L)を添加して、前述のスパンボンド法により紡糸し、ポイントボンド加工機(ロール温度116℃、線圧80N/mm)で処理して、40g/mの機能性繊維集合体を得た。得られた機能性繊維集合体の通気性は良好なものの、溶融紡糸工程での糸切れが多発し、ノズルフィルターが詰まる等の不具合が非常に多く、生産性に欠ける状態であった。またアンモニア除去率は35%と低く充分な性能ではなかった。
【0070】
【表1】

Figure 0004178997
【0071】
【表2】
Figure 0004178997
【0072】
【表3】
Figure 0004178997
【0073】
【発明の効果】
本発明による機能性繊維集合体及びそれを用いた成形体は、機能性材料を練り込み、バインダーまたはホットメルト接着剤で付着させたものとは異なり、機能性材料の露出面積が大きい。このため、機能性材料の機能が損なわれることがほとんどなく、また、機能性材料の使用量を少なく抑えることができ、しかもバインダーやホットメルト接着剤を使用しないので、通気性も良好であり、加工が容易でコスト面でも有利である特徴を持つ機能性繊維集合体及びそれを用いた成形体を提供できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fiber assembly in which a functional material is thermally bonded and a molded body using the same.
[0002]
[Prior art]
In order to impart functions such as hygroscopicity, deodorizing properties, and antibacterial properties to fiber products, a technique is known in which a functional material is kneaded into a fiber resin to form a fiber (see, for example, Patent Document 1). ). However, in this technique, since zeolite containing metal ions having a bactericidal action is added to and mixed with the resin, most of the zeolite is buried in the fiber, and the performance corresponding to the added amount cannot be obtained. . Furthermore, in order to maintain long-term performance, it is necessary to add a large amount of the zeolite. In this case, there are problems such as deterioration of spinnability and fiber strength.
[0003]
Other than the above-mentioned technology, there is a method in which a fine powder in which an antibacterial metal ion is supported on a carrier made of zeolite and mica is mixed with a binder component such as an urethane-based or acrylic-based organic solvent or emulsion and adhered to a fabric. It has been proposed (see, for example, Patent Document 2). However, this technique has the disadvantage that the fine powder is buried in the binder component, so that the exposure to the surface thereof is small and the performance of the fine powder is not fully exhibited. Furthermore, in order to maintain long-term performance, it is necessary to use a large amount of the fine powder. In addition, the use of the binder component necessitates a mixing facility for the binder component and the fine powder, which increases the number of manufacturing steps and increases the manufacturing cost.
[0004]
In addition, substances with high specific gravity, such as zeolite, will settle if a low-viscosity binder solution is used, so a high-viscosity binder solution is used to uniformly disperse such substances in the binder solution. There must be. By using a high-viscosity binder liquid, not only does the drying process take time, but the problem of the fabric becoming harder and the problem that the binder closes the gaps between the fibers and lowers the air permeability occur. End up.
[0005]
[Patent Document 1]
JP 59-133235 A (page 2)
[Patent Document 2]
Japanese Patent Laid-Open No. 04-194074 (first page)
[0006]
[Problems to be solved by the present invention]
The problem of the present invention is that the functional material has a hygroscopic property, a deodorizing property, a deodorizing property, an antibacterial property, etc., and these can be sufficiently exerted, and excellent in workability and strength, It is an object to provide a functional fiber assembly having good air permeability and a molded article using the functional fiber assembly.
[0007]
[Means for Solving the Problems]
The present inventors have made extensive studies to solve the above problems. As a result, it has been found that the following problems can be solved by adopting the following configuration, and the present invention has been completed based on this finding.
[0008]
Hereinafter, the present invention has the following configuration.
(1) A functional fiber assembly obtained by thermally bonding a functional material and a fiber assembly, wherein the functional fiber assembly is selected from an unsaturated carboxylic acid and an unsaturated carboxylic anhydride as a polyolefin. A functional fiber assembly comprising a heat-adhesive fiber composed of a resin containing a modified polyolefin graft-polymerized with a vinyl monomer containing at least one kind (hereinafter referred to as a modifier).
(2) The heat-adhesive fiber is a heat-adhesive conjugate fiber composed of a first component and a second component, the first component is a resin containing a modified polyolefin, and the second component has a melting point higher than that of the first component. The functional fiber assembly according to (1), wherein the functional fiber assembly is a high-resin, and the first component is a heat-adhesive conjugate fiber in which at least a part of the surface of the heat-adhesive conjugate fiber is continuously formed in the length direction. .
(3) The functional fiber assembly according to (1) or (2), wherein the modifier is at least one selected from maleic anhydride, acrylic acid, and methacrylic acid.
(4) The functional fiber assembly according to any one of (1) to (3), wherein the thermal adhesive fiber is a long fiber.
(5) The functional fiber assembly according to any one of (1) to (4), wherein the functional material is a functional inorganic material.
(6) The functional fiber assembly according to (5), wherein the functional inorganic material is at least one selected from zeolite, calcium phosphate, and aluminum phosphate.
(7) A molded body using the functional fiber assembly according to any one of (1) to (6).
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The fiber assembly used in the present invention is composed of heat-adhesive fibers made of a resin containing a modified polyolefin. As the heat-adhesive fiber, a single fiber made of a resin containing a modified polyolefin can be used. Also, a resin containing a modified polyolefin is used as the first component, a resin having a higher melting point than the first component is used as the second component, and the first component continuously forms at least a part of the surface of the heat-adhesive fiber in the length direction. The heat-adhesive conjugate fibers that are used can be used. A resin containing a modified polyolefin may also be used for the second component of the heat-adhesive conjugate fiber. In addition, the use of heat-adhesive conjugate fibers prevents significant melting and deformation of the fiber or fiber assembly due to heating or compression when the fiber assembly is molded, and the fiber shape is maintained. It is desirable because it can maintain properties, elasticity, strength and the like. Furthermore, when the modified polyolefin is used only for the first component of the heat-adhesive conjugate fiber, the modified polyolefin can be contained in the component near the fiber surface compared to a single fiber, so that the use of the modified polyolefin is less. The function can be demonstrated in quantity. Further, when the modified polyolefin is used for both the first component and the second component, there is an effect of increasing the interlayer adhesive strength between the first component and the second component and preventing peeling of both components.
[0010]
The modifier used in the modified polyolefin is a vinyl monomer containing at least one selected from unsaturated carboxylic acid and unsaturated carboxylic anhydride, and specifically selected from maleic acid, acrylic acid, methacrylic acid, and the like. Unsaturated carboxylic acids or anhydrides of these unsaturated carboxylic acids. However, other vinyl monomers other than these may be included.
[0011]
As the other vinyl monomer, a general-purpose monomer excellent in radical polymerizability can be used. Examples thereof include methacrylic acid esters such as methyl methacrylate, ethyl methacrylate, 2-hydroxyethyl methacrylate, dimethylaminoethyl methacrylate, and similar acrylic acid esters.
[0012]
The unsaturated carboxylic acid or unsaturated carboxylic acid anhydride in the modified polyolefin is a component that directly contributes to adhesion with other materials such as a functional material. In addition, other vinyl monomers have the effect of uniformly dispersing the adhesive component in the resin and the effect of imparting polarity to polyolefin with less polarity to improve the affinity with other materials, and indirectly contribute to adhesiveness. It is an ingredient.
[0013]
The method of graft polymerization of these vinyl monomers to polyolefin can be performed by a known method. Examples thereof include a method in which polyolefin, a vinyl monomer, and a radical initiator are melt-kneaded and polymerized, a method in which polymerization is performed in a reaction vessel, and the like.
[0014]
The amount of the graft polymerized modifier in the polyolefin can be calculated by measuring an infrared absorption spectrum. For example, when the modified polyolefin is a modified polyethylene obtained by graft-polymerizing polyethylene with maleic anhydride, the amount of the graft-modified modifier can be measured by the following operation.
The modified polyethylene is dissolved in boiling xylene, and the solution is poured into three times the amount of normal temperature acetone and cooled sufficiently. The filtrate of this liquid is further washed with acetone and vacuum dried to obtain a powdery modified polyethylene from which unreacted maleic anhydride has been removed. The powder amount of maleic anhydride can be calculated by forming this powder into a film and measuring the Fourier transform infrared absorption spectrum using the powder.
[0015]
As the polyolefin to be the main chain polymer of the modified polyolefin, polyethylene, polypropylene and the like are preferably used. As the polyethylene, a homopolymer of ethylene or a copolymer of ethylene and another α-olefin can be used. Specifically, the density is 0.910 to 0.925 g / cm. 3 Low density polyethylene, 0.926-0.940 g / cm 3 Linear low density polyethylene, 0.941 to 0.980 g / cm 3 A general-purpose product of high-density polyethylene can be used. These melting points are about 100-135 degreeC. However, lower density polyethylene is also commercially available and can be used. As the polypropylene, a homopolymer of propylene or a copolymer of propylene and ethylene other than propylene and an α-olefin such as 1-butene can be used. These melting points are about 130-170 degreeC. Of these polymers, polyethylene is preferably used in consideration of the melting point range and the ease of graft polymerization.
[0016]
The modified polyolefin used in the present invention is not only used alone, but also a mixture of two or more kinds of modified polyolefins, a mixture of a modified polyolefin main chain polymer and the same polymer, or a modified polyolefin main chain polymer and a different polymer. Can be used as a mixture. When the modified polyolefin is used alone or as a mixture, the graft amount of the modifier in the heat-bondable fiber may be in the range of 0.001 to 2 mol / kg. If it is this range, it can produce without a problem with a well-known spinning apparatus, and can exhibit adhesiveness with a functional material.
[0017]
As the second component resin having a melting point higher than that of the first component, crystalline polymers such as polyethylene, polypropylene, polyester, and polyamide, and amorphous polymers such as polyester and polyamide can be used. Among these polymers, crystalline propylene homopolymers or copolymers of propylene and α-olefins such as ethylene and 1-butene are considered in consideration of spinnability, chemical resistance, melting point, etc. Propylene copolymers are preferably used. Moreover, when polyethylene terephthalate is used, a fiber assembly excellent in strength and heat resistance can be obtained. That is, the second component may be selected according to the added value or the required performance.
[0018]
In the first component and the second component used in the present invention, an antioxidant, a light stabilizer, an ultraviolet absorber, a neutralizer, a nucleating agent, Epoxy stabilizers, lubricants, antibacterial agents, flame retardants, antistatic agents, pigments, plasticizers, and hydrophilic agents may be added as appropriate. Further, the fiber assembly used in the present invention may be subjected to adhesion treatment with a surfactant or the like, if necessary.
[0019]
The fiber aggregate used in the present invention is composed of short fibers or long fibers, and each may form a single fiber aggregate, or may be mixed or combined in layers. Further, fibers formed with different resin configurations and other fibers may be mixed or combined in layers.
[0020]
Examples of the cross-sectional shape of the fiber include a circular shape, and an odd-shaped cross-section such as an elliptical shape, a boomerang shape, and a cross shape. A fiber aggregate may be formed by combining fibers having various cross-sectional shapes. In the case of the composite fiber, a composite form such as a parallel type, a multi-partition type, a concentric sheath core type or an eccentric sheath core type may be mentioned, and fibers of each composite form may be combined to form a fiber assembly. In the case of a composite fiber composed of two components, the volume ratio of the first component to the second component (corresponding to the ratio of the cross-sectional area when the fiber cross-sectional area is adopted for the measurement) is usually the first component. : The volume ratio of the second component is preferably 10:90 to 90:10, more preferably 30:70 to 70:30. If the volume ratio is in the range of 10:90 to 90:10, the adhesion and spinnability will be good. In particular, the volume ratio in the range of 30:70 to 70:30 is preferable because the core component can firmly maintain the fiber shape when heat treatment or the like is performed. It should be noted that the effect of the present invention can be satisfied even if the composite form is not limited to the above two-component type but also three or more components. In addition, although only the first component may be used as a heat-adhesive fiber or fiber assembly, depending on the application, air permeability and physical properties after processing the molded body are required. It is preferable to process into a composite form such as two or three components in which the fiber shape is easily held by heat.
[0021]
What is necessary is just to select the fineness of the fiber which comprises the fiber assembly used for this invention suitably according to a use, Usually, about 0.01-100 dtex is used. In consideration of adhesiveness and productivity, 0.01 to 20 dtex is preferable, and 0.01 to 10 dtex is more preferable.
[0022]
When the fiber assembly used in the present invention is a non-woven fabric, the basis weight may be appropriately selected according to the type and use of the resin used as a raw material, but in consideration of air permeability and productivity, 5 to 100 g / m. 2 Is preferably 5 to 50 g / m. 2 Is particularly preferred.
[0023]
The functional material referred to in the present invention is a material having functions such as hygroscopicity, deodorizing properties, deodorizing properties, and antibacterial properties, and a material having a property of emitting a minute amount of energy such as magnetic force, radiation, far infrared rays, and the like. . In the present invention, porous materials, adsorbent materials, and ion exchange materials having these functions can be preferably used. For example, activated carbon, charcoal powder, bamboo charcoal powder, Bincho charcoal powder, porous cellulose, functional inorganic material, etc. Can be mentioned.
[0024]
The functional inorganic material referred to in the present invention is an inorganic material having functions such as hygroscopicity, deodorizing properties, deodorizing properties, and antibacterial properties, and inorganic materials having a property of emitting a small amount of energy such as magnetic force, radiation, and far infrared rays. Material. In the present invention, a porous substance, an adsorbing substance, and an ion exchange substance made of an inorganic material having these functions can be preferably used. For example, calcium phosphate compounds such as tricalcium phosphate and hydroxyapatite, zirconium phosphate, phosphorus Examples thereof include titanium oxide, zinc phosphate, aluminum phosphate, silicic acid, calcium silicate, aluminum silicate, zinc silicate, zirconium silicate, titanium oxide, glass, natural zeolite, synthetic zeolite, artificial zeolite, silica gel, and ceramics. The inorganic material may carry a conventionally known antibacterial and deodorant metal such as silver, copper, and zinc, a metal ion, a metal salt, and the like. Examples of the functional inorganic material having the property of emitting a small amount of energy such as magnetic force, radiation, far-infrared ray, etc. include monazite, bastonite, chillerite, formanite, magnetite, pistasite, samarskiite, columbite, titanium magnetite, Examples thereof include gadolinite, cassiterite, zircon, alumina, silica and the like.
[0025]
The average particle size of the functional material may be appropriately selected according to the use, but is preferably 0.1 to 200 μm. Especially preferably, it is 0.5-50 micrometers. If the average particle size is 0.1 to 200 μm, the particles are difficult to aggregate and easily dispersed, and if the average particle size is 0.1 to 200 μm, the specific surface area of the functional material is sufficiently wide and the function is sufficient. To be demonstrated. In particular, the thickness of 0.5 to 50 μm is preferable because the dispersibility in the resin is good and the specific surface area is sufficient.
[0026]
In the present invention, the weight ratio between the fiber assembly and the functional material may be appropriately selected according to the use. However, when the fiber assembly is a nonwoven fabric, the weight ratio is 1 m. 2 The adhesion weight (weight per unit area) of the functional material per contact is 0.1 g / m 2 The above is preferable. Particularly preferably, 0.5 to 100 g / m 2 It is. The basis weight is 0.1 g / m 2 If it is above, sufficient quantity of functional material for exhibiting a function can be heat-bonded to a fiber or a fiber assembly. In particular, the basis weight is 0.5 to 100 g / m. 2 If so, the functional material and the fiber or the fiber assembly can be satisfactorily bonded, and the functional material does not fall off. In addition, when the fiber assembly is other than the nonwoven fabric, the adhesion amount of the functional material varies depending on the shape, but the adhesion amount may be in the range of 0.1 to 1000% by weight of the fiber assembly.
[0027]
Hereinafter, the manufacturing method of the fiber assembly of the present invention will be described in the case of using a general spinning method. As the raw material resin, for example, a resin containing a modified polyolefin obtained by graft-polymerizing maleic anhydride and linear low-density polyethylene is used as the first component, and crystalline polypropylene having a higher melting point than the first component is used as the first component. Used as two components. These resins are spun by a general hot melt spinning machine equipped with a sheath-core type composite spinneret. At this time, the semi-molten resin to be discharged is cooled and solidified by blowing air from the quenching device just below the die, and an unstretched thermal adhesive fiber (hereinafter referred to as unstretched yarn) is manufactured. At this time, you may attach a surface treating agent as needed. The discharge amount of the melted resin and the take-up speed of the undrawn yarn are arbitrarily set to obtain an undrawn yarn having a fiber diameter of about 1.1 to 5 times the target fineness. The obtained undrawn yarn can be drawn with a general drawing machine to obtain a drawn yarn (fiber in a state where the drawing process is performed but not crimped). Usually, in the drawing roll heated to 30 to 120 ° C., the drawing treatment is performed so that the speed ratio between the inlet side of the undrawn yarn and the outlet side roll is in the range of 1: 1.1 to 1: 5. . If necessary, a surface treatment agent (oil agent) is attached to the drawn yarn obtained by the drawing treatment with a touch roll or spray, and then crimped by a box-type crimping machine. The drawn yarn to which crimps have been imparted is dried at a temperature of 50 to 120 ° C. with a dryer, cut to a desired fiber length with a push cutter and used according to the intended use. The heat-adhesive fiber thus obtained is used as a web by a generally known carding method, airlaid method, papermaking method, etc., and the obtained web is generally known as a point bond method, hot air heating. A fiber assembly may be formed by a processing method such as a method, a high-pressure water flow method, a needle punch method, or an ultrasonic bonding method, and these may be combined. In addition, the drawn yarn may be processed from a long fiber tow into a fiber assembly without being cut short. For example, the tow may be heat-treated to form a rod-shaped formed body, and opened by a fiber opening method. The tow may be heat treated to produce a nonwoven fabric.
[0028]
Hereinafter, the method for producing the fiber assembly of the present invention will be described by taking the spunbond method as an example. As the raw material resin, for example, a resin containing linear low density polyethylene obtained by graft polymerization of maleic anhydride is used as the first component, and crystalline polypropylene having a melting point higher than that of the first component is used as the second component. A general-purpose composite spunbond spinning machine having two extruders is used, each resin is put into each extruder, and the molten resin is discharged as long fibers from a composite spinneret kept at a high temperature. The discharged long fiber group is introduced into the air soccer and pulled and stretched, and then the long fiber group is discharged from the air soccer and collected on the conveyor. At this time, there are a method of collecting the long fiber group directly on the suction conveyor as a long fiber web, and a method of opening the fiber before collecting on the conveyor and then collecting. As a method of opening the fiber, for example, a method of passing the long fiber group between a pair of vibrating blades (flaps) in the middle of discharging the long fiber group, a method of causing the long fiber group to collide with a reflector or the like, or a corona A method of charging the long fiber group by a charging method can be mentioned. The collected long fiber web is conveyed by a suction conveyor and subjected to heat treatment. As the heat treatment, for example, in a point bond processing machine constituted by a heated uneven roll and a smooth roll, a web is introduced between the pressed rolls, and in an area corresponding to the convex portion of the uneven roll, This is performed by melting or softening the first component and thermally fusing the long fibers (point bond method). Thereby, a fiber assembly is obtained. At this time, the basis weight of the fiber assembly can be adjusted by setting the spinning discharge speed (discharge amount per hour), the moving speed of the suction conveyor, and the like. The processing of the fiber assembly is not limited to the point bond method, and may be performed by a method such as a hot air heating method, a high-pressure water flow method, a needle punch method, or an ultrasonic bonding method, or may be combined.
[0029]
Hereinafter, a method for producing a fiber assembly used in the present invention will be described by taking a melt blow method as an example. Using a general-purpose composite melt blow spinning machine having two extruders, as in the spunbond method, the first component and the second component are put into each extruder, and the discharge holes are kept at high temperatures. By discharging high-speed, high-speed hot air from both sides of the discharge holes, the fine fiber groups are collected as a long-fiber web on a suction conveyor or suction drum. To do. Since the web obtained by the melt-blowing method is heat-sealed, it has a level of strength that causes no problem in handling even in the state of the web. Therefore, it can be used as it is without being thermally processed. However, depending on the application, processing such as a point bond method may be further performed in the same manner as the spun bond method.
[0030]
Among the methods for producing a fiber assembly made of heat-adhesive fibers, the spunbond method is particularly characterized in that a fiber assembly excellent in mechanical properties such as tensile strength can be easily obtained. Further, the spunbond method and the melt blow method are preferable because long fibers obtained by melt spinning can be opened and accumulated as they are and processed into a fiber assembly, which is excellent in productivity and can be manufactured at low cost. Furthermore, by using a spunbond method or a melt blow method, the fiber assembly can be bonded to the functional material without using a surface treatment agent (oil) that may reduce the adhesive strength. Can be manufactured. For this reason, compared with the fiber assembly obtained by the general spinning method which requires surface treatment, it is excellent in the adhesive force of a fiber assembly and a functional material, and the fiber assembly which a functional material does not easily drop out Can be manufactured.
[0031]
In addition, the functional fiber assembly of the present invention is also a laminate of fiber assemblies obtained by laminating a fiber assembly obtained by the spunbond method and a fiber assembly obtained by the melt blow method and joining them with a point bond processing machine or the like. Available to the body. Examples of the laminate include SM (spunbond nonwoven fabric / meltblown nonwoven fabric), SMS (spunbond nonwoven fabric / meltblown nonwoven fabric / spunbond nonwoven fabric), and SMMS (spunbond nonwoven fabric / meltblown nonwoven fabric / meltblown nonwoven fabric / span). Bond non-woven fabric laminate) and the like. In addition to these, a laminate in which a fiber assembly by a spunbond method or a melt-blow method and a fiber assembly obtained by laminating heat-adhesive fibers obtained by a general spinning method by a carding method, an airlaid method, or a papermaking method Can also be used as a fiber assembly.
[0032]
When the fiber aggregate is a laminate, the modifier used in the present invention may be contained in all the laminated fiber aggregates, but the modifier is added to the layer to which the functional material is adhered to function. It is good also as a laminated body of the fiber assembly which uses the layer which adhere | attached the property material in one part. In this case, 0.001 to 2 mol / kg of the modifier may be contained in the heat-bonding fiber of the fiber assembly to which the functional material is adhered.
[0033]
Fibers other than the above-mentioned heat-adhesive fibers may be mixed in the fiber assembly using the heat-adhesive fibers used in the present invention. For example, synthetic fibers such as polyester, polyamide, polypropylene, and polyethylene, natural fibers such as pulp, cotton, and wool, and semi-synthetic fibers such as rayon can be used. Furthermore, a fiber assembly composed of fibers other than the heat-adhesive fibers used in the present invention, a fiber assembly using the heat-adhesive fibers used in the present invention, and the functional fiber assembly of the present invention are combined. A laminate may be used.
[0034]
The fiber assembly or functional fiber assembly used in the present invention can be subjected to secondary processing at the time of heat treatment or after heat treatment, if necessary, so that a molded body having an arbitrary shape can be obtained. . For example, long fibers can be bundled at the web stage, heat treated, etc., and bonded at the fiber intersections to form rods and other shaped articles, and the fiber assembly can be of any shape It is possible to obtain molded bodies of various shapes by filling the container and heat-treating and bonding the fiber intersections.
[0035]
As a method for producing the functional fiber assembly of the present invention, a functional material in powder form is dispersed in a solvent, and a known roll coat method, gravure roll method, screen method, doctor method, spray method, etc. There is a method in which the functional material is thermally bonded to the fiber assembly by applying to the surface of the fiber assembly, and then thermally drying the solvent and performing a heat treatment. In addition, a powdered functional material is sprayed directly on the fiber assembly, and the fiber assembly and the functional material are thermocompression bonded by a thermocompression bonding device such as a point bond processing machine represented by a hot roll, embossing roll / flat roll. A method of thermally bonding a fiber assembly and a functional material using hot air in a hot air heating processing apparatus such as a through-air processing machine, a fiber assembly and a functional material heated by a heater using far infrared rays, etc. A method of thermally bonding and can also be used.
[0036]
In addition, after a functional material is sprayed on a fiber assembly before heat treatment obtained by a known carding method, airlaid method, spunbond method, melt blow method, etc., the fiber assembly and functionality are A functional fiber assembly can be obtained by bonding the material. Specifically, a method of thermocompression bonding a fiber assembly and a functional material with a thermocompression bonding apparatus such as a point bond processing machine, a fiber assembly and a functional material with hot air with a hot air heating processing apparatus such as a through-air processing machine. A method of thermally bonding, a method of thermally bonding a fiber assembly and a functional material with a heat processing apparatus equipped with a heater using far infrared rays, or the like can be used.
[0037]
Furthermore, a functional material is sprayed on the fiber assembly before heat treatment obtained by a known carding method, airlaid method, spunbond method, melt blow method, etc., and then a known carding method, airlaid method, By laminating fiber assemblies obtained by the spunbond method, melt blow method, etc. to form a laminated structure with functional materials sandwiched between them, the fiber assemblies and functional materials are bonded by a known thermal processing method. A functional fiber assembly can be obtained. Specifically, a method of thermocompression bonding a fiber assembly and a functional material with a thermocompression bonding apparatus such as a point bond processing machine, a fiber assembly and functionality using hot air with a hot air heating processing apparatus such as a through-air processing machine. A method of adhering a material, a method of adhering a fiber assembly and a functional material with a heat processing apparatus equipped with a heater using far infrared rays, or the like can be used.
[0038]
When the functional material is in the form of powder, the powdery functional material and the fiber assembly adhere well due to the adhesive effect of the functional material by the modifier contained in the heat-bondable fibers that make up the fiber assembly. Therefore, there is very little dropout of the functional material. In addition, fiber assemblies that are thermally bonded to functional materials are laminated together or laminated with fiber assemblies that are not thermally bonded to functional materials. It is preferable because the functional material is less likely to fall off by being sandwiched by the body.
[0039]
As the molded body using the functional fiber assembly of the present invention, non-woven fabric, sheet, tubular product, box-shaped product, spherical product, filter, and printed matter made of the functional fiber assembly obtained as described above are available. Can be mentioned. In particular, by processing into non-woven fabrics and sheets, tablecloths, curtains, carpets, mats, blankets, duvets, duvet covers, pillows, pillow covers, costume covers, automotive interior and exterior materials, automobiles, bicycles, motorcycle covers, shoes Insole, lining, bags, furoshiki, cushions, stuffed animals and other materials related to clothing, paper replacement for screen doors, shoji paper, paperboard, wallpaper, furniture, refrigerators, shoe boxes, tatami mats, tatami mats and carpets Dehumidification under floors, under floors, attics, in closets, etc., deodorants, air conditioners, air purifiers, filters for household filters such as water purifiers, insect repellents for crops and plants, sun protection covers, agricultural sheets It can be used in a wide variety of applications such as industrial liquid filters and gas filters.
[0040]
The cylindrical product of the present invention is a cylindrical molded body having a circular cross section or an elliptical cross section, or a rectangular cylinder having a triangular cross section or a polygon having a quadrangular shape or more. Shaped molded body. Examples of the method of processing into a cylindrical shape include a manufacturing method in which a functional fiber assembly is wound around a stainless steel core having an arbitrary thickness to an arbitrary outer diameter, and a known thermal processing method is applied thereto. be able to. By using this method, a cylindrical molded body can be obtained.
[0041]
The printed matter of the present invention can be obtained by printing on a functional fiber assembly and a molded body using the same by a known roll coat method, gravure roll method, screen method, doctor method, spray method or the like. When the printed material is a non-woven fabric or sheet, it can be used as a calendar or poster having functions such as deodorization and dehumidification.
[0042]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited at all by these. In addition, the measuring method of the physical property in an Example and a comparative example is as follows.
[0043]
Melt flow rate: In accordance with JIS K 7210, polypropylene resin was measured under the condition 14 in Table 1 and polyethylene resin was measured under the condition 4 in Table 1 (MFR in condition 14 and MI in condition 4) (Unit: g / 10 minutes)
Intrinsic viscosity: For polyethylene terephthalate, the intrinsic viscosity was measured in a mixed solvent of equal weight of phenol and ethane tetrachloride under the conditions of a concentration of 0.5 g / 100 ml and a temperature of 20 ° C. (denoted as IV).
Weight per unit area: fiber aggregate, non-woven fabric, functional fiber aggregate, etc. cut into 25 cm square, weighed and weighed per unit area (g / m 2 )
Amount carried: fiber aggregate and non-woven fabric thermally bonded with functional material, cut into 25 cm square, weighed and excluding weight before thermal bonding, weight per unit area of functional material (g / m 2 )
[0044]
Measurement of ammonia removal rate: Test method is performed using Tedlar bag, initial ammonia concentration 60ppm, set temperature 35 ° C, functional nonwoven fabric 400cm 2 (20 cm × 20 cm), the residual ammonia concentration after being left for 24 hours was measured with an ammonia detector tube, and the ammonia removal rate was determined using the following equation.
(((Initial ammonia concentration) − (residual ammonia concentration)) / (initial ammonia concentration)) × 100 (%)
[0045]
Functional material retention rate: After the functional material was thermally bonded to the nonwoven fabric, air was blown onto the resulting functional fiber assembly (nonwoven fabric) to remove the unbonded functional material. The amount of the functional material remaining on the nonwoven fabric was measured, and the ratio was calculated using the following formula.
((Weight of functional material after removal of unbonded functional material) / (weight of functional material after thermal bonding)) × 100 (%)
[0046]
Breathability:
When the air permeability after functional material adhesion processing is 80% or more before processing ◎
When the air permeability after functional material adhesion processing is 60% or more and less than 80% before processing ○
The case where the air permeability after functional material adhesion processing is 50% or more and less than 60% before processing △
When the air permeability after functional material adhesion processing is less than 50% before processing ×
Processability: in fiber process and adhesion process
When there are few processes and machining is easy ◎
○ When there are many processes but machining can be done easily
△ When there are few processes but dedicated equipment and technology are required for processing
If the process is complicated and requires specialized equipment and technology for processing ×
[0047]
In Examples and Comparative Examples, tests were performed using the following resins.
PP: crystalline polypropylene (propylene homopolymer, MFR36, melting point 161 ° C.)
HDPE: high density polyethylene (ethylene homopolymer, Mw / Mn = 4.2, MI30, melting point 132 ° C., density 0.955 g / cm 3 )
LLDPE: linear low density polyethylene (ethylene-butene-1 copolymer, Mw / Mn = 3.5, MI20, melting point 122 ° C., density 0.920 g / cm 3 )
Modified PE (modified polyethylene): high density polyethylene (ethylene homopolymer, Mw / Mn = 4.0, MI 2.0, melting point 132 ° C., density 0.960 g / cm 3 ) As a main chain polymer and graft polymerized maleic anhydride (maleic anhydride content 0.2 mol / Kg)
PET: Polyethylene terephthalate (IV 0.63, melting point 255 ° C.)
[0048]
In the examples and comparative examples, the combinations of resins constituting the heat-adhesive fibers were as follows. The modifier content (mol / kg) in the fiber assembly obtained by each combination is shown in Table 1. In addition, the modifier content in the fiber assembly is a value calculated from the ratio of the modified PE used for the raw material and other components.
Resin composition A: A mixture of 10% by weight of modified PE and 90% by weight of HDPE was used as the first component, PP was used as the second component, the first component was the sheath side, and the second component was the core side.
Resin composition B: A mixture of 10% by weight of modified PE and 90% by weight of LLDPE was used as the first component, PP was used as the second component, the first component was the sheath side, and the second component was the core side.
Resin composition C: A mixture of 6% by weight of modified PE and 94% by weight of LLDPE was used as the first component, PP was used as the second component, the first component was the sheath side, and the second component was the core side.
Resin composition D: A mixture of 15% by weight of modified PE and 85% by weight of HDPE was used as the first component, PP was used as the second component, the first component was the sheath side, and the second component was the core side.
Resin composition E: Only a mixture of 10% by weight of modified PE and 90% by weight of HDPE was used.
Resin composition F: A mixture of 6% by weight of modified PE and 94% by weight of LLDPE was used as the first component, PET was used as the second component, the first component was the sheath side, and the second component was the core side.
Resin composition G: HDPE was used as the first component, PP was used as the second component, the first component was the sheath side, and the second component was the core side.
Resin composition H: 100% by weight of LLDPE was used as the first component, PP was used as the second component, the first component was the sheath side, and the second component was the core side.
Resin composition I: A mixture of 0.5% by weight of modified PE and 99.5% by weight of LLDPE was used as the first component, PP was used as the second component, the first component was the sheath side, and the second component was the core side. .
[0049]
In the examples and comparative examples, the functional materials have the following combinations. The average particle diameter (μm) of each functional material is shown in Table 2.
Functional material composition L: artificial zeolite.
Functional material composition M: Hydroxyapatite.
Functional material composition N: Aluminum phosphate.
Functional material composition O: Mixture of monazite ore and artificial zeolite in a weight ratio of 1: 1.
Functional material composition P: a 1: 1 weight ratio mixture of aluminum phosphate and zircon ceramic.
[0050]
Of the heat-bondable fibers constituting the fiber assemblies of Examples and Comparative Examples, long fibers were produced by a known spunbond method or melt blow method, and short fibers were obtained by a known composite fiber spinning method. It was produced by stretching the tow and cutting it to any length.
[0051]
A method for producing a fiber assembly using a spunbond method.
Fiber assemblies were made using a composite spunbond spinning machine with two extruders. The raw material resin (the above resin or resin composition) is fed into each extruder using a sheath-core type composite spinneret, the core component spinning temperature is 260 ° C., and the sheath component spinning temperature is 260 ° C. The composite ratio of the first component and the second component was set to 50:50, and the molten resin was discharged as long fibers from the spinneret. The discharged long fiber group was pulled and stretched by air soccer, discharged on a suction conveyor, and collected as a long fiber web. The air soccer traction speed was adjusted so that the fineness at this time was 3 dtex / f. The obtained long fiber web was conveyed by a conveyor and pressed between rolls of a point bond processing machine constituted by a heated uneven roll and a smooth roll. As a result, a fiber assembly was obtained in which the first component was melted or softened in the area corresponding to the convex portion of the concave-convex roll and the long fibers were thermally fused. In addition, the suction conveyor moving speed and the roll speed of the point bond processing machine were adjusted according to the type of the fiber so that the basis weight of the fiber assembly became the basis weight shown in Table 3.
A functional material was thermally bonded to the fiber assembly obtained as described above as in the Example to obtain a functional fiber assembly.
[0052]
A method for producing a fiber assembly using a melt blow method.
Using a melt blow sheath-core composite spinneret with a hole diameter of 0.3 mm and a number of 501 spinners arranged in a row, the spinning temperature of the core component is 290 ° C., the spinning temperature of the sheath component is 260 ° C., and the first component A long fiber web was obtained by spraying the polymer extruded from the spinneret onto a net conveyor with pressurized air at 380 ° C. with a composite ratio of 2 and the second component set to 50:50. The obtained long fiber web was heated to 145 ° C. with a far-infrared heater while being transferred by a net conveyor, and a fiber assembly in which the first component was melted or softened and heat-bonded between the long fibers was formed in this area. Obtained. In addition, the net conveyor moving speed was adjusted according to the kind of fiber so that the fabric weight of a fiber assembly might become each fabric weight of Table 3. A functional material was thermally bonded to the fiber assembly obtained as described above as in the Example to obtain a functional fiber assembly.
[0053]
A method for producing a fiber assembly using a general composite fiber spinning method.
A composite spinning apparatus equipped with a sheath-core type composite spinneret with a hole diameter of 0.6 mm, the spinning temperature of the core component is 260 ° C., the spinning temperature of the sheath component is 260 ° C., and the composite ratio of the first component and the second component Was set at 50:50 and spun at a take-up speed of 1000 m / min to obtain a concentric sheath-core type composite undrawn yarn having a single yarn fineness of 4.0 dtex / f. Next, the composite undrawn yarn is drawn under the conditions of a draw ratio of 2.4 times and a drawing temperature of 95 ° C., imparted with mechanical crimping, dried at 80 ° C., and then cut with a cutter into the fiber length according to the application. The short fiber was manufactured. The fiber for the miniature card machine was cut to 25 mm, and the fiber for the airlaid machine was cut to 5 mm. The obtained short fiber was made into a web with a miniature card machine or an airlaid machine, and then subjected to a heat treatment at 145 ° C. for 5 minutes in a hot air circulation dryer to obtain a fiber assembly.
A functional material was thermally bonded to the fiber assembly obtained as described above as in the Example to obtain a functional fiber assembly.
[0054]
Example 1
Using resin composition A, spinning by the above-mentioned spunbond method, processing with a point bond processing machine (roll temperature 120 ° C., linear pressure 80 N / mm), and basis weight 30 g / m 2 The fiber assembly was obtained. Next, artificial zeolite (functional material composition L) was adjusted to a 5% by weight slurry in a solvent (20% by weight methanol solution), and after sufficient stirring, the surface of the fiber assembly was gravure rolled. After applying and removing the solvent by drying, it is treated in an oven at 130 ° C. to obtain 9.5 g / m. 2 A functional fiber assembly in which the artificial zeolite was thermally bonded to the surface of the fiber assembly was obtained. Although troubles such as preparation and application of the slurry were necessary, the obtained functional fiber assembly was able to remove 100% of ammonia and had good air permeability.
[0055]
Example 2
Using resin composition B, spinning by the above-mentioned spunbond method, processing with a point bond processing machine (roll temperature 116 ° C., linear pressure 80 N / mm), and basis weight 20 g / m 2 The fiber assembly was obtained. Next, artificial zeolite (functional material composition L) is put in a sieve having a mesh size of 149 μm (100 mesh), sprayed uniformly on the fiber assembly, and hot-pressed at a temperature of 130 ° C. and a pressure of 0.1 MPa. 3.9g / m 2 A functional fiber assembly in which the zeolite was thermally bonded to the surface of the fiber assembly was obtained. The obtained functional fiber aggregate was able to remove 100% of ammonia, had good air permeability, and was easy to process.
[0056]
Example 3
Using resin composition C, spinning by the above-mentioned spunbond method, processing with a point bond processing machine (roll temperature 116 ° C., linear pressure 80 N / mm), 30 g / m 2 The fiber assembly was obtained. Next, hydroxyapatite (functional material composition M) is put on a sieve having a mesh size of 149 μm (100 mesh), sprayed uniformly on the fiber assembly, and heat-pressed at a temperature of 140 ° C. and a pressure of 0.2 MPa. 11g / m by doing 2 A functional fiber assembly in which hydroxyapatite was thermally bonded to the surface of the fiber assembly was obtained. The obtained functional fiber aggregate was able to remove 100% of ammonia, had good air permeability, and was easy to process.
[0057]
Example 4
Using resin composition D, spinning by the melt blow method described above, 20 g / m 2 The fiber assembly was obtained. Next, a mixture of monazite ore and artificial zeolite (functional material composition O) is put on a sieve having a mesh size of 149 μm (100 mesh) and sprayed uniformly on the fiber assembly, and a flat roll / flat roll (132 5.7 g / m by processing with a thermocompression bonding apparatus set at a linear pressure of 20 N / mm. 2 A functional fiber assembly in which a mixture of the monazite ore and artificial zeolite (functional material composition O) was thermally bonded to the surface of the fiber assembly was obtained. The obtained functional fiber aggregate was able to remove 100% of ammonia, had good air permeability, and was easy to process.
[0058]
Example 5
Using resin composition F, spinning by the above-mentioned spunbond method, processing with a point bond processing machine (roll temperature 116 ° C., linear pressure 80 N / mm), 10 g / m 2 The fiber assembly was obtained. Next, aluminum phosphate (functional material composition N) is put on a sieve having a mesh size of 149 μm (100 mesh), sprayed uniformly on the fiber assembly, and treated in an oven set at a temperature of 135 ° C. for 30 seconds. 5.8g / m 2 A functional fiber assembly in which aluminum phosphate was thermally bonded to the surface of the fiber assembly was obtained. The obtained functional fiber aggregate was able to remove 100% of ammonia, had good air permeability, and was easy to process.
[0059]
Example 6
Using the resin composition A, the short fibers obtained by the above-mentioned general composite fiber spinning method are made into a web with a miniature card machine and processed with a point bond processing machine (roll temperature 120 ° C., linear pressure 80 N / mm). 15 g / m 2 The fiber assembly was obtained. Next, a mixture of aluminum phosphate and zircon ceramics (functional material structure P) was put on a sieve having a mesh size of 149 μm (100 mesh), sprayed uniformly on the fiber assembly, and set to a temperature of 150 ° C. 8.5g / m after 10 seconds in oven 2 A functional fiber assembly in which a mixture of aluminum phosphate and zircon ceramic (mixed at a weight ratio of 1: 1) was thermally bonded to the surface of the fiber assembly was obtained. The obtained functional fiber aggregate was able to remove 100% of ammonia, had good air permeability, and was easy to process.
[0060]
Example 7
Using the resin composition E, the short fibers obtained by the above-mentioned general composite fiber spinning method are made into a web with a miniature card machine and processed with a point bond processing machine (roll temperature 124 ° C., linear pressure 20 N / mm). 20g / m 2 The fiber assembly was obtained. Next, artificial zeolite (functional material composition L) is put in a sieve having a mesh size of 149 μm (100 mesh) and sprayed evenly on the fiber assembly, embossing roll / flat roll (130 ° C./130° C.) 5.5 g / m by processing with a thermocompression bonding apparatus set at a linear pressure of 20 N / mm 2 A functional fiber assembly in which the artificial zeolite was thermally bonded to the surface of the fiber assembly was obtained. The obtained functional fiber aggregate could remove ammonia 100% and was easy to process.
[0061]
Example 8
Spinning by the above-mentioned spunbond method using the resin composition A, 10 g / m 2 Then, artificial zeolite (functional material composition L) was put in a sieve having a mesh size of 149 μm (100 mesh) and dispersed uniformly on the fiber assembly. Further, on this fiber assembly, the short fibers obtained by the above-described general composite fiber spinning method using the resin composition A were processed with an airlaid machine to obtain a laminate of fiber assemblies. At this time, the basis weight of the laminate of fiber aggregates excluding the amount of artificial zeolite supported was 25 g / m 2 It was. 8 g / m is obtained by treating the laminate of the fiber assembly and the fiber assembly to which the artificial zeolite thus obtained is dispersed in a hot air circulation oven set at a temperature of 145 ° C. for 45 seconds. 2 A functional fiber assembly in which the artificial zeolite was thermally bonded between the laminates was obtained. The obtained functional fiber assembly was able to remove 100% of ammonia, had good air permeability, and did not cause powder falling.
[0062]
Example 9
Using resin structure I, spinning by the above-mentioned spunbond method, processing with a point bond processing machine (roll temperature 116 ° C., linear pressure 80 N / mm), 20 g / m 2 The fiber assembly was obtained. Next, artificial zeolite (functional material composition L) is put in a sieve having a mesh size of 149 μm (100 mesh), sprayed uniformly on the fiber assembly, and hot-pressed at a temperature of 130 ° C. and a pressure of 0.1 MPa. 5g / m 2 A functional fiber assembly in which the artificial zeolite was thermally bonded to the surface of the fiber assembly was obtained. This is because only a small amount of the functional material and the fiber assembly are adhered because of the small amount of the modifier, and when air is blown, most of the artificial zeolite falls off and is only 1 g / m. 2 The artificial zeolite was only thermally bonded and remained on the surface of the functional fiber assembly. Although this functional fiber aggregate had fallen off of the artificial zeolite, it had good air permeability and was easy to process, and was able to remove 80% of ammonia.
[0063]
Example 10
The functional fiber assembly obtained in Example 4 was cut to fit the filter used in a commercially available air conditioner and installed in the air conditioner instead of the air conditioner filter. It became comfortable and suitable indoor environment.
[0064]
Example 11
While the functional fiber assembly obtained in Example 1 is heated to a temperature of 145 ° C. with an infrared heater, it is wound on a stainless steel pipe having a diameter of 30 mm until the thickness of the functional fiber assembly is 15 mm and cooled. The stainless steel pipe was removed. The obtained molded body was cut into 150 mm to obtain a cylindrical product having an inner diameter of 30 mm, an outer diameter of 60 mm, and a length of 150 mm. When the obtained cylindrical product was put in the refrigerator, the odor in the refrigerator was reduced, and a suitable use situation was obtained.
[0065]
Example 12
The functional nonwoven fabric obtained in Example 1 was printed with a gravure printing method to produce a poster. When this poster was put on the room, the room's odor and humidity were reduced, resulting in a favorable indoor environment.
[0066]
Comparative Example 1
Using resin composition H, it was spun by the melt blow method described above, and heat treated at 145 ° C. for 5 minutes in a heat treatment machine using far infrared rays, 30 g / m 2 A non-woven fabric (fiber assembly) was obtained. Next, artificial zeolite (functional material composition L) is put on a sieve having a mesh size of 149 μm (100 mesh) and dispersed almost uniformly on the nonwoven fabric, and the resulting nonwoven fabric is treated in an oven set at a temperature of 150 ° C. for 10 seconds. 5g / m 2 A functional fiber assembly in which the artificial zeolite was thermally bonded to the fiber assembly was obtained. This is because the functional material and the fiber assembly are not adhered to each other because no modifier is added to the fiber, and when the air is blown, the artificial zeolite almost falls off, and is only 0.1 g / m. 2 The artificial zeolite was only thermally bonded and remained on the fiber assembly surface. This functional fiber assembly had good air permeability and was easy to process, but only a small amount of ammonia could be removed and the performance was not sufficient.
[0067]
Comparative Example 2
Using resin composition G, spinning by the above-mentioned spunbond method, processing with a point bond processing machine (roll temperature 120 ° C., linear pressure 80 N / mm), 20 g / m 2 The fiber assembly was obtained. Next, 10% by weight of hydroxyapatite (functional material composition M), 1% by weight of polycarboxylic acid ammonium salt (dispersing agent) and polyvinyl alcohol (binder) were added to 88.9% by weight of pure water, and the dispersion was stirred. Prepared, impregnated into the fiber assembly, passed through a hot air dryer set at 140 ° C., and passed through the fiber assembly to 15.2 g / m 2 A functional fiber assembly to which the hydroxyapatite was adhered was obtained. This functional fiber assembly had good air permeability, but the dispersion manufacturing process was complicated, air permeability was poor, and the ammonia removal rate was as low as 40%, which was not a sufficient performance.
[0068]
Comparative Example 3
Using the resin composition G, the short fiber obtained by the above-mentioned general composite fiber spinning method is made into a web with a miniature card machine, and heat treated at 140 ° C. for 2 minutes with a through air processing machine, 30 g / m 2 The fiber assembly was obtained. Next, an aqueous emulsion solution of 5% by weight of artificial zeolite (functional material composition L) and 25% by weight of acrylic solid content is applied to the fiber assembly with a spray gun at 120 g / m. 2 And passed through a hot air dryer set at 140 ° C. to 10.0 g / m 2 A functional fiber assembly to which the artificial zeolite was bonded was obtained. The ammonia removal rate of this nonwoven fabric was 60%, but the air permeability of the functional fiber assembly was poor, and the emulsion production process was complicated.
[0069]
Comparative Example 4
Using resin composition B, 20% by weight of artificial zeolite (functional material composition L) is further added to the first component, and spinning is performed by the above-described spunbond method. 40 g / m at a linear pressure of 80 N / mm). 2 The functional fiber assembly was obtained. Although the air permeability of the obtained functional fiber assembly was good, there were many defects such as frequent yarn breakage in the melt spinning process, clogging of the nozzle filter, and lack of productivity. Further, the ammonia removal rate was as low as 35%, which was not a sufficient performance.
[0070]
[Table 1]
Figure 0004178997
[0071]
[Table 2]
Figure 0004178997
[0072]
[Table 3]
Figure 0004178997
[0073]
【The invention's effect】
The functional fiber assembly according to the present invention and the molded body using the functional fiber assembly have a large exposed area of the functional material, unlike the case where the functional material is kneaded and adhered with a binder or a hot melt adhesive. For this reason, the function of the functional material is hardly impaired, the amount of the functional material used can be suppressed to a low level, and since no binder or hot melt adhesive is used, the air permeability is also good. A functional fiber assembly having features that are easy to process and advantageous in terms of cost, and a molded body using the functional fiber assembly can be provided.

Claims (8)

粉末状の機能性材料と繊維集合体とが熱接着されてなる機能性繊維集合体であって、該機能性繊維集合体は、ポリオレフィンを不飽和カルボン酸及び不飽和カルボン酸無水物から選ばれる少なくとも1種を含むビニルモノマー(以下、これらを変性剤という。)でグラフト重合させた変性ポリオレフィンを含む樹脂で構成されている熱接着性繊維からなる繊維集合体の表面に、平均粒子径0.5〜200μmの粉末状の機能性材料が露出して熱接着されていることを特徴とする機能性繊維集合体。 A functional fiber aggregate obtained by thermally bonding a powdery functional material and a fiber aggregate, wherein the functional fiber aggregate is selected from an unsaturated carboxylic acid and an unsaturated carboxylic anhydride. On the surface of a fiber assembly composed of a heat-adhesive fiber composed of a resin containing a modified polyolefin graft-polymerized with a vinyl monomer containing at least one kind (hereinafter referred to as a modifier), an average particle size of 0. A functional fiber assembly in which a powdery functional material of 5 to 200 μm is exposed and thermally bonded . 熱接着性繊維が、第1成分と第2成分とからなる熱接着性複合繊維であり、第1成分が変性ポリオレフィンを含む樹脂であり、第2成分が該第1成分より融点の高い樹脂であり、第1成分が熱接着性複合繊維表面の少なくとも一部を長さ方向に連続して形成している熱接着性複合繊維である請求項1記載の機能性繊維集合体。  The heat-adhesive fiber is a heat-adhesive conjugate fiber composed of a first component and a second component, the first component is a resin containing a modified polyolefin, and the second component is a resin having a melting point higher than that of the first component. The functional fiber assembly according to claim 1, wherein the first component is a thermoadhesive conjugate fiber in which at least a part of the surface of the thermoadhesive conjugate fiber is continuously formed in the length direction. 変性剤が、無水マレイン酸、アクリル酸及びメタクリル酸から選ばれる少なくとも1種である請求項1または請求項2記載の機能性繊維集合体。  The functional fiber assembly according to claim 1 or 2, wherein the modifier is at least one selected from maleic anhydride, acrylic acid and methacrylic acid. 熱接着性繊維が、長繊維である請求項1〜3のいずれか1項記載の機能性繊維集合体。  The functional fiber assembly according to any one of claims 1 to 3, wherein the heat-adhesive fiber is a long fiber. 粉末状の機能性材料が、機能性無機材料である請求項1〜4のいずれか1項記載の機能性繊維集合体。The functional fiber aggregate according to any one of claims 1 to 4, wherein the powdery functional material is a functional inorganic material. 機能性無機材料が、ゼオライト、リン酸カルシウム及びリン酸アルミニウムから選ばれる少なくとも1種である請求項5記載の機能性繊維集合体。  6. The functional fiber assembly according to claim 5, wherein the functional inorganic material is at least one selected from zeolite, calcium phosphate, and aluminum phosphate. 請求項1〜6のいずれか1項記載の機能性繊維集合体を用いた成形体。  The molded object using the functional fiber assembly of any one of Claims 1-6. 粉末状の機能性材料を溶剤中に分散させて繊維集合体の表面に塗布した後、溶剤を熱乾燥して、加熱処理する方法、または、繊維集合体に直接粉末状の機能性材料を散布した後、熱加工する方法を用いて、粉末状の機能性材料を、繊維集合体表面に熱接着することを特徴とする、請求項1記載の機能性繊維集合体の製造方法。A method in which a powdered functional material is dispersed in a solvent and applied to the surface of a fiber assembly, and then the solvent is heat-dried and heat-treated, or a powdered functional material is sprayed directly on the fiber assembly. Then, the method for producing a functional fiber assembly according to claim 1, wherein the functional material in the form of powder is thermally bonded to the surface of the fiber assembly using a heat processing method.
JP2003053142A 2003-02-28 2003-02-28 Functional fiber assembly and molded body using the same Expired - Fee Related JP4178997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003053142A JP4178997B2 (en) 2003-02-28 2003-02-28 Functional fiber assembly and molded body using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003053142A JP4178997B2 (en) 2003-02-28 2003-02-28 Functional fiber assembly and molded body using the same

Publications (2)

Publication Number Publication Date
JP2004262022A JP2004262022A (en) 2004-09-24
JP4178997B2 true JP4178997B2 (en) 2008-11-12

Family

ID=33117839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003053142A Expired - Fee Related JP4178997B2 (en) 2003-02-28 2003-02-28 Functional fiber assembly and molded body using the same

Country Status (1)

Country Link
JP (1) JP4178997B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4671741B2 (en) * 2005-04-13 2011-04-20 金星製紙株式会社 Hygroscopic nonwoven fabric
JP2006305917A (en) * 2005-04-28 2006-11-09 Kyoraku Co Ltd Plastic molding with deodorization function and its production method
JP5386678B2 (en) * 2005-07-05 2014-01-15 国立大学法人愛媛大学 Hydroxyapatite-containing body, hydroxyapatite-zeolite composite, hydroxyapatite, hydroxyapatite-titanium oxide composite, method for producing hydroxyapatite-zeolite-titanium oxide composite, and functional fiber
EP1917090B1 (en) * 2005-07-29 2013-08-21 Fiberweb, Inc. Antimicrobial multicomponent filtration medium
JP5865790B2 (en) * 2012-06-29 2016-02-17 ダイワボウホールディングス株式会社 Acid-modified polyolefin fiber, fiber structure and fiber-reinforced composite material using the same
JP6140263B2 (en) * 2015-12-25 2017-05-31 ダイワボウホールディングス株式会社 Acid-modified polyolefin fiber, fiber structure and fiber-reinforced composite material using the same
JP2019099929A (en) * 2017-11-30 2019-06-24 ユニチカ株式会社 Fiber structure and method for producing the same

Also Published As

Publication number Publication date
JP2004262022A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
JP2612872B2 (en) Fine fiber fine web
JP5866338B2 (en) Nonwoven fiber web containing chemically active particulates and methods of making and using the same
JP2009079329A (en) Sustained release nonwoven fabric and method for producing the same
KR101549498B1 (en) Air filtering cover for electric fan
JP4719081B2 (en) Wet-heat adhesive composite fiber and filler-fixed fiber, fiber structure
CN110430931A (en) The manufacturing method of charged media filter materials and charged media filter materials
JP4178997B2 (en) Functional fiber assembly and molded body using the same
US20200115833A1 (en) Fibers including a crystalline polyolefin and a hydrocarbon tackifier resin, and process for making same
US20160271598A1 (en) Functional air filter
JP4671741B2 (en) Hygroscopic nonwoven fabric
WO2023196630A1 (en) Filtration media and filters
WO2019025942A1 (en) Multi-component fibers including a crystalline polyolefin and a hydrocarbon tackifier resin, and process for making same
JP2019166513A (en) Dust collection deodorizing filter material and dust collection deodorizing filter
JPH02127550A (en) Production of non-woven fabric containing fine particle
US20200208314A1 (en) Semi-continuous filaments including a crystalline polyolefin and a hydrocarbon tackifier resin, and process for making same
JP2003247157A (en) Absorber and absorbing article using the same
US20230321570A1 (en) Systems and methods for continuous production of fibrous materials and nanoparticles
US20230321575A1 (en) Filtration media incorporating nanoparticles and large linear density fibers
KR101239228B1 (en) A Non-woven Fabric Containing White Charcoal and Manufacturing Method Thereof
US20230323062A1 (en) Apertured polymer sheets incorporating nanoparticles
JP2002046201A (en) Plane shaled deodorizing sheet and manufacturing method thereof
US20230321569A1 (en) Filters with mechanical and eletrostatic filtering capabilities
US20230321572A1 (en) Systems and methods for separating and/or isolating nanoparticles within a gaseous medium
US20230323576A1 (en) Systems and methods for making fibrous materials
JP2004353129A (en) Member for hygiene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

R150 Certificate of patent or registration of utility model

Ref document number: 4178997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees