JP3314707B2 - Method and apparatus for recovering suspended solids from geothermal hot water and geothermal power generation equipment using the same - Google Patents

Method and apparatus for recovering suspended solids from geothermal hot water and geothermal power generation equipment using the same

Info

Publication number
JP3314707B2
JP3314707B2 JP04404498A JP4404498A JP3314707B2 JP 3314707 B2 JP3314707 B2 JP 3314707B2 JP 04404498 A JP04404498 A JP 04404498A JP 4404498 A JP4404498 A JP 4404498A JP 3314707 B2 JP3314707 B2 JP 3314707B2
Authority
JP
Japan
Prior art keywords
hot water
geothermal
suspended solids
container
geothermal hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04404498A
Other languages
Japanese (ja)
Other versions
JPH11239702A (en
Inventor
克己 茂木
晃 上田
孝文 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP04404498A priority Critical patent/JP3314707B2/en
Publication of JPH11239702A publication Critical patent/JPH11239702A/en
Application granted granted Critical
Publication of JP3314707B2 publication Critical patent/JP3314707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Filtration Of Liquid (AREA)
  • Water Treatment By Sorption (AREA)
  • Silicon Compounds (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、地熱熱水中の懸濁
物質(過飽和シリカ等)を分離・濾過・回収または球状
粉末製造後に回収し、地熱発電設備でのシリカスケール
防止を図る地熱熱水からの懸濁物質回収方法、装置およ
びこれを用いた地熱発電設備に関する。また、未利用低
温地熱熱水のエネルギーの回収率を向上させ発電能力の
向上を図るとともに、さらにヒ素を除去した温水の有効
利用を図る手段に関する。
TECHNICAL FIELD The present invention relates to geothermal heat for preventing suspended solids (supersaturated silica, etc.) in geothermal hot water after separation, filtration, and recovery or production of spherical powder to prevent silica scale in geothermal power generation equipment. The present invention relates to a method and apparatus for recovering suspended solids from water and a geothermal power generation facility using the same. In addition, the present invention relates to a means for improving the energy recovery rate of unused low-temperature geothermal hot water to improve the power generation capacity, and for further effectively utilizing hot water from which arsenic has been removed.

【0002】[0002]

【従来の技術】地熱発電は、地中の高温地熱流体を噴出
させ、分離させた水蒸気を用いて発電を行うものである
が、この場合、水蒸気とともにシリカを数100ppm
の濃度で含む過飽和状態の地熱熱水が噴出する。噴出し
た地熱熱水は、地下還元井を経て地中に還元されるが、
地下における地熱流体の温度は250℃〜350℃、圧
力90atm前後の状態でシリカが飽和状態にあると考
えられるのに対し、環流される地熱熱水の温度は97℃
〜98℃と低温であるため、地熱熱水におけるシリカ等
の溶解度は相対的に低下する。しかも、水蒸気との分離
に伴い地熱熱水中のシリカ等が濃縮されることから、地
熱熱水に含まれるシリカ等の一部は過飽和状態となる。
2. Description of the Related Art In geothermal power generation, high-temperature geothermal fluid is ejected from the ground and power is generated using separated water vapor. In this case, silica is mixed with water vapor by several hundred ppm.
Super-saturated geothermal hydrothermal water containing at a concentration of 0.1 g The erupted geothermal hot water is returned to the ground through underground return wells,
It is considered that the temperature of the geothermal fluid under the ground is 250 ° C. to 350 ° C. and the silica is in a saturated state at a pressure of about 90 atm, whereas the temperature of the recirculated geothermal water is 97 ° C.
Since the temperature is as low as ~ 98 ° C, the solubility of silica and the like in geothermal hot water relatively decreases. In addition, silica and the like in the geothermal hot water are concentrated due to the separation from the water vapor, so that a part of the silica and the like contained in the geothermal hot water becomes supersaturated.

【0003】この過飽和シリカは、シリカスケールとし
て付着しやすいため、地熱発電設備の熱水経路や前記還
元井の地中内壁に析出し、前記熱水経路の閉塞や還元井
の流動減少等の原因となっている。しかも、このシリカ
スケールは、前記内壁等に強固に付着しているため除去
が困難で、シリカスケール付着が進行した場合には、前
記熱水経路や還元井の使用を中断し、シリカスケールを
除去しなければならない。このように、地熱熱水中のシ
リカ等の存在は、地熱熱水の利用上大きな障害となって
いる。
[0003] Since this supersaturated silica tends to adhere as silica scale, it is deposited on the hot water path of the geothermal power generation equipment or the underground inner wall of the reduction well, and causes a blockage of the hot water path and a decrease in flow of the reduction well. It has become. Moreover, since the silica scale is firmly adhered to the inner wall and the like, it is difficult to remove the silica scale. If the silica scale adheres, the use of the hot water path and the reduction well is interrupted to remove the silica scale. Must. As described above, the presence of silica or the like in geothermal hot water is a major obstacle in utilizing geothermal hot water.

【0004】そこで、地熱熱水中に含有されるシリカを
除去し、前記熱水経路あるいは地下還元井に対するシリ
カスケールの付着を防止する目的で、従来より例えば、
特開昭63−1496号公報に開示された方法が知られ
ている。これは、地熱熱水の一部を滞留してシリカコロ
イドを生成させた後、滞留した地熱熱水と残りの地熱熱
水とを接触させることにより、前記シリカコロイドに地
熱熱水中のシリカを吸着させ、成長したシリカコロイド
を限外濾過等により回収するものである。
Therefore, for the purpose of removing silica contained in geothermal hot water and preventing silica scale from adhering to the above-mentioned hot water path or underground reduction well, for example, conventionally, for example,
A method disclosed in JP-A-63-1496 is known. This means that, after a part of the geothermal hot water is retained to generate silica colloid, the retained geothermal hot water is brought into contact with the remaining geothermal hot water, so that the silica in the geothermal hot water is brought into contact with the silica colloid. The adsorbed and grown silica colloid is recovered by ultrafiltration or the like.

【0005】また、地熱熱水にAl(アルミニウム)や
Fe(鉄)等の多価陽イオンを添加してシリカを凝集さ
せ、この凝集シリカを核としてシリカコロイドを生成さ
せた後に、このシリカコロイドを浮上分離等により回収
する方法もある。
[0005] In addition, silica is aggregated by adding a polyvalent cation such as Al (aluminum) or Fe (iron) to geothermal hot water, and silica colloid is formed using the aggregated silica as a nucleus. May be collected by flotation or the like.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の方法のうち、特開昭63−1496号公報に開示の
方法では、得られたシリカコロイドの粒径が小さいた
め、濾過膜の細孔径に近似の大きさのコロイドにより濾
過膜が閉塞するおそれがあった。また、多価陽イオンを
添加する方法では、使用する全ての地熱熱水に多価陽イ
オンを添加する必要があるため、多量の多価陽イオンが
必要となりコストが増大するという問題があった。しか
も、上記方法では、いずれの場合も、シリカ回収後の上
澄み液に白色の懸濁物質が浮遊し、その清澄度が低いと
いう点も問題となっていた。
However, among the above-mentioned conventional methods, the method disclosed in Japanese Patent Application Laid-Open No. 63-1496 has a small particle size of the obtained silica colloid. There is a possibility that the filtration membrane may be clogged by a colloid having a similar size. In addition, in the method of adding a polyvalent cation, since it is necessary to add the polyvalent cation to all the geothermal hot water to be used, there is a problem that a large amount of the polyvalent cation is required and the cost increases. . In addition, in any of the above methods, there is a problem in that a white suspended substance floats in the supernatant liquid after the recovery of silica, and the clarity is low.

【0007】本発明は、上記事情に鑑みてなされたもの
で、地熱熱水中の懸濁物質を分離・濾過・回収または球
状微粉末製造後に回収し、地熱発電設備でのシリカスケ
ールの防止を図り、また、未利用低温地熱熱水の熱エネ
ルギーの回収率を向上させ、発電能力の向上を図るとと
もに、さらに砒素を除去した温水を提供する地熱熱水か
らの懸濁物質回収方法、装置およびこれを用いた地熱発
電設備を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and separates, filters and collects suspended solids in geothermal hot water or collects them after producing spherical fine powder to prevent silica scale in geothermal power generation equipment. A method and apparatus for recovering suspended solids from geothermal hot water, which improves the thermal energy recovery rate of unused low-temperature geothermal hot water, improves power generation capacity, and further provides hot water from which arsenic has been removed. An object is to provide a geothermal power generation facility using this.

【0008】[0008]

【課題を解決するための手段】本発明は、前記課題を解
決するために以下の構成を採用した。すなわち、本発明
に係る地熱熱水からの懸濁物質回収装置では、地熱熱水
を供給する熱水供給管路に接続状態の流入口を有する密
閉円筒容器が設けられ、該密閉円筒容器内に略円筒状の
流体流通性容器が、密閉円筒容器と略同心状に配設さ
れ、前記流体流通性容器内に流体流通性の集流体管路が
流体流通性容器と略同心状に配設され、前記流体流通性
容器内部で前記集流性管路の外部の空間には、前記流入
口からの流入後に気水分離されて流体流通性容器の外壁
から流入する地熱熱水中の懸濁物質を捕捉分離する濾過
材が流動可能に収容され、前記集流体管路には、前記濾
過材を通過した濾過された地熱熱水を集流体管路に集め
て前記密閉円筒容器の外部に吐出する熱水吐出手段が付
設されてなる技術が採用される。
The present invention has the following features to attain the object mentioned above. That is, in the apparatus for recovering suspended solids from geothermal hot water according to the present invention, a closed cylindrical container having an inflow port connected to a hot water supply pipe for supplying geothermal hot water is provided, and the inside of the closed cylindrical container is provided. A substantially cylindrical fluid circulating container is disposed substantially concentrically with the closed cylindrical container, and a fluid circulating fluid collection line is disposed substantially concentrically with the fluid circulating container within the fluid circulating container. In the space outside the flow collecting pipe inside the fluid circulating vessel, suspended matter in geothermal hot water which is separated from steam after flowing in from the inflow port and flows in from the outer wall of the fluid circulating vessel. A filter medium for trapping and separating the water is accommodated in a flowable manner, and in the fluid collection line, the filtered geothermal hot water that has passed through the filter material is collected in the fluid collection line and discharged to the outside of the closed cylindrical container. A technology provided with hot water discharge means is employed.

【0009】また、本発明に係る地熱熱水からの懸濁物
質回収方法では、高温の地熱熱水の流入口を有する密閉
円筒容器内に略同心状に配設した略円筒状の流体流通性
容器と該流体流通性容器内に略同心状に配設された流体
流通性の集流体管路との空間に、前記流入口からの流入
後に気水分離されて流体流通性容器の外壁から流入する
地熱熱水中の懸濁物質を捕捉分離する濾過材を流動可能
に収容し、前記濾過材を通過して濾過された地熱熱水を
前記集流体管路に集めて前記密閉円筒容器の外部に吐出
させる技術が採用される。
Further, in the method for recovering suspended solids from geothermal hot water according to the present invention, a substantially cylindrical fluid flow passage disposed substantially concentrically in a closed cylindrical container having an inlet for hot geothermal hot water is provided. After flowing into the space between the container and the fluid-flow collecting fluid conduit arranged substantially concentrically in the fluid-flow container, the air-water is separated after flowing from the inflow port and flows from the outer wall of the fluid-flow container. A filter medium for trapping and separating suspended substances in the geothermal hot water to be flowed is accommodated in a flowable manner, and the geothermal hot water filtered through the filter medium is collected in the fluid collection pipe, and the outside of the closed cylindrical container is collected. The technique of ejecting the liquid to the outside is adopted.

【0010】上記において、流体流通性容器は、容器の
外壁面の一部もしくは全体が流体としての地熱熱水を通
し、容器外の地熱熱水が容器内に流れ込んだり容器内の
地熱熱水が容器外に流出したりすることができるように
構成された容器であり、内部に濾過材を収容することが
できるものであれば如何なる構造のものでも構わない。
このような容器は、好適には、濾過材の粒径より小なる
流体流通間隙を持つ材料で外壁が形成されたものであ
り、外壁形成材としては地熱熱水の性状、濾過材の粒径
または大きさに応じて、金属、高分子材料、天然あるい
は人工の繊維を用いた布、不織布等を適宜選択すること
ができる。
[0010] In the above, in the fluid circulating container, a part or the whole of the outer wall surface of the container passes geothermal hot water as a fluid, and the geothermal hot water outside the container flows into the container or the geothermal hot water in the container flows therethrough. It is a container configured to be able to flow out of the container, and may have any structure as long as it can accommodate a filtering material inside.
Preferably, such a container has an outer wall formed of a material having a fluid flow gap smaller than the particle diameter of the filter medium. Alternatively, a metal, a polymer material, a cloth using a natural or artificial fiber, a nonwoven fabric, or the like can be appropriately selected according to the size.

【0011】また、本発明においては、上記流体流通性
容器は略円筒状をなしており、円筒の長さは任意であ
り、径が全長に対して短い筒状のものでもよいし、径が
全長に対して小さい円盤状のものでも構わない。
Further, in the present invention, the fluid circulating container has a substantially cylindrical shape, the length of the cylinder is arbitrary, and the diameter may be shorter than the entire length. A disk-shaped thing smaller than the entire length may be used.

【0012】本発明では、上記の流体流通性容器の内部
に、これもまた流体流通性であって流体流通性容器の外
径よりも小なる外径を有する集流体管路が、好適には、
各流体流通性容器に軸心をほぼ一致させて、それぞれ配
設される。各集流体管路は、流体流通性容器の場合と同
様に、外壁の一部または全体が流体としての地熱熱水を
通し、濾過材を通さないものであれば、如何なる構造の
ものでも構わないが、好適には、外周壁が多孔性をなす
配管もしくは通気性スクリーンにより構成できる。
In the present invention, preferably, a fluid collection pipe, which is also fluid-permeable and has an outer diameter smaller than the outer diameter of the fluid-flowable container, is provided inside the fluid-flowable container. ,
The respective fluid circulating containers are disposed with their axes substantially aligned. Each of the fluid collection conduits may have any structure as long as a part or the whole of the outer wall allows geothermal hot water as a fluid to pass therethrough and does not allow a filtering material to pass therethrough, similarly to the case of the fluid circulating container. However, preferably, the outer peripheral wall can be constituted by a porous pipe or a breathable screen.

【0013】しかして、上記流体流通性容器の内部であ
って上記集流体管路の外部の空間には濾過材が収容さ
れ、地熱熱水が流体流通性容器内に流入し該濾過材を通
過する際に、地熱熱水中の懸濁物質(シリカ等)が濾過
材に捕捉され分離されるように構成されている。ここ
で、流体流通性容器は、前述のように円筒状に構成され
ているが、濾過すべき地熱熱水はかかる円筒状容器の外
周側から流入して軸心方向に移動し、濾過材の層を通
る。そして、濾過材間隙より大きい懸濁物質はその間隙
を通過することができずに捕捉され、またその間隙を通
過した固体粒子は、該固体粒子と地熱熱水との質量差に
よる慣性力の違いで濾過材に衝突して流速が低下するこ
とにより、あるいは濾過材表面の液体の表面張力によ
り、捕捉される。
[0013] Thus, a filter material is accommodated in the space inside the fluid circulating vessel and outside the fluid collecting pipe, and geothermal hot water flows into the fluid circulating vessel and passes through the filter material. In such a case, a suspended substance (silica or the like) in the geothermal hot water is captured and separated by the filter medium. Here, the fluid circulating container is formed in a cylindrical shape as described above, but the geothermal hot water to be filtered flows in from the outer peripheral side of the cylindrical container, moves in the axial direction, and forms a filter medium. Through the layers. Suspended matter larger than the filter medium gap is trapped without being able to pass through the gap, and the solid particles that have passed through the gap differ in inertial force due to the mass difference between the solid particles and geothermal hot water. Is trapped due to a decrease in the flow velocity due to collision with the filter medium, or due to the surface tension of the liquid on the surface of the filter medium.

【0014】このように、本発明では、濾過すべき地熱
熱水は円筒状の流体流通性容器の外周側から流入して軸
心方向に向けて移動し、円環状の収容空間に充填収容さ
れている濾過材を放射状方向に移動して通過するように
なっているので、地熱熱水に接する表面積を、一方向濾
過である装置の場合と比較して、同じ体積であっても格
段に大きく取ることができ、濾過材体積当たりの懸濁物
質捕集効率が高くなる。従って、濾過層の必要厚さは、
地熱熱水に要求される濾過性状に応じて決まるが、最小
限の濾過材体積で所望の濾過性能を達成することがで
き、また濾過層の厚さ全体に渡って地熱熱水中の固形分
を均一に阻止抑留できるので、小さな直径でも極めて効
率の良い濾過層厚さを持った装置を製作することができ
る。
As described above, according to the present invention, the geothermal hot water to be filtered flows in from the outer peripheral side of the cylindrical fluid circulating vessel, moves in the axial direction, and is filled and accommodated in the annular accommodating space. Since it is designed to move in a radial direction and pass through the filtering material, the surface area in contact with geothermal hot water is much larger than that of a device that is one-way filtration, even if the volume is the same. And the efficiency of collecting suspended solids per filter medium volume is increased. Therefore, the required thickness of the filtration layer is
Depending on the filtration properties required of the geothermal hot water, the desired filtration performance can be achieved with a minimum filter material volume, and the solid content in the geothermal hot water over the entire thickness of the filter layer Can be uniformly suppressed and suppressed, so that a device having a very efficient filtration layer thickness can be manufactured even with a small diameter.

【0015】ここで、使用される濾過材は、上記流体流
通性容器内に保持され得る粒径または大きさで、地熱熱
水中の汚濁物質を捕捉分離することができるものであれ
ば、従来から濾過処理において使用されているものはも
とより、如何なるものでも構わない。
[0015] The filter material used here may be any filter material having a particle size or size that can be retained in the fluid-flow container and that can capture and separate pollutants in geothermal hot water. Any of those used in the filtration treatment may be used.

【0016】本発明において好適に用いることができる
濾過材を例示すると、含水珪酸塩鉱物(ゼオライト族)
を主成分とする土壌成分、天然または人工の珪酸塩鉱物
(軽量発泡コンクリート(ALC)等)の塊粒状物質、
多孔質で吸着性を有する炭化物の塊粒状物質、高分子材
料の顆粒状もしくは立体網目構造状塊粒もしくはブラシ
状団塊物質、無機もしくは有機材料の中空円柱状もしく
は中空球状体物資を挙げることができ、これらを、単独
もしくは混合状態で、使用することができる。
Examples of the filter media which can be suitably used in the present invention include hydrated silicate minerals (zeolites).
Soil component mainly composed of natural or artificial silicate minerals (such as lightweight foamed concrete (ALC))
Examples include porous and adsorbable carbide mass and granular material, high molecular material granular or three-dimensional network structured mass or brush-like aggregate material, and inorganic or organic material hollow cylindrical or hollow spherical material. These can be used alone or in a mixed state.

【0017】また、本発明においては、上記濾過材のな
かでも、特に比重が1以下の軽量の濾過材を選択するの
が好ましい。後で詳細に説明するように、本発明では、
流体流通性容器内部の濾過材を流動させる運動エネルギ
ー供給手段を採用する場合に、このように軽量な濾過材
を選択して流体流通性容器に収容しておくと、濾過材自
体の自己浮揚力に加えて、運動エネルギー供給手段によ
って濾過材に加える運動エネルギーが少なくても、濾過
材が容易に流動攪拌となる。また、軽量の濾過材は取扱
い、運搬が容易であるという利点もある。
Further, in the present invention, it is preferable to select a light-weight filter medium having a specific gravity of 1 or less among the above-mentioned filter mediums. As described in detail later, the present invention provides:
When kinetic energy supply means for flowing the filter medium inside the fluid-flowable container is adopted, if such a lightweight filter medium is selected and stored in the fluid-flowable container, the self-levitation force of the filter medium itself is increased. In addition to the above, even if the kinetic energy applied to the filter medium by the kinetic energy supply means is small, the filter medium can be easily fluidized and stirred. In addition, there is an advantage that a lightweight filter material is easy to handle and transport.

【0018】本発明において、濾過材は、流体流通性容
器内に少なくとも部分的には流動可能に充填される。す
なわち、濾過材は、流体流通性容器の容積に対して一定
の空間容積を持たせて収容されており、例えば、地熱熱
水の圧力エネルギー、その他の作用により、濾過材が少
なくとも部分的には流体流通性容器の中で移動でき、相
互に接触できる状態にされている。
In the present invention, the filter material is filled at least partially in a fluid-flowable container so as to be able to flow. That is, the filter medium is accommodated with a certain space volume with respect to the volume of the fluid circulating container, and, for example, due to the pressure energy of geothermal hot water and other actions, the filter medium is at least partially It is movable within the fluid flow container and is in contact with each other.

【0019】そして、本発明においては、前記密閉円筒
容器が垂直方向に軸線を有して設置され、前記密閉円筒
容器に流入させた地熱熱水に内周方向に沿って一方向に
回転する力を加える熱水回転手段が付設されているの
で、回転する地熱熱水中の懸濁物質の多くが遠心分離に
よって外周側に移動(これをサイクロン分離効果とい
う)し、さらに多くの懸濁物質が分離された状態で地熱
熱水が中心側に配される流体流通性容器の外周から流入
して、濾過材により濾過された後に集流体管路から外部
に吐出される。
In the present invention, the hermetic cylindrical container is installed so as to have an axis in the vertical direction, and the geothermal hot water that has flowed into the hermetic cylindrical container is forced to rotate in one direction along the inner circumferential direction. Hot water rotating means is added, so much of the suspended matter in the rotating geothermal hot water moves to the outer peripheral side by centrifugation (this is called the cyclone separation effect), and more suspended matter is removed. In the separated state, the geothermal hot water flows in from the outer periphery of the fluid circulating vessel arranged on the center side, is filtered by the filtering material, and is discharged to the outside from the fluid collecting pipe.

【0020】すなわち、サイクロン分離効果によって比
較的大きな懸濁物質を予め地熱熱水中から除去するとと
もに、残りの懸濁物質を流体流通性容器内の濾過材で捕
獲することにより、懸濁物質を2段階で効率的に地熱熱
水中から分離できる。
That is, a relatively large suspended substance is removed from geothermal hot water in advance by the cyclone separation effect, and the remaining suspended substance is captured by a filter medium in a fluid-flowable container, whereby the suspended substance is removed. It can be efficiently separated from geothermal hot water in two stages.

【0021】また、前記熱水回転手段は、地熱熱水を前
記流入口から前記密閉円筒容器の内周壁の接線方向に向
けて噴出させる熱水流入手段を備えていることが好まし
い。すなわち、加圧された地熱熱水を流入口から密閉円
筒容器の内周壁の接線方向に向けて噴出、流入させるこ
とにより、地熱熱水は密閉円筒容器の内周に沿って一方
向に回転するので、比較的簡便な構成によって容易にサ
イクロン分離効果を得ることができる。特に、上記流入
口を、密閉円筒容器の上部に配することにより、地熱熱
水中の懸濁物質は上部から下部に落下しながら繰り返し
回転するため、効率的に外周側に移動分離される。
Preferably, the hot water rotating means includes hot water inflow means for jetting geothermal hot water from the inflow port in a tangential direction of an inner peripheral wall of the closed cylindrical container. That is, the geothermal hot water rotates in one direction along the inner circumference of the closed cylindrical container by injecting and flowing the pressurized geothermal hot water from the inflow port in the tangential direction of the inner peripheral wall of the closed cylindrical container. Therefore, a cyclone separation effect can be easily obtained with a relatively simple configuration. In particular, by disposing the inflow port in the upper portion of the closed cylindrical container, the suspended matter in the geothermal hot water repeatedly rotates while falling from the upper portion to the lower portion, and thus is efficiently moved to the outer peripheral side and separated.

【0022】さらに、前記密閉円筒容器下部に設けられ
地熱熱水の回転によって遠心分離されるとともに密閉円
筒容器下部に沈殿した地熱熱水中の懸濁物質を外部に排
出する沈殿物排出手段を備えていることが好ましい。す
なわち、遠心分離等により懸濁物質の沈殿物が下部に蓄
積してしまい、流体流通性容器にまで及ぶようになると
地熱熱水の濾過能力が低下するため、上記沈殿物排出手
段を設けることにより、沈殿物の排出処理が可能となっ
て健全な濾過能力が維持される。
Further, there is provided a sediment discharging means provided at a lower portion of the closed cylindrical container for centrifuging by rotation of geothermal hot water and discharging a suspended substance in the geothermal hot water settled at a lower portion of the closed cylindrical container to the outside. Is preferred. That is, the sediment of suspended solids accumulates in the lower part due to centrifugation or the like, and when it reaches the fluid circulating vessel, the filtration capacity of geothermal hot water decreases. As a result, it is possible to discharge the sediment and maintain a sound filtration ability.

【0023】また、本発明では、流体流通性容器内部の
濾過材を流動させ、該濾過材に捕捉分離された懸濁物質
を流体流通性容器外部に排出させる運動エネルギー供給
手段を備えることにより、容器内の濾過材は運動エネル
ギーを受けて攪拌流動させられる。
Further, according to the present invention, a kinetic energy supply means is provided for flowing the filter material inside the fluid-flowable container and discharging the suspended matter trapped and separated by the filter material to the outside of the fluid-flowable container. The filter medium in the container is stirred and fluidized by receiving kinetic energy.

【0024】特に、上記運動エネルギー供給手段とし
て、弾性支持された前記流体流通性容器に振動を加え前
記濾過材を流動させる加振機構を備えることにより、加
振機構により弾性支持された流体流通性容器に振動を加
えると、該容器内の濾過材は振動のエネルギーを受けて
攪拌流動させられる。また、上記運動エネルギー供給手
段として、前記流体流通性容器の下部から流体流通性容
器の内圧より高い圧力の地熱熱水を供給することにより
濾過材を流動させる熱水供給手段を備えることにより、
熱水供給手段からの地熱熱水が流体流通性容器の下部か
ら内部に供給され、地熱熱水の圧力により容器内の濾過
材が攪拌流動させられる。
In particular, the kinetic energy supply means is provided with a vibrating mechanism for applying a vibration to the elastically supported fluid circulating container to flow the filter medium, so that the fluid circulating mechanism elastically supported by the vibrating mechanism is provided. When vibration is applied to the container, the filter medium in the container receives the energy of the vibration and is caused to stir and flow. Further, as the kinetic energy supply means, by providing a hot water supply means for flowing the filter medium by supplying geothermal hot water having a pressure higher than the internal pressure of the fluid flow container from the lower part of the fluid flow container,
The geothermal hot water from the hot water supply means is supplied to the inside from the lower part of the fluid-flowable container, and the pressure of the geothermal hot water causes the filtering material in the container to be stirred and flow.

【0025】すなわち、流体流通性容器内に収容されて
いる濾過材は、容器に固着、付着等しておらず、その全
部もしくは一部が移動可能な状態であり、運動エネルギ
ーを受ける時間差、自重による位置エネルギー及び/ま
たは地熱熱水流による流体エネルギーにより運動エネル
ギー及び移動ベクトル方向がそれぞれの濾過材で相互に
異なるため、流体流通性容器内の濾過材は容器内で移動
し、濾過材同士が相互接触する。
That is, the filter medium accommodated in the fluid-flowable container does not adhere or adhere to the container, and is entirely or partially movable. The kinetic energy and the moving vector direction are different between the respective filter media due to the potential energy due to the potential energy and / or the fluid energy due to the geothermal hot water flow, so that the filter media in the fluid circulating vessel move within the vessel, and the filter media mutually move. Contact.

【0026】その結果、濾過材間及び/または表面に付
着した懸濁物質等が地熱熱水中に放出されると同時に、
濾過材の一部も摩滅して地熱熱水中に溶出し拡散され
る。このようにして、濾過材は摩滅すると、その物理化
学的機能が回復し、また粒径が小さくなると、微小懸濁
物質を濾過材に捕捉して分離することができるようにな
り、流体流通性容器の外壁の間隙より小さくなれば、流
体流通性容器から外部に排出される。流体流通性容器内
の濾過材の量が減少したら、濾過材は補給される。
As a result, suspended substances and the like adhering between the filter media and / or on the surface are released into the geothermal hot water,
A part of the filter material is also worn out and elutes and diffuses into geothermal hot water. In this way, when the filter medium is worn out, its physicochemical function is restored, and when the particle diameter is reduced, the fine suspended substance can be captured and separated by the filter medium, and the fluid flowability can be improved. If it becomes smaller than the gap of the outer wall of the container, it is discharged from the fluid-flowable container to the outside. When the amount of filter media in the fluid flow container decreases, the filter media is replenished.

【0027】なお、濾過材を流体流通性容器内に密閉円
筒容器の内圧より高い圧力で供給する濾過材供給手段を
備えることにより、例えば、流体流通性容器の上部に設
けた濾過材の供給口から濾過材供給手段によって、摩滅
して減少した濾過材を容易に供給口から適宜補給するこ
とができる。さらに、流体流通性容器の下部に設けられ
密閉円筒容器の下部に濾過材を排出する濾過材排出手段
とを備えることにより、例えば、流体流通性容器の下部
に排出口を設け、濾過材排出手段によって排出口から摩
滅した濾過材や懸濁物質を捕捉した濾過材を容易に外部
に適宜排出することができる。
By providing a filter medium supply means for supplying the filter medium into the fluid circulating vessel at a pressure higher than the internal pressure of the closed cylindrical container, for example, a filter medium supply port provided at the upper part of the fluid circulating vessel is provided. Therefore, the filter material that has been worn and reduced can be easily and appropriately supplied from the supply port by the filter material supply means. Further, by providing a filtering material discharging means provided at a lower portion of the fluid circulating container and discharging the filtering material at a lower portion of the closed cylindrical container, for example, an outlet is provided at a lower portion of the fluid circulating container, and the filtering material discharging means is provided. Thus, the abraded filter medium and the filter medium capturing the suspended matter can be easily and appropriately discharged from the outlet.

【0028】また、上記加振機構による振動および上記
熱水供給手段による地熱熱水の供給についても、常時行
う必要はなく、それぞれ間欠運転でも構わない。要は、
捕捉された懸濁物質が排除され、濾過材同士が相互接触
して磨滅し、その濾過機能の回復が図られれば良い。
The vibration by the vibrating mechanism and the supply of geothermal hot water by the hot water supply means need not always be performed, and may be intermittent operation. In short,
It is only necessary that the trapped suspended matter is eliminated, the filter media come into contact with each other and wear out, and the filtering function is restored.

【0029】また、本発明において、上記運動エネルギ
ー供給手段として加振機構や熱水供給手段を備えたもの
では、濾過材を流動させるために流体流通性容器を回転
させる等の必要がなく、回転させるための機構が不要と
なって構造が簡素化されるとともに、容器が回転しない
ので濾過材を容易に補給することができる利点がある。
Further, in the present invention, when the kinetic energy supply means is provided with a vibrating mechanism or hot water supply means, there is no need to rotate the fluid circulating container for flowing the filter medium, and the rotation is not required. There is an advantage that a mechanism for performing the operation is not required, the structure is simplified, and the filter medium can be easily supplied because the container does not rotate.

【0030】なお、上記加振機構を備えた場合に、流体
流通性容器の略接線方向でかつ若干上向きに加振すれ
ば、濾過材の流動に方向性を持たせることができ、濾過
材を流体流通性容器内で回転させることが可能である。
また、上記熱水供給手段を備えた場合に、流体流通性容
器の下部から一様に地熱熱水を供給するのではなく、例
えば、下部の片側から上方に供給することにより、地熱
熱水が供給された部分の濾過材が地熱熱水の圧力で上方
に流動するので、容器内で濾過材を回転させることが可
能となる。
In the case where the above-described vibration mechanism is provided, if the vibration is applied in a substantially tangential direction of the fluid circulating container and slightly upward, the flow of the filter medium can be given a direction, and the filter medium can be provided. It can be rotated in a fluid-flow container.
Further, when the above-mentioned hot water supply means is provided, instead of uniformly supplying geothermal hot water from the lower part of the fluid circulating container, for example, by supplying the geothermal hot water upward from one side of the lower part, Since the supplied portion of the filter medium flows upward by the pressure of the geothermal hot water, the filter medium can be rotated in the container.

【0031】なお、上記態様において、初期の粒径と減
少した小さな粒径の濾過材が混在していても、流体流通
性容器の振動や地熱熱水の供給等による濾過材の洗浄に
より、流体流通性容器の目詰まりが発生することがない
ので、濾過性能に影響はないが、この濾過材の洗浄は、
流体流通性容器の振動速度や地熱熱水の供給量等を適宜
調整することにより、最適な状態とすることができる。
この場合、大小の濾過材による相互攪拌洗浄により、濾
過材に捕捉分離された懸濁物質を破砕し、物理化学的、
生物化学的処理を促進させる効果もある。
In the above-described embodiment, even if a filter medium having an initial particle diameter and a reduced particle diameter is mixed, the filter medium is washed by the vibration of the fluid-flowable container or the supply of geothermal hot water, etc. Since the clogging of the flowable container does not occur, there is no influence on the filtering performance, but the washing of the filtering material is
An optimal state can be obtained by appropriately adjusting the vibration speed of the fluid-flowable container, the supply amount of geothermal hot water, and the like.
In this case, the suspended matter trapped and separated by the filter medium is crushed by mutual stirring and washing with the large and small filter medium, and physicochemical,
It also has the effect of promoting biochemical treatment.

【0032】また、本発明にあっては、上記集流体管路
に、濾過材を通過した濾過された地熱熱水を集流体管路
に集めて密閉円筒容器の外部に吐出する熱水吐出手段が
付設されている。この熱水吐出手段は、濾過すべき地熱
熱水が流体流通性容器内にその外周から導き入れられ、
濾過材を通じて濾過された後、集流体管路に導かれた濾
過された地熱熱水を流体流通性容器の外部に放出するこ
とができる手段であれば、如何なるものでも構わない。
Further, in the present invention, the hot water discharge means for collecting the filtered geothermal hot water which has passed through the filtering material in the above-mentioned fluid collection line, and discharging the collected geothermal hot water to the outside of the closed cylindrical container. Is attached. In this hot water discharge means, geothermal hot water to be filtered is guided into the fluid circulating vessel from the outer periphery thereof,
Any means may be used as long as it can discharge the filtered geothermal hot water guided to the fluid collection pipe after being filtered through the filter medium to the outside of the fluid circulating vessel.

【0033】熱水吐出という表現から推量されるように
地熱熱水を容器外に吐出する手段を吐出側に設けること
は当然にできるが、必ずしも吐出側に設ける手段に限る
ものではなく、供給側に熱水流入供給手段を設けて流通
させ、これにより地熱熱水を容器外に吐出させる構造で
あっても良い。例えば、流体流通性容器の外周側の水頭
圧を集流体管路側より高くする構造すると、かかる構造
が熱水流入手段を構成する。また、集流体管路の吐出側
に吐出ポンプ、吸引ブロアを設置することもできる。
As can be inferred from the expression of hot water discharge, means for discharging geothermal hot water to the outside of the container can be provided on the discharge side, but it is not necessarily limited to means provided on the discharge side. May be provided with a hot water inflow / supply means to allow the geothermal hot water to be discharged from the container. For example, if the structure is such that the water head pressure on the outer peripheral side of the fluid circulating container is higher than that on the fluid collection conduit side, such a structure constitutes the hot water inflow means. Further, a discharge pump and a suction blower can be provided on the discharge side of the fluid collection pipe.

【0034】また、好適には、上記集流体管路の内面に
弾性部材を摺動させて付着物を除去する内面洗浄手段が
付設される。すなわち、上記内面洗浄手段を備えること
により、集流体管路内面にブラシ部材等の弾性部材が当
接して摺動することにより、内面の付着物が弾性部材と
の接触摩擦によって擦り取られ、管路内が洗浄される。
Preferably, an inner surface cleaning means for removing an adhered substance by sliding an elastic member on the inner surface of the fluid collecting pipe is provided. That is, by providing the inner surface cleaning means, an elastic member such as a brush member abuts on the inner surface of the fluid collecting pipe and slides, so that the attached matter on the inner surface is scraped off by contact friction with the elastic member, and The road is cleaned.

【0035】更に、上記流体流通性容器に、容器外周に
付着した異物を除去する手段を設けても良く、このよう
な手段としては、上記容器の外周面に摺動する付着物排
除板、またはブラシ状(回転型も含む)除去手段、もし
くは流体噴出洗浄手段を、単独あるいは組み合わせて用
いることが考えられる。
Further, the fluid circulating container may be provided with a means for removing foreign matter adhering to the outer periphery of the container, such as an adhering substance removing plate sliding on the outer peripheral surface of the container, or It is conceivable to use a brush-like (including a rotary type) removing means or a fluid jet cleaning means alone or in combination.

【0036】また、本発明において、上記加振機構を備
えたものでは、流体流通性容器を収容する密閉円筒容器
と流体流通性容器とを接続する部材および管路に弾性継
手を設けていることが好ましい。すなわち、流体流通性
容器が弾性継手によって密閉円筒容器に弾性的に接続さ
れているので、加振機構による振動が密閉円筒容器側に
伝わり難いとともに流体流通性容器に効果的に加えるこ
とができる。
Further, in the present invention, in the apparatus provided with the vibration mechanism, an elastic joint is provided in a member and a pipe connecting the closed cylindrical container accommodating the fluid circulating container and the fluid circulating container. Is preferred. That is, since the fluid circulating container is elastically connected to the closed cylindrical container by the elastic joint, it is difficult for the vibration by the vibrating mechanism to be transmitted to the closed cylindrical container side, and it is possible to effectively apply the vibration to the fluid circulating container.

【0037】これらの本発明において、一端が密閉円筒
容器の下部に接続されるとともに他端が前記流入口に接
続され沈殿した懸濁物質の一部を再び流入口から密閉円
筒容器内に供給し懸濁物質の結晶析出の核とする沈殿物
循環管路を備えていることが好ましい。
In these inventions, one end is connected to the lower part of the closed cylindrical container and the other end is connected to the inlet, and a part of the precipitated suspended substance is again supplied from the inlet into the closed cylindrical container. It is preferable to provide a sediment circulation line serving as a nucleus for crystal precipitation of the suspended substance.

【0038】すなわち、密閉円筒容器内で分離沈殿した
懸濁物質の一部を沈殿物循環管路で戻し、再び密閉円筒
容器内に供給することによって、地熱熱水中の懸濁物質
の結晶析出の核(シード)とするので、懸濁物質の結晶
核成長がより促進されるとともに結晶粒数を増加させる
ことが可能となる。
That is, a part of the suspended solid separated and settled in the closed cylindrical container is returned to the sediment circulation line and supplied again into the closed cylindrical container, whereby the suspended solid in the geothermal hot water is crystallized. Nucleus (seed), the growth of the crystal nucleus of the suspended substance is further promoted and the number of crystal grains can be increased.

【0039】また、前記流入口に接続され密閉円筒容器
内に薬剤を供給する薬剤注入手段を備えていることが好
ましい。
Further, it is preferable that a drug injection means connected to the inflow port to supply the drug into the closed cylindrical container is provided.

【0040】すなわち、薬剤注入手段によって地熱熱水
とともに薬剤、好適には、少なくとも懸濁物質の結晶粒
の成長を促進する結晶核成長促進材または懸濁物質の結
晶粒の凝集沈殿を促進する凝集沈殿材のいずれか一方を
密閉円筒容器内に供給することにより、結晶粒の成長促
進や凝集沈殿の促進を行うことができる。
That is, a drug, preferably at least a crystal nucleus growth promoting material which promotes the growth of crystal grains of a suspended substance or an agglomeration which promotes coagulation and precipitation of crystal grains of a suspended substance, together with geothermal hot water by the chemical injecting means. By supplying either one of the precipitants into the closed cylindrical container, the growth of crystal grains and the coagulation and sedimentation can be promoted.

【0041】特に、前記結晶核成長促進材は、比表面積
が1m2/g以上に設定され二酸化硅素または珪酸塩化
合物であることが好ましい。すなわち、上記二酸化硅素
または珪酸塩化合物を添加することにより、これらが核
(シード)となって懸濁物質であるシリカの結晶核成長
がより促進されるからである。
Particularly, the crystal nucleus growth promoting material is preferably silicon dioxide or a silicate compound having a specific surface area of 1 m 2 / g or more. That is, by adding the silicon dioxide or the silicate compound, the silicon dioxide or the silicate compound becomes a nucleus (seed) and the crystal nucleus growth of silica as a suspended substance is further promoted.

【0042】また、前記凝集沈殿材は、アルミニウム、
マグネシウム、鉄、カルシウム、銅若しくはマンガンを
含む金属化合物、または含窒素カチオン化合物のうちい
ずれか一種類または二種類以上の混合物であることが好
ましい。すなわち、上記金属化合物や含窒素カチオン化
合物を添加することにより、これらの化合物が地熱熱水
中に溶在して、多価陽イオンや二次的に生成された物質
によって懸濁物質であるシリカがより凝集し易くなるか
らである。なお、沈殿物の循環量や薬剤は、それぞれ単
独、あるいは併用して用いられ、その使用量、濃度など
は地熱熱水の性状に応じて決定すればよい。
The coagulating sedimentation material is aluminum,
A metal compound containing magnesium, iron, calcium, copper or manganese, or a mixture of two or more kinds of nitrogen-containing cation compounds is preferable. That is, by adding the above-mentioned metal compound or nitrogen-containing cation compound, these compounds are dissolved in geothermal hot water, and a polyvalent cation or a substance that is a secondary substance is used as a suspended substance. Is more likely to aggregate. The circulating amount of the precipitate and the chemical are used alone or in combination, and the amount and concentration of the sediment may be determined according to the properties of the geothermal hot water.

【0043】また、本発明に係る地熱発電設備は、気水
分離器で地熱熱水から気水分離された蒸気を発電機に送
って発電させる地熱発電設備であって、前記気水分離器
は、本発明に係る上記の地熱熱水からの懸濁物質回収装
置とされ、該懸濁物質回収装置は、前記密閉円筒容器に
内部で前記地熱熱水から気水分離された蒸気を前記発電
機に送り込む蒸気排出管路が接続されている技術が採用
される。
Further, the geothermal power generation equipment according to the present invention is a geothermal power generation equipment for sending steam separated from the geothermal hot water by the steam separator to the generator to generate electricity, wherein the steam separator is A suspended solids recovery device from the geothermal hot water according to the present invention, wherein the suspended solids recovery device is configured to generate steam and water separated from the geothermal hot water inside the closed cylindrical container by the power generator. A technology in which a steam discharge pipe that feeds into the tank is connected is adopted.

【0044】上述した懸濁物質回収装置は、地熱熱水中
の懸濁物質を捕捉分離して回収するだけでなく、密閉円
筒容器内に流入した地熱熱水が気水分離されて蒸気が発
生する。したがって、この地熱発電設備は、上述した懸
濁物質回収装置を地熱熱水の気水分離器として用い、気
水分離された蒸気を蒸気排出管路で発電機に送り込むこ
とによって、地熱熱水からの蒸気が発電に供される。
The above-mentioned suspended solids recovery apparatus not only captures and separates suspended solids in the geothermal hot water but also recovers the same. In addition, the geothermal hot water flowing into the closed cylindrical vessel is separated into steam and water to generate steam. I do. Therefore, this geothermal power generation equipment uses the suspended solids recovery device described above as a steam separator for geothermal hot water, and feeds steam separated by steam and steam to a generator through a steam discharge line to convert the geothermal hot water from the geothermal hot water. Of steam is used for power generation.

【0045】また、発電機には、高圧の蒸気で回転する
高圧用タービンと低圧の蒸気で回転する低圧用タービン
とが設けられ、懸濁物質回収装置は、少なくとも2以上
配設され、これらの懸濁物質回収装置のうち第1の懸濁
物質回収装置は、熱水供給管路が地熱熱水の生産井に接
続され、前記2以上の懸濁物質回収装置のうち第2の懸
濁物質回収装置は、熱水供給管路に第1の懸濁物質回収
装置の熱水吐出手段が接続されて第1の懸濁物質回収装
置と直列状態とされ、第1の懸濁物質回収装置の蒸気排
出管路は、高圧用タービンに接続され、第2の懸濁物質
回収装置の蒸気排出管路は、低圧用タービンに接続され
ていることが好ましい。
Further, the generator is provided with a high-pressure turbine rotating by high-pressure steam and a low-pressure turbine rotating by low-pressure steam, and at least two or more suspended substance recovery devices are provided. A first suspended solids recovery device of the suspended solids recovery device has a hot water supply pipe connected to a production well of geothermal hot water, and a second suspended solids collection device of the two or more suspended solids recovery devices. In the recovery device, the hot water discharge means of the first suspended solids recovery device is connected to the hot water supply pipe, and is placed in series with the first suspended solids recovery device. Preferably, the steam discharge line is connected to the high-pressure turbine, and the steam discharge line of the second suspended solids recovery device is connected to the low-pressure turbine.

【0046】この地熱発電設備では、直列状態とされた
第1の懸濁物質回収装置および第2の懸濁物質回収装置
の蒸気排出管路が高圧用タービンおよび低圧用タービン
にそれぞれ接続されているので、第1の懸濁物質回収装
置で気水分離して発生した高圧の蒸気が高圧用タービン
に送られるとともに、第2の懸濁物質回収装置で気水分
離して発生した低圧の蒸気が低圧用タービンに送られ
る。
In this geothermal power generation facility, the steam discharge lines of the first suspended solids recovery device and the second suspended solids recovery device which are connected in series are connected to the high-pressure turbine and the low-pressure turbine, respectively. Therefore, high-pressure steam generated by separating water and water in the first suspended solids recovery device is sent to the high pressure turbine, and low-pressure steam generated by separating water and water in the second suspended solids recovery device is generated. Sent to low pressure turbine.

【0047】また、直列に配設された懸濁物質回収装置
によって、生産井からの地熱熱水における懸濁物質が少
なくとも2段で連続式に回収される。すなわち、地熱熱
水から懸濁物質が効率的に除去されるとともに、各懸濁
物質回収装置における蒸気をその圧力に対応して使用圧
力の異なるタービンへそれぞれ送り込むことにより、各
懸濁物質回収装置からの蒸気を無駄無く効率的に発電に
利用することが可能となる。
Further, the suspended solids in the geothermal hot water from the production well are continuously collected in at least two stages by the suspended solids recovery device arranged in series. That is, the suspended solids are efficiently removed from the geothermal hot water, and the steam in each suspended solids recovery device is sent to a turbine having a different working pressure in accordance with the pressure, so that each suspended solids recovery device Steam can be efficiently used for power generation without waste.

【0048】さらに、前記懸濁物質回収装置は、少なく
とも2以上配設され、前記地熱熱水の生産井には、前記
2以上の懸濁物質回収装置の各熱水供給管路がそれぞれ
並列状態に接続され、前記熱水供給管路または前記生産
井には、地熱熱水を流通させる熱水供給管路を前記2以
上の懸濁物質回収装置の熱水供給管路から任意に選択し
て地熱熱水が供給される懸濁物質回収装置を切り替え可
能な運転切替機構が設けられていることが好ましい。
Further, at least two or more of the suspended solids recovery devices are provided, and each of the hot water supply pipes of the two or more suspended solids recovery devices is connected in parallel to the geothermal hot water production well. Connected to the hot water supply pipe or the production well, arbitrarily selecting a hot water supply pipe for flowing geothermal hot water from the hot water supply pipes of the two or more suspended solids recovery devices. It is preferable to provide an operation switching mechanism capable of switching the suspended solids recovery device to which the geothermal hot water is supplied.

【0049】すなわち、この地熱発電設備では、前記2
以上の懸濁物質回収装置の熱水供給管路から任意に選択
して地熱熱水が供給される懸濁物質回収装置を切り替え
可能な運転切替機構が設けられているので、運転切替機
構により適宜任意に運転に供する懸濁物質回収装置を選
ぶことにより、蒸気生産量の変動に対する濾過流速の均
一化および濾過材の全交換等の保守が容易となる。
That is, in this geothermal power generation facility,
An operation switching mechanism is provided which is capable of switching the suspended solids recovery device to which geothermal hot water is supplied by arbitrarily selecting from the hot water supply pipe of the above suspended solids recovery device. By arbitrarily selecting a suspended solids recovery apparatus to be used for operation, maintenance such as uniformization of the filtration flow rate with respect to fluctuations in the amount of steam production and all replacement of the filtration material becomes easy.

【0050】勿論、規模に応じて気水分離器である多数
の上記懸濁物質回収装置を設置するとともに、上述した
直列的・並列的な配列の組み合わせを行い、生産量の変
動があっても十分に対応できるようにしてもよい。
Of course, according to the scale, a large number of the above-mentioned suspended solids recovery devices, which are steam separators, are installed, and the above-described combination of the serial and parallel arrangements is performed. You may make it possible to respond sufficiently.

【0051】また、前記懸濁物質回収装置の熱水吐出手
段から吐出され濾過された地熱熱水を温水として用いる
温水利用設備を設けても構わない。すなわち、熱水吐出
手段から吐出された地熱熱水は、懸濁物質回収装置の濾
過機能により、砒素等の有害物質が含まれる懸濁物質が
除去されているので、この地熱熱水を温水として、例え
ば、温泉・温水プールおよび暖房設備等の温水利用設備
に供給することにより、有効利用を図ることができる。
Further, a facility for using hot water using geothermal hot water discharged and filtered from the hot water discharging means of the suspended solid recovery apparatus may be provided. That is, since the geothermal hot water discharged from the hot water discharge means has a suspended substance containing a harmful substance such as arsenic removed by a filtration function of a suspended substance recovery device, this geothermal hot water is used as hot water. For example, by supplying the hot water to hot water utilization facilities such as a hot spring / hot water pool and a heating facility, effective utilization can be achieved.

【0052】[0052]

【発明の実施の形態】以下、本発明に係る地熱熱水の懸
濁物質回収装置の一実施形態を図1および図2を参照し
ながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the apparatus for recovering suspended matter from geothermal hot water according to the present invention will be described below with reference to FIGS.

【0053】本実施形態の懸濁物質回収装置Aは、図1
に示すように、垂直方向に軸線を有する縦型密閉円筒容
器1と、該縦型密閉円筒容器1内に略同心状に配設され
た中空略円筒状の濾過槽本体(流体流通性容器)2とを
備えている。
The apparatus A for collecting suspended solids according to the present embodiment is shown in FIG.
As shown in FIG. 1, a vertical closed cylindrical container 1 having an axis in the vertical direction, and a hollow substantially cylindrical filter tank body (fluid flowable container) disposed substantially concentrically in the vertical closed cylindrical container 1. 2 is provided.

【0054】前記縦型密閉円筒容器1は、垂直状態に立
設され、円筒中央部3と、該円筒中央部3の上部に固定
された上部鏡板4と、円筒中央部3の下部に固定された
円錐状本体下部5とから構成されている。また、前記濾
過槽本体2は、流体流通性容器を構成するもので、円筒
中央スクリーン6と、該円筒中央スクリーン6の上部に
設けられ外径が円筒中央スクリーン6より小なる部分を
有する上部スクリーン7と、円筒中央スクリーン6の下
部に設けられ逆円錐状に形成された下部スクリーン8と
を備えている。
The vertical sealed cylindrical container 1 is erected in a vertical state, and is fixed to a cylindrical central portion 3, an upper end plate 4 fixed to the upper portion of the cylindrical central portion 3, and fixed to a lower portion of the cylindrical central portion 3. And a conical main body lower part 5. The filtration tank main body 2 constitutes a fluid circulating container, and has an upper screen having a cylindrical central screen 6 and a portion provided on the cylindrical central screen 6 and having a smaller outer diameter than the cylindrical central screen 6. 7 and a lower screen 8 provided below the cylindrical central screen 6 and formed in an inverted conical shape.

【0055】濾過槽本体2は、円筒中央スクリーン6の
下部外周に突出して設けられた内筒側支持部6aと円錐
状本体下部5の上部に内側に突出して設けられた外筒側
支持部5aとの間に挟持状態に配されたバネまたはゴム
等の内筒支持弾性体9を介して、縦型密閉円筒容器1に
弾性支持されている。
The filtration tank main body 2 has an inner cylinder-side support portion 6a protruding from the lower periphery of the cylindrical central screen 6 and an outer cylinder-side support portion 5a protruding inward from the upper portion of the conical main body lower portion 5. Are elastically supported by the vertical closed cylindrical container 1 via an inner cylinder supporting elastic body 9 such as a spring or rubber disposed in a sandwiched state between the vertical closed cylindrical container 1.

【0056】前記円筒中央スクリーン6、上部スクリー
ン7および下部スクリーンは、外部の地熱熱水の原水を
濾過槽本体2内に流入させるが濾過槽本体2の内部に充
填される濾過材10を外部に流出させないような一定の
メッシュの金網で形成されている。さらに、上記濾過槽
本体2の内部には、濾過槽本体2の外径より十分に小な
る径を有する集水管(集流体管路)11が、該濾過槽本
体2と同軸に固定して配設されている。集水管11は、
下端が閉塞され、外壁部は多孔板により形成され、濾過
熱水は流通させるが濾過材10は通過させないようにな
っている。
The cylindrical central screen 6, the upper screen 7 and the lower screen allow the raw water of the external geothermal hot water to flow into the filter tank body 2, but the filter medium 10 filled in the filter tank body 2 is externally provided. It is formed of a wire mesh of a certain mesh so as not to flow out. Further, a water collection pipe (fluid collection pipe) 11 having a diameter sufficiently smaller than the outer diameter of the filtration tank main body 2 is fixedly disposed coaxially with the filtration tank main body 2 inside the filtration tank main body 2. Has been established. The water collection pipe 11
The lower end is closed, the outer wall is formed of a perforated plate, and the filtered hot water is allowed to flow, but the filtering material 10 is not allowed to pass.

【0057】そして、上記濾過槽本体2の内部で集水管
11の外部の空間に、上記濾過材10が流動可能に充填
されている。すなわち、濾過材10は、濾過槽本体2中
に一定の空間容積を残して充填されており、濾過槽本体
2の振動等により濾過材10が流動するように構成され
ている。ここで、濾過材10については、前述した材料
を用い、上記濾過槽本体2の外壁を通過しない程度の粒
径を持つものであれば良い。
The space outside the water collecting pipe 11 inside the filtering tank body 2 is filled with the filtering material 10 so as to be able to flow. That is, the filter medium 10 is filled in the filter tank main body 2 while leaving a certain space volume, and the filter medium 10 is configured to flow by vibration of the filter tank main body 2 or the like. Here, the filter material 10 may be any material as long as it has the particle size that does not pass through the outer wall of the filter tank body 2 using the above-described material.

【0058】前記上部鏡板4は、円筒中央部3の上部開
口端を覆うように固定され、上部中央に設けられ地熱熱
水の原水中に含まれる蒸気や気化した蒸気を外部に吐出
させる上部吐出口4aと、該上部吐出口4aに前記蒸気
を図中の矢印に示すように案内するために、上部スクリ
ーン7上方に下部開口端を配して設けられた蒸気案内管
4bとを備えている。また、上部鏡板4には、濾過材1
0を濾過槽本体2に投入するための濾過材投入管12が
挿通状態に支持され、該濾過材投入管12の先端は、上
部スクリーン7の上部開口端(供給口)7aに配され
て、濾過材投入管12内を落下する濾過材10が濾過槽
本体2内に投入されるように設定されている。
The upper end plate 4 is fixed so as to cover an upper opening end of the cylindrical central portion 3 and is provided at an upper center and discharges steam contained in raw water of geothermal hot water or vaporized steam to the outside. An outlet 4a and a steam guide tube 4b provided with a lower opening end above the upper screen 7 for guiding the steam to the upper discharge port 4a as shown by an arrow in the figure. . In addition, the upper end plate 4 includes a filtering material 1.
A filter material feeding pipe 12 for feeding the filter material 0 into the filtration tank main body 2 is supported in an inserted state, and a tip of the filter material feeding pipe 12 is disposed at an upper opening end (supply port) 7 a of the upper screen 7. The filter medium 10 falling in the filter medium introduction pipe 12 is set so as to be introduced into the filtration tank main body 2.

【0059】前記円筒中央部3には、熱水流入手段とし
て、内周壁に地熱熱水の原水の流入口3aが形成され、
該流入口3aには、円筒中央部3の内周壁の接線方向に
向けて流入管(熱水供給管路)13が接続されている。
すなわち、流入管13内を高圧状態で送られてくる地熱
熱水の原水は、流入口3aから内部に円筒中央部3の内
周壁の接線方向に向けて噴出される。
An inlet 3a for raw water of geothermal hot water is formed in the inner peripheral wall of the central portion 3 as hot water inflow means.
An inflow pipe (hot water supply pipe) 13 is connected to the inflow port 3a in a direction tangential to the inner peripheral wall of the central portion 3 of the cylinder.
That is, the raw water of geothermal hot water sent in the inflow pipe 13 at a high pressure is ejected from the inflow port 3a toward the tangential direction of the inner peripheral wall of the central portion 3 of the cylinder.

【0060】また、円筒中央部3の下部外側面には、濾
過槽本体2に振動を加える加振機構として、加振器15
がベローズ状の円筒状弾性継手16によって弾性支持さ
れ、加振器15と濾過槽本体2とは円筒状弾性継手16
および円筒中央部3の貫通孔3bに挿通された連結部材
17で連結されている。すなわち、加振器15による振
動が、連結部材17を介して濾過槽本体2に伝達される
ように設定されているとともに、円筒状弾性継手16に
よって縦型密閉円筒容器1に振動が加わり難く設定され
ている。
A vibrator 15 is provided on the outer surface of the lower part of the cylindrical central portion 3 as a vibrating mechanism for applying vibration to the filtration tank main body 2.
Are elastically supported by a bellows-like cylindrical elastic joint 16, and the vibrator 15 and the filter tank main body 2 are connected to each other by a cylindrical elastic joint 16.
And a connecting member 17 inserted into the through hole 3b of the cylindrical central portion 3. That is, the vibration by the vibrator 15 is set to be transmitted to the filtration tank main body 2 via the connecting member 17, and the vibration is hardly applied to the vertical closed cylindrical container 1 by the cylindrical elastic joint 16. Have been.

【0061】なお、連結部材17は、濾過槽本体2外周
の接線方向に延在するように濾過槽本体2に接続されて
おり、加振器15の振動が濾過槽本体2の接線方向に加
わるように設定しているため、濾過槽本体2を周方向に
加振させることができる。これによって、濾過槽本体2
内部の濾過材10は、濾過槽本体2の周方向に振動、移
動される。
The connecting member 17 is connected to the filtration tank main body 2 so as to extend in the tangential direction of the outer periphery of the filtration tank main body 2, and the vibration of the vibrator 15 is applied in the tangential direction of the filtration tank main body 2. With such a setting, the filtration tank main body 2 can be vibrated in the circumferential direction. Thereby, the filtration tank body 2
The filter medium 10 inside is vibrated and moved in the circumferential direction of the filter tank body 2.

【0062】前記円錐状本体下部5は、沈殿物排出手段
として下端部に外筒排出弁18が取り付けられている。
該外筒排出弁18は、円錐状本体下部5に沈殿堆積した
懸濁物質(シリカ等)等の沈殿物Hを縦型密閉円筒容器
1の外部に排出させるための開閉弁である。
The lower part 5 of the conical body is provided with an outer cylinder discharge valve 18 at a lower end as a sediment discharge means.
The outer cylinder discharge valve 18 is an on-off valve for discharging a precipitate H such as a suspended substance (silica or the like) precipitated and deposited on the lower part 5 of the conical body to the outside of the vertical closed cylindrical container 1.

【0063】前記集水管11には、その下部に吐出用連
結管19の一端が接続され、該吐出用連結管19は、半
径方向に延びて円筒中央部3の下部に形成された下部吐
出口3cに他端が連結弾性継手3dを介して接続されて
いる。すなわち、集水管11および下部吐出口3cは、
地熱熱水の原水を外部に吐出させるための熱水吐出手段
として機能する。
One end of a discharge connecting pipe 19 is connected to a lower part of the water collecting pipe 11, and the discharge connecting pipe 19 extends in a radial direction and is formed at a lower discharge port formed at a lower part of the cylindrical central part 3. The other end is connected to 3c via a connecting elastic joint 3d. That is, the water collecting pipe 11 and the lower discharge port 3c are
It functions as hot water discharge means for discharging raw water of geothermal hot water to the outside.

【0064】また、集水管11には、その内面の付着物
を除去する内面洗浄手段として、上部に固定され集水管
11内に同軸上に挿通状態の回転シャフト20aを有す
るブラシ駆動モータ20と、回転シャフト20aに沿っ
て螺旋状に取り付けられ集水管11の内面に摺動可能と
されたステンレス製のワイヤーブラシからなるブラシ部
材(弾性部材)21とを備えている。
The water collecting pipe 11 includes a brush driving motor 20 having a rotating shaft 20 a fixed to an upper part and coaxially inserted into the water collecting pipe 11 as an inner surface cleaning means for removing extraneous matter on the inner surface of the water collecting pipe 11. A brush member (elastic member) 21 made of a stainless steel wire brush helically attached along the rotation shaft 20a and slidable on the inner surface of the water collecting pipe 11 is provided.

【0065】前記下部スクリーン8には、下端部に内筒
排出弁(排出口)22が設けられている。該内筒排出弁
22は、下部スクリーン8内の摩滅した濾過材10を排
出する場合や濾過材10の交換の際に濾過材10を円錐
状本体下部5内に排出するための開閉弁である。
The lower screen 8 is provided with an inner cylinder discharge valve (discharge port) 22 at the lower end. The inner cylinder discharge valve 22 is an open / close valve for discharging the filter medium 10 into the lower part 5 of the conical body when discharging the worn filter medium 10 in the lower screen 8 or replacing the filter medium 10. .

【0066】また、下部スクリーン8には、濾過材10
を流動させる熱水供給手段として、複数の熱水噴き出し
用の孔が開けられた円環状の熱水吐出管23が配置さ
れ、該熱水吐出管23は、円錐状本体下部5に設けられ
た貫通孔5aから挿通される熱水配管24と接続されて
いる。該熱水配管24は、高圧状態の地熱熱水を熱水吐
出管23に送出するものである。なお、熱水吐出管23
の上方近傍には、該熱水吐出管23を保護するために下
部スクリーン8から内側に突出したじゃま板としての保
護板25が配設されている。
The lower screen 8 has a filtering material 10
An annular hot water discharge pipe 23 having a plurality of hot water jet holes is arranged as hot water supply means for flowing the hot water, and the hot water discharge pipe 23 is provided in the conical main body lower part 5. It is connected to a hot water pipe 24 inserted through the through hole 5a. The hot water pipe 24 sends out high pressure geothermal hot water to the hot water discharge pipe 23. The hot water discharge pipe 23
A protection plate 25 as a baffle protruding inward from the lower screen 8 to protect the hot water discharge pipe 23 is provided in the vicinity of the upper part of the lower part.

【0067】さらに、縦型密閉円筒容器1の下部には、
該縦型密閉円筒容器1に沈殿した懸濁物質等を流入管1
3へと戻すシリカ循環ライン(沈殿物循環管路)30の
一端が接続され、該シリカ循環ライン30の他端は、エ
ゼクター14を介して流入管13に接続されている。
Further, in the lower part of the vertical closed cylindrical container 1,
Suspended substances and the like precipitated in the vertical closed cylindrical container
One end of a silica circulation line (precipitate circulation line) 30 returning to 3 is connected, and the other end of the silica circulation line 30 is connected to the inflow pipe 13 via the ejector 14.

【0068】また、流入管13には、エゼクター14を
介して縦型密閉円筒容器1に薬剤を供給する薬剤注入手
段31が接続されている。該薬剤注入手段31は、図2
に示すように、薬剤が貯留された助剤タンク32と、該
助剤タンク32の下部に接続されたラインミキサー33
と、ラインミキサー33に接続された注入用ポンプ34
と、該注入用ポンプ34から送られる薬剤を流入管13
に注入するため注入用ポンプ35と流入管13とを接続
するエゼクター14とを備えている。
The inflow pipe 13 is connected to a medicine injection means 31 for supplying a medicine to the vertical closed cylindrical container 1 via the ejector 14. The medicine injecting means 31 is shown in FIG.
As shown in FIG. 3, an auxiliary tank 32 in which a medicine is stored, and a line mixer 33 connected to a lower part of the auxiliary tank 32.
And an injection pump 34 connected to a line mixer 33
And the drug sent from the infusion pump 34
And an ejector 14 that connects the infusion pump 35 and the inflow pipe 13 for injecting the fluid into the fluid.

【0069】前記薬剤は、少なくとも懸濁物質の結晶粒
の成長を促進する結晶核成長促進材または懸濁物質の結
晶粒の凝集沈殿を促進する凝集沈殿材のいずれか一方と
される。この結晶核成長促進材は、比表面積が1m2
g以上に設定され二酸化硅素または珪酸塩化合物とさ
れ、凝集沈殿材は、アルミニウム、マグネシウム、鉄、
カルシウム、銅若しくはマンガンを含む金属化合物、ま
たは含窒素カチオン化合物のうちいずれか一種類または
二種類以上の混合物が用いられる。
The agent is at least one of a crystal nucleus growth promoting material for promoting the growth of the crystal grains of the suspended substance and an agglomerated sedimentation material for promoting the cohesive precipitation of the crystal grains of the suspended substance. This crystal nucleus growth promoting material has a specific surface area of 1 m 2 /
g or more of silicon dioxide or silicate compound, and the coagulating sedimentation material is aluminum, magnesium, iron,
One or a mixture of two or more of a metal compound containing calcium, copper, or manganese, or a nitrogen-containing cation compound is used.

【0070】次に、前記懸濁物質回収装置Aによる地熱
熱水からの懸濁物質(シリカ等)の回収方法について、
以下に説明する。
Next, a method of recovering suspended substances (silica, etc.) from geothermal hot water by the suspended substance recovery apparatus A will be described.
This will be described below.

【0071】まず、地熱熱水の生産井等から高圧高温状
態である地熱熱水の原水を流入管13内に送り込むとと
もに、流入口3aから縦型密閉円筒容器1内部に円筒中
央部3の内周壁の接線方向に向けて噴出する。このと
き、地熱熱水の原水は、縦型密閉円筒容器1の内周方向
に沿って一方向に回転しながら渦流状態で落下し、回転
する地熱熱水の原水中の懸濁物質の多くが遠心分離によ
って外周側に移動する。すなわち、流入管13は、地熱
熱水の原水を縦型密閉円筒容器1の内周方向に沿って一
方向に回転する力を加える熱水回転手段として機能す
る。
First, raw water of geothermal hot water in a high-pressure and high-temperature state is fed into the inflow pipe 13 from a production well of geothermal hot water and the like. Spouts tangentially to the peripheral wall. At this time, the raw water of the geothermal hot water falls in a vortex state while rotating in one direction along the inner circumferential direction of the vertical closed cylindrical container 1, and most of the suspended substances in the rotating raw water of the geothermal hot water are removed. It moves to the outer peripheral side by centrifugation. That is, the inflow pipe 13 functions as hot water rotating means for applying a force to rotate the raw water of the geothermal hot water in one direction along the inner circumferential direction of the vertical closed cylindrical container 1.

【0072】さらに、地熱熱水の原水が、多くの懸濁物
質が分離された状態で中心側に配される濾過槽本体2の
外周から流入して、濾過材10により濾過された後に集
水管11から吐出用連結管19を介して濾過熱水として
外部に吐出される。すなわち、サイクロン分離効果によ
って比較的大きな懸濁物質を予め地熱熱水の原水中から
除去するとともに、残りの懸濁物質を濾過槽本体2内の
濾過材10で捕獲することにより、懸濁物質を2段階で
効率的に地熱熱水の原水中から分離でき、処理量を大幅
に向上させるとともに、濾過材10の捕捉能力をより長
く維持することができる。
Further, raw water of geothermal hot water flows from the outer periphery of the filter tank main body 2 disposed on the center side in a state where a large amount of suspended substances are separated, and is filtered by the filter medium 10 before being collected. From the outlet 11, the water is discharged to the outside as filtered hot water through the discharge connection pipe 19. That is, a relatively large suspended substance is removed from raw water of geothermal hot water in advance by the cyclone separation effect, and the remaining suspended substance is captured by the filter medium 10 in the filtration tank main body 2 so that the suspended substance is removed. It is possible to efficiently separate the geothermal hot water from the raw water in two stages, greatly improve the throughput, and maintain the trapping capacity of the filter medium 10 for a longer time.

【0073】さらに、縦型密閉円筒容器1内で分離沈殿
した懸濁物質の一部を再びシリカ循環ライン30で流入
管13に戻し、再び縦型密閉円筒容器1内に供給するこ
とによって、地熱熱水中の懸濁物質の結晶析出の核(シ
ード)とするので、懸濁物質の結晶核成長がより促進さ
れるとともに結晶粒数を増加させることができる。同時
に、薬剤注入手段31によって地熱熱水とともに結晶核
成長促進材や凝集沈殿材等の薬剤を密閉円筒容器内に供
給するので、結晶粒の成長促進や凝集沈殿の促進を行う
ことができる。
Further, a part of the suspended solid separated and settled in the vertical closed cylindrical container 1 is returned to the inflow pipe 13 again through the silica circulation line 30 and supplied again into the vertical closed cylindrical container 1 so that Since the nucleus (seed) of the crystal precipitation of the suspended substance in the hot water is used, the growth of the crystal nucleus of the suspended substance is further promoted and the number of crystal grains can be increased. At the same time, the chemical injection means 31 supplies the chemical such as the crystal nucleus growth promoting material and the coagulating sedimentation material together with the geothermal hot water into the closed cylindrical container, so that the growth of the crystal grains and the coagulation and sedimentation can be promoted.

【0074】特に、前記結晶核成長促進材として、比表
面積が1m2/g以上に設定され二酸化硅素または珪酸
塩化合物を添加することにより、これらが核(シード)
となって懸濁物質であるシリカの結晶核成長がより促進
される。また、前記凝集沈殿材として、アルミニウム、
マグネシウム、鉄、カルシウム、銅若しくはマンガンを
含む金属化合物、または含窒素カチオン化合物のうちい
ずれか一種類または二種類以上の混合物を添加すること
により、これらの化合物が地熱熱水中に溶在して、多価
陽イオンや二次的に生成された物質によって懸濁物質で
あるシリカがより凝集し易くなる。
In particular, by adding silicon dioxide or a silicate compound having a specific surface area of 1 m 2 / g or more as the crystal nucleus growth promoting material, the nucleus (seed) can be obtained.
As a result, crystal nucleus growth of silica as a suspended substance is further promoted. Further, aluminum,
By adding one or more of a metal compound containing magnesium, iron, calcium, copper or manganese, or a nitrogen-containing cation compound, these compounds are dissolved in geothermal hot water. In addition, silica as a suspended substance is more easily aggregated by polyvalent cations and substances generated secondarily.

【0075】なお、加振機構の加振器15を定期的に駆
動させて、濾過槽本体2に振動を加える。すなわち、濾
過槽本体2は、円筒状弾性継手16および内筒支持弾性
体9によって弾性支持されており、振動で内部の濾過材
10に運動エネルギーを与えて濾過材10を流動させ
る。特に、加振器15と濾過槽本体2とを連結する連結
部材17が濾過槽本体2の接線方向に延在し振動が周方
向に加わるため、濾過材10が特に濾過槽本体2の周方
向に流動する。
The vibration exciter 15 of the vibrating mechanism is periodically driven to apply vibration to the filtration tank main body 2. That is, the filter tank main body 2 is elastically supported by the cylindrical elastic joint 16 and the inner cylinder supporting elastic body 9, and gives kinetic energy to the internal filter medium 10 by vibration to flow the filter medium 10. In particular, since the connecting member 17 for connecting the vibrator 15 and the filtration tank main body 2 extends in the tangential direction of the filtration tank main body 2 and vibration is applied in the circumferential direction, the filter medium 10 is particularly formed in the circumferential direction of the filtration tank main body 2. Flows to

【0076】一方、常時または定期的に、高圧状態の地
熱熱水を、熱水配管24を介して熱水吐出管23から下
部スクリーン8内に上方に向けて噴出させ供給する。こ
のとき、地熱熱水の圧力によって濾過槽本体2内の濾過
材10が攪拌流動させられる。
On the other hand, geothermal hot water in a high-pressure state is constantly or periodically jetted upward from the hot water discharge pipe 23 into the lower screen 8 through the hot water pipe 24 and supplied. At this time, the filter medium 10 in the filter tank main body 2 is stirred and caused to flow by the pressure of the geothermal hot water.

【0077】これらの際、濾過材10が摩滅再生される
とともに、捕捉懸濁物質が下方に降下して円錐状本体下
部5に沈殿する。この沈殿物Hは、サイクロン分離効果
により分離沈殿したシリカを多く含む懸濁物質とともに
外筒排出弁18から外部に排出され、乾燥工程等に送ら
れて回収される。なお、濾過材10の充填量の減少に伴
って、濾過材投入管12を用いて濾過材10を上部スク
リーン7の上部開口端7aから濾過槽本体2に適宜補充
する。
At this time, the filter medium 10 is worn and regenerated, and at the same time, the trapped suspended substance falls downward and precipitates on the lower part 5 of the conical body. The precipitate H is discharged to the outside from the outer cylinder discharge valve 18 together with the suspended matter containing a large amount of silica separated and precipitated by the cyclone separation effect, and is sent to a drying step and collected. In addition, as the filling amount of the filter medium 10 decreases, the filter medium 10 is appropriately replenished to the filter tank main body 2 from the upper opening end 7a of the upper screen 7 using the filter medium inlet pipe 12.

【0078】さらに、常時または定期的に、ブラシ駆動
モータ20を駆動させてブラシ部材21を回転させる
と、集水管11の内面にブラシ部材21が摺動するた
め、付着物が擦り取られて、管内が洗浄される。なお、
ブラシ部材21は、集水管11の内面に当接状態で回転
シャフト20aに螺旋状に取り付けられているので、回
転することにより集水管11の内面全体に摺動可能とさ
れ、内面全体を洗浄することができる。
Further, when the brush member 21 is rotated by driving the brush driving motor 20 constantly or periodically, the brush member 21 slides on the inner surface of the water collecting pipe 11, so that the attached matter is scraped off. The inside of the tube is washed. In addition,
Since the brush member 21 is helically attached to the rotating shaft 20a in a state of being in contact with the inner surface of the water collecting tube 11, the brush member 21 is slidable on the entire inner surface of the water collecting tube 11 by rotating, and cleans the entire inner surface. be able to.

【0079】次に、懸濁物質回収装置Aを用いた本発明
に係る地熱発電設備の一実施形態について、図2を参照
して説明する。
Next, an embodiment of the geothermal power generation equipment according to the present invention using the suspended solids recovery apparatus A will be described with reference to FIG.

【0080】本実施形態の地熱発電設備は、図2に示す
ように、3つの懸濁物質回収装置A1、A2、A3を懸
濁物質(シリカ等)の回収装置および地熱熱水の気水分
離器として用いて、懸濁物質回収装置A1、A2、A3
において地熱熱水から気水分離された蒸気を発電機36
に送って発電させるものである。
As shown in FIG. 2, the geothermal power generation equipment according to the present embodiment is composed of three suspended substance recovery devices A1, A2, and A3, a suspended substance (silica or the like) recovery device, and a geothermal hot water gas / water separator. And A3, A2, A3
The steam separated from the geothermal hot water at the
To generate electricity.

【0081】なお、懸濁物質回収装置A1、A2、A3
は、いずれも同様の縦型密閉円筒容器1からなり、その
内部構造も前述した懸濁物質回収装置Aと同様である
が、薬剤注入手段31は懸濁物質回収装置A1のみに付
設され、懸濁物質回収装置A2、A3には、接続されて
いない。また、懸濁物質回収装置A3には、シリカ循環
ライン30およびエゼクター14は設けられていない。
The suspended substance recovery devices A1, A2, A3
Are composed of the same vertical closed cylindrical container 1 and the internal structure is the same as that of the above-mentioned suspended substance recovery apparatus A. However, the drug injection means 31 is attached only to the suspended substance recovery apparatus A1, It is not connected to the suspended matter recovery devices A2 and A3. In addition, the silica circulation line 30 and the ejector 14 are not provided in the suspended substance recovery device A3.

【0082】この地熱発電設備は、地熱熱水の生産井3
7に一端が接続され2相流である高温高圧の地熱熱水を
地熱発電設備に導入する熱水導入ライン38を備え、該
熱水導入ライン38の他端は、懸濁物質回収装置A1の
流入管13に接続されている。なお、前記熱水導入ライ
ン38には、生産井37からの地熱熱水の量を調整する
主蒸気弁39が設けられている。
This geothermal power generation equipment is provided with a geothermal hot water production well 3
7 is provided with a hot water introduction line 38 for introducing high-temperature and high-pressure geothermal hot water of two-phase flow into the geothermal power generation equipment, and the other end of the hot water introduction line 38 is connected to the suspended matter recovery device A1. It is connected to the inflow pipe 13. The hot water introduction line 38 is provided with a main steam valve 39 for adjusting the amount of geothermal hot water from the production well 37.

【0083】懸濁物質回収装置A1の吐出用連結管19
は、懸濁物質回収装置A2の流入管13に接続され、ま
た、懸濁物質回収装置A2の吐出用連結管19は、懸濁
物質回収装置A3の流入管13に接続され、懸濁物質回
収装置A1、A2、A3は、互いに地熱熱水の流路とし
て直列的に配列されている。
Discharge connecting pipe 19 of suspended substance recovery device A1
Is connected to the inflow pipe 13 of the suspended substance recovery apparatus A2, and the discharge connection pipe 19 of the suspended substance recovery apparatus A2 is connected to the inflow pipe 13 of the suspended substance recovery apparatus A3 to recover the suspended substance. The devices A1, A2, and A3 are arranged in series as geothermal hot water channels.

【0084】さらに、懸濁物質回収装置A3の吐出用連
結管19は、タンク連結ライン40に接続され、該タン
ク連結ライン40は、濾過後の地熱熱水を貯留するリザ
ーバータンク41に接続されている。前記リザーバータ
ンク41には、還元用連結ライン42が接続され、該還
元用連結ライン42は、地熱熱水の還元井43に接続さ
れている。また、リザーバータンク41には、温水供給
ライン44が接続され、該温水供給ライン44は、濾過
後の地熱熱水を温水として暖房設備等に利用する温水利
用設備45に接続されている。
Further, the discharge connection pipe 19 of the suspended solids recovery device A3 is connected to a tank connection line 40, and the tank connection line 40 is connected to a reservoir tank 41 for storing filtered geothermal hot water. I have. A connection line 42 for reduction is connected to the reservoir tank 41, and the connection line 42 for reduction is connected to a reduction well 43 of geothermal hot water. A hot water supply line 44 is connected to the reservoir tank 41, and the hot water supply line 44 is connected to a hot water utilization facility 45 that uses the filtered geothermal hot water as hot water for a heating facility or the like.

【0085】懸濁物質回収装置A1、A2、A3の上部
吐出口4aには、蒸気排出管路46の一端がそれぞれ接
続されている。懸濁物質回収装置A1、A2の蒸気排出
管路46は、縦型密閉円筒容器1に内部で地熱熱水から
気水分離された蒸気を発電機36に送り込むものであ
る。なお、懸濁物質回収装置A3の蒸気排出管路46
は、気水分離された蒸気をリザーバータンク41に送る
ものである。
One end of a vapor discharge pipe 46 is connected to the upper discharge port 4a of each of the suspended substance recovery devices A1, A2, A3. The steam discharge pipes 46 of the suspended solids recovery devices A1 and A2 send steam separated from geothermal hot water into steam into the vertical closed cylindrical container 1 to the generator 36. In addition, the vapor discharge line 46 of the suspended solids recovery device A3
Is for sending steam separated from water and water to the reservoir tank 41.

【0086】懸濁物質回収装置A1の蒸気排出管路46
は、高圧側蒸気管として高圧側ミストセパレータ47お
よび高圧側オリフィス48の順に接続され、その他端が
発電機36の高圧用タービン49に接続されている。
The vapor discharge line 46 of the suspended matter recovery device A1
Is connected in the order of a high-pressure mist separator 47 and a high-pressure orifice 48 as a high-pressure steam pipe, and the other end is connected to a high-pressure turbine 49 of the generator 36.

【0087】一方、懸濁物質回収装置A2の蒸気排出管
路46は、低圧側蒸気管として低圧側ミストセパレータ
50および低圧側オリフィス51の順に接続され、その
他端が発電機36の低圧用タービン52に接続されてい
る。高圧用タービン49および低圧用タービン52は、
発電機本体53の回転軸に同軸に連結されて回転可能に
支持されているものであり、高圧用タービン49は、高
圧の蒸気に対応して設計されているとともに、低圧用タ
ービン52は低圧の蒸気に対応して設計され、蒸気によ
り発電機本体53の回転軸を回転させて発電を行うもの
である。
On the other hand, the vapor discharge line 46 of the suspended solid recovery device A2 is connected as a low pressure side steam pipe in the order of the low pressure side mist separator 50 and the low pressure side orifice 51, and the other end is connected to the low pressure turbine 52 of the generator 36. It is connected to the. The high-pressure turbine 49 and the low-pressure turbine 52
The high-pressure turbine 49 is designed to cope with high-pressure steam, and the low-pressure turbine 52 is connected to the rotating shaft of the generator main body 53 so as to be rotatable. It is designed for steam and generates power by rotating the rotating shaft of the generator body 53 with the steam.

【0088】高圧用タービン49および低圧用タービン
52には、両タービンを回転させて圧力が低下した蒸気
を排出するタービン蒸気排出ライン54がそれぞれ接続
され、該タービン蒸気排出ライン54は、復水器55に
接続されている。該復水器55には、蒸気が冷却されて
生じた排水を還元井43に送る排水送出ライン56が接
続され、該排水送出ライン56は還元用連結ライン42
を介して還元井43に接続されている。
The high-pressure turbine 49 and the low-pressure turbine 52 are connected to a turbine steam discharge line 54 for rotating the two turbines and discharging the reduced-pressure steam, respectively. 55. The condenser 55 is connected to a drainage delivery line 56 that sends wastewater generated by cooling the steam to the reduction well 43, and the drainage delivery line 56 is connected to the reduction connection line 42.
And is connected to the reduction well 43 via.

【0089】前記復水器55内の下部には、復水器55
内の水をクーリングタワー57に送る第1冷却水ライン
58の一端が接続され、該第1冷却水ライン58は、循
環用ポンプ59を介して他端がクーリングタワー57内
の上部に接続されている。また、該クーリングタワー5
7の下部には、クーリングタワー57で冷却された水を
復水器55に送る第2冷却水ライン60の一端が接続さ
れ、該第2冷却水ライン60の他端は復水器55内の上
部に接続されている。
A condenser 55 is provided at the lower part in the condenser 55.
One end of a first cooling water line 58 for sending the water inside to the cooling tower 57 is connected, and the other end of the first cooling water line 58 is connected to an upper part in the cooling tower 57 via a circulation pump 59. In addition, the cooling tower 5
7 is connected to one end of a second cooling water line 60 for sending water cooled by the cooling tower 57 to the condenser 55, and the other end of the second cooling water line 60 is connected to the upper part of the condenser 55. It is connected to the.

【0090】懸濁物質回収装置A1の外筒排出弁18
は、第1沈殿物排出ライン61に接続され、該第1沈殿
物排出ライン61は、沈殿物Hを貯留する沈殿物タンク
62に接続されている。また、懸濁物質回収装置A2、
A3の外筒排出弁18は、第2沈殿物排出ライン63に
接続され、該第2沈殿物排出ライン63は、沈殿物タン
ク62に接続されている。
Outer cylinder discharge valve 18 of suspended solids recovery device A1
Is connected to a first sediment discharge line 61, and the first sediment discharge line 61 is connected to a sediment tank 62 that stores sediment H. In addition, a suspended substance recovery device A2,
The A3 outer cylinder discharge valve 18 is connected to a second sediment discharge line 63, and the second sediment discharge line 63 is connected to a sediment tank 62.

【0091】該沈殿物タンク62は、内部に図示しない
攪拌手段を備えた圧力容器であって、送られてくる沈殿
物Hを一時滞留させるとともに、攪拌手段で攪拌して均
一化させるものである。また、沈殿物タンク62は、そ
の下部に沈殿物Hをピット64に排出する排出弁65を
備えたピット側排出管66が接続されているとともに、
その上部に沈殿物タンク62内のガスを外部に排出する
排気管67が接続されている。
The sediment tank 62 is a pressure vessel provided with a stirring means (not shown) therein, for temporarily storing the sediment H to be sent and agitating the sediment H by the stirring means to make it uniform. . A pit-side discharge pipe 66 having a discharge valve 65 for discharging the sediment H to the pit 64 is connected to a lower part of the sediment tank 62,
An exhaust pipe 67 for discharging the gas in the sediment tank 62 to the outside is connected to the upper part thereof.

【0092】さらに、沈殿物タンク62の内部には、ラ
インフィルター68を介して沈殿物Hをスプレイドライ
ヤー69へ送り込む噴霧ライン70の一端が配され、該
噴霧ライン70は、その他端に設けられたノズル71が
スプレイドライヤー69内の上部に配されている。な
お、噴霧ライン70は、その一端が沈殿物Hの吸い込み
口となって沈殿物タンク62内において排出弁65の上
方に下向きに配されている。また、ラインフィルター6
8は、噴霧ライン70で送られる沈殿物Hを濾過する濾
過手段として機能するものである。
Further, inside the sediment tank 62, one end of a spray line 70 for feeding the sediment H to the spray dryer 69 via the line filter 68 is arranged, and the spray line 70 is provided at the other end. The nozzle 71 is arranged at the upper part in the spray dryer 69. The spray line 70 has one end serving as a suction port for the sediment H, and is disposed downward above the discharge valve 65 in the sediment tank 62. In addition, line filter 6
Reference numeral 8 functions as a filtration unit for filtering the precipitate H sent in the spray line 70.

【0093】前記スプレイドライヤー69は、沈殿物H
を熱風気流中にノズル71から加圧噴霧して乾燥させ、
シリカの球状乾燥微粉末に創成する熱風気流乾燥機であ
る。このスプレイドライヤー69は、略円筒状に形成さ
れた乾燥塔69aの周壁部に高温の蒸気および地熱熱水
を流通させスプレイドライヤー69内部を加熱する熱水
流路69bが設けられている。また、スプレイドライヤ
ー69内の上部には、図3に示すように、地熱熱水から
得られた熱風を内部に供給する熱風送風ライン72の吹
出口72aが配されている。
The spray dryer 69 removes the precipitate H
Is pressurized and sprayed from a nozzle 71 into a hot air stream and dried,
It is a hot air flash dryer that creates spherical dry silica powder. The spray drier 69 is provided with a hot water flow path 69b that circulates high-temperature steam and geothermal hot water and heats the inside of the spray drier 69 around the peripheral wall of a drying tower 69a formed in a substantially cylindrical shape. Further, as shown in FIG. 3, an outlet 72a of a hot air blowing line 72 for supplying hot air obtained from geothermal hot water to the inside is arranged in an upper part in the spray dryer 69.

【0094】このスプレイドライヤー69では、熱風送
風ライン72の吹出口72aが、乾燥熱風を乾燥塔69
aの周壁部内面の接線方向に向けて噴出させるように設
定され、また、吹出口72aの近傍にはノズル71が配
されて、乾燥熱風をノズル71に吹き付けるように設定
されている。すなわち、ノズル71から噴き出す沈殿物
Hを乾燥熱風とともに、乾燥塔69a内で渦流状態と
し、乾燥塔69a内を回転させながらシリカの球状乾燥
微粉末として成長させるためである。
In this spray dryer 69, the outlet 72 a of the hot air blowing line 72 is supplied with the drying hot air by the drying tower 69.
The nozzle 71 is set so as to be ejected in the tangential direction of the inner surface of the peripheral wall portion a, and a nozzle 71 is arranged near the outlet 72 a so as to blow dry hot air to the nozzle 71. That is, the sediment H ejected from the nozzle 71 is swirled in the drying tower 69a together with the dry hot air, and is grown as spherical dry silica powder while rotating in the drying tower 69a.

【0095】また、乾燥塔69aの周壁部には、加熱ジ
ャケット100が覆うように設けられ、内部に前記熱水
流路69bが形成されている。該熱水流路69bは、懸
濁物質回収装置A1の蒸気排出管路46に接続される加
熱用蒸気ライン75と上部で接続されるとともに、下部
で排水管101と接続されている。
Further, the heating jacket 100 is provided on the peripheral wall of the drying tower 69a so as to cover the same, and the hot water flow passage 69b is formed therein. The hot water flow path 69b is connected at an upper portion to a heating steam line 75 connected to the steam discharge pipe line 46 of the suspended solid recovery device A1, and is connected at a lower portion to the drain pipe 101.

【0096】該排水管101は、加熱に供された蒸気お
よび地熱熱水による排水を圧力調整弁102を介してド
レン103に排出するように先端が配されている。さら
に、スプレイドライヤー69の下端部には、得られたシ
リカの球状乾燥微粉末を排出するシリカ排出弁73が設
けられ、該シリカ排出弁73は、シリカの球状乾燥微粉
末の貯蔵タンク74に接続されている。なお、スプレイ
ドライヤー69の上部には、熱風の排気口69cが設け
られ、該排出口69cには、熱風排出管69dが接続さ
れている。また、シリカ排出弁73の代わりに、排出ポ
ンプを用いても構わない。
[0096] The drain pipe 101 is provided with a distal end so as to discharge the waste water generated by the steam and the geothermal hot water used for heating to the drain 103 through the pressure regulating valve 102. Further, at the lower end of the spray dryer 69, a silica discharge valve 73 for discharging the obtained spherical dry fine powder of silica is provided. The silica discharge valve 73 is connected to a storage tank 74 for the spherical dry fine silica powder. Have been. A hot air exhaust port 69c is provided above the spray dryer 69, and a hot air discharge pipe 69d is connected to the discharge port 69c. Further, a discharge pump may be used instead of the silica discharge valve 73.

【0097】前記加熱用蒸気ライン75は、途中で分岐
して熱交換機76の内部に導入されている。該熱交換機
76には、上部に熱風送風ライン72が接続されるとと
もに、下部に送風機77が接続されている。すなわち、
該送風機77によって熱交換機76の内部に送られる乾
燥空気が、高温蒸気の流通で高温状態とされた加熱用蒸
気ライン75によって加熱され、乾燥熱風となって熱風
送風ライン72に送られる。
The heating steam line 75 branches in the middle and is introduced into a heat exchanger 76. A hot air blowing line 72 is connected to the upper part of the heat exchanger 76, and a blower 77 is connected to the lower part. That is,
The dry air sent into the heat exchanger 76 by the blower 77 is heated by the heating steam line 75 brought into a high temperature state by the flow of the high-temperature steam, becomes dry hot air, and is sent to the hot air blowing line 72.

【0098】なお、加熱用蒸気ライン75と第1沈殿物
排出ライン61とは、加熱用蒸気ライン75の蒸気を第
1沈殿物排出ライン61へ導入可能にする蒸気供給弁7
8を有した蒸気連結ライン79によって接続されてい
る。また、懸濁物質回収装置A1、A2、A3の各濾過
材投入管12は、フィードポンプ80を介して濾過材1
0を貯留した濾過材補給タンク81に接続されている。
なお、図2において、記号90はそれぞれ弁である。
The heating steam line 75 and the first sediment discharge line 61 are provided with a steam supply valve 7 for allowing the steam of the heating steam line 75 to be introduced into the first sediment discharge line 61.
8 connected by a steam connection line 79 having In addition, the filtration material introduction pipes 12 of the suspended substance recovery devices A1, A2, and A3 are connected to the filtration material 1 via a feed pump 80.
0 is connected to a filter medium supply tank 81 storing zero.
In addition, in FIG. 2, the symbol 90 is a valve.

【0099】次に、上記地熱発電設備による地熱熱水を
用いた発電方法および地熱熱水からのシリカの回収方法
について、以下に説明する。
Next, a power generation method using geothermal hot water and a method of recovering silica from geothermal hot water by the above-mentioned geothermal power generation equipment will be described below.

【0100】〔気水分離および懸濁物質濾過工程〕ま
ず、主蒸気弁39を開けて生産井37から地熱熱水の原
水を熱水導入ライン38へと供給する。この地熱熱水の
原水は、熱水導入ライン38からエゼクター14を介し
て懸濁物質回収装置A1の流入管13に導入される。
[Step of Separating Water and Filtration of Suspended Substance] First, the main steam valve 39 is opened, and raw water of geothermal hot water is supplied from the production well 37 to the hot water introduction line 38. The raw water of the geothermal hot water is introduced from the hot water introduction line 38 via the ejector 14 into the inflow pipe 13 of the suspended solids recovery device A1.

【0101】このとき、薬剤注入手段31の注入用ポン
プ34を作動させ、助剤タンク32の薬剤をラインミキ
サー33を介してエゼクター14から流入管13に導入
し、地熱熱水の原水とともに縦型密閉円筒容器1内に注
入する。流入管13から導入された地熱熱水の原水は、
懸濁物質回収装置A1内に供給され、気水分離および懸
濁物質の分離が行われる。
At this time, the injection pump 34 of the medicine injection means 31 is operated, and the medicine in the auxiliary tank 32 is introduced from the ejector 14 into the inflow pipe 13 via the line mixer 33, and is vertically inserted together with the raw water of geothermal hot water. Inject into the closed cylindrical container 1. The raw water of geothermal hot water introduced from the inflow pipe 13 is
It is supplied into the suspended solids recovery device A1 to perform air-water separation and separation of suspended solids.

【0102】懸濁物質回収装置A1で濾過された地熱熱
水は、一次熱水として吐出用連結管19を介して懸濁物
質回収装置A2の流入管13に供給される。一次熱水
は、懸濁物質回収装置A2内で再び気水分離および懸濁
物質の分離が行われ、二次熱水として吐出用連結管19
を介して懸濁物質回収装置A3の流入管13に供給され
る。
The geothermal hot water filtered by the suspended solids recovery apparatus A1 is supplied as primary hot water to the inflow pipe 13 of the suspended solids recovery apparatus A2 via the discharge connecting pipe 19. The primary hot water is again subjected to steam-water separation and separation of the suspended solids in the suspended solid collection device A2, and is discharged as secondary hot water into the discharge connection pipe 19.
Is supplied to the inflow pipe 13 of the suspended solids recovery device A3.

【0103】二次熱水は、懸濁物質回収装置A3内で最
後の気水分離および懸濁物質の分離が行われ、温水とし
て吐出用連結管19を介してタンク連結ライン40に供
給されるとともにリザーバータンク41に貯留される。
該リザーバータンク41に貯留された温水は、還元用連
結ライン42を介して還元井43に戻されるか、または
温水供給ライン44を介して温水利用設備45に供給さ
れる。
The secondary hot water is subjected to the final steam-water separation and the separation of the suspended matter in the suspended matter recovery device A3, and is supplied to the tank connection line 40 through the discharge connection pipe 19 as warm water. And is stored in the reservoir tank 41.
The hot water stored in the reservoir tank 41 is returned to the reduction well 43 through the connection line 42 for reduction, or supplied to the hot water utilization facility 45 through the hot water supply line 44.

【0104】〔発電工程〕懸濁物質回収装置A1内で気
水分離された高圧蒸気は、蒸気排出管路46内を高圧側
ミストセパレータ47および高圧側オリフィス48を介
して高圧用タービン49に供給され、該高圧用タービン
49を回転させる。一方。懸濁物質回収装置A2内で気
水分離された低圧蒸気は、蒸気排出管路46内を低圧側
ミストセパレータ50および低圧側オリフィス51を介
して低圧用タービン52に供給され、該低圧用タービン
52を回転させる。すなわち、回転する高圧用タービン
49および低圧用タービン52が発電機本体53の回転
軸を回転させて発電が行われる。
[Power Generation Step] The high-pressure steam separated from the water in the suspended matter recovery device A 1 is supplied to the high-pressure turbine 49 through the high-pressure mist separator 47 and the high-pressure orifice 48 in the steam discharge pipe 46. Then, the high-pressure turbine 49 is rotated. on the other hand. The low-pressure steam separated from the water in the suspended substance recovery device A2 is supplied to the low-pressure turbine 52 through the low-pressure mist separator 50 and the low-pressure orifice 51 in the steam discharge pipe 46, and is supplied to the low-pressure turbine 52. To rotate. That is, the rotating high-pressure turbine 49 and low-pressure turbine 52 rotate the rotating shaft of the generator body 53 to generate power.

【0105】高圧用タービン49および低圧用タービン
52を回転させ圧力の低下した蒸気は、タービン蒸気排
出ライン54を介して復水器55に送られ、冷却され排
水とされる。そして、この排水は、排水送出ライン56
および還元用連結ライン42を介して還元井43に戻さ
れる。なお、この復水器55内に生じた排水の一部は、
循環用ポンプ59によって第1冷却水ライン58からク
ーリングタワー57に送られ、冷却された後に第2冷却
水ライン60を介して復水器55上部から噴射され、蒸
気の冷却処理に利用される。
The high-pressure turbine 49 and the low-pressure turbine 52 are rotated, and the reduced pressure steam is sent to a condenser 55 through a turbine steam discharge line 54, and is cooled to be drained. Then, this drainage is supplied to the drainage delivery line 56.
And it is returned to the reduction well 43 via the connection line 42 for reduction. A part of the drainage generated in the condenser 55 is
The water is sent from the first cooling water line 58 to the cooling tower 57 by the circulation pump 59, and after being cooled, is injected from the upper part of the condenser 55 through the second cooling water line 60, and is used for steam cooling processing.

【0106】〔シリカ回収工程〕懸濁物質回収装置A
1、A2、A3で分離された懸濁物資である沈殿物H
は、第1沈殿物排出ライン61および第2沈殿物排出ラ
イン63を介して沈殿物タンク62へと送られ、該沈殿
物タンク62で一時的に滞留させられる。沈殿物タンク
62内で攪拌され均一化された沈殿物Hは、噴霧ライン
70およびラインフィルター68を介してスプレイドラ
イヤー69に送られる。
[Silica recovery step] Suspended substance recovery apparatus A
Precipitate H, which is a suspended material separated in 1, A2 and A3
Is sent to the sediment tank 62 via the first sediment discharge line 61 and the second sediment discharge line 63, and is temporarily retained in the sediment tank 62. The sediment H stirred and homogenized in the sediment tank 62 is sent to a spray dryer 69 via a spray line 70 and a line filter 68.

【0107】なお、蒸気連結ライン79の開閉弁79a
を開けることにより、懸濁物質回収装置A1の加熱用蒸
気ライン75から加圧蒸気が第1沈殿物排出ライン61
を介して沈殿物タンク62に送られる。このとき、沈殿
物タンク62は、流入する加圧蒸気によって加圧される
ため、滞留された沈殿物Hが吸い込み口から噴霧ライン
70に流れ込むようになっている。
The on-off valve 79a of the steam connection line 79
To open the first sediment discharge line 61 from the heating steam line 75 of the suspended solids recovery device A1.
To the sediment tank 62 via At this time, the sediment tank 62 is pressurized by the inflowing pressurized steam, so that the sediment H that has accumulated flows into the spray line 70 from the suction port.

【0108】スプレイドライヤー69に送られた沈殿物
Hは、ノズル71からスプレイドライヤー69内に噴霧
される。噴霧された沈殿物Hは、熱風送風ライン72か
らの乾燥熱風によってシリカの球状乾燥微粉末に創成さ
れた後、貯蔵タンク74に送られて貯蔵される。
The sediment H sent to the spray dryer 69 is sprayed from the nozzle 71 into the spray dryer 69. The sprayed precipitate H is formed into a spherical dry fine powder of silica by the dry hot air from the hot air blowing line 72 and then sent to the storage tank 74 to be stored.

【0109】〔シリカ循環工程〕一方、懸濁物質回収装
置A1で分離された懸濁物質(シリカ等)である沈殿物
Hの一部は、シリカ循環ライン30を通ってエゼクター
14から流入管13に戻され、再び地熱熱水の原水とと
もに縦型密閉円筒容器1内に投入され、結晶析出の核と
される。
[Silica Circulation Step] On the other hand, a part of the precipitate H which is a suspended substance (silica or the like) separated in the suspended substance recovery apparatus A 1 passes through the silica circulation line 30 from the ejector 14 to the inflow pipe 13. Then, it is again charged into the vertical closed cylindrical container 1 together with the raw water of geothermal hot water, and is used as a nucleus for crystal precipitation.

【0110】上述したように、この地熱発電設備では、
直列状態とされた懸濁物質回収装置A1および懸濁物質
回収装置A2の蒸気排出管路46が高圧用タービン49
および低圧用タービン52にそれぞれ接続されているの
で、懸濁物質回収装置A1で気水分離して発生した高圧
の蒸気が高圧用タービン49に送られるとともに、懸濁
物質回収装置A2で気水分離して発生した低圧の蒸気が
低圧用タービン52に送られる。
As described above, in this geothermal power generation facility,
The high-pressure turbine 49 is connected to the vapor discharge line 46 of the suspended substance recovery device A1 and the suspended substance recovery device A2 which are set in series.
And the low-pressure turbine 52 are connected to the high-pressure steam 49 generated by the water-water separation in the suspended matter recovery device A1 and sent to the high-pressure turbine 49, and the water-water separation in the suspended matter recovery device A2. The low-pressure steam generated is sent to the low-pressure turbine 52.

【0111】また、直列に配設された懸濁物質回収装置
A1、A2によって、生産井37からの地熱熱水におけ
る懸濁物質が少なくとも2段で連続式に回収される。す
なわち、地熱熱水から懸濁物質が効率的に除去されると
ともに、懸濁物質回収装置A1、A2における蒸気をそ
の圧力に対応して使用圧力の異なるタービンへそれぞれ
送り込むことにより、懸濁物質回収装置A1、A2から
の蒸気を無駄無く効率的に発電に利用することが可能と
なる。
The suspended solids in the geothermal hot water from the production well 37 are continuously collected in at least two stages by the suspended solid collection devices A1 and A2 arranged in series. That is, the suspended solids are efficiently removed from the geothermal hot water, and the steam in the suspended solids recovery devices A1 and A2 is sent to turbines having different working pressures in accordance with the pressure, thereby recovering the suspended solids. The steam from the devices A1 and A2 can be efficiently used for power generation without waste.

【0112】また、懸濁物質回収装置A3の吐出用連結
管19から吐出され濾過された地熱熱水を温水として用
いる温水利用設備45を設けているので、濾過された地
熱熱水は、懸濁物質回収装置A1、A2、A3の濾過機
能により、砒素等の有害物質が含まれる懸濁物質が除去
されているので、この地熱熱水を温水として、例えば、
温泉・温水プールおよび暖房設備等の温水利用設備45
に供給することにより、有効利用を図ることができる。
Further, since the hot water utilization equipment 45 for using the geothermal hot water discharged and filtered from the discharge connecting pipe 19 of the suspended substance recovery device A3 as hot water is provided, the filtered geothermal hot water is Since the suspended substances containing harmful substances such as arsenic are removed by the filtration functions of the substance recovery devices A1, A2, and A3, this geothermal hot water is used as hot water, for example,
Hot water use facilities 45 such as hot springs, heated pools and heating facilities
By supplying them to the, effective utilization can be achieved.

【0113】なお、本発明は、次のような実施形態をも
含むものである。
The present invention also includes the following embodiments.

【0114】(1)地熱発電設備として、前記懸濁物質
回収装置が少なくとも2以上配設され、地熱熱水の生産
井に前記2以上の懸濁物質回収装置の各熱水供給管路が
それぞれ並列状態に接続されたものを採用しても構わな
い。そして、熱水供給管路または生産井に、地熱熱水を
流通させる熱水供給管路を前記2以上の懸濁物質回収装
置の熱水供給管路から任意に選択する運転切替機構(例
えば、三方弁等の開閉弁)を設けることにより、地熱熱
水が供給される懸濁物質回収装置を切り替え可能にして
もよい。
(1) As geothermal power generation equipment, at least two or more suspended solids recovery devices are provided, and each hot water supply line of the two or more suspended solids recovery devices is connected to a geothermal hot water production well. Those connected in parallel may be adopted. Then, an operation switching mechanism (for example, an operation switching mechanism for arbitrarily selecting a hot water supply line for flowing geothermal hot water to the hot water supply line or the production well from the hot water supply lines of the two or more suspended solids recovery devices. By providing an on-off valve such as a three-way valve, the suspended solids recovery device to which geothermal hot water is supplied may be made switchable.

【0115】すなわち、この地熱発電設備では、生産井
からの地熱熱水の流路となる各熱水供給管路がそれぞれ
並列に配設され、地熱熱水を流通させる熱水供給管路を
前記2以上の懸濁物質回収装置の熱水供給管路から任意
に選択して地熱熱水が供給される懸濁物質回収装置を切
り替え可能な運転切替機構が設けられているので、運転
切替機構により適宜任意に運転に供する懸濁物質回収装
置を選ぶことにより、蒸気生産量の変動に対する濾過流
速の均一化および濾過材の全交換等の保守が容易とな
る。
That is, in this geothermal power generation facility, the hot water supply pipes which are the flow paths of the geothermal hot water from the production well are respectively arranged in parallel, and the hot water supply pipe for flowing the geothermal hot water is connected to the hot water supply pipe. An operation switching mechanism is provided which is capable of switching the suspended solids recovery device to which geothermal hot water is supplied by arbitrarily selecting from the hot water supply pipes of the two or more suspended solids recovery devices. By appropriately selecting a suspended solids recovery apparatus to be operated, maintenance such as uniformization of the filtration flow rate with respect to fluctuations in the steam production amount and total replacement of the filtration material becomes easy.

【0116】(2)定期的に熱水吐出管23から多量の
地熱熱水を噴出させることにより、濾過材10を単に流
動攪拌するだけでなく、捕捉した懸濁物質を排出させて
逆洗するように設定しても構わない。
(2) A large amount of geothermal hot water is periodically jetted from the hot water discharge pipe 23, so that the filter medium 10 is not only flow-stirred, but also the trapped suspended matter is discharged and backwashed. May be set as follows.

【0117】(3)熱水吐出管23に形成された熱水噴
き出し用の孔を、周方向において全周に一様に配するの
ではなく、一部に偏らせて配してもよい。この場合、地
熱熱水が部分的に偏って供給され、地熱熱水が供給され
た部分の濾過材10が選択的に地熱熱水に押し上げられ
て流動するので、濾過槽本体2内で濾過材10を対流さ
せることができる。
(3) The hot water jetting holes formed in the hot water discharge pipe 23 may not be arranged uniformly over the entire circumference in the circumferential direction, but may be arranged partially biased. In this case, the geothermal hot water is supplied partially biased, and the filter medium 10 in the portion to which the geothermal hot water is supplied is selectively pushed up by the geothermal hot water and flows. 10 can be convected.

【0118】(4)原水を縦型密閉円筒容器1の内周方
向に沿って一方向に回転させる熱水回転手段として、例
えば、縦型密閉円筒容器1内に流入させた地熱熱水を内
部に設けた回転駆動される回転翼によって回転流動さ
せ、渦流を発生させてサイクロン分離効果を得る手段を
用いても構わない。
(4) As a hot water rotating means for rotating raw water in one direction along the inner circumferential direction of the vertical closed cylindrical container 1, for example, geothermal hot water flowing into the vertical closed cylindrical container 1 is used. It is also possible to use means for rotating and flowing by the rotating blades provided in the above and generating a vortex to obtain a cyclone separation effect.

【0119】[0119]

【発明の効果】本発明によれば、以下の効果を奏する。 (1)請求項1記載の地熱熱水からの懸濁物質回収装置
および請求項19記載の地熱熱水からの懸濁物質回収方
法では、濾過材を通過した濾過された地熱熱水を集流体
管路に集めて密閉円筒容器の外部に吐出するので、最小
限の濾過材で、地熱熱水中のシリカ等の懸濁物質を濾過
分離して清澄度の高い濾過熱水が得られるとともに、最
小限の運転動力で濾過材を均一にムラ無く洗浄すること
ができ、これにより捕捉分離された懸濁物質等を回収す
るようにし、安価な設備費・運転費で実施することがで
きる。
According to the present invention, the following effects can be obtained. (1) In the apparatus for recovering suspended matter from geothermal hot water according to the first aspect and the method for recovering suspended matter from geothermal hot water according to the nineteenth aspect, the filtered geothermal hot water that has passed through the filtering material is collected. Since it is collected in a pipeline and discharged to the outside of the closed cylindrical container, with a minimum amount of filtering material, suspended substances such as silica in geothermal hot water are separated by filtration to obtain high-clarity filtered hot water, The filter medium can be uniformly and uniformly washed with a minimum operation power, whereby the suspended substances trapped and separated can be recovered, and the operation can be performed at low equipment and operation costs.

【0120】(2)請求項2記載の地熱熱水からの懸濁
物質回収装置および請求項20記載の地熱熱水からの懸
濁物質回収方法では、垂直方向に軸線を有して設置され
た密閉円筒容器に流入させた地熱熱水に内周方向に沿っ
て一方向に回転する力を加えて懸濁物質を遠心分離する
ので、サイクロン分離効果と濾過材とによって懸濁物質
を2段階で効率的に地熱熱水中から分離でき、回収効率
および処理量を大幅に向上させることができるととも
に、濾過材の捕捉能力をより長く維持することができ
る。
(2) In the apparatus for recovering suspended matter from geothermal hot water according to the second aspect and the method for recovering suspended matter from geothermal hot water according to the twentieth aspect, the apparatus is installed so as to have a vertical axis. The suspended solids are centrifuged by applying a force that rotates in one direction along the inner circumferential direction to the geothermal hot water that has flowed into the closed cylindrical container, and the suspended solids are separated in two stages by the cyclone separation effect and the filter material. It is possible to efficiently separate from the geothermal hot water, to greatly improve the recovery efficiency and the throughput, and to maintain the filter material capturing ability for a longer time.

【0121】(3)請求項3記載の地熱熱水からの懸濁
物質回収装置および請求項21記載の地熱熱水からの懸
濁物質回収方法では、地熱熱水を流入口から密閉円筒容
器の内周壁の接線方向に向けて噴出させるので、地熱熱
水を密閉円筒容器の内周に沿って一方向に容易に回転さ
せることができ、比較的簡便な構成によってサイクロン
分離効果を得ることができる。
(3) In the apparatus for recovering suspended solids from geothermal hot water according to the third aspect and the method for recovering suspended solids from geothermal hot water according to the twenty-first aspect, geothermal hot water is supplied from an inlet to a closed cylindrical container. Since it is ejected in the tangential direction of the inner peripheral wall, geothermal hot water can be easily rotated in one direction along the inner periphery of the closed cylindrical container, and a cyclone separation effect can be obtained by a relatively simple configuration. .

【0122】(4)請求項4記載の地熱熱水からの懸濁
物質回収装置では、密閉円筒容器下部に沈殿した地熱熱
水中の懸濁物質を外部に排出する沈殿物排出手段を備え
ているので、沈殿物の排出処理が可能となって健全な濾
過能力を維持することができる。
(4) The apparatus for recovering suspended solids from geothermal hot water according to claim 4 is provided with a sediment discharging means for discharging the suspended solids in the geothermal hot water settled at the lower portion of the closed cylindrical container to the outside. As a result, the precipitate can be discharged, and a sound filtration ability can be maintained.

【0123】(5)請求項5記載の地熱熱水からの懸濁
物質回収装置では、流体流通性容器内部の濾過材を流動
させ、該濾過材に捕捉分離された懸濁物質を流体流通性
容器外部に排出させる運動エネルギー供給手段を備えて
いるので、容器内の濾過材に運動エネルギーを与えて攪
拌流動させ、濾過材を摩滅再生させることができるとと
もに、捕捉懸濁物質を排出させることができる。
(5) In the apparatus for recovering suspended solids from geothermal hot water according to the fifth aspect, the filter medium inside the fluid-flowable container is caused to flow, and the suspended substances trapped and separated by the filter medium are passed through the fluid-flowable vessel. Since the kinetic energy supply means for discharging to the outside of the vessel is provided, kinetic energy is given to the filter medium in the vessel to stir and flow, and the filter medium can be worn out and regenerated, and the trapped suspended matter can be discharged. it can.

【0124】(6)請求項6記載の地熱熱水からの懸濁
物質回収装置では、運動エネルギー供給手段が、弾性支
持された流体流通性容器に振動を加え濾過材を流動させ
る加振機構を備えているので、加振機構による振動のエ
ネルギーを容器内の濾過材に与えて攪拌流動させること
ができる。
(6) In the apparatus for recovering suspended solids from geothermal hot water according to claim 6, the kinetic energy supply means includes a vibrating mechanism for applying vibration to the elastically supported fluid circulating vessel to flow the filter medium. Since it is provided, the energy of the vibration by the vibrating mechanism can be given to the filtering material in the container to be stirred and flown.

【0125】(7)請求項7記載の地熱熱水からの懸濁
物質回収装置では、運動エネルギー供給手段が、流体流
通性容器の下部から流体流通性容器の内圧より高い圧力
の地熱熱水を供給することにより濾過材を流動させる熱
水供給手段を備えているので、熱水供給手段からの地熱
熱水の圧力によって容器内の濾過材を攪拌流動させるこ
とができる。
(7) In the apparatus for recovering suspended matter from geothermal hot water according to claim 7, the kinetic energy supply means supplies geothermal hot water having a pressure higher than the internal pressure of the fluid flowable container from a lower portion of the fluid flowable container. Since the hot water supply means for flowing the filter medium by supplying the hot water is provided, the filter medium in the container can be agitated and flown by the pressure of the geothermal hot water from the hot water supply means.

【0126】(8)請求項8記載の地熱熱水からの懸濁
物質回収装置では、濾過材を流体流通性容器内に密閉円
筒容器の内圧より高い圧力で供給する濾過材供給手段を
備えているので、摩滅して減少した濾過材を適宜補給す
ることができ、良好な濾過特性を維持することが可能と
なる。
(8) The apparatus for recovering suspended solids from geothermal hot water according to claim 8 is provided with a filter material supply means for supplying a filter material into the fluid-flowable container at a pressure higher than the internal pressure of the closed cylindrical container. Therefore, the filter material that has been worn down and reduced can be appropriately supplied, and good filtration characteristics can be maintained.

【0127】(9)請求項9記載の地熱熱水からの懸濁
物質回収装置では、流体流通性容器の下部に設けられ密
閉円筒容器の下部に濾過材を排出する濾過材排出手段と
を備えているので、摩滅した濾過材や懸濁物質を捕捉し
た濾過材を外部に適宜排出することができ、濾過材の交
換等が容易となる。
(9) The apparatus for recovering suspended solids from geothermal hot water according to the ninth aspect is provided with a filter material discharging means provided below the fluid circulating container and discharging the filter material below the closed cylindrical container. As a result, the worn-out filter material and the filter material capturing the suspended substance can be appropriately discharged to the outside, which facilitates replacement of the filter material and the like.

【0128】(10)請求項10記載の地熱熱水からの
懸濁物質回収装置および請求項22記載の地熱熱水から
の懸濁物質回収方法では、密閉円筒容器に沈殿した懸濁
物質を取り出し再び流入口から密閉円筒容器内に供給し
て懸濁物質の結晶析出の核とするので、懸濁物質の結晶
核成長がより促進されるとともに結晶粒数を増加させる
ことが可能となる。
(10) In the apparatus for recovering suspended matter from geothermal hot water according to the tenth aspect and the method for recovering suspended matter from geothermal hot water according to the twenty-second aspect, the suspended substance settled in a closed cylindrical container is taken out. Since the nucleus for crystal precipitation of the suspended substance is supplied again into the closed cylindrical container from the inlet, the growth of the crystal nucleus of the suspended substance is further promoted and the number of crystal grains can be increased.

【0129】(11)請求項11記載の地熱熱水からの
懸濁物質回収装置では、前記流入口に接続され密閉円筒
容器内に薬剤を供給する薬剤注入手段を備えているの
で、薬剤注入手段によって地熱熱水とともに特定の効果
を有する薬剤を供給して、密閉円筒容器内の地熱熱水の
性状を変化させ、懸濁物質の回収性の向上を図ることが
可能となる。
(11) In the apparatus for recovering suspended solids from geothermal hot water according to the eleventh aspect, there is provided a drug injecting means connected to the inflow port and supplying the drug into the closed cylindrical container. Thus, a chemical having a specific effect is supplied together with the geothermal hot water, and the properties of the geothermal hot water in the closed cylindrical container are changed, so that the recovery of suspended solids can be improved.

【0130】(12)請求項12記載の地熱熱水からの
懸濁物質回収装置では、薬剤注入手段として、少なくと
も懸濁物質の結晶粒の成長を促進する結晶核成長促進材
または懸濁物質の結晶粒の凝集沈殿を促進する凝集沈殿
材のいずれか一方を密閉円筒容器内に供給するので、結
晶粒の成長促進や凝集沈殿の促進を行うことができる。
(12) In the apparatus for recovering suspended matter from geothermal hot water according to the twelfth aspect, as the chemical injection means, at least a crystal nucleus growth promoting material for promoting the growth of crystal grains of the suspended substance or a suspended substance is used. Since one of the coagulating sedimentation materials for promoting coagulation and precipitation of crystal grains is supplied into the closed cylindrical container, the growth of crystal grains and the coagulation and precipitation can be promoted.

【0131】(13)請求項13記載の地熱熱水からの
懸濁物質回収装置では、前記結晶核成長促進材が比表面
積が1m2/g以上に設定され二酸化硅素または珪酸塩
化合物であるので、これらが核(シード)となって懸濁
物質であるシリカの結晶核成長がより促進される。
(13) In the apparatus for recovering suspended solids from geothermal hot water according to the thirteenth aspect, since the crystal nucleus growth promoting material is set to have a specific surface area of 1 m 2 / g or more and is silicon dioxide or a silicate compound. These serve as nuclei (seed) to further promote the crystal nucleus growth of silica as a suspended substance.

【0132】(14)請求項14記載の地熱熱水からの
懸濁物質回収装置では、前記凝集沈殿材が、アルミニウ
ム、マグネシウム、鉄、カルシウム、銅若しくはマンガ
ンを含む金属化合物、または含窒素カチオン化合物のう
ちいずれか一種類または二種類以上の混合物であるの
で、これらの化合物が地熱熱水中に溶在して、多価陽イ
オンや二次的に生成された物質によって懸濁物質である
シリカがより凝集し易くなる。
(14) In the apparatus for recovering suspended solids from geothermal hot water according to claim 14, the coagulated sedimentation material is a metal compound containing aluminum, magnesium, iron, calcium, copper or manganese, or a nitrogen-containing cation compound. Is a mixture of one or more of these, so these compounds are dissolved in geothermal hot water and suspended as silica by polyvalent cations and secondary generated substances. Are more likely to aggregate.

【0133】(15)請求項15記載の地熱発電設備で
は、気水分離器が請求項1から14のいずれかに記載の
地熱熱水からの懸濁物質回収装置とされ、該懸濁物質回
収装置には、密閉円筒容器に内部で地熱熱水から気水分
離された蒸気を発電機に送り込む蒸気排出管路が接続さ
れているので、懸濁物質回収装置で地熱熱水から懸濁物
質が良好に除かれ、気水分離された蒸気によって良好な
発電を行うことができ、シリカスケールの付着も防止す
ることができる。
(15) In the geothermal power generation equipment according to claim 15, the steam-water separator is the apparatus for recovering suspended matter from geothermal hot water according to any one of claims 1 to 14, and the suspended matter is recovered. The device is connected to a steam discharge pipe that feeds steam separated from the geothermal hot water into the generator by a closed cylindrical container.The suspended solids are collected from the geothermal hot water by the suspended solids recovery device. It is possible to satisfactorily generate power using the steam that has been removed and steam-water separated, and it is also possible to prevent the adhesion of silica scale.

【0134】(16)請求項16記載の地熱発電設備で
は、直列配置された第1の懸濁物質回収装置の蒸気排出
管路が高圧用タービンに接続され、第2の懸濁物質回収
装置の蒸気排出管路が低圧用タービンに接続されている
ので、直列に配設された懸濁物質回収装置によって、2
段気水分離(ダブルフラッシュ)を行い、熱エネルギー
の回収率を向上させ、発電能力の向上を図るとともに、
砒素等を除去した温水を提供することができる。
(16) In the geothermal power generation equipment according to claim 16, the steam discharge line of the first suspended solids recovery device arranged in series is connected to the high pressure turbine and the second suspended solids recovery device is connected to the high pressure turbine. Since the steam discharge line is connected to the low-pressure turbine, the suspended solids recovery device arranged in series provides
Step-by-step water-separation (double flash) is performed to improve the recovery rate of thermal energy and improve power generation capacity.
Warm water from which arsenic or the like has been removed can be provided.

【0135】(17)請求項17記載の地熱発電設備で
は、2以上の懸濁物質回収装置の熱水供給管路から任意
に選択して地熱熱水が供給される懸濁物質回収装置を切
り替え可能な運転切替機構が設けられているので、適宜
運転に供する懸濁物質回収装置を選んで、蒸気生産量の
変動に対する濾過流速の均一化および濾過材の全交換等
の保守を容易に行うことができる。
(17) In the geothermal power generation equipment according to the seventeenth aspect, the suspended solids recovery device to which the geothermal hot water is supplied is arbitrarily selected from the hot water supply pipes of the two or more suspended solids recovery devices. Since a possible operation switching mechanism is provided, it is possible to select a suspended solids recovery device to be used for operation as appropriate, and to facilitate maintenance such as equalizing the filtration flow rate against fluctuations in steam production volume and replacing all filtration media. Can be.

【0136】(18)請求項18記載の地熱発電設備で
は、懸濁物質回収装置の熱水吐出手段から吐出され濾過
された地熱熱水を温水として用いる温水利用設備を設け
ているので、懸濁物質回収装置の濾過機能により、砒素
等の有害物質が含まれる懸濁物質を除去した地熱熱水を
温水として、例えば、暖房設備等の温水利用設備に供給
することにより、気水分離および濾過後の地熱熱水を有
効利用することができる。
(18) In the geothermal power generation equipment according to the eighteenth aspect, since hot water utilization equipment is used which uses geothermal hot water discharged and filtered from the hot water discharge means of the suspended solids recovery apparatus as hot water, the suspension is provided. By the filtration function of the material recovery device, geothermal hot water from which suspended substances containing harmful substances such as arsenic have been removed is supplied as hot water to, for example, a hot water utilization facility such as a heating facility. Geothermal hot water can be used effectively.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る地熱熱水からの懸濁物質回収装
置の一実施形態を示す断面図である。
FIG. 1 is a cross-sectional view showing an embodiment of an apparatus for recovering suspended solids from geothermal hot water according to the present invention.

【図2】 本発明に係る地熱熱水からの懸濁物質回収装
置を用いた地熱発電設備の一実施形態を示す配管系統図
である。
FIG. 2 is a piping diagram showing an embodiment of a geothermal power generation facility using the apparatus for recovering suspended solids from geothermal hot water according to the present invention.

【図3】 本発明に係る地熱熱水からの懸濁物質回収装
置を用いた地熱発電設備の一実施形態におけるスプレイ
ドライヤーを示す断面図である。
FIG. 3 is a cross-sectional view showing a spray dryer in one embodiment of the geothermal power generation equipment using the apparatus for recovering suspended solids from geothermal hot water according to the present invention.

【符号の説明】[Explanation of symbols]

1 縦型密閉円筒容器 2 濾過槽本体(流体流通性容器) 3a 流入口(熱水回転手段) 3d 連結弾性継手 7a 上部開口端(供給口) 9 内筒支持弾性体 10 濾過材 11 集水管(集流体管路) 13 流入管(熱水供給管路) 15 加振器 16 円筒状弾性継手 18 外筒排出弁 19 吐出用連結管(熱水吐出手段) 22 内筒排出弁(排出口) 23 熱水吐出管 24 熱水配管 30 シリカ循環ライン(沈殿物循環管路) 31 薬剤注入手段 36 発電機 37 生産井 45 温水利用設備 46 蒸気排出管路 49 高圧用タービン 52 低圧用タービン A、A1、A2、A3 懸濁物質回収装置 H 沈殿物 DESCRIPTION OF SYMBOLS 1 Vertical closed cylindrical container 2 Filtration tank main body (fluid flowable container) 3a Inflow port (hot water rotating means) 3d Connecting elastic joint 7a Upper open end (supply port) 9 Inner cylinder supporting elastic body 10 Filter material 11 Water collecting pipe ( 13) Inflow pipe (hot water supply pipe) 15 Vibrator 16 Cylindrical elastic joint 18 Outer cylinder discharge valve 19 Discharge connection pipe (hot water discharge means) 22 Inner cylinder discharge valve (discharge port) 23 Hot water discharge pipe 24 Hot water pipe 30 Silica circulation line (precipitate circulation pipe) 31 Chemical injection means 36 Generator 37 Production well 45 Hot water utilization equipment 46 Steam discharge pipe 49 High pressure turbine 52 Low pressure turbine A, A1, A2, A3 Suspended substance recovery device H sediment

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C02F 1/60 E21B 43/00 B E21B 43/00 F03G 4/00 551 F03G 4/00 551 B01D 29/08 510A 540A (56)参考文献 特開 平11−207106(JP,A) 特開 平8−276191(JP,A) 特開 平7−51681(JP,A) 特開 平7−24475(JP,A) 特開 平6−320169(JP,A) 特開 昭62−152084(JP,A) 特開 昭61−209094(JP,A) 特開 昭60−40787(JP,A) 特開 昭60−35182(JP,A) 特開 昭54−107151(JP,A) 特開 昭54−29155(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 21/01 B01D 24/00 C01B 33/12 C02F 1/28 C02F 1/38 C02F 1/60 E21B 43/00 F03G 4/00 ────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI C02F 1/60 E21B 43/00 B E21B 43/00 F03G 4/00 551 F03G 4/00 551 B01D 29/08 510A 540A (56) References JP-A-11-207106 (JP, A) JP-A-8-276191 (JP, A) JP-A-7-51681 (JP, A) JP-A-7-24475 (JP, A) JP-A-6 JP-A-320169 (JP, A) JP-A-62-152084 (JP, A) JP-A-61-209094 (JP, A) JP-A-60-40787 (JP, A) JP-A-60-35182 (JP, A) JP-A-54-107151 (JP, A) JP-A-54-29155 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01D 21/01 B01D 24/00 C01B 33 / 12 C02F 1/28 C02F 1/38 C02F 1/60 E21B 43/00 F03G 4/00

Claims (22)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 地熱熱水を供給する熱水供給管路に接続
状態の流入口を有する密閉円筒容器が設けられ、 該密閉円筒容器内に略円筒状の流体流通性容器が、密閉
円筒容器と略同心状に配設され、 前記流体流通性容器内に流体流通性の集流体管路が、流
体流通性容器と略同心状に配設され、 前記流体流通性容器内部で前記集流性管路の外部の空間
には、前記流入口からの流入後に気水分離されて流体流
通性容器の外壁から流入する地熱熱水中の懸濁物質を捕
捉分離する濾過材が流動可能に収容され、 前記集流体管路には、前記濾過材を通過した濾過された
地熱熱水を集流体管路に集めて前記密閉円筒容器の外部
に吐出する熱水吐出手段が付設されてなることを特徴と
する地熱熱水からの懸濁物質回収装置。
1. A closed cylindrical container having an inflow port connected to a hot water supply pipe for supplying geothermal hot water is provided, and a substantially cylindrical fluid circulating container is provided in the closed cylindrical container. A fluid-collecting conduit for fluid flow in the fluid-flow container is disposed substantially concentrically with the fluid-flow container; In the space outside the conduit, a filtering material that captures and separates suspended solids in geothermal hot water that is separated by steam after flowing in from the inflow port and flows in from the outer wall of the fluid-flowable container is movably accommodated. The fluid collection pipe is provided with hot water discharge means for collecting the filtered geothermal hot water that has passed through the filter medium into the fluid collection pipe and discharging the collected hot water to the outside of the closed cylindrical container. A suspended solids recovery device from geothermal hot water.
【請求項2】 前記密閉円筒容器は、垂直方向に軸線を
有して設置され、 前記密閉円筒容器に流入させた地熱熱水に内周方向に沿
って一方向に回転する力を加える熱水回転手段が付設さ
れていることを特徴とする請求項1記載の地熱熱水から
の懸濁物質回収装置。
2. The closed cylindrical container is installed with an axis in a vertical direction, and is a hot water that applies a force rotating in one direction along an inner circumferential direction to the geothermal hot water flowing into the closed cylindrical container. The apparatus for recovering suspended solids from geothermal hot water according to claim 1, wherein a rotating means is provided.
【請求項3】 前記熱水回転手段は、前記地熱熱水を前
記流入口から前記密閉円筒容器の内周壁の接線方向に向
けて噴出させる熱水流入手段を備えていることを特徴と
する請求項2記載の地熱熱水からの懸濁物質回収装置。
3. The hot water rotating means includes hot water inflow means for jetting the geothermal hot water from the inflow port in a tangential direction of an inner peripheral wall of the closed cylindrical container. Item 3. An apparatus for recovering suspended solids from geothermal hot water according to Item 2.
【請求項4】 前記密閉円筒容器下部に設けられ前記地
熱熱水の回転によって遠心分離されるとともに密閉円筒
容器下部に沈殿した地熱熱水中の懸濁物質を外部に排出
する沈殿物排出手段を備えていることを特徴とする請求
項2または3記載の地熱熱水からの懸濁物質回収装置。
4. A sediment discharging means provided at a lower portion of the closed cylindrical container, which is centrifuged by rotation of the geothermal hot water and discharges suspended matter in the geothermal hot water settled at a lower portion of the closed cylindrical container to the outside. The apparatus for recovering suspended solids from geothermal hot water according to claim 2 or 3, wherein the apparatus is provided.
【請求項5】 前記流体流通性容器内部の濾過材を流動
させ、該濾過材に捕捉分離された懸濁物質を流体流通性
容器外部に排出させる運動エネルギー供給手段を備えて
いることを特徴とする請求項1から4のいずれかに記載
の地熱熱水からの懸濁物質回収装置。
5. A kinetic energy supply means for flowing a filter medium inside the fluid-flowable container and discharging a suspended substance captured and separated by the filter medium to the outside of the fluid-flowable container. The apparatus for recovering suspended solids from geothermal hot water according to any one of claims 1 to 4.
【請求項6】 前記運動エネルギー供給手段は、弾性支
持された前記流体流通性容器に振動を加え前記濾過材を
流動させる加振機構を備えていることを特徴とする請求
項5記載の地熱熱水からの懸濁物質回収装置。
6. The geothermal heat according to claim 5, wherein said kinetic energy supply means includes a vibration mechanism for applying a vibration to said elastically supported fluid circulating container to flow said filter medium. A device for recovering suspended solids from water.
【請求項7】 前記運動エネルギー供給手段は、前記流
体流通性容器の下部から流体流通性容器の内圧より高い
圧力の前記地熱熱水を供給することにより前記濾過材を
流動させる熱水供給手段を備えていることを特徴とする
請求項5記載の地熱熱水からの懸濁物質回収装置。
7. The hot water supply means for supplying the geothermal hot water having a pressure higher than the internal pressure of the fluid flowable container from a lower part of the fluid flowable container to flow the filter medium from the lower part of the fluid flowable container. The apparatus for recovering suspended solids from geothermal hot water according to claim 5, wherein the apparatus is provided.
【請求項8】 前記濾過材を前記流体流通性容器内に前
記密閉円筒容器の内圧より高い圧力で供給する濾過材供
給手段を備えていることを特徴とする請求項1から7の
いずれかに記載の地熱熱水からの懸濁物質回収装置。
8. The apparatus according to claim 1, further comprising a filter material supply means for supplying the filter material into the fluid circulating container at a pressure higher than the internal pressure of the closed cylindrical container. An apparatus for recovering suspended solids from geothermal hot water as described in the above.
【請求項9】 前記流体流通性容器の下部に設けられ前
記密閉円筒容器の下部に濾過材を排出する濾過材排出手
段とを備えていることを特徴とする請求項1から8のい
ずれかに記載の地熱熱水からの懸濁物質回収装置。
9. The method according to claim 1, further comprising: a filter material discharging means provided at a lower portion of the fluid circulating container and discharging a filter material at a lower portion of the closed cylindrical container. An apparatus for recovering suspended solids from geothermal hot water as described in the above.
【請求項10】 一端が前記密閉円筒容器の下部に接続
されるとともに他端が前記流入口に接続され沈殿した前
記懸濁物質の一部を再び流入口から密閉円筒容器内に供
給し懸濁物質の結晶析出の核とする沈殿物循環管路を備
えていることを特徴とする請求項1から9のいずれかに
記載の地熱熱水からの懸濁物質回収装置。
10. One end is connected to a lower portion of the closed cylindrical container, and the other end is connected to the inlet, and a part of the precipitated suspended substance is again supplied from the inlet to the closed cylindrical container and suspended. The apparatus for recovering suspended solids from geothermal hot water according to any one of claims 1 to 9, further comprising a sediment circulation pipe serving as a nucleus for crystal deposition of the substance.
【請求項11】 前記流入口に接続され前記密閉円筒容
器内に薬剤を供給する薬剤注入手段を備えていることを
特徴とする請求項1から9のいずれかに記載の地熱熱水
からの懸濁物質回収装置。
11. The suspension from geothermal hot water according to claim 1, further comprising a medicine injection means connected to the inflow port and supplying a medicine into the closed cylindrical container. Suspended matter recovery device.
【請求項12】 前記薬剤注入手段は、前記薬剤が少な
くとも前記懸濁物質の結晶粒の成長を促進する結晶核成
長促進材または懸濁物質の結晶粒の凝集沈殿を促進する
凝集沈殿材のいずれか一方であることを特徴とする請求
項11記載の地熱熱水からの懸濁物質回収装置。
12. The drug injection means may be any one of a crystal nucleus growth promoting material in which the drug promotes at least the growth of crystal grains of the suspended substance and an agglomerated sedimentation material that promotes coagulation and precipitation of suspended substance crystal grains. The apparatus for recovering suspended solids from geothermal hot water according to claim 11, wherein the apparatus is one of them.
【請求項13】 前記結晶核成長促進材は、比表面積が
1m2/g以上に設定され二酸化硅素または珪酸塩化合
物であることを特徴とする請求項12記載の地熱熱水か
らの懸濁物質回収装置。
13. The suspended substance from geothermal hot water according to claim 12, wherein the crystal nucleus growth promoting material has a specific surface area of 1 m 2 / g or more and is silicon dioxide or a silicate compound. Collection device.
【請求項14】 前記凝集沈殿材は、アルミニウム、マ
グネシウム、鉄、カルシウム、銅若しくはマンガンを含
む金属化合物、または含窒素カチオン化合物のうちいず
れか一種類または二種類以上の混合物であることを特徴
とする請求項12記載の地熱熱水からの懸濁物質回収装
置。
14. The coagulation sedimentation material is a metal compound containing aluminum, magnesium, iron, calcium, copper or manganese, or a mixture of one or more of nitrogen-containing cation compounds. The apparatus for recovering suspended solids from geothermal hot water according to claim 12.
【請求項15】 気水分離器で地熱熱水から気水分離さ
れた蒸気を発電機に送って発電させる地熱発電設備であ
って、 前記気水分離器は、請求項1から14のいずれかに記載
の地熱熱水からの懸濁物質回収装置とされ、 該懸濁物質回収装置は、前記密閉円筒容器に内部で前記
地熱熱水から気水分離された蒸気を前記発電機に送り込
む蒸気排出管路が接続されていることを特徴とした地熱
発電設備。
15. A geothermal power generation system for generating steam by separating steam separated from geothermal hot water by a steam separator to a generator, wherein the steam separator separates the steam separator from the steam generator. A suspended solids recovery device from geothermal hot water according to the above, wherein the suspended solids recovery device sends steam separated from the geothermal hot water by steam into the generator inside the closed cylindrical container. Geothermal power generation equipment characterized by connecting pipelines.
【請求項16】 前記発電機には高圧の蒸気で回転する
高圧用タービンと低圧の蒸気で回転する低圧用タービン
とが設けられ、 前記懸濁物質回収装置は、少なくとも2以上配設され、 これらの懸濁物質回収装置のうち第1の懸濁物質回収装
置は、前記熱水供給管路が前記地熱熱水の生産井に接続
され、 前記2以上の懸濁物質回収装置のうち第2の懸濁物質回
収装置は、前記熱水供給管路に前記第1の懸濁物質回収
装置の熱水吐出手段が接続されて第1の懸濁物質回収装
置と直列状態とされてなり、 前記第1の懸濁物質回収装置の蒸気排出管路は、前記高
圧用タービンに接続され、 前記第2の懸濁物質回収装置の蒸気排出管路は、前記低
圧用タービンに接続されていることを特徴とする請求項
15記載の地熱発電設備。
16. The power generator is provided with a high-pressure turbine rotating with high-pressure steam and a low-pressure turbine rotating with low-pressure steam, and at least two or more of the suspended solids recovery devices are provided. A first suspended solids recovery device among the two suspended solids recovery devices, wherein the hot water supply pipe is connected to the geothermal hot water production well; The suspended solids recovery device is configured such that hot water discharge means of the first suspended solids recovery device is connected to the hot water supply pipe and is in series with the first suspended solids recovery device. The steam discharge line of the first suspended solids recovery device is connected to the high pressure turbine, and the steam discharge line of the second suspended solids recovery device is connected to the low pressure turbine. The geothermal power generation equipment according to claim 15, wherein
【請求項17】 前記懸濁物質回収装置は、少なくとも
2以上配設され、 前記地熱熱水の生産井には、前記2以上の懸濁物質回収
装置の各熱水供給管路がそれぞれ並列状態に接続され、 前記熱水供給管路または前記生産井には、前記地熱熱水
を流通させる熱水供給管路を前記2以上の懸濁物質回収
装置の熱水供給管路から任意に選択して地熱熱水が供給
される懸濁物質回収装置を切り替え可能な運転切替機構
が設けられていることを特徴とする請求項15記載の地
熱発電設備。
17. At least two or more of the suspended solids recovery devices are provided, and the hot water supply pipes of the two or more suspended solids recovery devices are arranged in parallel in the geothermal hot water production well. The hot water supply pipe or the production well is arbitrarily selected from among the hot water supply pipes of the two or more suspended solids recovery devices for the hot water supply pipe through which the geothermal hot water flows. The geothermal power generation equipment according to claim 15, further comprising an operation switching mechanism capable of switching the suspended solids recovery device to which the geothermal hot water is supplied.
【請求項18】 前記懸濁物質回収装置の熱水吐出手段
から吐出され濾過された地熱熱水を温水として用いる温
水利用設備が設けられていることを特徴とする請求項1
5から17のいずれかに記載の地熱発電設備。
18. A facility for utilizing hot water, wherein geothermal hot water discharged and filtered from hot water discharging means of the suspended solids recovery apparatus is used as hot water.
The geothermal power plant according to any one of 5 to 17.
【請求項19】 高温の地熱熱水の流入口を有する密閉
円筒容器内に略同心状に配設した略円筒状の流体流通性
容器と該流体流通性容器内に略同心状に配設された流体
流通性の集流体管路との空間に、前記流入口からの流入
後に気水分離されて流体流通性容器の外壁から流入する
地熱熱水中の懸濁物質を捕捉分離する濾過材を流動可能
に収容し、 前記濾過材を通過して濾過された地熱熱水を前記集流体
管路に集めて前記密閉円筒容器の外部に吐出させること
を特徴とする地熱熱水からの懸濁物質回収方法。
19. A substantially cylindrical fluid circulating container disposed substantially concentrically in a closed cylindrical container having an inlet for high-temperature geothermal hot water, and substantially concentrically disposed in the fluid circulating container. In the space with the fluid-flow collecting fluid conduit, a filtering material that captures and separates suspended solids in geothermal hot water that is separated by steam after flowing in from the inlet and flows in from the outer wall of the fluid-flowing container. A suspended substance from geothermal hot water, which is housed in a flowable manner, and which collects geothermal hot water filtered through the filtering material in the fluid collection pipe and discharges the water to the outside of the closed cylindrical container. Collection method.
【請求項20】 垂直方向に軸線を有して設置された前
記密閉円筒容器に流入させた地熱熱水に内周方向に沿っ
て一方向に回転する力を加えて懸濁物質を遠心分離する
ことを特徴とする請求項19記載の地熱熱水からの懸濁
物質回収方法。
20. Centrifugal separation of suspended solids by applying a force rotating in one direction along an inner circumferential direction to geothermal hot water flowing into the closed cylindrical container installed with an axis in a vertical direction. The method for recovering suspended solids from geothermal hot water according to claim 19, characterized in that:
【請求項21】 前記地熱熱水を前記流入口から前記密
閉円筒容器の内周壁の接線方向に向けて噴出させること
を特徴とする請求項20記載の地熱熱水からの懸濁物質
回収方法。
21. The method for recovering suspended solids from geothermal water according to claim 20, wherein the geothermal water is jetted from the inflow port in a tangential direction of an inner peripheral wall of the closed cylindrical container.
【請求項22】 前記密閉円筒容器に沈殿した前記懸濁
物質を取り出し再び前記流入口から密閉円筒容器内に供
給して懸濁物質の結晶析出の核とすることを特徴とする
請求項19から21のいずれかに記載の地熱熱水からの
懸濁物質回収方法。
22. The method according to claim 19, wherein the suspended substance settled in the closed cylindrical container is taken out and supplied again from the inflow port into the closed cylindrical container to be a nucleus for crystal precipitation of the suspended substance. 22. The method for recovering suspended solids from geothermal hot water according to any of 21.
JP04404498A 1998-02-25 1998-02-25 Method and apparatus for recovering suspended solids from geothermal hot water and geothermal power generation equipment using the same Expired - Fee Related JP3314707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04404498A JP3314707B2 (en) 1998-02-25 1998-02-25 Method and apparatus for recovering suspended solids from geothermal hot water and geothermal power generation equipment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04404498A JP3314707B2 (en) 1998-02-25 1998-02-25 Method and apparatus for recovering suspended solids from geothermal hot water and geothermal power generation equipment using the same

Publications (2)

Publication Number Publication Date
JPH11239702A JPH11239702A (en) 1999-09-07
JP3314707B2 true JP3314707B2 (en) 2002-08-12

Family

ID=12680628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04404498A Expired - Fee Related JP3314707B2 (en) 1998-02-25 1998-02-25 Method and apparatus for recovering suspended solids from geothermal hot water and geothermal power generation equipment using the same

Country Status (1)

Country Link
JP (1) JP3314707B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2812532C1 (en) * 2023-05-28 2024-01-30 Михаил Алексеевич Игнатов Geothermal power generator

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3303070B2 (en) * 1998-04-02 2002-07-15 三菱マテリアル株式会社 Apparatus and method for recovering suspended solids from geothermal hot water
JP4177369B2 (en) * 2005-05-09 2008-11-05 株式会社関西都市居住サービス A method for treating silica-containing water and an open circulation type cooling water system using the treated water.
CN112573717A (en) * 2020-12-24 2021-03-30 河南省建设工程施工图审查中心有限公司 Geothermal reinjection water filtering device
JP2023088434A (en) * 2021-12-15 2023-06-27 富士電機株式会社 Geothermal power generation plant system
CN114392592A (en) * 2021-12-31 2022-04-26 中国石油大学胜利学院 Geothermal energy utilizes device based on secret rivers system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429155A (en) * 1977-08-08 1979-03-05 Mitsubishi Heavy Ind Ltd Open air type heat-exchanging apparatus
JPS5949077B2 (en) * 1978-02-10 1984-11-30 三菱重工業株式会社 Method for preventing scale adhesion in geothermal hot water
JPS6035182A (en) * 1983-08-05 1985-02-22 Nippon Steel Corp Method and device of geothermal power generation
JPS6040787A (en) * 1983-08-15 1985-03-04 Shinenerugii Sogo Kaihatsu Kiko Geothermal power plant
JPH0640998B2 (en) * 1985-03-13 1994-06-01 清水建設株式会社 Geothermal hot water scale removal method for hot springs
JPH0693247B2 (en) * 1985-12-25 1994-11-16 松下電器産業株式会社 Image display device
JPH0724475A (en) * 1993-05-13 1995-01-27 Mitsubishi Materials Corp Method for recovering silica in aqueous solution
JPH06320169A (en) * 1993-05-13 1994-11-22 Mitsubishi Materials Corp Method and apparatus for recovering silica in aqueous solution
JPH0751681A (en) * 1993-08-12 1995-02-28 Nittetsu Mining Co Ltd Treatment of silica-containing solution
JPH08276191A (en) * 1995-02-06 1996-10-22 Mitsubishi Materials Corp Recovery of silica in aqueous solution and seeds used therein
JPH11207106A (en) * 1998-01-22 1999-08-03 Mitsubishi Materials Corp Fluid filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2812532C1 (en) * 2023-05-28 2024-01-30 Михаил Алексеевич Игнатов Geothermal power generator

Also Published As

Publication number Publication date
JPH11239702A (en) 1999-09-07

Similar Documents

Publication Publication Date Title
KR102193458B1 (en) System for removing dust
WO2015137483A1 (en) Decontamination method and system for water contaminated with radioactive substances
WO1994024508A1 (en) Apparatus for carrying out a physical and/or chemical process, such as a heat exchanger
CN110510809A (en) It is a kind of without using chemical agent and the domestic sewage advanced treatment system of disinfectant
US5171443A (en) Granular media regeneration apparatus
JP2002273261A (en) Membrane magnetic separation device
JP3314707B2 (en) Method and apparatus for recovering suspended solids from geothermal hot water and geothermal power generation equipment using the same
KR20120125323A (en) Ballast flocculation and sedimentation water treatment system with simplified sludge recirculation, and process therefor
JPS5811008A (en) Filter device
JP2004346285A (en) System and method for biomass gasification
CN110550844B (en) Domestic sewage's processing system
US4592837A (en) Apparatus for the filtering of solids-containing liquids
JPWO2006112007A1 (en) Water filtration purification apparatus and method
JP4456632B2 (en) Density control type fiber yarn microfiltration equipment
JP4942225B2 (en) Filter media cleaning device and filter media cleaning method
KR101022636B1 (en) Reverse flow filter system, particularly for separating solids from liquids
CN109502816A (en) A kind of Zhi Xian factory sewage disposal system and method
CN113788554A (en) Drinking water purification self-cleaning method and water purification device thereof
JP2005270701A (en) Turbid water treatment method and its apparatus
CN209652044U (en) A kind of integral type oil-contained waste water treatment device
JP6210261B1 (en) Soil purification system and soil purification method
KR20000012021U (en) Tar particle separation device in ordination
KR100279350B1 (en) Filtration device and backwashing method
CN101115822B (en) Apparatus and method for gasifying solid fuel
WO2010087055A1 (en) Method and apparatus for crystal filtration

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130607

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees