JP2004262022A - Functional fiber aggregate and molded object using it - Google Patents

Functional fiber aggregate and molded object using it Download PDF

Info

Publication number
JP2004262022A
JP2004262022A JP2003053142A JP2003053142A JP2004262022A JP 2004262022 A JP2004262022 A JP 2004262022A JP 2003053142 A JP2003053142 A JP 2003053142A JP 2003053142 A JP2003053142 A JP 2003053142A JP 2004262022 A JP2004262022 A JP 2004262022A
Authority
JP
Japan
Prior art keywords
fiber
functional
fiber aggregate
component
functional material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003053142A
Other languages
Japanese (ja)
Other versions
JP4178997B2 (en
Inventor
Masami Watanabe
雅美 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
JNC Fibers Corp
Original Assignee
Chisso Polypro Fiber Co Ltd
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Polypro Fiber Co Ltd, Chisso Corp filed Critical Chisso Polypro Fiber Co Ltd
Priority to JP2003053142A priority Critical patent/JP4178997B2/en
Publication of JP2004262022A publication Critical patent/JP2004262022A/en
Application granted granted Critical
Publication of JP4178997B2 publication Critical patent/JP4178997B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a functional fiber aggregate capable of sufficiently developing a function such as moisture absorption, offensive smell masking properties, deodorizing properties, antibacterial properties or the like possessed by a functional material and having excellent processability or strength and good ventilation properties, and a molded product using it. <P>SOLUTION: The functional fiber aggregate is obtained by thermally bonding the functional material and a fiber aggregate, and comprises thermally adhesive fibers constituted of a resin containing a modified polyolefin obtained by subjecting a polyolefin to graft polymerization using a vinyl monomer containing at least one component selected from an unsaturated carboxylic acid and an unsaturated carboxylic anhydride (hereinbelow said to be a modifier). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、機能性材料が熱接着された繊維集合体及びそれを用いた成形体に関する。
【0002】
【従来の技術】
繊維製品に吸湿性、脱臭性、抗菌性等の機能を付与するためには、繊維の原料樹脂に機能性材料を練り込んで繊維状にする技術が知られている(例えば、特許文献1参照)。しかし、この技術では、殺菌作用を有する金属イオンを保持したゼオライトを樹脂に添加混合するため、大部分の該ゼオライトが繊維内部に埋没して添加量に見合った性能が得られない欠点があった。さらに、長期間性能を維持するためには、前記ゼオライトを多量に添加する必要があり、その場合、紡糸性の悪化や繊維強度の低下等の問題があった。
【0003】
前述の技術以外では、ゼオライト及び雲母からなる担体に抗菌性金属イオンを担持させた微粉体をウレタン系やアクリル系の有機溶剤やエマルジョンのようなバインダー成分と混合して、布地に付着させる方法が提案されている(例えば、特許文献2参照)。しかし、この技術では前記微粉体がバインダー成分に埋没するため、その表面への露出が少なく、前記微粉体の性能が充分に発揮されないといった欠点があった。さらに、長期間性能を維持するためには、前記微粉体を多量に使用する必要があった。また、バインダー成分を用いることで、バインダー成分と前記微粉体との混合設備が必要であり、製造工程が増え製造コストが高くなるといった問題があった。
【0004】
また、ゼオライトのように比重が高い物質は、低粘度のバインダー液を使用すると沈降してしまうので、バインダー液にこのような物質を均一に分散させるためには、高粘度のバインダー液を使用しなければならない。高粘度のバインダー液を用いることで、乾燥工程に時間がかかるばかりでなく、得られる布地の風合いが固くなる問題や、バインダーが繊維間の隙間をふさぎ、通気性を低下させるといった問題が生じてしまう。
【0005】
【特許文献1】
特開昭59−133235号公報(第2頁)
【特許文献2】
特開平04−194074号公報(第1頁)
【0006】
【本発明が解決しようとする課題】
本発明の課題は、機能性材料の有する、吸湿性、消臭性、脱臭性、抗菌性等の機能を損なうことなく、これらを充分に発揮させることができ、かつ加工性や強度に優れ、通気性の良好な機能性繊維集合体及びそれを使用した成形品を提供することである。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意検討を重ねた。その結果、以下の構成を採用することにより、課題を解決することを見出し、この知見に基づいて本発明を完成させるに至った。
【0008】
以下、本発明は次の構成を有する。
(1)機能性材料と繊維集合体とが熱接着されてなる機能性繊維集合体であって、該機能性繊維集合体は、ポリオレフィンを不飽和カルボン酸及び不飽和カルボン酸無水物から選ばれる少なくとも1種を含むビニルモノマー(以下、これらを変性剤という。)でグラフト重合させた変性ポリオレフィンを含む樹脂で構成されている熱接着性繊維からなることを特徴とする機能性繊維集合体。
(2)熱接着性繊維が、第1成分と第2成分とからなる熱接着性複合繊維であり、第1成分が変性ポリオレフィンを含む樹脂であり、第2成分が該第1成分より融点の高い樹脂であり、第1成分が熱接着性複合繊維表面の少なくとも一部を長さ方向に連続して形成している熱接着性複合繊維である前記(1)項記載の機能性繊維集合体。
(3)変性剤が、無水マレイン酸、アクリル酸及びメタクリル酸から選ばれる少なくとも1種である前記(1)項または前記(2)項記載の機能性繊維集合体。
(4)熱接着性繊維が、長繊維である前記(1)〜(3)のいずれか1項記載の機能性繊維集合体。
(5)機能性材料が、機能性無機材料である前記(1)〜(4)のいずれか1項記載の機能性繊維集合体。
(6)機能性無機材料が、ゼオライト、リン酸カルシウム及びリン酸アルミニウムから選ばれる少なくとも1種である前記(5)項記載の機能性繊維集合体。
(7)前記(1)〜(6)のいずれか1項記載の機能性繊維集合体を用いた成形体。
【0009】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明で用いられる繊維集合体は、変性ポリオレフィンを含む樹脂から構成された熱接着性繊維からなる。前記熱接着性繊維としては、変性ポリオレフィンを含む樹脂からなる単一繊維が利用できる。また、変性ポリオレフィンを含む樹脂を第1成分とし、第1成分よりも融点の高い樹脂を第2成分とし、第1成分が熱接着性繊維表面の少なくとも一部を長さ方向に連続して形成されている熱接着性複合繊維が利用できる。なお、熱接着性複合繊維の第2成分にも変性ポリオレフィンを含む樹脂を使用してもよい。また、熱接着性複合繊維とすることで、繊維集合体を成形加工する際の、加熱や圧縮等による繊維または繊維集合体の大幅な溶融変形を防ぎ、繊維形状が保持されるために、通気性、弾力性、強度等が維持できるため望ましい。さらに、熱接着性複合繊維の第1成分だけに変性ポリオレフィンを用いた場合には、単一繊維に比べて、繊維表面近くの成分に変性ポリオレフィンを含ませることができるため、少ない変性ポリオレフィンの使用量で機能を発揮させることができる。また、変性ポリオレフィンを第1成分と第2成分の両成分に用いた場合には、第1成分と第2成分との層間接着強力を増やし両成分の剥離を防ぐ効果がある。
【0010】
変性ポリオレフィンに用いられる変性剤は、不飽和カルボン酸及び不飽和カルボン酸無水物から選ばれる少なくとも1種を含むビニルモノマーであり、具体的にはマレイン酸、アクリル酸、メタクリル酸等から選択される不飽和カルボン酸、またはそれらの不飽和カルボン酸の無水物である。しかし、これら以外の他のビニルモノマーを含有させてもよい。
【0011】
他のビニルモノマーとしては、ラジカル重合性に優れた汎用モノマーを使用することができる。例えばメタクリル酸メチル、メタクリル酸エチル、メタクリル酸2−ヒドロキシエチル、メタクリル酸ジメチルアミノエチル等のメタクリル酸エステル類または同様なアクリル酸エステル等を挙げることができる。
【0012】
変性ポリオレフィン中の不飽和カルボン酸または不飽和カルボン酸無水物は、機能性材料等の他素材との接着性に直接寄与する成分である。また、他のビニルモノマーは、接着成分を樹脂中へ均一分散させる効果と、極性の少ないポリオレフィンに極性を付与し他素材との親和性を向上させる効果があり、接着性に間接的に寄与する成分である。
【0013】
これらのビニルモノマーをポリオレフィンにグラフト重合する方法は、公知の方法で行うことができる。例えば、ポリオレフィン、ビニルモノマー及びラジカル開始剤を溶融混練して重合する方法や反応槽内で重合する方法等が挙げられる。
【0014】
ポリオレフィン中のグラフト重合された変性剤の量は、赤外吸収スペクトルを測定することで算出することができる。例えば、変性ポリオレフィンが、ポリエチレンを無水マレイン酸でグラフト重合させた変性ポリエチレンの場合には、以下の操作によって、グラフト重合された変性剤の量を測定することができる。
変性ポリエチレンを沸騰キシレンに溶解させ、その溶解液を3倍量の常温のアセトンに注ぎ、充分に冷却する。この液の濾過物を更にアセトンで洗浄し、真空乾燥することで、未反応の無水マレイン酸が除去された粉末状の変性ポリエチレンが得られる。この粉末をフィルム成形し、それを用いてフーリエ変換赤外吸収スペクトルを測定することで無水マレイン酸のグラフト量が算出できる。
【0015】
変性ポリオレフィンの主鎖ポリマーとなるポリオレフィンとしては、ポリエチレン、ポリプロピレン等が好ましく用いられる。ポリエチレンとしては、エチレンのホモポリマー、またはエチレンと他のα−オレフィンとのコポリマーを用いることができる。具体的には、密度が0.910〜0.925g/cmの低密度ポリエチレン、0.926〜0.940g/cmの直鎖状低密度ポリエチレン、0.941〜0.980g/cmの高密度ポリエチレンの汎用品を用いることができる。これらの融点は100〜135℃程度である。しかし、これらより密度が低いポリエチレンも市販されており、使用することができる。ポリプロピレンとしては、プロピレンのホモポリマー、またはプロピレンとプロピレン以外のエチレン、1−ブテン等のα−オレフィンとのコポリマーを用いることができる。これらの融点は130〜170℃程度である。なお、これらポリマーの中で、融点範囲やグラフト重合の容易性を考慮するとポリエチレンが好ましく用いられる。
【0016】
本発明に用いられる変性ポリオレフィンは、それ単独で用いるだけでなく、変性ポリオレフィンの2種以上の混合物、変性ポリオレフィンの主鎖ポリマーと同種ポリマーとの混合物、または変性ポリオレフィンの主鎖ポリマーと異種ポリマーとの混合物として用いることができる。変性ポリオレフィンを単独で用いる場合や混合物として用いる場合には、熱接着性繊維中の変性剤のグラフト量が0.001〜2モル/kgの範囲であればよい。この範囲であれば、公知の紡糸装置で問題なく生産でき、しかも機能性材料との接着性を発揮できる。
【0017】
第1成分より融点が高い第2成分の樹脂としては、ポリエチレン、ポリプロピレン、ポリエステル、ポリアミド等の結晶性ポリマーやポリエステル、ポリアミド等の非晶性ポリマーを用いることができる。これらのポリマーの中では、紡糸性、耐薬品性、融点等の点を考慮して、結晶性プロピレンホモポリマー、またはプロピレンと、エチレン、1−ブテン等のα−オレフィンとのコポリマーである結晶性プロピレンコポリマーが好ましく用いられる。また、ポリエチレンテレフタレートを用いた場合には、強度や耐熱性に優れた繊維集合体が得られる。即ち、付加価値または要求性能に応じて、第2成分を選択すればよい。
【0018】
本発明に用いられる第1成分、第2成分には、本発明の効果を妨げない範囲内で必要に応じて、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、造核剤、エポキシ安定剤、滑剤、抗菌剤、難燃剤、帯電防止剤、顔料、可塑剤、親水剤を適宜添加してもよい。また本発明で用いられる繊維集合体には必要に応じ、界面活性剤等の付着処理を行ってもよい。
【0019】
本発明に用いられる繊維集合体は、短繊維や長繊維からなり、各々単体で繊維集合体を形成してもよく、それらを混合または層状に組み合わせてもよい。また、形成する樹脂構成が異なる繊維やその他の繊維類が混合または層状に組み合わされていてもよい。
【0020】
繊維の断面形状としては、円形の他、楕円形、ブーメラン形、クロス形等の異形断面が挙げられ、各断面形状の繊維を組み合わせて繊維集合体を形成してもよい。複合繊維の場合は、並列型、多分割型、同心鞘芯型または偏心鞘芯型等の複合形態が挙げられ、各複合形態の繊維を組み合わせて繊維集合体を形成してもよい。また、2成分からなる複合繊維の場合、第1成分と第2成分の容積割合(繊維断面積をその測定に採用した場合にはその断面積の割合に相当する)は、通常、第1成分:第2成分の容量比で10:90〜90:10、より好ましくは30:70〜70:30の範囲にすることが好ましい。容積比が10:90〜90:10の範囲であれば、接着性と紡糸性が良好になる。特に容積比が30:70〜70:30の範囲であれば、熱加工等の処理を施した場合に、芯成分が繊維形状を強固に保持できるために好ましい。なお、複合形態として上記の2成分タイプだけでなく3成分以上にしても本発明の効果を満たすことができる。また、第1成分のみを使用して熱接着性繊維や繊維集合体としてもよいが、用途によっては成形体加工後の通気性や物性が必要になるので、熱接着性繊維を熱加工時の熱により繊維形状が保持されやすい2成分や3成分といった複合形態に加工することが好ましい。
【0021】
本発明に用いられる繊維集合体を構成する繊維の繊度は、用途に応じて適宜選択すればよく、通常、0.01〜100dtex程度が用いられる。接着性や生産性を考慮すると、0.01〜20dtexが好ましく、0.01〜10dtexがより好ましい。
【0022】
本発明で用いられる繊維集合体が不織布である場合、その目付は、原料として用いる樹脂の種類や用途に応じて適宜選択すればよいが、通気性や生産性を考慮すると、5〜100g/mが好ましく、5〜50g/mが特に好ましい。
【0023】
本発明でいう機能性材料とは、吸湿性、脱臭性、消臭性、抗菌性等の機能を有する材料や、磁力、放射線、遠赤外線等の微量のエネルギーを放射する性質を有する材料である。本発明では、これらの機能を有する多孔質物質、吸着性物質、イオン交換性物質が好ましく利用でき、例えば、活性炭、木炭粉、竹炭粉、備長炭粉、多孔質セルロース、機能性無機材料等が挙げられる。
【0024】
本発明でいう機能性無機材料とは、吸湿性、脱臭性、消臭性、抗菌性等の機能を有する無機材料や、磁力、放射線、遠赤外線等の微量のエネルギーを放射する性質を有する無機材料である。本発明では、これらの機能を有する無機材料からなる多孔質物質、吸着性物質、イオン交換性物質が好ましく利用でき、例えば、リン酸3カルシウム、ハイドロキシアパタイト等のリン酸カルシウム系化合物、リン酸ジルコニウム、リン酸チタニウム、リン酸亜鉛、リン酸アルミニウム、珪酸、珪酸カルシウム、珪酸アルミニウム、珪酸亜鉛、珪酸ジルコニウム、酸化チタン、ガラス、天然ゼオライト、合成ゼオライト、人工ゼオライト、シリカゲル、セラミックス等を挙げることができる。上記無機材料には、従来から知られている、抗菌性、消臭性を有する、銀、銅、亜鉛等の金属、金属イオン、金属塩等が担持されていてもよい。磁力、放射線、遠赤外線等の微量のエネルギーを放射する性質を有する機能性無機材料としては、例えば、モナザイト、バストネサイト、チルケライト、ホルマナイト、マグネタイト、ピスタサイト、サマルスキー石、コルンブ石、チタン磁鉄鉱、ガドリン石、カツレン石、ジルコン、アルミナ、シリカ等を挙げることができる。
【0025】
上記機能性材料の平均粒子径は、用途に応じて適宜選択すればよいが、0.1〜200μmであることが好ましい。特に好ましくは0.5〜50μmである。平均粒子径が、0.1〜200μmであれば粒子が凝集し難く、均一に分散させやすくなり、また、0.1〜200μmであれば機能性材料の比表面積が充分に広く、機能が充分に発揮される。特に0.5〜50μmであると樹脂への分散性も良好で、比表面積も充分であるので好ましい。
【0026】
本発明において、繊維集合体と機能性材料との重量比は、用途に応じて適宜選択すればよいが、繊維集合体が不織布の場合は、1m当たりの機能性材料の付着重量(目付)が、0.1g/m以上とすることが好ましい。特に好ましくは、0.5〜100g/mである。目付が0.1g/m以上であれば、機能を発揮するために充分な量の機能性材料を繊維または繊維集合体に熱接着することができる。特に目付が0.5〜100g/mであれば、機能性材料と繊維または繊維集合体とが良好に接着でき、機能性材料が脱落することがない。また、繊維集合体が不織布以外の場合はその形状により、機能性材料の付着量は変化するが、繊維集合体の0.1〜1000重量%の範囲の付着量であればよい。
【0027】
以下、本発明の繊維集合体の製造方法について一般的製糸方法を用いた場合で説明する。原料の樹脂としては、例えば、無水マレイン酸と直鎖状低密度ポリエチレンとを混合してグラフト重合した変性ポリオレフィンを含む樹脂を第1成分として用い、第1成分より融点の高い結晶性ポリプロピレンを第2成分として用いる。これらの樹脂を、鞘芯型複合紡糸口金を備えた、一般的な熱溶融紡糸機により紡糸する。このとき、口金直下において、クエンチ装置の送風によって、吐出する半溶融状態の樹脂を冷却し、固化させ、未延伸状態の熱接着性繊維(以下、未延伸糸という。)を製造する。このとき、必要に応じて表面処理剤を付着してもよい。溶融した樹脂の吐出量及び未延伸糸の引取速度を任意に設定し、目標繊度に対して1.1〜5倍程度の繊維径の未延伸糸とする。得られた未延伸糸は一般的な延伸機で延伸することで延伸糸(延伸加工を施しているが、捲縮加工を施していない状態の繊維)とすることができる。通常の場合、30〜120℃に加熱した延伸ロールにおいて、未延伸糸の入り口側と、その出口側ロールの速度比が1:1.1〜1:5の範囲となるように延伸処理を施す。必要に応じて、延伸処理によって得られた延伸糸にタッチロールやスプレー等で表面処理剤(油剤)を付着した後、ボックス型の捲縮加工機で捲縮を付与する。捲縮を付与された延伸糸を乾燥機で、50〜120℃の温度により乾燥し、用途に合わせて任意の繊維長に押し切りカッターで切断して使用する。このようにして得られた熱接着性繊維を、一般的に知られるカーディング法、エアレイド法、抄紙法等の方法でウェブとして、得られたウェブを一般的に知られるポイントボンド法、熱風加熱法、高圧水流法、ニードルパンチ法または超音波接着法等の加工法で繊維集合体としてもよく、さらにこれらを組み合わせてもよい。また、延伸糸を短くカットせずに長繊維であるトウの状態から繊維集合体へと加工してもよく、例えば、トウを熱処理して棒状の成形体としてもよく、開繊法により開繊したトウを熱処理して不織布としてもよい。
【0028】
以下、本発明の繊維集合体を製造する方法について、スパンボンド法を例にして説明する。原料の樹脂としては、例えば、無水マレイン酸をグラフト重合した直鎖状低密度ポリエチレンを含有した樹脂を第1成分として用い、第1成分より融点の高い結晶性ポリプロピレンを第2成分として用いる。2機の押出機を有する汎用の複合スパンボンド紡糸機を使用し、それぞれの押出機にそれぞれの樹脂を投入し、高温に保温した複合紡糸口金から溶融樹脂を長繊維として吐出させる。吐出した長繊維群をエアサッカーに導入して牽引延伸し、続いてエアサッカーから長繊維群を排出させ、コンベア上に捕集する。このときサクションコンベア上に、直接、長繊維ウェブとして長繊維群を捕集する方法や、コンベア上に捕集する前に開繊し、その後、捕集する方法がある。開繊する方法としては、例えば長繊維群の排出の途中で一対の振動する羽根状物(フラップ)の間に長繊維群を通過させる方法、長繊維群を反射板等に衝突させる方法またはコロナ帯電法により長繊維群を帯電させる方法が挙げられる。捕集した長繊維ウェブを、サクションコンベアで搬送し、熱処理加工を施す。熱処理加工としては、例えば、加熱された凹凸ロールと平滑ロールとで構成されたポイントボンド加工機で、加圧されたロール間にウェブを導入し、前記凹凸ロールの凸部に対応する区域において、第1成分を溶融または軟化して長繊維相互間を熱融着させることで行われる(ポイントボンド法)。これにより繊維集合体が得られる。このとき、繊維集合体の目付は、紡糸吐出速度(時間当たりの吐出量)やサクションコンベアの移動速度等の設定で調節することができる。なお、繊維集合体の加工は、ポイントボンド法に限らず、熱風加熱法、高圧水流法、ニードルパンチ法または超音波接着法等の方法で行ってもよく、さらにこれらを組み合わせてもよい。
【0029】
以下、本発明に用いられる繊維集合体を製造する方法について、メルトブロー法を例にして説明する。2機の押出機を有する汎用の複合メルトブロー紡糸機を使用し、スパンボンド法と同様に、第1成分と第2成分とをそれぞれの押出機に投入し、高温に保温された、吐出孔が横一列に並んだ複合メルトブロー紡糸口金より吐出させ、吐出孔の両側より高温、高速の熱風を吹き付けることで、細繊化された長繊維群をサクションコンベアやサクションドラム上に長繊維ウェブとして捕集する。メルトブロー法で得られるウェブは、熱融着しているので、ウェブの状態でも取扱い上は問題ないレベルの強度を持つ。そのため、熱加工せずにそのまま使用することができる。しかし、用途に応じて、スパンボンド法と同様に、さらにポイントボンド法等の加工を施してもよい。
【0030】
熱接着性繊維からなる繊維集合体の製造方法のなかでも、特にスパンボンド法は引張強度等の機械的物性に優れた繊維集合体を容易に得られるという特徴をもつ。また、スパンボンド法やメルトブロー法では、溶融紡糸して得られる長繊維をそのまま開繊及び集積して繊維集合体へと加工できるので、生産性に非常に優れ、安価に製造でき好ましい。さらに、スパンボンド法やメルトブロー法を用いることで、繊維集合体と機能性材料とを接着させるときに、接着力を低下させる恐れのある表面処理剤(油剤)を使用せずに繊維集合体を製造することができる。このため、表面処理を必要とする一般的紡糸方法により得られた繊維集合体と比較して、繊維集合体と機能性材料との接着力に優れ、機能性材料の脱落が生じにくい繊維集合体を製造できる。
【0031】
また、スパンボンド法で得られた繊維集合体と、メルトブロー法で得られた繊維集合体とを積層し、ポイントボンド加工機等で接合した繊維集合体の積層物も本発明の機能性繊維集合体に利用できる。積層物としては、例えば、SM(スパンボンド不織布/メルトブロー不織布の積層物)、SMS(スパンボンド不織布/メルトブロー不織布/スパンボンド不織布の積層物)、SMMS(スパンボンド不織布/メルトブロー不織布/メルトブロー不織布/スパンボンド不織布の積層物)等が挙げられる。これらの他にも、スパンボンド法やメルトブロー法による繊維集合体と、一般的紡糸法により得られる熱接着性繊維をカーディング法、エアレイド法、抄紙法等で繊維集合体とを積層した積層物も繊維集合体として利用できる。
【0032】
繊維集合体が積層物の場合、積層されている全ての繊維集合体に本発明で用いられる変性剤が含まれていてもよいが、機能性材料を付着させる層に変性剤を含有させ、機能性材料を接着させた層を一部に使用した繊維集合体の積層物としてもよい。この場合、機能性材料を付着させた繊維集合体の熱接着性繊維中に、変性剤が0.001〜2モル/kg含まれていればよい。
【0033】
本発明に用いられる熱接着性繊維を用いた繊維集合体には、上記の熱接着性繊維以外の繊維が混合されていてもよい。例えば、ポリエステル、ポリアミド、ポリプロピレン、ポリエチレン等の合成繊維、パルプ、木綿、羊毛等の天然繊維、レーヨン等の半合成繊維が利用できる。さらに本発明に用いられる熱接着性繊維以外の繊維で構成された繊維集合体と、本発明に用いられる熱接着性繊維を使用した繊維集合体と、本発明の機能性繊維集合体とを組み合わせて、積層物にしてもよい。
【0034】
本発明で用いられる繊維集合体または機能性繊維集合体には、必要に応じて熱処理時または熱処理後に2次加工を施すことができ、これにより任意の形状の成形体にすることが可能になる。例えば、長繊維をウェブ段階で束にし、これに熱処理等を施し、繊維交点を接着することで、ロッド状等の様々な形状の成形体とすることができ、また繊維集合体を任意の形状の容器に充填して熱処理等を行い繊維交点を接着することで、様々な形状の成形体とすることができる。
【0035】
本発明の機能性繊維集合体の製造方法としては、粉末状にした機能性材料を溶剤中に分散させて、公知のロールコート方式、グラビアロール方式、スクリーン方式、ドクター方式、スプレー方式等で、前記繊維集合体の表面に塗布し、その後、溶剤を熱乾燥し、加熱処理させることで、繊維集合体に機能性材料を熱接着させる方法が挙げられる。また、繊維集合体に直接粉末状の機能性材料を散布し、熱ロール、エンボスロール/フラットロールに代表されるポイントボンド加工機等の熱圧着装置で繊維集合体と機能性材料とを熱圧着する方法、スルーエア加工機等の熱風加熱加工装置で熱風を使用して繊維集合体と機能性材料とを熱接着する方法、遠赤外線を使用したヒーター等で加熱して繊維集合体と機能性材料とを熱接着する方法等も利用できる。
【0036】
また、公知のカーディング法、エアレイド法、スパンボンド法やメルトブロー法等で得られた熱処理前の繊維集合体に機能性材料を散布した後に、公知の熱加工方法によって、繊維集合体と機能性材料とを接着することで、機能性繊維集合体を得ることができる。具体的には、ポイントボンド加工機等の熱圧着装置で繊維集合体と機能性材料とを熱圧着する方法、スルーエア加工機等の熱風加熱加工装置で熱風により繊維集合体と機能性材料とを熱接着する方法、遠赤外線を使用したヒーターを備えた加熱加工装置等で繊維集合体と機能性材料とを熱接着する方法等が利用できる。
【0037】
さらに、公知のカーディング法、エアレイド法、スパンボンド法、メルトブロー法等で得られた熱処理前の繊維集合体上に機能性材料を散布して、その上から公知のカーディング法、エアレイド法、スパンボンド法、メルトブロー法等で得られた繊維集合体を積層し、機能性材料を挟んだ積層構造にした後に、公知の熱加工方法によって、繊維集合体と機能性材料とを接着することで、機能性繊維集合体を得ることができる。具体的には、ポイントボンド加工機等の熱圧着装置で繊維集合体と機能性材料とを熱圧着する方法、スルーエア加工機等の熱風加熱加工装置で熱風を使用して繊維集合体と機能性材料とを接着する方法、遠赤外線を使用したヒーターを備えた加熱加工装置等で繊維集合体と機能性材料とを接着する方法等が利用できる。
【0038】
機能性材料が粉末状の場合、繊維集合体を構成する熱接着性繊維に含まれている変性剤による機能性材料の接着効果により、粉末状の機能性材料と繊維集合体とが良好に接着するため、機能性材料の脱落が非常に少ない。さらに、機能性材料を熱接着した繊維集合体同士を積層または、機能性材料を熱接着していない繊維集合体とで積層したものは、変性剤による機能性材料の接着効果のほか、繊維集合体により挟まれることにより、機能性材料の脱落が生じにくくなるので好ましい。
【0039】
本発明の機能性繊維集合体を使用した成形体としては、上記のようにして得られた機能性繊維集合体からなる不織布、シート、筒状物、箱状物、球状物、フィルター、印刷物が挙げられる。特に、不織布やシートに加工することで、テーブルクロス、カーテン、カーペット、マット、毛布、布団、布団カバー、まくら、まくらカバー、衣装カバー、自動車の内外装材、自動車、自転車、オートバイのカバー、靴の中敷、内張り地、かばん、風呂敷、クッション、ぬいぐるみ等衣料品関連の材料、網戸、障子紙、襖紙、壁紙等の紙代替、家具、冷蔵庫、靴箱、畳用基材、畳やじゅうたんの下敷き、床下、屋根裏、押し入れ内等の除湿、消臭材、エアコンや空気清浄機、浄水器等のフィルター類等家庭生活用品の材料、農作物や植物の虫除け、日よけ用カバー、農業用シート、産業用の液体用フィルターや気体用フィルター等、多岐にわたり使用できる。
【0040】
本発明の筒状物とは、成形体の横断面の形状が、円形または楕円形等の円筒状の成形体や、横断面の形状が、3角形または4角形以上の多角形をした角形筒状の成形体である。これら筒状に加工する方法としては、例えば、任意の太さのステンレス製巻芯に機能性繊維集合体を任意の外径に巻き取り、これに公知の熱加工方法を施す製造方法等を挙げることができる。この方法を用いることで、筒状の成形体を得ることができる。
【0041】
本発明の印刷物は、機能性繊維集合体およびそれを用いた成形体に、公知のロールコート方式、グラビアロール方式、スクリーン方式、ドクター方式、スプレー方式等で印刷することで得られる。印刷物が不織布やシートである場合には、消臭、除湿等の機能を持つカレンダーやポスター等として利用できる。
【0042】
【実施例】
以下、本発明を実施例及び比較例によって詳細に説明するが、本発明はこれらによって何ら限定されるものではない。なお、実施例、比較例中における物性の測定方法は以下の通りである。
【0043】
メルトフローレート:JIS K 7210に準拠し、ポリプロピレン系樹脂は表1の条件14、ポリエチレン系樹脂は表1の条件4の設定で測定した(条件14の場合はMFR、条件4の場合はMIと表記した。単位:g/10分)。
固有粘度:ポリエチレンテレフタレートについては、フェノールと四塩化エタンの等重量混合溶媒にて、濃度0.5g/100ml、温度20℃の条件で固有粘度を測定した(IVと表記)。
目付:繊維集合体、不織布、機能性繊維集合体等を25cm角に切り出し、その重量を秤量し、単位面積あたりの重量(g/m)を求めた。
担持量:機能性材料を熱接着した繊維集合体、不織布を25cm角に切り出し、その重量を秤量し熱接着前の重量を除いて、機能性材料の単位面積あたりの重量(g/m)を求めた。
【0044】
アンモニア除去率の測定:テスト方法はテドラーバックを用いて行い、初期アンモニア濃度60ppm、設定温度35℃、機能性不織布400cm(20cm×20cm)として、24時間放置後の残留アンモニア濃度をアンモニア検知管で測定し、次式を用いてアンモニア除去率を求めた。
(((初期アンモニア濃度)−(残留アンモニア濃度))/(初期アンモニア濃度))×100(%)
【0045】
機能性材料保持率:機能性材料を不織布に熱接着加工した後、得られた機能性繊維集合体(その不織布)にエアーを吹き付けて、未接着の機能性材料を除去した。機能性材料が不織布に残留した量を測定し、次式を用いてその比率を算出した。
((未接着の機能性材料除去後の機能性材料の重量)/(熱接着加工後の機能性材料の重量))×100(%)
【0046】
通気性:
機能性材料付着加工後の通気度が加工前の80%以上の場合を◎
機能性材料付着加工後の通気度が加工前の60%以上、80%未満の場合を○
機能性材料付着加工後の通気度が加工前の50%以上、60%未満の場合を△
機能性材料付着加工後の通気度が加工前の50%未満の場合を×
加工性:繊維工程及び付着工程において
工程が少なく加工が簡単な場合を◎
工程は多いが加工が簡単にできる場合を○
工程は少ないが加工に専用の装置や技術を要する場合を△
工程が多く煩雑で加工に専用の装置や技術を要する場合を×
【0047】
実施例、比較例では、以下の樹脂を用いて試験を行った。
PP:結晶性ポリプロピレン(プロピレンホモポリマー、MFR36、融点161℃)
HDPE:高密度ポリエチレン(エチレンホモポリマー、Mw/Mn=4.2、MI30、融点132℃、密度0.955g/cm
LLDPE:直鎖状低密度ポリエチレン(エチレン−ブテン−1コポリマー、Mw/Mn=3.5、MI20、融点122℃、密度0.920g/cm
変性PE(変性ポリエチレン):高密度ポリエチレン(エチレンホモポリマー、Mw/Mn=4.0、MI2.0、融点132℃、密度0.960g/cm)を主鎖ポリマーとして無水マレイン酸をグラフト重合したコポリマー(無水マレイン酸含量0.2モル/Kg)
PET:ポリエチレンテレフタレート(IV0.63、融点255℃)
【0048】
実施例、比較例では熱接着性繊維を構成する樹脂の組合せを以下のようにした。また、それぞれの組合せによって得られた繊維集合体中の変性剤含有量(モル/kg)は、表1に示した。なお、繊維集合体中の変性剤含有量は、原料に用いた変性PEと他の成分の比率から算出した値である。
樹脂構成A:第1成分として変性PE10重量%とHDPE90重量%との混合物を用い、第2成分としてPPを用いて、第1成分を鞘側、第2成分を芯側とした。
樹脂構成B:第1成分として変性PE10重量%とLLDPE90重量%との混合物を用い、第2成分としてPPを用いて、第1成分を鞘側、第2成分を芯側とした。
樹脂構成C:第1成分として変性PE6重量%とLLDPE94重量%との混合物を用い、第2成分としてPPを用いて、第1成分を鞘側、第2成分を芯側とした。
樹脂構成D:第1成分として変性PE15重量%とHDPE85重量%との混合物を用い、第2成分としてPPを用いて、第1成分を鞘側、第2成分を芯側とした。
樹脂構成E:変性PE10重量%とHDPE90重量%との混合物のみを用いた。
樹脂構成F:第1成分として変性PE6重量%とLLDPE94重量%との混合物を用い、第2成分としてPETを用いて、第1成分を鞘側、第2成分を芯側とした。
樹脂構成G:第1成分としてHDPEを用い、第2成分としてPPを用いて、第1成分を鞘側、第2成分を芯側とした。
樹脂構成H:第1成分としてLLDPE100重量%を用い、第2成分としてPPを用いて、第1成分を鞘側、第2成分を芯側とした。
樹脂構成I:第1成分として変性PE0.5重量%とLLDPE99.5重量%との混合物を用い、第2成分としてPPを用いて、第1成分を鞘側、第2成分を芯側とした。
【0049】
実施例、比較例では機能性材料の構成を以下の組合せのようにした。また、それぞれの機能性材料の平均粒子径(μm)は、表2に示した。
機能性材料構成L:人工ゼオライト。
機能性材料構成M:ハイドロキシアパタイト。
機能性材料構成N:リン酸アルミニウム。
機能性材料構成O:モナザイト鉱石と人工ゼオライトとの重量比1:1の混合物。
機能性材料構成P:リン酸アルミニウムとジルコンセラミックとの重量比1:1の混合物。
【0050】
実施例、比較例の繊維集合体を構成する熱接着性繊維のうち長繊維については、公知のスパンボンド法またはメルトブロー法によって作製し、短繊維については、公知の複合繊維紡糸法で得られたトウを延伸し、任意の長さにカットすることで作製した。
【0051】
スパンボンド法を用いた繊維集合体の製造方法。
2機の押出機を有する複合スパンボンド紡糸機を使用して、繊維集合体を製造した。原料の樹脂(前記の樹脂または樹脂組成物)を、鞘芯型複合紡糸口金を用い、それぞれの押出機に投入し、芯成分の紡糸温度を260℃とし、鞘成分の紡糸温度を260℃として、第1成分と第2成分との複合比を50:50に設定して、紡糸口金から溶融樹脂を長繊維として吐出させた。吐出した長繊維群をエアサッカーで牽引延伸し、サクションコンベア上に排出させ長繊維ウェブとして捕集した。なお、このときの繊度が3dtex/fとなるようにエアサッカーの牽引速度を調節した。得られた長繊維ウェブをコンベアで搬送し、加熱された凹凸ロールと平滑ロールとで構成されたポイントボンド加工機のロール間で加圧した。これにより、凹凸ロールの凸部に対応する区域において第1成分が溶融または軟化して長繊維相互間が熱融着された繊維集合体を得た。なお、繊維集合体の目付が表3記載の各目付となるように繊維の種類に応じてサクションコンベア移動速度及びポイントボンド加工機のロール速度を調節した。
上記のようにして得られた繊維集合体に実施例のように機能性材料を熱接着して機能性繊維集合体とした。
【0052】
メルトブロー法を用いた繊維集合体の製造方法。
孔径0.3mm、孔数501個の紡糸口が一列に並んだメルトブロー用鞘芯型複合紡糸口金を用い、芯成分の紡糸温度を290℃とし、鞘成分の紡糸温度260℃として、第1成分と第2成分の複合比を50:50に設定して、紡糸口から押し出されたポリマーを380℃の加圧空気によってネットコンベヤーに吹き付けることで長繊維ウェブを得た。得られた長繊維ウェブを、ネットコンベヤーで移送しながら遠赤外線ヒーターで145℃に加熱し、この区域において第1成分が溶融または軟化して長繊維相互間が熱融着された繊維集合体を得た。なお、繊維集合体の目付が表3記載の各目付となるように繊維の種類に応じてネットコンベア移動速度を調節した。上記のようにして得られた繊維集合体に実施例のように、機能性材料を熱接着して機能性繊維集合体とした。
【0053】
一般的な複合繊維紡糸法を用いた繊維集合体の製造方法。
孔径が0.6mmの鞘芯型複合紡糸口金を備えた複合紡糸装置で、芯成分の紡糸温度を260℃とし、鞘成分の紡糸温度を260℃として、第1成分と第2成分の複合比を50:50に設定して、1000m/minの引取り速度により紡糸し、単糸繊度が4.0dtex/fの同心鞘芯型複合未延伸糸を得た。次にこの複合未延伸糸を延伸倍率2.4倍、延伸温度95℃の条件で延伸し、機械捲縮を付与し、80℃で乾燥させた後、用途に応じた繊維長にカッターで切断し、短繊維を製造した。ミニチュアカード機用の繊維は25mm、エアレイド機用の繊維は5mmに切断した。得られた短繊維を、ミニチュアカード機またはエアレイド機でウェブとした後、熱風循環式乾燥器で145℃、5分間の熱処理を施して繊維集合体とした。
上記のようにして得られた繊維集合体に実施例のように機能性材料を熱接着して機能性繊維集合体とした。
【0054】
実施例1
樹脂構成Aを使用し、前述のスパンボンド法により紡糸し、ポイントボンド加工機(ロール温度120℃、線圧80N/mm)で処理して、目付30g/mの繊維集合体を得た。次いで、人工ゼオライト(機能性材料構成L)を溶剤(20重量%メタノール溶液)に5重量%スラリーとなるように調整し、充分に攪拌させた後に、前記繊維集合体の表面にグラビアロール方式で塗布し、溶剤を乾燥除去した後、130℃のオーブンで処理することで、9.5g/mの人工ゼオライトが繊維集合体表面に熱接着した機能性繊維集合体を得た。スラリーの調整や塗布等の手間は必要であったが、得られた機能性繊維集合体はアンモニアを100%除去でき、通気性は良好であった。
【0055】
実施例2
樹脂構成Bを使用して、前述のスパンボンド法により紡糸し、ポイントボンド加工機(ロール温度116℃、線圧80N/mm)で処理して、目付20g/mの繊維集合体を得た。次いで人工ゼオライト(機能性材料構成L)を目開き149μm(100メッシュ)の篩に入れて、繊維集合体上に均一になるように散布し、温度130℃、圧力0.1MPaで熱プレス処理することで3.9g/mのゼオライトが繊維集合体表面に熱接着した機能性繊維集合体を得た。得られた機能性繊維集合体はアンモニアを100%除去でき、通気性が良好で、しかも加工が容易であった。
【0056】
実施例3
樹脂構成Cを使用して、前述のスパンボンド法により紡糸し、ポイントボンド加工機(ロール温度116℃、線圧80N/mm)で処理して、30g/mの繊維集合体を得た。次いで、ハイドロキシアパタイト(機能性材料構成M)を目開き149μm(100メッシュ)の篩に入れて、繊維集合体上に均一になるように散布し、温度140℃、圧力0.2MPaで熱プレス処理することで11g/mのハイドロキシアパタイトが繊維集合体表面に熱接着した機能性繊維集合体を得た。得られた機能性繊維集合体はアンモニアを100%除去でき、通気性が良好で、しかも加工が容易であった。
【0057】
実施例4
樹脂構成Dを使用して、前述のメルトブロー法により紡糸し、20g/mの繊維集合体を得た。次いで、モナザイト鉱石と人工ゼオライトの混合物(機能性材料構成O)を目開き149μm(100メッシュ)の篩に入れて、繊維集合体上に均一になるように散布し、フラットロール/フラットロール(132℃/132℃)、線圧20N/mmに設定した熱圧着装置で処理することで5.7g/mのモナザイト鉱石と人工ゼオライトとの混合物(機能性材料構成O)が繊維集合体表面に熱接着した機能性繊維集合体を得た。得られた機能性繊維集合体はアンモニアを100%除去でき、通気性が良好で、しかも加工が容易であった。
【0058】
実施例5
樹脂構成Fを使用して、前述のスパンボンド法により紡糸し、ポイントボンド加工機(ロール温度116℃、線圧80N/mm)で処理して、10g/mの繊維集合体を得た。次いで、リン酸アルミニウム(機能性材料構成N)を目開き149μm(100メッシュ)の篩に入れて、繊維集合体上に均一になるように散布し、温度135℃に設定したオーブンで30秒間処理することで5.8g/mのリン酸アルミニウムが繊維集合体表面に熱接着した機能性繊維集合体を得た。得られた機能性繊維集合体はアンモニアを100%除去でき、通気性が良好で、しかも加工が容易であった。
【0059】
実施例6
樹脂構成Aを使用して、前述の一般的な複合繊維紡糸法により得られた短繊維を、ミニチュアカード機でウェブにし、ポイントボンド加工機(ロール温度120℃、線圧80N/mm)で処理して、15g/mの繊維集合体を得た。次いで、リン酸アルミニウムとジルコンセラミックスの混合物(機能性材料構成P)を目開き149μm(100メッシュ)の篩に入れて、繊維集合体上に均一になるように散布し、温度150℃に設定したオーブンで10秒間処理することで8.5g/mのリン酸アルミニウムとジルコンセラミックスの混合物(重量比1:1で混合したもの)が繊維集合体表面に熱接着した機能性繊維集合体を得た。得られた機能性繊維集合体はアンモニアを100%除去でき、通気性が良好で、しかも加工が容易であった。
【0060】
実施例7
樹脂構成Eを使用して、前述の一般的な複合繊維紡糸法により得られた短繊維をミニチュアカード機でウェブにし、ポイントボンド加工機(ロール温度124℃、線圧20N/mm)で処理して、20g/mの繊維集合体を得た。次いで、人工ゼオライト(機能性材料構成L)を目開き149μm(100メッシュ)の篩に入れて、繊維集合体上に均一になるように散布し、エンボスロール/フラットロール(130℃/130℃)、線圧20N/mmに設定した熱圧着装置で処理することで5.5g/mの人工ゼオライトが繊維集合体表面に熱接着した機能性繊維集合体を得た。得られた機能性繊維集合体はアンモニアを100%除去でき、しかも加工が容易であった。
【0061】
実施例8
樹脂構成Aを使用して前述のスパンボンド法により紡糸し、10g/mとし、次いで、人工ゼオライト(機能性材料構成L)を目開き149μm(100メッシュ)の篩に入れて、繊維集合体上に均一になるように散布した。さらに、この繊維集合体上に、樹脂構成Aを使用して前述の一般的な複合繊維紡糸法により得られた短繊維をエアレイド機で処理して繊維集合体の積層物とした。このとき人工ゼオライト担持量を除いた繊維集合体の積層物の目付は25g/mとした。このようにして得られた人工ゼオライトを散布した繊維集合体と繊維集合体の積層物を、温度145℃に設定した熱風循環式オーブンで45秒間処理することで8g/mの人工ゼオライトを積層物間に熱接着した機能性繊維集合体を得た。得られた機能性繊維集合体はアンモニアを100%除去でき、しかも通気性が良好であり、粉落ちも生じなかった。
【0062】
実施例9
樹脂構成Iを使用して、前述のスパンボンド法により紡糸し、ポイントボンド加工機(ロール温度116℃、線圧80N/mm)で処理して、20g/mの繊維集合体を得た。次いで人工ゼオライト(機能性材料構成L)を目開き149μm(100メッシュ)の篩に入れて、繊維集合体上に均一になるように散布し、温度130℃、圧力0.1MPaで熱プレス処理することで5g/mの人工ゼオライトが繊維集合体表面に熱接着した機能性繊維集合体を得た。これは、変性剤が少ないために機能性材料と繊維集合体が少量しか接着しておらず、エアーを吹き付けると大部分の人工ゼオライトが脱落し、わずかに1g/mの人工ゼオライトが熱接着して、機能性繊維集合体表面に残っていただけであった。この機能性繊維集合体は人工ゼオライトの脱落があったが、通気性が良好で加工が容易であり、しかもアンモニアを80%除去できた。
【0063】
実施例10
実施例4で得られた機能性繊維集合体を使用して、市販のエアコンに使用されているフィルターに合うようにカットし、エアコンのフィルターに代えてエアコンに設置したところ、部屋の異臭が減り、心地よく、好適な室内環境になった。
【0064】
実施例11
実施例1で得られた機能性繊維集合体を赤外線ヒーターで145℃の温度に加熱しながら、直径30mmのステンレス製パイプに機能性繊維集合体の厚みが15mmになるまで巻取り、冷却した後、ステンレス製パイプを抜取った。得られた成形体を、150mmにカットして、内径30mm、外径60mm、長さ150mmの筒状物を得た。得られた筒状物を冷蔵庫内に入れたところ、冷蔵庫内の臭気が低減し好適な使用状況になった。
【0065】
実施例12
実施例1で得られた機能性不織布に、グラビア印刷方式で図柄をプリントして、ポスターを作製した。このポスターを部屋に貼ったところ、部屋の異臭と湿度が減り好適な室内環境になった。
【0066】
比較例1
樹脂構成Hを使用して、前述のメルトブロー法により紡糸し、遠赤外線を使用した熱処理機で、145℃、5分間加熱処理し、30g/mの不織布(繊維集合体)を得た。次いで、人工ゼオライト(機能性材料構成L)を目開き149μm(100メッシュ)の篩に入れて、不織布上にほぼ均一に散布し、得られた不織布を温度150℃に設定したオーブンで10秒間処理して5g/mの人工ゼオライトが繊維集合体に熱接着した機能性繊維集合体を得た。これは、繊維に変性剤が添加されていないため、機能性材料と繊維集合体とが接着しておらず、エアーを吹き付けると人工ゼオライトがほとんど脱落し、わずかに0.1g/mの人工ゼオライトが熱接着して、繊維集合体表面に残っていただけであった。この機能性繊維集合体は通気性が良好で、しかも加工が容易であったが、アンモニアを少量しか除去できず、充分な性能を有していなかった。
【0067】
比較例2
樹脂構成Gを使用して、前述のスパンボンド法により紡糸し、ポイントボンド加工機(ロール温度120℃、線圧80N/mm)で処理して、20g/mの繊維集合体を得た。次いで、ハイドロキシアパタイト(機能性材料構成M)10重量%、ポリカルボン酸アンモニウム塩(分散剤)及びポリビニルアルコール(結合剤)1重量%を純水88.9重量%に加え攪拌して分散液を作製し、上記繊維集合体に含浸し、140℃に設定した熱風乾燥機を通し、繊維集合体に15.2g/mのハイドロキシアパタイトが接着した機能性繊維集合体を得た。この機能性繊維集合体は通気性が良好であったが、分散液製造工程が複雑であり、通気性も悪く、アンモニアの除去率は40%と低く充分な性能ではなかった。
【0068】
比較例3
樹脂構成Gを使用して、前述の一般的な複合繊維紡糸法により得られた短繊維をミニチュアカード機でウェブにし、スルーエア加工機で140℃、2分間熱処理することで、30g/mの繊維集合体を得た。次いで、人工ゼオライト(機能性材料構成L)5重量%とアクリル固形分25重量%との水系エマルジョン液をスプレーガンで、繊維集合体に120g/mとなるように吹き付けて、140℃に設定した熱風乾燥機を通し、10.0g/mの人工ゼオライトが接着した機能性繊維集合体を得た。この不織布のアンモニア除去率は60%であるが、機能性繊維集合体の通気性が不良で、エマルジョン製造工程が煩雑であった。
【0069】
比較例4
樹脂構成Bを使用して、第1成分には、さらに20重量%の人工ゼオライト(機能性材料構成L)を添加して、前述のスパンボンド法により紡糸し、ポイントボンド加工機(ロール温度116℃、線圧80N/mm)で処理して、40g/mの機能性繊維集合体を得た。得られた機能性繊維集合体の通気性は良好なものの、溶融紡糸工程での糸切れが多発し、ノズルフィルターが詰まる等の不具合が非常に多く、生産性に欠ける状態であった。またアンモニア除去率は35%と低く充分な性能ではなかった。
【0070】
【表1】

Figure 2004262022
【0071】
【表2】
Figure 2004262022
【0072】
【表3】
Figure 2004262022
【0073】
【発明の効果】
本発明による機能性繊維集合体及びそれを用いた成形体は、機能性材料を練り込み、バインダーまたはホットメルト接着剤で付着させたものとは異なり、機能性材料の露出面積が大きい。このため、機能性材料の機能が損なわれることがほとんどなく、また、機能性材料の使用量を少なく抑えることができ、しかもバインダーやホットメルト接着剤を使用しないので、通気性も良好であり、加工が容易でコスト面でも有利である特徴を持つ機能性繊維集合体及びそれを用いた成形体を提供できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fiber aggregate to which a functional material is thermally bonded and a molded body using the same.
[0002]
[Prior art]
In order to impart functions such as hygroscopicity, deodorizing property, and antibacterial property to a fiber product, there is known a technique of kneading a functional material into a raw material resin of a fiber to form a fibrous form (for example, see Patent Document 1). ). However, in this technique, since zeolite holding a metal ion having a bactericidal action is added to and mixed with the resin, there is a disadvantage that most of the zeolite is buried inside the fiber and performance corresponding to the added amount cannot be obtained. . Furthermore, in order to maintain the performance for a long period of time, it is necessary to add a large amount of the zeolite, in which case there are problems such as deterioration of spinnability and decrease in fiber strength.
[0003]
In addition to the above-described techniques, a method of mixing fine powder in which an antibacterial metal ion is supported on a carrier composed of zeolite and mica with a binder component such as an urethane-based or acrylic-based organic solvent or an emulsion, and attaching the mixture to a fabric. It has been proposed (for example, see Patent Document 2). However, in this technique, since the fine powder is buried in the binder component, there is a drawback that the surface of the fine powder is less exposed and the performance of the fine powder is not sufficiently exhibited. Further, in order to maintain the performance for a long time, it was necessary to use a large amount of the fine powder. In addition, the use of the binder component requires a facility for mixing the binder component and the fine powder, resulting in a problem that the number of production steps is increased and the production cost is increased.
[0004]
In addition, a substance having a high specific gravity, such as zeolite, will settle if a low-viscosity binder solution is used.To uniformly disperse such a substance in the binder solution, use a high-viscosity binder solution. There must be. The use of a high-viscosity binder solution not only takes a long time to the drying process, but also causes a problem that the texture of the obtained fabric becomes hard, and a problem that the binder closes the gap between the fibers and reduces air permeability. I will.
[0005]
[Patent Document 1]
JP-A-59-133235 (page 2)
[Patent Document 2]
JP-A-04-194074 (page 1)
[0006]
[Problems to be solved by the present invention]
The object of the present invention is to have a functional material, without impairing the functions of hygroscopicity, deodorant, deodorant, antibacterial properties, etc., can sufficiently exert these, and excellent in processability and strength, An object of the present invention is to provide a functional fiber aggregate having good air permeability and a molded article using the same.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems. As a result, it has been found that the problem is solved by employing the following configuration, and the present invention has been completed based on this finding.
[0008]
Hereinafter, the present invention has the following configuration.
(1) A functional fiber aggregate obtained by thermally bonding a functional material and a fiber aggregate, wherein the functional fiber aggregate is a polyolefin selected from unsaturated carboxylic acids and unsaturated carboxylic anhydrides. A functional fiber aggregate comprising a heat-adhesive fiber composed of a resin containing a modified polyolefin obtained by graft polymerization with a vinyl monomer containing at least one kind (hereinafter, these are referred to as modifiers).
(2) The heat-adhesive fiber is a heat-adhesive conjugate fiber composed of a first component and a second component, the first component is a resin containing a modified polyolefin, and the second component has a melting point higher than that of the first component. The functional fiber aggregate according to the above (1), wherein the functional fiber aggregate is a high resin, and the first component is a heat-adhesive conjugate fiber in which at least a part of the surface of the heat-adhesive conjugate fiber is continuously formed in the length direction. .
(3) The functional fiber assembly according to the above (1) or (2), wherein the modifier is at least one selected from maleic anhydride, acrylic acid and methacrylic acid.
(4) The functional fiber aggregate according to any one of (1) to (3), wherein the heat-adhesive fiber is a long fiber.
(5) The functional fiber assembly according to any one of (1) to (4), wherein the functional material is a functional inorganic material.
(6) The functional fiber assembly according to the above (5), wherein the functional inorganic material is at least one selected from zeolite, calcium phosphate, and aluminum phosphate.
(7) A molded article using the functional fiber aggregate according to any one of (1) to (6).
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The fiber aggregate used in the present invention is composed of a heat-adhesive fiber composed of a resin containing a modified polyolefin. A single fiber made of a resin containing a modified polyolefin can be used as the heat-adhesive fiber. In addition, a resin containing a modified polyolefin is used as a first component, and a resin having a melting point higher than that of the first component is used as a second component. The first component continuously forms at least a part of the surface of the heat-adhesive fiber in the length direction. The heat-bondable conjugate fibers that have been used can be used. Note that a resin containing a modified polyolefin may be used as the second component of the heat-adhesive conjugate fiber. In addition, by using a heat-adhesive conjugate fiber, when the fiber aggregate is formed, the fiber or the fiber aggregate is prevented from being significantly melted and deformed by heating or compression, and the fiber shape is maintained. It is desirable because the properties, elasticity, strength and the like can be maintained. Furthermore, when a modified polyolefin is used only for the first component of the heat-adhesive conjugate fiber, the modified polyolefin can be contained in a component near the fiber surface as compared with a single fiber. The function can be exerted by the amount. Further, when the modified polyolefin is used for both the first component and the second component, there is an effect that the interlayer adhesion strength between the first component and the second component is increased and the separation of both components is prevented.
[0010]
The modifier used for the modified polyolefin is a vinyl monomer containing at least one selected from unsaturated carboxylic acids and unsaturated carboxylic anhydrides, and is specifically selected from maleic acid, acrylic acid, methacrylic acid, and the like. Unsaturated carboxylic acids or anhydrides of those unsaturated carboxylic acids. However, other vinyl monomers other than these may be contained.
[0011]
As other vinyl monomers, general-purpose monomers having excellent radical polymerizability can be used. Examples thereof include methacrylates such as methyl methacrylate, ethyl methacrylate, 2-hydroxyethyl methacrylate, and dimethylaminoethyl methacrylate, and similar acrylates.
[0012]
The unsaturated carboxylic acid or the unsaturated carboxylic acid anhydride in the modified polyolefin is a component that directly contributes to the adhesiveness with another material such as a functional material. In addition, other vinyl monomers have the effect of uniformly dispersing the adhesive component in the resin and the effect of imparting polarity to the polyolefin having a small polarity and improving the affinity with other materials, and indirectly contribute to the adhesiveness. Component.
[0013]
The method of graft-polymerizing these vinyl monomers to polyolefin can be performed by a known method. For example, a method in which a polyolefin, a vinyl monomer, and a radical initiator are melt-kneaded and polymerized, a method in which polymerization is performed in a reaction tank, and the like are included.
[0014]
The amount of the graft-polymerized modifier in the polyolefin can be calculated by measuring an infrared absorption spectrum. For example, when the modified polyolefin is a modified polyethylene obtained by graft-polymerizing polyethylene with maleic anhydride, the amount of the graft-polymerized modifier can be measured by the following operation.
The modified polyethylene is dissolved in boiling xylene, and the resulting solution is poured into three times the volume of room-temperature acetone and cooled sufficiently. The filtrate of this liquid is further washed with acetone and dried in vacuum to obtain a powdery modified polyethylene from which unreacted maleic anhydride has been removed. This powder is formed into a film, and the Fourier transform infrared absorption spectrum is measured using the powder, whereby the graft amount of maleic anhydride can be calculated.
[0015]
As the polyolefin to be the main chain polymer of the modified polyolefin, polyethylene, polypropylene and the like are preferably used. As the polyethylene, a homopolymer of ethylene or a copolymer of ethylene and another α-olefin can be used. Specifically, the density is 0.910 to 0.925 g / cm 3 Low-density polyethylene, 0.926 to 0.940 g / cm 3 Linear low density polyethylene, 0.941 to 0.980 g / cm 3 General-purpose high-density polyethylene can be used. Their melting points are about 100-135 ° C. However, lower density polyethylenes are also commercially available and can be used. As the polypropylene, a homopolymer of propylene or a copolymer of propylene with an α-olefin such as ethylene and 1-butene other than propylene can be used. Their melting points are about 130-170 ° C. Of these polymers, polyethylene is preferably used in consideration of the melting point range and the ease of graft polymerization.
[0016]
The modified polyolefin used in the present invention is used not only alone, but also as a mixture of two or more modified polyolefins, a mixture of a modified polyolefin main chain polymer and the same polymer, or a modified polyolefin main chain polymer and a different polymer. Can be used as a mixture. When the modified polyolefin is used alone or as a mixture, the grafting amount of the modifying agent in the heat-adhesive fiber may be in the range of 0.001 to 2 mol / kg. Within this range, production can be carried out without any problem using a known spinning device, and adhesion to a functional material can be exhibited.
[0017]
As the resin of the second component having a higher melting point than the first component, a crystalline polymer such as polyethylene, polypropylene, polyester, or polyamide, or an amorphous polymer such as polyester or polyamide can be used. Among these polymers, crystalline propylene homopolymers or copolymers of propylene and α-olefins such as ethylene and 1-butene are considered in view of spinnability, chemical resistance, melting point and the like. Propylene copolymers are preferably used. When polyethylene terephthalate is used, a fiber aggregate having excellent strength and heat resistance can be obtained. That is, the second component may be selected according to added value or required performance.
[0018]
The first component and the second component used in the present invention may contain an antioxidant, a light stabilizer, an ultraviolet absorber, a neutralizing agent, a nucleating agent, if necessary, as long as the effects of the present invention are not impaired. Epoxy stabilizers, lubricants, antibacterial agents, flame retardants, antistatic agents, pigments, plasticizers, and hydrophilic agents may be added as appropriate. In addition, the fiber aggregate used in the present invention may be subjected to a treatment for attaching a surfactant or the like, if necessary.
[0019]
The fiber aggregate used in the present invention is composed of short fibers or long fibers, and each may form a fiber aggregate alone, or may be mixed or combined in a layered form. Further, fibers or other fibers having different resin configurations to be formed may be mixed or combined in layers.
[0020]
Examples of the cross-sectional shape of the fiber include an irregular cross-section such as an elliptical shape, a boomerang shape, and a cross shape in addition to the circular shape, and a fiber aggregate may be formed by combining fibers having different cross-sectional shapes. In the case of the composite fiber, a composite form such as a side-by-side type, a multi-split type, a concentric sheath-core type, or an eccentric sheath-core type may be mentioned, and a fiber aggregate may be formed by combining fibers of each composite form. In the case of a bicomponent fiber composed of two components, the volume ratio of the first component and the second component (which corresponds to the ratio of the cross-sectional area when the fiber cross-sectional area is used for the measurement) is usually the first component. : The volume ratio of the second component is preferably in the range of 10:90 to 90:10, more preferably 30:70 to 70:30. If the volume ratio is in the range of 10:90 to 90:10, the adhesiveness and spinnability will be good. In particular, when the volume ratio is in the range of 30:70 to 70:30, it is preferable that the core component can firmly hold the fiber shape when subjected to a treatment such as thermal processing. The effects of the present invention can be satisfied by using not only the two-component type described above but also three or more components as a composite form. In addition, the first component may be used to form a heat-adhesive fiber or fiber aggregate. However, depending on the application, air permeability and physical properties after processing the molded article are required. It is preferable to process into a composite form such as two-component or three-component, which easily retains the fiber shape by heat.
[0021]
The fineness of the fibers constituting the fiber aggregate used in the present invention may be appropriately selected depending on the application, and usually about 0.01 to 100 dtex is used. In consideration of adhesiveness and productivity, 0.01 to 20 dtex is preferable, and 0.01 to 10 dtex is more preferable.
[0022]
When the fiber aggregate used in the present invention is a non-woven fabric, the basis weight may be appropriately selected according to the type and application of the resin used as a raw material, but in consideration of air permeability and productivity, 5 to 100 g / m2. 2 Is preferred, and 5 to 50 g / m 2 Is particularly preferred.
[0023]
The functional material referred to in the present invention is a material having functions such as hygroscopicity, deodorizing property, deodorizing property, antibacterial property, and a material having a property of emitting a small amount of energy such as magnetic force, radiation, and far infrared rays. . In the present invention, porous materials having these functions, adsorptive materials, ion-exchange materials can be preferably used, for example, activated carbon, charcoal powder, bamboo charcoal powder, Bincho charcoal powder, porous cellulose, functional inorganic materials and the like. No.
[0024]
The functional inorganic material referred to in the present invention is an inorganic material having a function of absorbing moisture, deodorizing, deodorizing, and antibacterial properties, and an inorganic material having a property of radiating a small amount of energy such as magnetic force, radiation, and far infrared rays. Material. In the present invention, a porous substance, an adsorptive substance, and an ion-exchange substance made of an inorganic material having these functions can be preferably used. For example, calcium phosphate compounds such as tricalcium phosphate and hydroxyapatite, zirconium phosphate, phosphorus Examples include titanium acid, zinc phosphate, aluminum phosphate, silicic acid, calcium silicate, aluminum silicate, zinc silicate, zirconium silicate, titanium oxide, glass, natural zeolite, synthetic zeolite, artificial zeolite, silica gel, and ceramics. The inorganic material may carry a conventionally known antibacterial and deodorant metal such as silver, copper, and zinc, a metal ion, a metal salt, and the like. Magnetic force, radiation, functional inorganic material having the property of radiating a small amount of energy such as far infrared rays, for example, monazite, bastnaesite, tilkerite, formanite, magnetite, pistasite, samarskiite, columbite, titanium magnetite, Examples include gadolinite, cutletite, zircon, alumina, silica and the like.
[0025]
The average particle size of the functional material may be appropriately selected depending on the application, but is preferably from 0.1 to 200 μm. Particularly preferably, it is 0.5 to 50 μm. When the average particle diameter is 0.1 to 200 μm, the particles are hardly aggregated and easily dispersed uniformly, and when the average particle diameter is 0.1 to 200 μm, the specific surface area of the functional material is sufficiently large and the function is sufficient. It is exhibited in. In particular, when the thickness is 0.5 to 50 μm, the dispersibility in the resin is good and the specific surface area is sufficient, so that it is preferable.
[0026]
In the present invention, the weight ratio between the fiber aggregate and the functional material may be appropriately selected depending on the application. 2 Weight of the functional material per unit weight (basis weight) is 0.1 g / m 2 It is preferable to make the above. Particularly preferably, 0.5 to 100 g / m 2 It is. The basis weight is 0.1 g / m 2 With the above, a sufficient amount of the functional material for exerting the function can be thermally bonded to the fiber or the fiber aggregate. In particular, the basis weight is 0.5 to 100 g / m. 2 If so, the functional material and the fiber or fiber aggregate can be satisfactorily bonded to each other, and the functional material does not fall off. Further, when the fiber aggregate is other than the nonwoven fabric, the amount of the functional material to be attached changes depending on the shape thereof, but the amount of the functional material may be in the range of 0.1 to 1000% by weight of the fiber aggregate.
[0027]
Hereinafter, the method for producing the fiber assembly of the present invention will be described using a case where a general spinning method is used. As a raw material resin, for example, a resin containing a modified polyolefin obtained by mixing maleic anhydride and linear low-density polyethylene and graft-polymerizing is used as the first component, and crystalline polypropylene having a melting point higher than that of the first component is used as the first resin. Used as two components. These resins are spun by a general hot-melt spinning machine equipped with a sheath-core composite spinneret. At this time, the resin in a semi-molten state to be discharged is cooled and solidified by blowing air from a quench device immediately below the die to produce a thermo-adhesive fiber in an undrawn state (hereinafter referred to as an undrawn yarn). At this time, a surface treatment agent may be attached as necessary. The discharge amount of the melted resin and the take-up speed of the undrawn yarn are set arbitrarily, and the undrawn yarn has a fiber diameter of about 1.1 to 5 times the target fineness. The obtained undrawn yarn can be drawn into a drawn yarn (fiber that has been drawn but not crimped) by drawing with a general drawing machine. In a normal case, the drawing process is performed such that the speed ratio between the entrance side of the undrawn yarn and the exit side roll of the drawing roll heated to 30 to 120 ° C. is in the range of 1: 1.1 to 1: 5. . If necessary, a surface treatment agent (oil agent) is attached to the drawn yarn obtained by the drawing treatment with a touch roll, a spray, or the like, and then crimped by a box-type crimping machine. The crimped stretched yarn is dried with a dryer at a temperature of 50 to 120 ° C., cut into a desired fiber length by a press cutter and used according to the application. The thus obtained thermoadhesive fiber is used as a web by a generally known carding method, an air laid method, a papermaking method, or the like, and the obtained web is generally known as a point bond method or hot air heating. A fiber aggregate may be obtained by a processing method such as a water jet method, a high-pressure water flow method, a needle punch method or an ultrasonic bonding method, or a combination thereof. Also, the drawn yarn may be processed into a fiber aggregate from the state of the long fiber tow without being cut short, for example, the tow may be heat-treated into a rod-shaped molded body, and the fiber may be spread by a fiber-spreading method. The tow may be heat treated to form a nonwoven fabric.
[0028]
Hereinafter, a method for producing the fiber aggregate of the present invention will be described by taking a spun bond method as an example. As the raw material resin, for example, a resin containing linear low-density polyethylene obtained by graft polymerization of maleic anhydride is used as the first component, and crystalline polypropylene having a melting point higher than that of the first component is used as the second component. A general-purpose composite spunbond spinning machine having two extruders is used, each resin is put into each extruder, and the molten resin is discharged as long fibers from the composite spinneret kept at a high temperature. The discharged long fiber group is introduced into an air soccer and drawn and stretched. Subsequently, the long fiber group is discharged from the air soccer and collected on a conveyor. At this time, there is a method of directly collecting a long fiber group as a long fiber web on the suction conveyor, or a method of opening the fiber before collecting it on the conveyor and then collecting it. Examples of the method of opening the fiber include a method of passing the group of long fibers between a pair of vibrating wings (flaps) during the discharge of the group of long fibers, a method of colliding the group of long fibers with a reflector or the like, or a method of corona. A method of charging the long fiber group by a charging method may be used. The collected long fiber web is conveyed by a suction conveyor and subjected to heat treatment. As the heat treatment, for example, with a point bond processing machine composed of a heated uneven roll and a smooth roll, the web is introduced between the pressed rolls, in an area corresponding to the convex portion of the uneven roll, This is performed by melting or softening the first component and thermally fusing the long fibers to each other (point bonding method). Thereby, a fiber aggregate is obtained. At this time, the basis weight of the fiber assembly can be adjusted by setting the spinning discharge speed (discharge amount per time), the moving speed of the suction conveyor, and the like. The processing of the fiber aggregate is not limited to the point bond method, and may be performed by a method such as a hot air heating method, a high pressure water flow method, a needle punch method, or an ultrasonic bonding method, or a combination thereof.
[0029]
Hereinafter, a method for producing a fiber aggregate used in the present invention will be described by taking a melt blow method as an example. Using a general-purpose composite melt-blow spinning machine having two extruders, the first component and the second component are put into each extruder in the same manner as in the spunbond method, and the discharge holes kept at a high temperature are discharged. Discharged from composite melt-blow spinnerets arranged in a row, and high-temperature, high-speed hot air is blown from both sides of the discharge hole, collecting fine fiber groups as a long fiber web on a suction conveyor or suction drum. I do. Since the web obtained by the melt blow method is heat-sealed, the web has a level of strength that does not cause any problem in handling even in the state of the web. Therefore, it can be used as it is without heat processing. However, depending on the application, similar to the spun bond method, a process such as a point bond method may be further performed.
[0030]
Among the methods for producing fiber aggregates made of heat-adhesive fibers, the spunbond method has a feature that a fiber aggregate excellent in mechanical properties such as tensile strength can be easily obtained. In the spunbonding method and the melt-blowing method, long fibers obtained by melt-spinning can be opened and accumulated as they are to be processed into a fiber aggregate. Furthermore, by using a spun bond method or a melt blow method, when bonding the fiber aggregate to the functional material, the fiber aggregate can be used without using a surface treatment agent (oil agent) that may reduce the adhesive strength. Can be manufactured. For this reason, compared with the fiber aggregate obtained by the general spinning method that requires a surface treatment, the fiber aggregate has excellent adhesion between the fiber aggregate and the functional material, and the functional aggregate does not easily fall off. Can be manufactured.
[0031]
In addition, the fiber aggregate obtained by the spun bond method and the fiber aggregate obtained by the melt blow method are laminated, and a laminate of the fiber aggregate joined by a point bond processing machine or the like is also a functional fiber aggregate of the present invention. Available to the body. Examples of the laminate include SM (laminate of spunbond nonwoven fabric / meltblown nonwoven fabric), SMS (laminate of spunbond nonwoven fabric / meltblown nonwoven fabric / spunbond nonwoven fabric), and SMMS (spunbond nonwoven fabric / meltblown nonwoven fabric / meltblown nonwoven fabric / span). Laminated nonwoven fabric). In addition to these, a laminate obtained by laminating a fiber aggregate obtained by a spun bond method or a melt blow method with a heat adhesive fiber obtained by a general spinning method by a carding method, an air laid method, a papermaking method, or the like. Can also be used as a fiber assembly.
[0032]
When the fiber aggregate is a laminate, all of the laminated fiber aggregates may contain the modifying agent used in the present invention. It may be a laminate of fiber aggregates partially using a layer to which a conductive material is adhered. In this case, the modifier may be contained in the heat-adhesive fibers of the fiber assembly to which the functional material is attached, in an amount of 0.001 to 2 mol / kg.
[0033]
Fibers other than the above-mentioned heat-adhesive fibers may be mixed in the fiber aggregate using the heat-adhesive fibers used in the present invention. For example, synthetic fibers such as polyester, polyamide, polypropylene and polyethylene, natural fibers such as pulp, cotton and wool, and semi-synthetic fibers such as rayon can be used. Further, a fiber aggregate composed of fibers other than the heat-adhesive fibers used in the present invention, a fiber aggregate using the heat-adhesive fibers used in the present invention, and a functional fiber aggregate of the present invention combined And may be a laminate.
[0034]
The fiber aggregate or the functional fiber aggregate used in the present invention can be subjected to secondary processing at the time of or after the heat treatment, if necessary, whereby a molded article of any shape can be obtained. . For example, long fibers can be bundled at the web stage, subjected to a heat treatment, etc., and bonded to fiber intersections to form molded bodies of various shapes such as rods. And heat treatment or the like and bonding the fiber intersections to form molded articles of various shapes.
[0035]
As a method for producing a functional fiber aggregate of the present invention, a powdery functional material is dispersed in a solvent, and a known roll coating method, a gravure roll method, a screen method, a doctor method, a spray method, etc. A method in which a functional material is thermally bonded to the fiber assembly by applying the composition to the surface of the fiber assembly, heat-drying the solvent, and heat-treating the solvent. In addition, a powdery functional material is directly sprayed on the fiber assembly, and the fiber assembly and the functional material are thermocompressed by a thermocompression bonding device such as a hot roll, an embossing roll / flat roll, or a point bonding machine. Method, hot-air heating processing equipment such as a through-air processing machine, using hot air to hot-bond the fiber assembly and the functional material, heating with a heater using far-infrared rays, and the fiber assembly and the functional material Can also be used.
[0036]
In addition, after spraying a functional material on a fiber aggregate before heat treatment obtained by a known carding method, an air laid method, a spun bond method, a melt blow method, or the like, the fiber aggregate and the functional material are dispersed by a known heat processing method. By bonding with a material, a functional fiber aggregate can be obtained. Specifically, a method of thermocompression bonding the fiber aggregate and the functional material with a thermocompression bonding device such as a point bond processing machine, and a method of hot-air heating the fiber assembly and the functional material with a hot air heating processing device such as a through air processing machine. A method of thermally bonding, a method of thermally bonding the fiber aggregate and the functional material with a heating processing device equipped with a heater using far infrared rays, and the like can be used.
[0037]
Furthermore, a known carding method, an air laid method, a spun bond method, a functional material is sprayed on a fiber aggregate before heat treatment obtained by a melt blow method, etc., and a known carding method, an air laid method, By laminating fiber aggregates obtained by a spun bond method, a melt blow method, etc., and forming a laminated structure sandwiching a functional material, by bonding the fiber aggregate and the functional material by a known heat processing method. Thus, a functional fiber aggregate can be obtained. Specifically, a method of thermocompression bonding the fiber aggregate and the functional material with a thermocompression bonding device such as a point bond processing machine, and a method of using a hot air with a hot air heating processing device such as a through air processing machine to combine the fiber assembly with the functional material. A method of bonding a material and a method of bonding a fiber aggregate and a functional material with a heating apparatus equipped with a heater using far-infrared rays can be used.
[0038]
When the functional material is in a powder form, the powdery functional material and the fiber aggregate are well bonded to each other due to the adhesive effect of the functional material by the modifying agent contained in the heat-adhesive fibers constituting the fiber aggregate. Therefore, there is very little loss of the functional material. In addition, a fiber assembly obtained by laminating fiber assemblies that have been thermally bonded with a functional material or a fiber aggregate that has not been thermally bonded with a functional material can be used in addition to the adhesive effect of the functional material by the modifier, and the fiber aggregate. It is preferable that the functional material is hardly dropped by being sandwiched by the body.
[0039]
Examples of the molded article using the functional fiber aggregate of the present invention include a nonwoven fabric, a sheet, a tubular article, a box-like article, a spherical article, a filter, and a printed article composed of the functional fiber aggregate obtained as described above. No. In particular, by processing into nonwoven fabrics and sheets, tablecloths, curtains, carpets, mats, blankets, duvets, duvet covers, pillows, pillow covers, costume covers, interior and exterior materials for automobiles, automobiles, bicycles, motorcycle covers, shoes Insoles, linings, linings, bags, furoshiki, cushions, stuffed animals and other clothing-related materials, screen substitutes, shoji paper, fusuma paper, paper and other paper substitutes, furniture, refrigerators, shoe boxes, tatami mats, tatami mats and carpets Dehumidifying underlay, underfloor, attic, inside of closet, deodorant, air conditioner, air purifier, filters for water purifiers, etc., materials for household goods, insect repellent for crops and plants, sunshade covers, agricultural sheets It can be used in a wide variety of applications, such as industrial liquid filters and gas filters.
[0040]
The tubular article of the present invention refers to a cylindrical molded article having a cross-sectional shape of a circular or elliptical shape or a polygonal cylinder having a cross-sectional shape of a triangle or a quadrangle or more. It is a shaped body. Examples of the method for processing into a cylindrical shape include, for example, a production method in which a functional fiber assembly is wound around a stainless steel core having an arbitrary thickness to an arbitrary outer diameter, and a known thermal processing method is applied thereto. be able to. By using this method, a cylindrical molded body can be obtained.
[0041]
The printed matter of the present invention can be obtained by printing on a functional fiber aggregate and a molded article using the same by a known roll coating method, gravure roll method, screen method, doctor method, spray method, or the like. When the printed material is a nonwoven fabric or a sheet, it can be used as a calendar, a poster or the like having a function of deodorizing and dehumidifying.
[0042]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In addition, the measuring method of the physical property in an Example and a comparative example is as follows.
[0043]
Melt flow rate: In accordance with JIS K 7210, the polypropylene resin was measured under the condition 14 in Table 1 and the polyethylene resin was measured under the condition 4 in Table 1 (MFR in the case of condition 14, MI in the case of condition 4). (Unit: g / 10 minutes).
Intrinsic viscosity: With respect to polyethylene terephthalate, the intrinsic viscosity was measured in an equal weight mixed solvent of phenol and ethane tetrachloride at a concentration of 0.5 g / 100 ml and a temperature of 20 ° C. (denoted as IV).
Basis weight: Fiber assembly, nonwoven fabric, functional fiber assembly, etc. were cut into 25 cm squares, weighed, and weighed per unit area (g / m 2 ).
Carrying amount: A fiber assembly and a nonwoven fabric to which a functional material was thermally bonded were cut into 25 cm squares, weighed, and excluding the weight before thermal bonding, the weight per unit area of the functional material (g / m2). 2 ).
[0044]
Measurement of ammonia removal rate: The test method was performed using a Tedlar bag, the initial ammonia concentration was 60 ppm, the set temperature was 35 ° C., and the functional nonwoven fabric was 400 cm. 2 (20 cm × 20 cm), the residual ammonia concentration after standing for 24 hours was measured with an ammonia detector tube, and the ammonia removal rate was determined using the following equation.
(((Initial ammonia concentration)-(residual ammonia concentration)) / (initial ammonia concentration)) × 100 (%)
[0045]
Functional material retention: After the functional material was thermally bonded to the nonwoven fabric, air was blown on the obtained functional fiber aggregate (the nonwoven fabric) to remove the non-bonded functional material. The amount of the functional material remaining in the nonwoven fabric was measured, and the ratio was calculated using the following equation.
((Weight of functional material after removal of unbonded functional material) / (weight of functional material after thermal bonding)) × 100 (%)
[0046]
Breathability:
The case where the air permeability after the processing of attaching the functional material is 80% or more of that before the processing is ◎
Good when the air permeability after the processing of attaching the functional material is 60% or more and less than 80% before the processing.
If the air permeability after the processing of attaching the functional material is 50% or more and less than 60% before the processing,
X when the air permeability after the functional material attachment processing is less than 50% before processing
Processability: In fiber process and adhesion process
In cases where the number of processes is small and processing is easy ◎
○ If there are many steps but processing can be done easily
The number of processes is small, but processing requires specialized equipment and technology.
If the process is complicated and requires dedicated equipment and technology for processing,
[0047]
In Examples and Comparative Examples, tests were performed using the following resins.
PP: crystalline polypropylene (propylene homopolymer, MFR36, melting point 161 ° C)
HDPE: High density polyethylene (ethylene homopolymer, Mw / Mn = 4.2, MI30, melting point 132 ° C., density 0.955 g / cm 3 )
LLDPE: linear low density polyethylene (ethylene-butene-1 copolymer, Mw / Mn = 3.5, MI20, melting point 122 ° C., density 0.920 g / cm 3 )
Modified PE (modified polyethylene): high-density polyethylene (ethylene homopolymer, Mw / Mn = 4.0, MI 2.0, melting point 132 ° C., density 0.960 g / cm 3 ) As a main chain polymer and a copolymer obtained by graft polymerization of maleic anhydride (maleic anhydride content: 0.2 mol / Kg)
PET: polyethylene terephthalate (IV 0.63, melting point 255 ° C)
[0048]
In Examples and Comparative Examples, the combinations of resins constituting the heat-adhesive fibers were as follows. Table 1 shows the modifier content (mol / kg) in the fiber aggregate obtained by each combination. The content of the modifier in the fiber assembly is a value calculated from the ratio of the modified PE used as the raw material to other components.
Resin structure A: A mixture of 10% by weight of modified PE and 90% by weight of HDPE was used as the first component, PP was used as the second component, the first component was the sheath side, and the second component was the core side.
Resin structure B: A mixture of 10% by weight of modified PE and 90% by weight of LLDPE was used as the first component, PP was used as the second component, the first component was the sheath side, and the second component was the core side.
Resin Configuration C: A mixture of 6% by weight of modified PE and 94% by weight of LLDPE was used as the first component, PP was used as the second component, the first component was on the sheath side, and the second component was on the core side.
Resin structure D: a mixture of 15% by weight of modified PE and 85% by weight of HDPE was used as the first component, PP was used as the second component, the first component was the sheath side, and the second component was the core side.
Resin structure E: Only a mixture of 10% by weight of modified PE and 90% by weight of HDPE was used.
Resin Configuration F: A mixture of 6% by weight of modified PE and 94% by weight of LLDPE was used as the first component, PET was used as the second component, the first component was the sheath side, and the second component was the core side.
Resin configuration G: HDPE was used as the first component, PP was used as the second component, the first component was the sheath side, and the second component was the core side.
Resin composition H: LLDPE 100% by weight was used as the first component, PP was used as the second component, the first component was on the sheath side, and the second component was on the core side.
Resin Configuration I: A mixture of 0.5% by weight of modified PE and 99.5% by weight of LLDPE was used as the first component, PP was used as the second component, the first component was the sheath side, and the second component was the core side. .
[0049]
In Examples and Comparative Examples, the configurations of the functional materials were as follows. Table 2 shows the average particle size (μm) of each functional material.
Functional material composition L: artificial zeolite.
Functional material composition M: hydroxyapatite.
Functional material composition N: aluminum phosphate.
Functional material composition O: A mixture of monazite ore and artificial zeolite at a weight ratio of 1: 1.
Functional material composition P: a mixture of aluminum phosphate and zircon ceramic at a weight ratio of 1: 1.
[0050]
Among the heat-adhesive fibers constituting the fiber aggregates of Examples and Comparative Examples, long fibers were produced by a known spunbonding method or melt-blowing method, and short fibers were obtained by a known composite fiber spinning method. It was produced by stretching a tow and cutting it to an arbitrary length.
[0051]
A method for producing a fiber assembly using a spunbond method.
The fiber assembly was produced using a composite spunbond spinning machine having two extruders. The raw material resin (the resin or the resin composition described above) is charged into each extruder using a sheath-core composite spinneret, the spinning temperature of the core component is set to 260 ° C, and the spinning temperature of the sheath component is set to 260 ° C. The composite ratio of the first component and the second component was set to 50:50, and the molten resin was discharged from the spinneret as long fibers. The discharged long fiber group was drawn and drawn by air soccer, discharged on a suction conveyor, and collected as a long fiber web. The pulling speed of the air soccer was adjusted so that the fineness at this time was 3 dtex / f. The obtained long-fiber web was conveyed by a conveyor and pressed between the rolls of a point bond processing machine composed of a heated uneven roll and a smooth roll. As a result, a fiber assembly was obtained in which the first component was melted or softened in the area corresponding to the convex portion of the concave-convex roll, and the long fibers were heat-sealed to each other. In addition, the suction conveyor moving speed and the roll speed of the point bond processing machine were adjusted according to the type of fiber so that the basis weight of the fiber assembly became each basis shown in Table 3.
A functional material was thermally bonded to the fiber assembly obtained as described above to form a functional fiber assembly.
[0052]
A method for producing a fiber assembly using a melt blow method.
Using a sheath-core composite spinneret for meltblowing in which spinnerets with a hole diameter of 0.3 mm and 501 holes are arranged in a line, the spinning temperature of the core component is set to 290 ° C., and the spinning temperature of the sheath component is set to 260 ° C. The composite ratio of the and the second component was set to 50:50, and the polymer extruded from the spinning port was sprayed onto a net conveyor by pressurized air at 380 ° C to obtain a long fiber web. The obtained long fiber web is heated to 145 ° C. by a far-infrared heater while being transported by a net conveyor. In this area, the first component is melted or softened, and the fiber aggregate in which the long fibers are thermally fused to each other is removed. Obtained. In addition, the moving speed of the net conveyor was adjusted according to the type of fiber so that the basis weight of the fiber assembly became each basis shown in Table 3. As in the example, a functional material was thermally bonded to the fiber assembly obtained as described above to obtain a functional fiber assembly.
[0053]
A method for producing a fiber aggregate using a general conjugate fiber spinning method.
A composite spinning apparatus provided with a sheath-core composite spinneret having a pore diameter of 0.6 mm, wherein the spinning temperature of the core component is 260 ° C., the spinning temperature of the sheath component is 260 ° C., and the composite ratio of the first component and the second component is Was set at 50:50 and spinning was performed at a take-up speed of 1000 m / min to obtain a concentric sheath-core composite undrawn yarn having a single yarn fineness of 4.0 dtex / f. Next, the composite undrawn yarn is drawn under the conditions of a draw ratio of 2.4 times and a drawing temperature of 95 ° C., mechanical crimping is applied, and dried at 80 ° C., and then cut with a cutter to a fiber length according to the application. Then, short fibers were produced. The fiber for the miniature card machine was cut to 25 mm, and the fiber for the air laid machine was cut to 5 mm. The obtained short fibers were formed into a web by a miniature card machine or an air laid machine, and then subjected to a heat treatment at 145 ° C. for 5 minutes by a hot air circulation type drier to form a fiber aggregate.
A functional material was thermally bonded to the fiber assembly obtained as described above to form a functional fiber assembly.
[0054]
Example 1
Using the resin composition A, spinning is performed by the above-described spun bond method, and processed by a point bond processing machine (roll temperature: 120 ° C., linear pressure: 80 N / mm) to obtain a basis weight of 30 g / m 2. 2 Was obtained. Next, the artificial zeolite (functional material composition L) was adjusted to a 5% by weight slurry in a solvent (20% by weight methanol solution), and after being sufficiently stirred, the surface of the fiber assembly was gravure rolled. After applying and drying and removing the solvent, the mixture is treated in an oven at 130 ° C. to obtain 9.5 g / m 2. 2 A functional fiber aggregate in which the artificial zeolite was thermally bonded to the fiber aggregate surface was obtained. Although labor such as adjustment and application of the slurry was required, the obtained functional fiber aggregate was able to remove 100% of ammonia and had good air permeability.
[0055]
Example 2
Using the resin composition B, spinning is performed by the above-described spunbonding method, and processed by a point bond processing machine (roll temperature: 116 ° C., linear pressure: 80 N / mm) to obtain a basis weight of 20 g / m 2. 2 Was obtained. Next, the artificial zeolite (functional material composition L) is put into a sieve having a mesh size of 149 μm (100 mesh), sprayed evenly on the fiber assembly, and hot-pressed at a temperature of 130 ° C. and a pressure of 0.1 MPa. 3.9 g / m 2 Of zeolite was thermally bonded to the surface of the fiber aggregate to obtain a functional fiber aggregate. The obtained functional fiber aggregate was able to remove 100% of ammonia, had good air permeability, and was easy to process.
[0056]
Example 3
Using the resin composition C, spinning is performed by the above-described spun bond method, and processed by a point bond processing machine (roll temperature: 116 ° C., linear pressure: 80 N / mm) to obtain 30 g / m 2. 2 Was obtained. Next, hydroxyapatite (functional material composition M) is put into a sieve having an opening of 149 μm (100 mesh), and is scattered evenly on the fiber assembly, and hot pressed at a temperature of 140 ° C. and a pressure of 0.2 MPa. 11g / m 2 Of hydroxyapatite was thermally bonded to the surface of the fiber assembly to obtain a functional fiber assembly. The obtained functional fiber aggregate was able to remove 100% of ammonia, had good air permeability, and was easy to process.
[0057]
Example 4
Using resin composition D, spinning was carried out by the above-mentioned melt blow method, and 20 g / m 2 Was obtained. Next, a mixture of the monazite ore and the artificial zeolite (functional material composition O) was put into a sieve having a mesh size of 149 μm (100 mesh) and sprinkled evenly on the fiber aggregate to obtain a flat roll / flat roll (132). 5.7 g / m2 by processing with a thermocompression bonding device set at a linear pressure of 20 N / mm. 2 A functional fiber aggregate obtained by thermally adhering a mixture (functional material composition O) of a monazite ore and an artificial zeolite to the surface of the fiber aggregate was obtained. The obtained functional fiber aggregate was able to remove 100% of ammonia, had good air permeability, and was easy to process.
[0058]
Example 5
Using the resin composition F, spinning is performed by the above-described spunbonding method, and processed by a point bond processing machine (roll temperature: 116 ° C., linear pressure: 80 N / mm), and 10 g / m 2 2 Was obtained. Next, aluminum phosphate (functional material composition N) is put through a sieve having an opening of 149 μm (100 mesh), sprayed evenly on the fiber assembly, and treated in an oven set at a temperature of 135 ° C. for 30 seconds. 5.8 g / m 2 A functional fiber aggregate in which aluminum phosphate was thermally bonded to the surface of the fiber aggregate was obtained. The obtained functional fiber aggregate was able to remove 100% of ammonia, had good air permeability, and was easy to process.
[0059]
Example 6
Using the resin composition A, the short fibers obtained by the above-mentioned general conjugate fiber spinning method are formed into a web by a miniature card machine and processed by a point bond processing machine (roll temperature: 120 ° C., linear pressure: 80 N / mm). And 15g / m 2 Was obtained. Next, a mixture (functional material composition P) of aluminum phosphate and zircon ceramics was put into a sieve having a mesh size of 149 μm (100 mesh), sprayed evenly on the fiber assembly, and set at a temperature of 150 ° C. 8.5 g / m by treating in an oven for 10 seconds 2 A mixture of aluminum phosphate and zircon ceramics (mixed at a weight ratio of 1: 1) was thermally bonded to the surface of the fiber assembly to obtain a functional fiber assembly. The obtained functional fiber aggregate was able to remove 100% of ammonia, had good air permeability, and was easy to process.
[0060]
Example 7
Using the resin composition E, the short fibers obtained by the above-described general conjugate fiber spinning method are formed into a web by a miniature card machine, and processed by a point bond processing machine (roll temperature: 124 ° C., linear pressure: 20 N / mm). And 20g / m 2 Was obtained. Next, the artificial zeolite (functional material composition L) was put into a sieve having a mesh size of 149 μm (100 mesh), and was scattered evenly on the fiber aggregate to obtain an emboss roll / flat roll (130 ° C./130° C.) 5.5 g / m by processing with a thermocompression bonding device set to a linear pressure of 20 N / mm. 2 A functional fiber aggregate in which the artificial zeolite was thermally bonded to the fiber aggregate surface was obtained. The obtained functional fiber aggregate was able to remove 100% of ammonia and was easy to process.
[0061]
Example 8
Using the resin composition A, spinning is carried out by the above-mentioned spunbond method, and 10 g / m 2 Then, the artificial zeolite (functional material composition L) was put into a sieve having a mesh size of 149 μm (100 mesh) and dispersed uniformly on the fiber assembly. Further, short fibers obtained by the above-described general conjugate fiber spinning method using the resin composition A were processed on the fiber assembly by an air laid machine to form a fiber assembly laminate. At this time, the basis weight of the fiber aggregate laminate excluding the artificial zeolite carrying amount was 25 g / m2. 2 And The thus obtained artificial zeolite-sprayed fiber aggregate and a laminate of the fiber aggregate are treated in a hot-air circulation oven set at a temperature of 145 ° C. for 45 seconds to obtain 8 g / m 2. 2 The functional fiber aggregate obtained by thermally bonding the artificial zeolite between the laminates was obtained. The obtained functional fiber aggregate was able to remove 100% of ammonia, had good air permeability, and did not cause powder dropping.
[0062]
Example 9
Using the resin composition I, spinning is performed by the above-described spun bond method, and processed by a point bond processing machine (roll temperature: 116 ° C., linear pressure: 80 N / mm) to obtain 20 g / m 2. 2 Was obtained. Next, the artificial zeolite (functional material composition L) is put into a sieve having a mesh size of 149 μm (100 mesh), sprayed evenly on the fiber assembly, and subjected to hot pressing at a temperature of 130 ° C. and a pressure of 0.1 MPa. 5g / m 2 A functional fiber aggregate in which the artificial zeolite was thermally bonded to the fiber aggregate surface was obtained. This is because only a small amount of the functional material and the fiber aggregate adhere to each other due to the small amount of the denaturing agent, and most of the artificial zeolite falls off when air is blown, and only 1 g / m 2 2 The artificial zeolite was thermally bonded and remained on the surface of the functional fiber aggregate. Although this functional fiber aggregate had the artificial zeolite dropped out, it had good air permeability, was easy to process, and was able to remove 80% of ammonia.
[0063]
Example 10
When the functional fiber aggregate obtained in Example 4 was cut to fit a filter used in a commercially available air conditioner and installed in the air conditioner instead of the air conditioner filter, the odor in the room was reduced. A comfortable, comfortable indoor environment.
[0064]
Example 11
While heating the functional fiber aggregate obtained in Example 1 to a temperature of 145 ° C. with an infrared heater, the functional fiber aggregate was wound around a stainless steel pipe having a diameter of 30 mm until the thickness of the functional fiber aggregate became 15 mm, and then cooled. The stainless steel pipe was pulled out. The obtained molded body was cut into 150 mm to obtain a cylindrical body having an inner diameter of 30 mm, an outer diameter of 60 mm, and a length of 150 mm. When the obtained cylinder was placed in a refrigerator, the odor in the refrigerator was reduced, and the refrigerator was in a suitable use condition.
[0065]
Example 12
A pattern was printed on the functional nonwoven fabric obtained in Example 1 by a gravure printing method to produce a poster. When this poster was affixed to the room, the odor and humidity in the room were reduced, resulting in a suitable indoor environment.
[0066]
Comparative Example 1
Using resin composition H, spinning was performed by the above-described melt-blowing method, and heat treatment was performed at 145 ° C. for 5 minutes using a heat treatment machine using far-infrared rays. 2 Was obtained. Next, the artificial zeolite (functional material composition L) was put into a sieve having a mesh size of 149 μm (100 mesh) and sprinkled almost uniformly on the nonwoven fabric, and the obtained nonwoven fabric was treated in an oven set at a temperature of 150 ° C. for 10 seconds. 5g / m 2 The functional fiber aggregate in which the artificial zeolite was thermally bonded to the fiber aggregate was obtained. This is because the functional material and the fiber aggregate do not adhere to each other because the denaturing agent is not added to the fiber, and the artificial zeolite almost falls off when air is blown, and is slightly 0.1 g / m2. 2 Was thermally bonded and remained only on the surface of the fiber assembly. This functional fiber aggregate had good air permeability and was easy to process, but could remove only a small amount of ammonia and did not have sufficient performance.
[0067]
Comparative Example 2
Using the resin composition G, spinning is performed by the above-described spun bond method, and processed by a point bond processing machine (roll temperature: 120 ° C., linear pressure: 80 N / mm) to obtain 20 g / m 2. 2 Was obtained. Next, 10% by weight of hydroxyapatite (functional material composition M), 1% by weight of ammonium polycarboxylate (dispersant) and 1% by weight of polyvinyl alcohol (binder) are added to 88.9% by weight of pure water, and the dispersion is stirred. Prepared, impregnated into the above fiber assembly, passed through a hot air dryer set at 140 ° C. 2 A functional fiber aggregate to which hydroxyapatite was adhered was obtained. Although this functional fiber aggregate had good air permeability, the dispersion manufacturing process was complicated, the air permeability was poor, and the ammonia removal rate was as low as 40%, which was not sufficient performance.
[0068]
Comparative Example 3
Using the resin composition G, the short fibers obtained by the above-described general conjugate fiber spinning method are formed into a web with a miniature card machine, and heat-treated at 140 ° C. for 2 minutes with a through-air processing machine to obtain 30 g / m 2. 2 Was obtained. Next, an aqueous emulsion of 5% by weight of the artificial zeolite (functional material composition L) and 25% by weight of an acrylic solid content was applied to the fiber aggregate with a spray gun at 120 g / m2. 2 And passed through a hot air dryer set at 140 ° C. to obtain 10.0 g / m 2. 2 A functional fiber aggregate to which the artificial zeolite was bonded was obtained. Although the ammonia removal rate of this nonwoven fabric was 60%, the permeability of the functional fiber aggregate was poor, and the emulsion production process was complicated.
[0069]
Comparative Example 4
Using the resin composition B, the first component was further added with 20% by weight of an artificial zeolite (functional material composition L), and spun by the above-mentioned spunbonding method. ° C, linear pressure 80 N / mm) 2 Was obtained. Although the obtained functional fiber aggregate had good air permeability, yarn breakage occurred frequently in the melt-spinning step, and there were very many problems such as clogging of the nozzle filter, and the productivity was lacking. Further, the ammonia removal rate was as low as 35%, which was not a sufficient performance.
[0070]
[Table 1]
Figure 2004262022
[0071]
[Table 2]
Figure 2004262022
[0072]
[Table 3]
Figure 2004262022
[0073]
【The invention's effect】
The functional fiber aggregate and the molded article using the same according to the present invention have a large exposed area of the functional material, unlike the one in which the functional material is kneaded and adhered with a binder or a hot melt adhesive. For this reason, the function of the functional material is hardly impaired, the amount of the functional material used can be suppressed to a low level, and since no binder or hot melt adhesive is used, the air permeability is also good, It is possible to provide a functional fiber aggregate having features that are easy to process and advantageous in terms of cost, and a molded article using the same.

Claims (7)

機能性材料と繊維集合体とが熱接着されてなる機能性繊維集合体であって、該機能性繊維集合体は、ポリオレフィンを不飽和カルボン酸及び不飽和カルボン酸無水物から選ばれる少なくとも1種を含むビニルモノマー(以下、これらを変性剤という。)でグラフト重合させた変性ポリオレフィンを含む樹脂で構成されている熱接着性繊維からなることを特徴とする機能性繊維集合体。A functional fiber aggregate obtained by heat-bonding a functional material and a fiber aggregate, wherein the functional fiber aggregate is obtained by converting a polyolefin from at least one selected from unsaturated carboxylic acids and unsaturated carboxylic anhydrides. A functional fiber aggregate comprising a heat-adhesive fiber composed of a resin containing a modified polyolefin obtained by graft polymerization with a vinyl monomer containing these (hereinafter, these are referred to as modifiers). 熱接着性繊維が、第1成分と第2成分とからなる熱接着性複合繊維であり、第1成分が変性ポリオレフィンを含む樹脂であり、第2成分が該第1成分より融点の高い樹脂であり、第1成分が熱接着性複合繊維表面の少なくとも一部を長さ方向に連続して形成している熱接着性複合繊維である請求項1記載の機能性繊維集合体。The heat-adhesive fiber is a heat-adhesive conjugate fiber composed of a first component and a second component, wherein the first component is a resin containing a modified polyolefin, and the second component is a resin having a higher melting point than the first component. The functional fiber aggregate according to claim 1, wherein the first component is a heat-adhesive conjugate fiber that continuously forms at least a part of the surface of the heat-adhesive conjugate fiber in the length direction. 変性剤が、無水マレイン酸、アクリル酸及びメタクリル酸から選ばれる少なくとも1種である請求項1または請求項2記載の機能性繊維集合体。3. The functional fiber assembly according to claim 1, wherein the modifier is at least one selected from maleic anhydride, acrylic acid, and methacrylic acid. 熱接着性繊維が、長繊維である請求項1〜3のいずれか1項記載の機能性繊維集合体。The functional fiber aggregate according to any one of claims 1 to 3, wherein the heat-adhesive fiber is a long fiber. 機能性材料が、機能性無機材料である請求項1〜4のいずれか1項記載の機能性繊維集合体。The functional fiber aggregate according to any one of claims 1 to 4, wherein the functional material is a functional inorganic material. 機能性無機材料が、ゼオライト、リン酸カルシウム及びリン酸アルミニウムから選ばれる少なくとも1種である請求項5記載の機能性繊維集合体。The functional fiber aggregate according to claim 5, wherein the functional inorganic material is at least one selected from zeolite, calcium phosphate, and aluminum phosphate. 請求項1〜6のいずれか1項記載の機能性繊維集合体を用いた成形体。A molded article using the functional fiber aggregate according to any one of claims 1 to 6.
JP2003053142A 2003-02-28 2003-02-28 Functional fiber assembly and molded body using the same Expired - Fee Related JP4178997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003053142A JP4178997B2 (en) 2003-02-28 2003-02-28 Functional fiber assembly and molded body using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003053142A JP4178997B2 (en) 2003-02-28 2003-02-28 Functional fiber assembly and molded body using the same

Publications (2)

Publication Number Publication Date
JP2004262022A true JP2004262022A (en) 2004-09-24
JP4178997B2 JP4178997B2 (en) 2008-11-12

Family

ID=33117839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003053142A Expired - Fee Related JP4178997B2 (en) 2003-02-28 2003-02-28 Functional fiber assembly and molded body using the same

Country Status (1)

Country Link
JP (1) JP4178997B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291404A (en) * 2005-04-13 2006-10-26 Kinsei Seishi Kk Moisture absorbing nonwoven fabric
JP2006305917A (en) * 2005-04-28 2006-11-09 Kyoraku Co Ltd Plastic molding with deodorization function and its production method
JP2007015874A (en) * 2005-07-05 2007-01-25 Ehime Univ Method for producing hydroxyapatite-containing body, hydroxyapatite-zeolite complex, hydroxyapatite, hydroxyapatite-titanium oxide complex and hydroxyapatite-zeolite-titanium oxide complex, and functional fiber
JP2009502488A (en) * 2005-07-29 2009-01-29 ファイバーウェブ,インコーポレイテッド Antibacterial multi-component filter media
JP2014009421A (en) * 2012-06-29 2014-01-20 Daiwabo Holdings Co Ltd Acid-modified polyolefin fiber, and fiber structure and fiber-reinforced composite material using the same
JP2016065357A (en) * 2015-12-25 2016-04-28 ダイワボウホールディングス株式会社 Acid-modified polyolefin fiber, fiber structure using the same and fiber reinforced composite material
JP2019099929A (en) * 2017-11-30 2019-06-24 ユニチカ株式会社 Fiber structure and method for producing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291404A (en) * 2005-04-13 2006-10-26 Kinsei Seishi Kk Moisture absorbing nonwoven fabric
JP4671741B2 (en) * 2005-04-13 2011-04-20 金星製紙株式会社 Hygroscopic nonwoven fabric
JP2006305917A (en) * 2005-04-28 2006-11-09 Kyoraku Co Ltd Plastic molding with deodorization function and its production method
JP2007015874A (en) * 2005-07-05 2007-01-25 Ehime Univ Method for producing hydroxyapatite-containing body, hydroxyapatite-zeolite complex, hydroxyapatite, hydroxyapatite-titanium oxide complex and hydroxyapatite-zeolite-titanium oxide complex, and functional fiber
JP2009502488A (en) * 2005-07-29 2009-01-29 ファイバーウェブ,インコーポレイテッド Antibacterial multi-component filter media
JP4704466B2 (en) * 2005-07-29 2011-06-15 ファイバーウェブ,インコーポレイテッド Antibacterial multi-component filter media
JP2014009421A (en) * 2012-06-29 2014-01-20 Daiwabo Holdings Co Ltd Acid-modified polyolefin fiber, and fiber structure and fiber-reinforced composite material using the same
JP2016065357A (en) * 2015-12-25 2016-04-28 ダイワボウホールディングス株式会社 Acid-modified polyolefin fiber, fiber structure using the same and fiber reinforced composite material
JP2019099929A (en) * 2017-11-30 2019-06-24 ユニチカ株式会社 Fiber structure and method for producing the same

Also Published As

Publication number Publication date
JP4178997B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
JP6054865B2 (en) Patterned airlaid nonwoven fibrous webs and methods for making and using them
JP6054866B2 (en) Airlaid non-woven electret fiber web with pattern, and method for making and using the same
JP2612872B2 (en) Fine fiber fine web
JP2009079329A (en) Sustained release nonwoven fabric and method for producing the same
KR101549498B1 (en) Air filtering cover for electric fan
JP4719081B2 (en) Wet-heat adhesive composite fiber and filler-fixed fiber, fiber structure
JP2017531740A (en) Article comprising fibrous base material and porous polymer particles, and method for producing the same
CN110430931A (en) The manufacturing method of charged media filter materials and charged media filter materials
US20200115833A1 (en) Fibers including a crystalline polyolefin and a hydrocarbon tackifier resin, and process for making same
JP2008036880A (en) Laminated nonwoven fabric, gelled sheet and filler fixed sheet
JP4178997B2 (en) Functional fiber assembly and molded body using the same
JP2006291404A (en) Moisture absorbing nonwoven fabric
US20230321571A1 (en) Dual-layer gas filters and systems and methods for making the same
US20230321568A1 (en) Filtration media and filters
JP2009079330A (en) Sustained release nonwoven fabric and method for producing the same
WO2019025942A1 (en) Multi-component fibers including a crystalline polyolefin and a hydrocarbon tackifier resin, and process for making same
JPH02127550A (en) Production of non-woven fabric containing fine particle
JPH01107821A (en) Dust collecting bag paper for vacuum cleaner
CN110998003A (en) Semi-continuous filaments comprising crystalline polyolefin and hydrocarbon tackifying resin and process for making same
KR101239228B1 (en) A Non-woven Fabric Containing White Charcoal and Manufacturing Method Thereof
JP2003247157A (en) Absorber and absorbing article using the same
US20230321570A1 (en) Systems and methods for continuous production of fibrous materials and nanoparticles
US20230321569A1 (en) Filters with mechanical and eletrostatic filtering capabilities
US20230323576A1 (en) Systems and methods for making fibrous materials
US20230323055A1 (en) Systems and methods for retaining nanoparticles within nonwoven material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

R150 Certificate of patent or registration of utility model

Ref document number: 4178997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees