JP4177369B2 - A method for treating silica-containing water and an open circulation type cooling water system using the treated water. - Google Patents
A method for treating silica-containing water and an open circulation type cooling water system using the treated water. Download PDFInfo
- Publication number
- JP4177369B2 JP4177369B2 JP2005305473A JP2005305473A JP4177369B2 JP 4177369 B2 JP4177369 B2 JP 4177369B2 JP 2005305473 A JP2005305473 A JP 2005305473A JP 2005305473 A JP2005305473 A JP 2005305473A JP 4177369 B2 JP4177369 B2 JP 4177369B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- silica
- cooling water
- circulation type
- type cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims description 206
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 139
- 239000000377 silicon dioxide Substances 0.000 title claims description 92
- 239000000498 cooling water Substances 0.000 title claims description 64
- 238000000034 method Methods 0.000 title claims description 28
- 239000002245 particle Substances 0.000 claims description 29
- 238000001816 cooling Methods 0.000 claims description 25
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 claims description 17
- 229910001424 calcium ion Inorganic materials 0.000 claims description 17
- 229920001519 homopolymer Polymers 0.000 claims description 17
- 229910001425 magnesium ion Inorganic materials 0.000 claims description 17
- 229920006317 cationic polymer Polymers 0.000 claims description 14
- NJSSICCENMLTKO-HRCBOCMUSA-N [(1r,2s,4r,5r)-3-hydroxy-4-(4-methylphenyl)sulfonyloxy-6,8-dioxabicyclo[3.2.1]octan-2-yl] 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)O[C@H]1C(O)[C@@H](OS(=O)(=O)C=2C=CC(C)=CC=2)[C@@H]2OC[C@H]1O2 NJSSICCENMLTKO-HRCBOCMUSA-N 0.000 claims description 11
- 239000004480 active ingredient Substances 0.000 claims description 10
- 229920000642 polymer Polymers 0.000 claims description 10
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 8
- 239000011575 calcium Substances 0.000 claims description 8
- 238000003672 processing method Methods 0.000 claims 1
- 238000001914 filtration Methods 0.000 description 17
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 14
- 239000003673 groundwater Substances 0.000 description 9
- 230000002776 aggregation Effects 0.000 description 8
- 238000005054 agglomeration Methods 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000002352 surface water Substances 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000008235 industrial water Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000007664 blowing Methods 0.000 description 3
- -1 but recently Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000000378 calcium silicate Substances 0.000 description 2
- 229910052918 calcium silicate Inorganic materials 0.000 description 2
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 230000005591 charge neutralization Effects 0.000 description 2
- 239000000701 coagulant Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 2
- 239000000391 magnesium silicate Substances 0.000 description 2
- 229910052919 magnesium silicate Inorganic materials 0.000 description 2
- 235000019792 magnesium silicate Nutrition 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 150000003009 phosphonic acids Chemical class 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 239000003621 irrigation water Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000008234 soft water Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Description
本発明は、地下水等の用水中に含まれる懸濁シリカを除去して工業、商用等に適した水質にする処理方法に関し、また、処理した用水を使用する開放循環型冷却水システムに関するものである。 The present invention relates to a treatment method for removing suspended silica contained in service water such as groundwater to make the water quality suitable for industry, commerce, etc., and also relates to an open circulation type cooling water system using treated water. is there.
従来、工業、商用、飲料、灌漑、消火等に用いられる用水には、河川などの表流水、伏流水、地下水、湖沼水などが用いられている。このうち工業設備および商用設備で用いられる用水は、主として、冷房装置、冷却装置、(ボイラー装置)において多量に冷却水として使用される。用水中には僅かであるがシリカ成分、硬度成分等のスケール生成成分を含むので、これらの装置内にある熱交換器の金属製伝熱面や配管内面等にスケールが付着して伝熱不良となるスケール障害が発生する。特に、開放循環型冷却水系においては、水の蒸発潜熱を利用して冷却水を冷却するが、近年、省資源、省エネルギの観点から蒸発した冷却水量の補給にのみ用水を使用し、冷却水の系外への廃棄(ブロー)量を少なくした高濃縮運転する場合が多く、この場合、用水中に含まれるシリカ成分、硬度成分が濃縮される。このような高濃縮運転では、冷却水系内のシリカ成分、硬度成分が高濃度になり、珪酸カルシウム、珪酸マグネシウム等のスケールが発生し、付着する。 Conventionally, surface water such as rivers, underground water, underground water, lake water, and the like are used for industrial, commercial, beverage, irrigation, fire extinguishing and the like. Of these, water used in industrial equipment and commercial equipment is mainly used as cooling water in large amounts in cooling devices, cooling devices, and (boiler devices). The water contains slight scale components such as silica component and hardness component, but the scale adheres to the metal heat transfer surface of the heat exchanger and the inner surface of the pipe in these devices, resulting in poor heat transfer. A scale failure occurs. In particular, in an open circulation type cooling water system, cooling water is cooled by utilizing the latent heat of evaporation of water, but recently, water is used only for replenishing the amount of cooling water evaporated from the viewpoint of resource saving and energy saving. In many cases, high concentration operation is performed with a reduced amount of waste (blow) to the outside of the system. In this case, the silica component and the hardness component contained in the irrigation water are concentrated. In such a high concentration operation, the silica component and hardness component in the cooling water system become high in concentration, and scales such as calcium silicate and magnesium silicate are generated and adhered.
従来、冷却水系の高濃縮運転化に対応できる処方としてホスホン酸類やカルボン酸系低分子量ポリマを用いるのが一般的である。しかし、ホスホン酸類やカルボン酸系ポリマのスケール防止効果は冷却水系で一般的に発生する炭酸カルシウムスケールにはそれなりの効果が認められるが、共存するシリカ濃度が高くなると次第にその効果が低下する欠点がある。更に、シリカとマグネシウムやカルシウムが結合したケイ酸塩スケールには全く効果を果たせないことが多い。したがって、冷却水系を高濃縮運転する場合も水中のシリカ濃度が200ppm程度を超えないように濃縮倍数を設定して管理するのが一般的となっている。 Conventionally, phosphonic acids and carboxylic acid-based low molecular weight polymers are generally used as prescriptions that can be used for highly concentrated cooling water systems. However, the scale prevention effect of phosphonic acids and carboxylic acid polymers can be seen in the calcium carbonate scale generally generated in cooling water systems, but there is a drawback that the effect gradually decreases as the concentration of the coexisting silica increases. is there. In addition, silicate scales that combine silica with magnesium or calcium often do not work at all. Therefore, even when the cooling water system is highly concentrated, it is common to set and manage the concentration factor so that the silica concentration in the water does not exceed about 200 ppm.
以上のような事情から現在の冷却水系の水処理方法は、冷却水や補給水の水質、冷却水の濃縮倍数などの運転管理状況に応じて適宜薬剤を選定し、しかも、冷却水中のシリカ濃度が200ppm程度を超えないような運転状況を設定して行っているのが実情である。(文献1参照) In view of the above circumstances, the current water treatment method for the cooling water system appropriately selects the chemical according to the operation management status such as the quality of the cooling water and makeup water, the concentration factor of the cooling water, and the silica concentration in the cooling water. The actual situation is that the operating conditions are set so that the value does not exceed about 200 ppm. (Ref. 1)
また、このスケールの付着を防止するために、各種の薬剤が冷却水系に注入されている。(文献2参照)すなわち、ポリアルキレンポリアミンのアミド化合物とアニオン性基含有ポリマーの第四級アンモニウム塩からなる薬剤を60〜100ppm、カルシウム塩、マグネシウム塩、シリカを含有する試料水に添加して時間経過後これらのスケール生成成分の濃度に変化がないからスケール化していないとした技術が開示されている。 In order to prevent the scale from adhering, various chemicals are injected into the cooling water system. (Refer to Document 2) That is, the time required for adding a drug composed of an amide compound of polyalkylene polyamine and a quaternary ammonium salt of an anionic group-containing polymer to sample water containing 60 to 100 ppm, calcium salt, magnesium salt and silica. A technique is disclosed in which the scale is not scaled since there is no change in the concentration of these scale-generating components after the passage.
従来、工業設備や商用設備における冷却システムに係わる用水として、主として表流水からなる工業用水が用いられてきたが、近年、工業用水より安価であって、使用場所近くで得られる深井戸等からの地下水を用いることが多くなってきた。これらの地下水は概して表流水よりもシリカ成分や硬度成分を多く含むので、開放循環型冷却水系においてスケール障害が生じ易い。これを防止するには多量の薬剤の使用を要し、また、濃縮係数を大きくすることができないからブロー量を多くする必要があるなど、操業のみならず経済的な問題が生じてきた。 Conventionally, industrial water mainly composed of surface water has been used as water for cooling systems in industrial facilities and commercial facilities, but in recent years, it is cheaper than industrial water and is obtained from deep wells obtained near the place of use. The use of groundwater has increased. Since these groundwaters generally contain more silica components and hardness components than surface water, scale failures are likely to occur in an open circulation type cooling water system. In order to prevent this, it is necessary to use a large amount of chemicals, and since the concentration factor cannot be increased, it is necessary to increase the amount of blow, so that not only operations but also economical problems have arisen.
本発明は、かかる問題を解決するために為したものであって、地下水等の用水中に含まれる懸濁シリカ及びイオン状シリカを除去して、工業設備や商用設備における冷却系統に適した水質の用水にする処理方法を提供し、また、得られた処理水を冷却水系の補給水として用いる開放循環型冷却水システムを提供することにある。 The present invention has been made in order to solve such problems, and removes suspended silica and ionic silica contained in water for use in groundwater and the like, so that the water quality is suitable for a cooling system in industrial equipment and commercial equipment. Another object of the present invention is to provide an open circulation type cooling water system that uses the obtained treated water as makeup water for the cooling water system.
前記の目的を達成するために、請求項1の発明は、シリカ含有用水を軟水化処理した後に、強カチオン性の高分子凝集剤を添加して用水中のシリカを凝集させ、該凝集物を濾過器で捕集除去することを特徴とするシリカ含有用水の処理方法である。また、請求項2の発明は、請求項1に記載のシリカ含有用水の処理方法において、軟水化処理として、用水中のカルシウム及びマグネシウムイオンを除去することを特徴とする。
In order to achieve the above object, the invention of
また、請求項3の発明は、請求項1又は2に記載のシリカ含有用水の処理方法において、高分子凝集剤として、ジアリルジメチルアンモニウムクロライドの低分子量ホモポリマーを用いることを特徴とする。また、請求項4の発明は、請求項3に記載のシリカ含有用水の処理方法において、高分子凝集剤であるジアリルジメチルアンモニウムクロライドの低分子量ホモポリマーの添加量をシリカ含有用水に対して有効成分換算で0.5〜10.0μg/kgの範囲とすることを特徴とする。また、請求項5の発明は、請求項1乃至4のうちいずれか1項に記載のシリカ含有用水の処理方法において、濾過器として、粒子径1〜5μmまでの凝集物を捕集できる濾過器を用いることを特徴とする。
The invention of
通常、地下水等の用水中には硬度成分であるカルシウムイオン及びマグネシウムイオンを40〜120mg/l、懸濁シリカ(粒子径0.01〜0.45μmを有する)を20〜80mg/l及びイオン状シリカを10〜100mg/lが存在している。本発明の構成を採用するにあたって、懸濁シリカ粒子を荷電中和して凝集化するために強カチオン性の高分子凝集剤を用いるが、該高分子凝集剤を懸濁シリカ粒子に対して効率よく作用させるために、前もってカルシウムイオン及びマグネシウムイオンを軟水化処理によりイオン交換して除去しておくのが、少量の高分子凝集剤の添加量でもって該懸濁シリカ粒子を効果的に1〜5μm径の範囲に凝集させることが判った。これらの構成を採用することにより、凝集した1〜5μm径のシリカ粒子を後工程の1〜5μm粒子を濾過して除去できる濾過器によりシリカ含有量の殆どない濾過水、すなわち処理水を得ることができる。 Usually, in working water such as groundwater, calcium ions and magnesium ions, which are hardness components, are 40 to 120 mg / l, suspended silica (having a particle diameter of 0.01 to 0.45 μm) is 20 to 80 mg / l and ionic 10-100 mg / l of silica is present. In adopting the configuration of the present invention, a strong cationic polymer flocculant is used to charge-neutralize and aggregate the suspended silica particles. In order to make it work well, calcium ions and magnesium ions are ion-exchanged and removed in advance by water softening treatment in advance so that the suspended silica particles can be effectively removed with a small amount of the polymer flocculant added. It was found that the particles were aggregated in a 5 μm diameter range. By adopting these constitutions, filtered water having almost no silica content, that is, treated water, is obtained by a filter capable of removing the aggregated 1-5 μm diameter silica particles by filtering the 1-5 μm particles in the subsequent step. Can do.
また、強カチオン性の高分子凝集剤としてジアリルジメチルアンモニウムクロライドをモノマーとする低分子量のホモポリマー凝集剤を採用することにより、該ホモポリマーが前記懸濁シリカ粒子に対して懸濁粒子の表面電荷を中和して不安定化すると共に凝集化して、濾過器の濾材に捕捉され易くする。すなわち、ホモポリマー分子は反対電荷を有する懸濁シリカ粒子の表面に電荷吸引力により吸着されると共に、濾材表面にも吸着されることになる。また、該ジアリルジメチルアンモニウムクロライドの低分子量ホモポリマー凝集剤の添加量は有効成分換算で0.5〜10μg/kgの範囲で十分懸濁シリカ粒子を凝集化して1〜5μm径の範囲の凝集粒子にし、次いで、濾過器の濾材表面で該凝集粒子を吸着して除去することにより、シリカ含有量の無い又は少ない濾過水を得ることができる。なお、ホモポリマーの低分子量とは分子量20000〜200000の範囲のものを云う。 Further, by adopting a low molecular weight homopolymer flocculant having diallyldimethylammonium chloride as a monomer as a strong cationic polymer flocculant, the homopolymer has a surface charge of the suspended particles with respect to the suspended silica particles. Is neutralized to be destabilized and agglomerated so that it can be easily captured by the filter medium. That is, the homopolymer molecule is adsorbed on the surface of the suspended silica particle having the opposite charge by the charge attractive force and also adsorbed on the surface of the filter medium. Further, the addition amount of the low molecular weight homopolymer flocculant of diallyldimethylammonium chloride is sufficient to agglomerate suspended silica particles in the range of 0.5 to 10 μg / kg in terms of active ingredient, and agglomerated particles having a diameter of 1 to 5 μm. Then, the agglomerated particles are adsorbed and removed on the surface of the filter medium of the filter to obtain filtered water with little or no silica content. In addition, the low molecular weight of a homopolymer means the thing of the range of molecular weight 20000-200000.
請求項6の発明は、開放散水型冷却塔と、単数又は複数の冷却用熱交換器と、循環冷却水ポンプと、循環配管と、から構成される開放循環型冷却水システムにおいて、請求項1乃至5のうちいずれか1項に記載のシリカ含有用水の処理方法において得られた処理水を該システムの補給水として用いることを特徴とする開放循環型冷却水システムである。また、請求項7の発明は、請求項6の開放循環型冷却水システムにおいて、循環冷却水の電気伝導度が800μS/cmを超えないように循環冷却水をブローして、該処理水を補給・置換することを特徴とする開放循環型冷却水システムである。
The invention of
請求項1〜5までの本発明方法によれば、用水中のシリカのみならず、硬度成分であるカルシウムイオン及びマグネシウムイオンの含有量がほとんど無いか、又は少量の処理水を得ることができるので、請求項6の構成に基づき、この処理水を開放循環型冷却水システムの冷却水の蒸発損失を補うための補給水として用いることにより、シリカ成分、カルシウムイオン及びマグネシウムイオン成分が冷却水系統に蓄積される程度を少なくしてスケール生成を防止することができる。すなわち、本システムは冷却水の一部を蒸発させて、その蒸発潜熱により冷却水を冷却するシステムであるから、残部の冷却水には水以外の成分が濃縮していくので、例えば、従来のように補給水中にシリカ成分、カルシウムイオン及びマグネシウムイオン成分等のスケール生成成分が存在すると、これが濃縮されてスケールの発生を促進してスケール障害を引き起こすが、本発明方法の処理水はスケール生成成分がほとんど無いので濃縮が少なく、または、濃縮が進みにくくスケール障害が起きにくい。また、スケール生成成分の濃縮を緩和する冷却水の廃棄(ブロー)も従来方式に比し少なくてすむ。また、スケール発生を防止する薬剤の投与を必要としないし、又は必要であっても最小限の量で済む。
According to the method of the present invention of
また、請求項7の開放循環型冷却水システムによれば、前述のスケール生成成分であるシリカ、カルシウム、マグネシウム含有量を循環冷却水の電気伝導度を測定し、該電気伝導度を800μS/cm(マイクロジーメンス・cm−1)を超えないように循環冷却水のブローの量、時期を調節又は制御して、処理水を補給・置換することにより開放循環型冷却水システムにおけるスケール障害の発生を確実に防止することができる。また、補給する処理水の水質を管理する手段に応用することもできる。
According to the open circulation type cooling water system of
本発明による請求項1から5までのシリカ含有用水の処理方法によれば、用水中のシリカのみならずカルシウムイオン、マグネシウムイオンの含有量の少ない範囲のところで処理するから、投与する高分子凝集剤の量が少なくても確実にこれらスケール生成成分を除去することができる。特に、前もってカルシウムイオン及びマグネシウムイオンを除去することにより、懸濁シリカ粒子を粒子径1〜5μmにする凝集化が強カチオン性高分子凝集剤の少量添加でも確実に実行することができ、次の濾過器でもってシリカ凝集粒子を捕捉・除去することによって、シリカ含有用水から懸濁シリカを効率的に除去することができる。
According to the method for treating silica-containing water according to
また、請求項6,7の開放循環型冷却水システムによれば、前記処理方法による処理水を該システムの蒸発損失分の補給水として用いるので、循環冷却水中に含まれるスケール生成成分のシリカ、カルシウム、マグネシウムの各含有量を低いレベルに維持しやすく、従来システムのようにスケール生成阻害薬剤を多く投与する必要が無く、また、ブロー量も濃縮係数が上げられることで必然的に少なくできる。また、循環冷却水の電気伝導度の測定値を一定の範囲にするために、ブロー量を制御することにより効果を確実なものにできる。
Further, according to the open circulation type cooling water system of
したがって、従来の工業設備や商用設備の開放循環型冷却水システムにおけるように循環冷却水に薬剤を投与してスケール生成障害を防止するシステムに比べて、薬剤の投与量が少なくても確実にスケール生成障害を防止できるし、また、熱交換器の伝熱効率の低下や配管内面の付着等が防止できるのでランニングコスト及び保守費用の低減が図られろと共に、利便性の良い、安価な地下水の活用ができるなど経済性に優れている。 Therefore, the scale can be reliably scaled even if the dose of the drug is small, compared to the system that prevents the scale formation failure by administering the drug to the circulating cooling water as in the open circulation type cooling water system of conventional industrial equipment and commercial equipment. Generation failures can be prevented, and the heat transfer efficiency of the heat exchanger can be reduced and the inner surface of the pipes can be prevented. Therefore, running costs and maintenance costs can be reduced, and convenient and inexpensive groundwater can be used. It is excellent in economic efficiency.
以下、本発明の最良の実施形態を説明する。本発明の処理方法の対象となる用水は伏流水を含む地下水、表流水、湖沼水等であり、工業設備や商用設備で冷房装置、冷却装置に冷却水として用いられ、一部はボイラ装置にも用いられる。これらの用水には、従来河川などの表流水が工業用水として用いられてきたが、近年では用水の使用場所で、深さ200〜300mの深井戸から得られる地下水が工業用水及び上水に比し安価であり、かつ、水温も低くて冷却水として適していると評価され、多量の用水を使用する開放循環型冷却水システムに多く利用されてきている。しかし、地下水は地中深く浸透し、かつ、長時間にわたり滞留してきた水であるから、概して、シリカ成分、硬度成分であるカルシウムイオン及びマグネシウムイオンが多く含まれているので、この地下水を開放循環型冷却水システムで使用した場合、冷却の対象である熱交換器の伝熱表面においてシリカ成分や硬度成分から珪酸カルシウムや珪酸マグネシウムなどのスケールが生成して熱効率を低下させ、また、配管内部にスケール障害が発生することから、開放循環型冷却水システムの機能を悪化させるものであった。 The best mode of the present invention will be described below. Water used as a target of the treatment method of the present invention is underground water including underground water, surface water, lake water, etc., and is used as cooling water for cooling equipment and cooling equipment in industrial equipment and commercial equipment, and partly in boiler equipment. Is also used. Conventionally, surface water such as rivers has been used as industrial water for these waters. However, in recent years, groundwater obtained from deep wells with a depth of 200 to 300 m is compared to industrial water and water at the place where water is used. However, it is evaluated as being inexpensive and suitable for cooling water because of its low water temperature, and has been widely used in open circulation type cooling water systems that use a large amount of water. However, since groundwater penetrates deeply into the ground and stays for a long time, it is generally rich in silica and hardness components such as calcium ions and magnesium ions. When used in a type cooling water system, scales such as calcium silicate and magnesium silicate are generated from the silica component and hardness component on the heat transfer surface of the heat exchanger that is the object of cooling, reducing the thermal efficiency. Since the scale failure occurred, the function of the open circulation type cooling water system was deteriorated.
本発明の処理方法は、主として地下水を対象としたものであって、シリカ成分として20〜80mg/kg、カルシウム+マグネシウム(炭酸カルシウム換算)成分として40〜120mg/kgを含有する原水(用水)をシリカ成分は0〜20mg/kg、カルシウム+マグネシウム成分はほぼ0になるように処理するものである。なお、シリカ成分の形態としては、粒子径0.01〜0.45μmの範囲の懸濁状(コロイド状)シリカとイオン状シリカとが存在するが、本発明では懸濁シリカの除去を主たる目的とし、あわせてイオン状シリカも除去する。 The treatment method of the present invention is mainly intended for groundwater, and raw water (water) containing 20 to 80 mg / kg as a silica component and 40 to 120 mg / kg as a calcium + magnesium (calcium carbonate equivalent) component. The silica component is processed so as to be 0 to 20 mg / kg, and the calcium + magnesium component is almost zero. In addition, as the form of the silica component, there are suspended (colloidal) silica and ionic silica having a particle diameter in the range of 0.01 to 0.45 μm. In the present invention, the main purpose is removal of suspended silica. In addition, ionic silica is also removed.
本発明の処理方法では、懸濁シリカ粒子に強カチオン性高分子凝集剤を働かせて荷電中和を行い、1〜5μm径の範囲の粒子に凝集化するが、該強カチオン性高分子凝集剤を懸濁シリカに効率よく作用させるためには、前もってカルシウムイオン及びマグネシウムイオンを除去する軟水化処理を行うことが必要である。これは定かでないが、強カチオン性高分子凝集剤としてジアリルジメチルアンモニウムクロライドを用いる場合に、該ポリマー分子との反応が早いカルシウムイオン及びマグネシウムイオンを除去しておく方が、該ポリマー分子が有効に懸濁シリカの表面電荷を中和して懸濁状態を不安定化すると共に、懸濁シリカの表面に吸着して凝集化を進め易いと考えられる。 In the treatment method of the present invention, a strong cationic polymer flocculant is applied to the suspended silica particles to perform charge neutralization and agglomerate into particles having a diameter of 1 to 5 μm. In order to efficiently act on suspended silica, it is necessary to perform a water softening treatment to remove calcium ions and magnesium ions in advance. This is not clear, but when diallyldimethylammonium chloride is used as a strong cationic polymer flocculant, it is more effective to remove calcium ions and magnesium ions that react quickly with the polymer molecules. It is considered that the surface charge of the suspended silica is neutralized to destabilize the suspended state, and at the same time, it is adsorbed on the surface of the suspended silica and facilitates aggregation.
また、ジアリルジメチルアンモニウムクロライドをモノマーとする強カチオン性高分子凝集剤を用いるが、10%有効成分濃度のホモポリマー溶液にしておくのが、この溶液を希釈して、用水に添加・拡散するにおいて望ましい。該ホモポリマー溶液の商品名としてFILTERREX5110がある。また、懸濁シリカ粒子を荷電中和して粒子径1〜5μmの凝集粒子にするための軟水化後の原水への添加量は、懸濁粒子の荷電密度により変わるが、有効成分(ジアリルジメチルアンモニウムクロライドのホモポリマー)で換算して軟水化後の原水に対して0.5〜10μg/kgの範囲内である。なお、添加量が8〜10μg/kgの範囲の場合、懸濁シリカ粒子の凝集化に対して添加量が余剰となったとき、次工程の濾過器で団子状になり濾過しにくい問題が生ずる。よって、添加量が0.5〜5μg/kgの範囲が望ましい。その他の凝集化条件として、軟水化後の原水のPHは6.0〜8.5の範囲、液温10〜30℃の範囲が適切である。 In addition, a strong cationic polymer flocculant having diallyldimethylammonium chloride as a monomer is used, but it is preferable to use a homopolymer solution having a concentration of 10% active ingredient in diluting the solution and adding / diffusing it into the water. desirable. There is FILTERREX 5110 as a trade name of the homopolymer solution. In addition, the amount added to the raw water after water softening to neutralize the suspended silica particles into aggregated particles having a particle diameter of 1 to 5 μm varies depending on the charge density of the suspended particles, but the active ingredient (diallyldimethyl) It is in the range of 0.5 to 10 μg / kg with respect to the raw water after water softening in terms of (a homopolymer of ammonium chloride). In addition, when the addition amount is in the range of 8 to 10 μg / kg, when the addition amount becomes excessive with respect to the agglomeration of the suspended silica particles, there arises a problem that it becomes difficult to filter with a filter in the next step. . Therefore, the addition amount is desirably in the range of 0.5 to 5 μg / kg. As other agglomeration conditions, the pH of the raw water after softening is suitably in the range of 6.0 to 8.5 and the liquid temperature in the range of 10 to 30 ° C.
また、強カチオン性高分子凝集剤の添加位置は、懸濁シリカ粒子と接触する時間を十分確保することが荷電中和と凝集化を達成するのに重要であり、かつ、懸濁シリカ粒子に吸着したホモポリマーの長い鎖を断ち切らないような状態を維持するのが懸濁シリカ粒子の凝集化のために望ましい。すなわち、添加位置はポンプの下流で、流れが乱流でない場所で添加し、添加後、次の濾過器までを層流状況で0.1〜0.5m/secの流速を2sec以上の時間を確保できる配管の径と長さを決めることが凝集化反応を進める上で重要である。 In addition, it is important for the addition position of the strong cationic polymer flocculant to ensure sufficient time for contact with the suspended silica particles to achieve charge neutralization and agglomeration. It is desirable for agglomeration of suspended silica particles to maintain a state in which the long chains of adsorbed homopolymer are not broken. That is, the addition position is downstream of the pump, and the addition is performed at a place where the flow is not turbulent. After the addition, the flow rate of 0.1 to 0.5 m / sec is applied for 2 seconds or more in a laminar flow state until the next filter. Determining the diameter and length of the pipe that can be secured is important in promoting the agglomeration reaction.
また、前記粒子径1〜5μmのシリカ凝集粒子は、粒子径1〜5μmを濾過できる濾過器、いわゆるミクロフィルタに掛けて濾材により捕捉して除去される。この濾材としては、紙、ポリエステル、ポリプロピレン等を用いると、該シリカ凝集粒子はその粒子表面に吸着した前記ホモポリマー分子の作用により該濾材表面に吸着されやすいので、濾過が確実に行える。また、濾過器は、濾材に捕捉されたシリカ凝集粒子により濾過能力が下がらない構造が、さらに、捕捉されたシリカ凝集粒子を容易に除去できる構造が望ましい。したがって、濾過器内部には複数の濾過ユニットを設け、各濾過ユニットが筒状であって、中心部に多孔の集水筒を有し、その周囲に濾過面積が多く取れるように断面が凸型多角形状(襞状を呈する)で、かつ、筒中心に対して濾過面が斜めの角度を持つ濾材を設けた構造を有するのが良い。濾材面が濾過ユニット中心に対して接線方向に配設されているので、この方向に含シリカ凝集粒子液を導入すると濾過効率を上げることができる。また、捕捉されたシリカ凝集粒子は濾材面から水洗ノズルの水で除去することができる。よって、この場合複数の濾過器を持って、間歇的に一台づつ濾過器の水洗クリーンアップするのがよい。 The silica aggregate particles having a particle size of 1 to 5 μm are trapped and removed by a filter medium through a filter capable of filtering a particle size of 1 to 5 μm, a so-called microfilter. When paper, polyester, polypropylene, or the like is used as the filter medium, the silica aggregated particles are easily adsorbed on the surface of the filter medium by the action of the homopolymer molecules adsorbed on the particle surface, so that filtration can be performed reliably. Further, it is desirable that the filter has a structure in which the filtration capacity is not lowered by the silica aggregated particles trapped in the filter medium, and further a structure in which the trapped silica aggregated particles can be easily removed. Therefore, a plurality of filtration units are provided inside the filter, each filtration unit is cylindrical, has a porous water collection tube in the center, and has a convex polygonal cross section so that a large filtration area can be taken around it. It is preferable to have a structure provided with a filter medium having a shape (presenting a bowl-like shape) and an angle at which the filtration surface is inclined with respect to the center of the cylinder. Since the filter medium surface is disposed in a tangential direction with respect to the center of the filtration unit, the filtration efficiency can be improved by introducing the silica-containing aggregated particle liquid in this direction. The trapped silica agglomerated particles can be removed from the filter medium surface with water from a washing nozzle. Therefore, in this case, it is better to have a plurality of filters and to clean up the filters with water intermittently one by one.
図1に基いて、本発明の実施の形態である含有シリカ用水の処理方法及びその処理水を用いた開放循環型冷却システムを説明すると、用水処理システム1において、用水(原水)11は原水受槽2に導入され、ポンプ7にて軟水化処理装置3に送られる。ここでは硬度成分であるカルシウムイオン及びマグネシウムイオンを30mg/kg以下にする除去が行われ、軟水化処理後の原水12はポンプ8にてミクロフィルタと称される濾過器5に送水されるが、該ポンプ8の後で、強カチオン型高分子凝集剤であるジアリルジメチルアンモニウムクロライドが貯液された凝集剤槽4から凝集剤注入ポンプ9により該強カチオン型高分子凝集剤を原水12中に添加して、0.01〜0.5μm径の懸濁シリカ粒子を1〜5μm径の凝集シリカ粒子に凝集させて拡径した後、1〜5μm径の凝集シリカ粒子を含む原水13を濾過器5に掛ける。濾過器5にて凝集シリカを捕捉除去して、原水13からシリカ分を除去した処理水14は処理水槽6にて貯水される。なお、処理水中のカルシウムイオン及びマグネシウムイオンを30mg/kg位にすると、後述の開放循環型冷却水システム20の配管内に保護膜を生成するので、配管の寿命の点で好ましい。
Referring to FIG. 1, a treatment method for containing silica water and an open circulation cooling system using the treated water according to an embodiment of the present invention will be described. In the
前記軟水化処理装置3は、その樹脂タンク内にカチオン樹脂(例えば、商品名SST−60)が濾材として充填されている。原水を該樹脂タンク内に通液することにより、原水内の硬度成分であるカルシウムイオン及びマグネシウムイオンを樹脂イオン(Naイオン)とイオン交換し、陽イオンを樹脂表面に付着させて、陽イオンをほぼ完全に除去できる。なお、樹脂の再生は定法にて塩水(塩分濃度17wt%)により行う。
The
また、前記凝集剤槽4には、強カチオン型高分子凝集剤である商品名FILTERREX5110(10%有効成分濃度のジアリルジメチルアンモニウムクロライドのホモポリマー溶液)を50〜100倍に希釈したものが貯液される。該凝集剤液を凝集剤注入ポンプ9により軟水化後の原水12中に有効成分換算で0.5〜3μg/kgの範囲内で添加するのがよい。該強カチオン型高分子凝集剤は懸濁シリカ粒子と事実上即時の反応であるが、注入された凝集剤と懸濁シリカ粒子とが完全に反応するために長い接触時間を取ることが望ましい。よって、濾過器5からできるだけ離れた場所で流速0.1〜0.5m/secの直管部に注入するのがよい。また、未反応の凝集剤の量は有効成分換算で0.001μg/kg以内に抑えないと次工程の濾過作業において泥状ボールによる障害が発生する。また、該凝集剤の特徴である分子及びホモポリマー鎖をせん断力で分断すると該凝集剤の凝集反応効率を低減する原因となるので、せん断力が作用しないように攪拌配管、攪拌翼付貯槽、インペラー付ポンプなどの適用は好ましくない。
The
また、前記濾過器5は、0.01〜0.5μm径の懸濁シリカ粒子を1〜5μm径の凝集シリカ粒子に凝集拡大させて、1〜5μm径粒子の濾過ができるマイクロフィルタで捕集して系外に排出する一方、シリカを含有していない濾液を処理水14として得るために適用される。本発明の最良の実施形態は、0.01〜0.5μm径の懸濁シリカ粒子を3〜4μm径の凝集シリカ粒子に凝集拡大させて、1μm径粒子の濾過ができる濾過器5を用いるのがシリカ除去として最もよい形態である。濾過器5は、捕捉された凝集シリカ粒子を逆洗して手動又は自動で除去できる構造のものが望ましく、また、凝集シリカの捕集時間の経過と共に濾過流量が連続して低下しないものがよい。例えば、HARMSCO社(米国)の商品名HURRICANE濾過器で紙製濾材のものがよい。これは濾過面積が大きい一体構造の筒状の濾過ユニットが複数設けられたもので、各濾過ユニットには接線方向に折り曲げられた襞が流体回転方向(濾過器に対して流体を接線方向に導入する)に向かうように傾いており、流体の力が加わると襞がはためいて粒子を均一に分散させるので、粒子分離効率が高く、濾材寿命が長くなる特徴を有する。
The
開放循環型冷却水システム20は、冷却塔ファン21aを有する開放散水型冷却塔21と、冷房装置又は冷却装置内の熱交換器23と、循環冷却水25を該冷却塔21や熱交換器23に送水する循環ポンプ22と、それらの配管とから構成される。また、冷却塔21の貯水部には電気伝導度計26が備えられ、この測定値を所定範囲内に維持するために手動又は自動で該循環冷却水25をブローするブロー弁24が設けられる。また、蒸発及びブローした循環冷却水25の量を補うために処理水14を冷却塔21に補給する補給調整弁10が設けられる。
The open circulation type cooling
前記循環冷却水25のスケール生成成分(シリカ、カルシウムイオン、マグネシウムイオン等)の量をスケール生成が防止できる限界内に調整するために、電気伝導度計26を用いて循環冷却水25を測定し、その測定値が800μS/cm(マイクロジーメンス・cm−1)以上にならないようにブロー量を調整・制御することがよい。すなわち、循環冷却水25の一部がブロー弁24を開けて所定量ブローされると共に、その分処理水14を補給水として補給調整弁10を開にして補うものである。このシステムによりスケール生成成分が非常に少ない処理水14を開放循環型冷却水システム20に用いてスケール障害を発生することなく、また、薬剤注入を無くす、または極端に減少することが可能となる。また、この場合、濃縮係数(≒(蒸発損失量+ブロー量)÷ブロー量)は、6〜10の範囲にすることができるのでブロー量の節減が可能で、ひいては処理水14もその量だけ減少できる。
In order to adjust the amount of scale-generating components (silica, calcium ions, magnesium ions, etc.) of the circulating
深井戸から汲み上げた原水に対して本発明方法を適用してシリカ含有用水からのシリカ成分の除去を確認した。懸濁シリカ27mg/kg、イオン状シリカ15.3mg/kgを含有するシリカ含有用水をカルシウムイオン及びマグネシウムイオン(以下、硬度成分と称す)を除去する軟水化処理を行い、その後強カチオン型高分子凝集剤である商品名FILTERREX5110(10%有効成分濃度のジアリルジメチルアンモニウムクロライドのホモポリマー溶液)を100倍に希釈したものを凝集剤として有効成分換算で0.5〜3.0μg/kgの範囲で段階的に添加し、凝集後ろ紙(孔径1μm)で凝集シリカを除去する処理を行い、処理水のシリカ残分を求めた。シリカの分析は、JISK0101 44.12に則って行い、全シリカ量、イオン状シリカ量を求め、それらから懸濁シリカ量を算出した。実施例の結果を表1(軟水化処理後の硬度成分を30mg/kgに調整した)及び表2(軟水化処理後の硬度成分を1mg/kgに調整した)に示す。
Removal of the silica component from the silica-containing water was confirmed by applying the method of the present invention to the raw water pumped from the deep well. The silica-containing water containing 27 mg / kg of suspended silica and 15.3 mg / kg of ionic silica is subjected to water softening treatment to remove calcium ions and magnesium ions (hereinafter referred to as hardness components), and then a strong cationic polymer. The product name FILTERREX 5110 (a homopolymer solution of diallyldimethylammonium chloride having a 10% active ingredient concentration) that is a flocculant is diluted 100 times as a flocculant in the range of 0.5 to 3.0 μg / kg in terms of active ingredient. A stepwise addition was performed to remove the agglomerated silica with agglomerated back paper (pore
表1、表2の結果から、懸濁シリカ27mg/kg、イオン状シリカ15.3mg/kgを含有するシリカ含有用水を処理して、懸濁シリカ3.1〜10.9mg/kg及びイオン状シリカ2.5〜11.2mg/kgの処理水が得られ、懸濁シリカ除去率89〜60%、イオン状シリカ除去率84〜27%が得られた。本発明方法によると、懸濁シリカのみならず、イオン状シリカも除去できることが分かった。 From the results of Tables 1 and 2, silica-containing water containing 27 mg / kg of suspended silica and 15.3 mg / kg of ionic silica was treated to obtain 3.1 to 10.9 mg / kg of suspended silica and ionic Treated water of 2.5 to 11.2 mg / kg of silica was obtained, and a suspended silica removal rate of 89 to 60% and an ionic silica removal rate of 84 to 27% were obtained. It has been found that according to the method of the present invention, not only suspended silica but also ionic silica can be removed.
工業及び商業施設を問わず、住宅設備に於いても、冷房又は冷凍設備の熱交換器や機械設備の潤滑油又は冷却システムの熱交換器に対する冷却水システム又は用水処理システムについて広く利用できる。 Regardless of industrial and commercial facilities, the present invention can be widely used for a cooling water system or a water treatment system for a heat exchanger of a cooling or refrigeration equipment, a lubricating oil of a mechanical equipment or a heat exchanger of a cooling system.
1:用水処理システム 2:原水受槽 3:軟水化処理装置 4:凝集剤槽 5;濾過器 6:処理水槽 7:ポンプ 8:原水ポンプ
9:凝集剤注入ポンプ 10:補給調整弁 11:用水(原水)
12:軟水化後の原水 13:原水 14:処理水
20:開放循環型冷却システム 21:冷却塔 21a:冷却塔ファン
22:循環ポンプ 23:熱交換器 24:ブロー弁 25:循環冷却水
26:電気伝導度計
1: Water treatment system 2: Raw water receiving tank 3: Soft water treatment device 4:
9: Coagulant injection pump 10: Supply adjustment valve 11: Water (raw water)
12: Raw water after softening 13: Raw water 14: Treated water 20: Open circulation type cooling system 21: Cooling tower 21a: Cooling tower fan 22: Circulation pump 23: Heat exchanger 24: Blow valve 25: Circulating cooling water 26: Electric conductivity meter
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005305473A JP4177369B2 (en) | 2005-05-09 | 2005-10-20 | A method for treating silica-containing water and an open circulation type cooling water system using the treated water. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005135654 | 2005-05-09 | ||
JP2005305473A JP4177369B2 (en) | 2005-05-09 | 2005-10-20 | A method for treating silica-containing water and an open circulation type cooling water system using the treated water. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006192424A JP2006192424A (en) | 2006-07-27 |
JP4177369B2 true JP4177369B2 (en) | 2008-11-05 |
Family
ID=36798898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005305473A Active JP4177369B2 (en) | 2005-05-09 | 2005-10-20 | A method for treating silica-containing water and an open circulation type cooling water system using the treated water. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4177369B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7887985B2 (en) | 2006-12-28 | 2011-02-15 | Sharp Kabushiki Kaisha | Carrier and two-component developer |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5562670B2 (en) * | 2010-02-01 | 2014-07-30 | 旭化成ケミカルズ株式会社 | Water recovery system |
US8454838B2 (en) * | 2011-03-30 | 2013-06-04 | Crystal Lagoons (Curacao) B.V. | Method and system for the sustainable cooling of industrial processes |
JP5998796B2 (en) * | 2012-09-25 | 2016-09-28 | 三浦工業株式会社 | Silica removal system and water treatment system including the same |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5039934B2 (en) * | 1971-08-25 | 1975-12-20 | ||
JPH07313993A (en) * | 1994-05-24 | 1995-12-05 | Takuma Co Ltd | Apparatus and method for treating boiler supply water |
JPH09155344A (en) * | 1995-12-04 | 1997-06-17 | Nitto Denko Corp | Method for desalination of brackish water and apparatus therefor |
AU9795498A (en) * | 1997-11-06 | 1999-05-31 | Microbar Incorporated | Process for removing silica from wastewater |
JP3314707B2 (en) * | 1998-02-25 | 2002-08-12 | 三菱マテリアル株式会社 | Method and apparatus for recovering suspended solids from geothermal hot water and geothermal power generation equipment using the same |
JP2002086150A (en) * | 2000-09-12 | 2002-03-26 | Kurita Water Ind Ltd | Treatment method of boiler feed water and equipment thereof |
JP4682273B2 (en) * | 2000-12-12 | 2011-05-11 | 株式会社片山化学工業研究所 | Water treatment method for circulating cooling water system |
JP2003285074A (en) * | 2002-03-28 | 2003-10-07 | Mitsubishi Paper Mills Ltd | Fluocculation/sedimentation treatment method for fine particulate silica-containing waste liquid |
JP2003300069A (en) * | 2002-04-09 | 2003-10-21 | Toray Ind Inc | Fresh water generating method and fresh water generator |
JP2004141799A (en) * | 2002-10-25 | 2004-05-20 | Mitsubishi Heavy Ind Ltd | Silica-containing waste water treatment method |
JP5005165B2 (en) * | 2004-03-30 | 2012-08-22 | 三浦工業株式会社 | Water treatment method |
-
2005
- 2005-10-20 JP JP2005305473A patent/JP4177369B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7887985B2 (en) | 2006-12-28 | 2011-02-15 | Sharp Kabushiki Kaisha | Carrier and two-component developer |
Also Published As
Publication number | Publication date |
---|---|
JP2006192424A (en) | 2006-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Anvari et al. | Scaling mitigation in radio-frequency induction heated membrane distillation | |
JP6469586B2 (en) | Liquid processing equipment | |
JP4177369B2 (en) | A method for treating silica-containing water and an open circulation type cooling water system using the treated water. | |
CA2502643C (en) | Method and apparatus for high efficiency evaporation operation | |
JP5527525B2 (en) | Method and apparatus for separation of cationic metals or cationic compounds | |
US8562839B2 (en) | Desalination system and process | |
JP5935782B2 (en) | Radioactive material contaminated water treatment method | |
JP5899270B2 (en) | Water pretreatment unit using fluorinated liquid | |
US20040050792A1 (en) | Method and system for heat transfer | |
JP7466567B2 (en) | Systems and methods for water treatment | |
JP2017148734A (en) | Solvent separation method | |
JP6695741B2 (en) | Scale adhesion prevention device and geothermal binary power generation system | |
WO2018209032A1 (en) | System for stably infusing gas into liquid and delivering the gas-infused liquid into another liquid | |
JP2010188233A (en) | Removing system of water-soluble organic compound | |
JP6414528B2 (en) | Water desalination method and apparatus | |
TW200426117A (en) | Water treatment system with low waste volume | |
JP2010155182A (en) | Water treatment apparatus | |
JP2005238023A (en) | Scale prevention apparatus | |
JP4310731B2 (en) | Water treatment method | |
KR20230123466A (en) | Systems and methods for desalination of liquids | |
JP3185318U (en) | Cooling tower system | |
JP4782981B2 (en) | Fluid processing system | |
JP3703000B2 (en) | Method for removing silica in open circulating cooling water | |
CN206255932U (en) | A kind of power-plant waste processes disinfection equipment | |
JP2009275977A (en) | Cooling tower system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060517 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060517 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080807 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080811 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080821 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110829 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4177369 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110829 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120829 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120829 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130829 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |