JP4175727B2 - Method for detecting elevation angle and turning angle of excavation boom in free section excavator - Google Patents

Method for detecting elevation angle and turning angle of excavation boom in free section excavator Download PDF

Info

Publication number
JP4175727B2
JP4175727B2 JP9838299A JP9838299A JP4175727B2 JP 4175727 B2 JP4175727 B2 JP 4175727B2 JP 9838299 A JP9838299 A JP 9838299A JP 9838299 A JP9838299 A JP 9838299A JP 4175727 B2 JP4175727 B2 JP 4175727B2
Authority
JP
Japan
Prior art keywords
angle
boom
turning
target
excavating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9838299A
Other languages
Japanese (ja)
Other versions
JP2000292167A (en
Inventor
喬 岡田
英雄 神山
一彦 亀田
浩一 橋本
澄雄 山田
正人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Tokyu Construction Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Tokyu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd, Tokyu Construction Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP9838299A priority Critical patent/JP4175727B2/en
Publication of JP2000292167A publication Critical patent/JP2000292167A/en
Application granted granted Critical
Publication of JP4175727B2 publication Critical patent/JP4175727B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は自由断面掘削機に於ける掘削ブームの俯仰角及び旋回角検出方法に関するものであり、特に、光学式自動追尾計測装置及びNC制御装置により、掘削機本体の位置と姿勢並びに切削ドラムの位置を検出して切削範囲を制御する自由断面掘削機に於ける掘削ブームの俯仰角及び旋回角検出方法に関するものである。
【0002】
【従来の技術】
従来の此種自由断面掘削機は、掘削機本体の前部に水平方向へ回動可能な旋回部を設け、この旋回部に伸縮式の掘削ブームを俯仰可能に装着し、該掘削ブームの先端部に切削ドラムを取り付けてある。
【0003】
そして、トンネル内に複数の光学式自動追尾計測装置を設置するとともに、掘削機本体に同数の追尾用ターゲットを搭載し、前記自動追尾計測装置により追尾用ターゲットの位置を検出して掘削機本体の位置や姿勢を計測し、その計測値に基づいて掘削ブームの旋回中心点を演算する。
【0004】
更に、旋回部の旋回角並びに掘削ブームの俯仰角と伸縮量を夫々検出器で検出し、各検出値及び前記旋回中心点の位置情報に基づき、NC制御装置にて切削ドラムの位置を演算する。そして、予め設定した計画断面に対する切削ドラムの位置を、自動的且つリアルタイムに画面表示する。また、前記切削ドラムが計画断面を超えたときは、掘削ブームを自動停止して過掘りを防止するように制御している。
【0005】
ここで、前記自由断面掘削機は一般的にリースによる使用が多く、掘削現場付近にて機体を組み立てた後に、掘削ブームや切削ドラム等を装着している。従って、機体の組立後に、自動追尾計測装置やNC制御装置の初期設定を行う必要がある。例えば掘削ブームについていえば、該掘削ブームを動かして実際の俯仰角及び旋回角を検出し、NC制御装置の検出角度との誤差を修正しなければならない。
【0006】
従来は、切削ドラムの先端部に測距用ターゲットを固着し、機体の前方からトータルステーションで該測距用ターゲットを視準し、切削ドラムの座標を読み取って俯仰角及び旋回角を演算している。
【0007】
【発明が解決しようとする課題】
従来は機体の外方から切削ドラムの先端部の座標を読み取っていたので、座標変換の演算処理が複雑となり、掘削ブームの俯仰角及び旋回角の算出に時間が掛かっていた。このため、機体組立時の初期設定が大変であった。
【0008】
そこで、自由断面掘削機を組み立てたとき、掘削ブームの俯仰角及び旋回角を簡易に検出して、NC制御装置の初期設定を簡便且つ迅速に行うために解決すべき技術的課題が生じてくるのであり、本発明はこの課題を解決することを目的とする。
【0009】
【課題を解決するための手段】
本発明は上記目的を達成するために提案されたものであり、掘削機本体の前部に水平方向へ回動可能な旋回部を設け、この旋回部に伸縮式の掘削ブームを俯仰可能に装着し、該掘削ブームの先端部に切削ドラムを取り付けた自由断面掘削機に於いて、
前記切削ドラムの先端部に鉛直姿勢を保持する保持具を装着し、該保持具の上部に測距用ターゲットを設けるとともに、トータルステーションの回転部を前記旋回部上部の掘削ブームの旋回中心点一致させて設置して前記測距用ターゲットを視準可能にし、
前記掘削ブームを任意の角度に俯仰して前記測距用ターゲットを視準し、
該測距用ターゲットの座標を読み取って掘削ブームの俯仰角を検出し、一方、前記旋回部を任意の角度に旋回して前記測距用ターゲットを視準し、
該測距用ターゲットの座標を読み取って掘削ブームの旋回角を検出し、
前記トータルステーションを用いて検出した掘削ブームの実際の俯仰角及び旋回角をNC制御装置の角度検出器の検出値と比較して、NC制御装置の初期設定を行う自由断面掘削機における掘削ブームの俯仰角及び旋回角検出方法を提供するものである。
【0010】
【発明の実施の形態】
以下、本発明の一実施の形態を図面に従って詳述する。図1及び図2は自由断面掘削機10を示し、掘削機本体11の下部に左右のクローラ12a,12bが装着され、該クローラ12a,12bを駆動することにより自由断面掘削機10が自走できる。前記掘削機本体11の前部に水平方向へ回動可能な旋回部13を設け、この旋回部13の前方部に伸縮式の掘削ブーム14を装着してあり、該掘削ブーム14の先端部に切削ドラム15が取り付けられている。
【0011】
該掘削ブーム14はブームシリンダ16にて上下へ俯仰可能であり、且つ、伸縮シリンダ17にて前後へ伸縮可能であるため、前記旋回部13を左右へ回動することにより、掘削機本体11前方の所定範囲内に於いて前記切削ドラム15を任意の座標へ移動することができる。
【0012】
一方、前記掘削機本体11の前下部に集土装置20を上下動可能に設け、切削ドラム15で掘削したずりを該集土装置20によって掻き寄せる。掻き寄せられたずりは、フィーダ21により掘削機本体11の後方へ送られ、ベルトコンベヤ22にてダンプトラックや他の搬送手段へ積載される。また、前記掘削機本体11の後部に左右のアウトリガー23a,23bを装着し、夫々のアウトリガー23a,23bを左右独立して上下動できるように形成する。
【0013】
更に、前記掘削機本体11の架台28に左右一対の追尾用ターゲット30a,30bを後方(図1にて左方向)に向けて搭載してあり、夫々の追尾用ターゲット30a,30bには反射プリズムと発光素子が設けられている。
【0014】
ここで、光学式自動追尾計測装置について説明すれば、予め、トンネル内の後方位置に2台の追尾計測装置(図示せず)を設置しておき、該追尾計測装置には追尾装置と光波距離計が備えてある。追尾用ターゲット30a,30bの発光素子から発射される光を追尾計測装置の追尾装置で受光し、受光像と光軸のずれを検知してサーボモータを駆動し、追尾用ターゲット30a,30bを自動追尾する。また、光波距離計から発射される光が追尾用ターゲット30a,30bの反射プリズムで反射され、該反射光を光波距離計で受光することにより、追尾計測装置と追尾用ターゲット30a,30bとの距離を測定する。
【0015】
このように、2台の追尾計測装置によって追尾用ターゲット30a,30bの3次元位置を検出して連続的に自動追尾し、掘削機本体11のヨーイング角を検出するとともに、掘削機本体11に搭載した2軸の傾斜計(図示せず)によりピッチング角とローリング角を検出すれば、掘削機本体11の位置及び姿勢を連続的に検出できる。また、切削ドラム15の位置は、旋回部13の旋回角並びに掘削ブーム14の俯仰角と伸縮量を夫々ポテンショメータや回転センサ等の検出器で検出し、前述の掘削機本体11の位置及び姿勢に基づいてNC制御装置により演算される。
【0016】
ここで、前記自由断面掘削機10は、掘削現場付近にて掘削機本体11に旋回部13が取り付けられ、掘削ブーム14や切削ドラム15等が装着される。前記自動追尾計測装置及びNC制御装置により切削ドラムの位置を正確に演算するために、機体を組み立てた後に、各装置の初期設定を行う必要がある。例えば掘削ブーム14についていえば、該掘削ブーム14を動かして実際の俯仰角及び旋回角を検出する。
【0017】
図3乃至図6に従って、自由断面掘削機10に於ける掘削ブーム14の俯仰角及び旋回角の検出方法について説明する。図3乃至図5に示すように、前記切削ドラム15の先端中央部であって、且つ、切削ドラム15の中心部Cを通る掘削ブーム14の中心軸線G上にブラケットピン33を突設し、このブラケットピン33の先端にブラケット34を枢着し、該ブラケット34がブラケットピン33の軸回りに左右方向へ回動できるようにする。そして、該ブラケット34の左右側面板34a,34bの間に保持具35を遊挿し、この保持具35にシャフト36を左右方向に遊嵌するとともに、該シャフト36の両端部をブラケットの左右側面板34a,34bへ取り付けて、前記保持具35が該シャフト36の軸回りに前後方向へ揺動できるようにしてある。
【0018】
また、前記保持具35の下端部にウエイト37が装着されており、前記保持具35及びブラケット34がブラケットピン33を回転軸として左右に傾斜したときは、該ウエイト37により前記保持具35が鉛直方向に戻される。一方、前記保持具35がシャフト36を回転軸として前後に傾斜したときも、該ウエイト37により前記保持具35が鉛直方向に戻される。即ち、前記保持具35が前後左右何れの方向へ傾斜したとしても、前記保持具35は直ちに鉛直方向に戻されて鉛直姿勢を保持する。
【0019】
更に、前記保持具35の上部には、測距用ターゲット38と補助用ターゲット39が固設され、該測距用ターゲット38はプリズムミラーにて形成されている。また、補助用ターゲット39は平板状のプレートであり、このプレート表面に保持具35の軸方向と平行にけがき線39aが記されている。前記保持具35は鉛直方向を保持するので、該測距用ターゲット38はブラケットピン33の鉛直面上方に位置し、補助用ターゲット39のけがき線39aは鉛直方向を示すことになる。
【0020】
予め、切削ドラム15の中心部Cから保持具35の揺動支点であるシャフト36までの距離L1 と、該シャフト36から測距用ターゲット38の基準点38aまでの高さH1 とを測定しておく。前記保持具35は掘削ブーム14の傾きに拘わらず鉛直姿勢を保持するため、切削ドラム15の中心部Cを通る鉛直線と保持具35が常に平行になり、切削ドラム15の中心部Cからシャフト36までを一辺(L1 )とし、且つ、該シャフト36から測距用ターゲット38の基準点38aまでを他の一辺(H1 )とする平行四辺形が形成される。従って、前記測距用ターゲット38の基準点38aの座標が分かれば、切削ドラム15の中心部Cの座標を演算することができる。
【0021】
而して、図6に示すように、前記旋回部13の上部にトータルステーション40を設置し、該トータルステーション40の回転部を掘削ブーム14の旋回中心線Oに一致させて、該トータルステーション40にて前記測距用ターゲット38を視準可能にする。掘削ブーム14の俯仰角及び旋回角に拘わらず、前記保持具35が鉛直姿勢を保持するので、測距用ターゲット38は常に掘削ブーム14の中心軸線Gの鉛直面上方に位置する。
【0022】
掘削ブーム14の俯仰角を検出する場合は、ブームシリンダ16を伸縮して掘削ブーム14を任意の角度に俯仰させ、トータルステーション40にて前記測距用ターゲット38を視準する。トータルステーション40から測距用ターゲット38までの距離及び角度によって、該測距用ターゲット38の座標(即ち測距用ターゲット38のプリズムミラーの位置から距離補正して求めた前記基準点38aの座標)を読み取る。前述したように、前記基準点38aの座標が分かれば切削ドラム15の中心部Cの座標を演算でき、更に、掘削ブーム14の俯仰中心点(図示せず)と切削ドラム15の中心部Cとの相対角度から、掘削ブーム14の実際の俯仰角を検出できる。
【0023】
一方、掘削ブーム14の旋回角を検出する場合は、前記旋回部13を任意の角度に旋回させ、トータルステーション40にて前記測距用ターゲット38を視準する。前述の俯仰角の検出と同様にして、前記測距用ターゲットの基準点38aの座標を読み取り、切削ドラム15の中心部Cの座標を演算して、掘削ブーム14の旋回中心線Oと前記切削ドラム15の中心部Cとの相対角度から、掘削ブーム14の実際の旋回角を検出できる。前記トータルステーション40は掘削ブーム14の旋回中心線O上に設置されるため、該トータルステーション40で機体座標系を組むことにより、掘削ブーム14の旋回角を直接測定できる。また、前記俯仰角についても演算が容易である。
【0024】
このように、掘削ブーム14の実際の俯仰角及び旋回角を検出した後、実際の検出角度とNC制御装置の角度検出器の検出値とを比較する。仮に、角度検出器の検出値に誤差があったときは、トータルステーションの視準に基づく実際の俯仰角または旋回角の値を、そのまま角度検出器の補正値として使用することができる。
【0025】
尚、本発明は、本発明の精神を逸脱しない限り種々の改変を為すことができ、そして、本発明が該改変されたものに及ぶことは当然である。
【0026】
【発明の効果】
以上説明したように、本発明は切削ドラムの先端部に保持具を介して測距用ターゲットを取り付け、掘削ブームを俯仰しながら、或いは、旋回部を旋回しながら、トータルステーションにて該測距用ターゲットの座標を読み取って、掘削ブームの俯仰角及び旋回角を検出する。旋回部の上部にトータルステーションを設置するので、掘削ブームの旋回角を直接測定でき、俯仰角についても演算が容易であり、簡易且つ正確に掘削ブームの角度を検出できる。
【0027】
また、トータルステーションの視準に基づく実際の俯仰角または旋回角の値を、そのまま角度検出器の補正値として使用することができ、NC制御装置の初期設定を簡便且つ迅速に行って、NC制御の精度向上を図ることができる。
【図面の簡単な説明】
図は本発明の一実施の形態を示すものである。
【図1】自由断面掘削機の側面図。
【図2】自由断面掘削機の正面図。
【図3】切削ドラムの先端部に装着された保持具及び測距用ターゲットの側面図。
【図4】図3のA−A矢視図。
【図5】(a)はブラケットピン及びブラケット部分の側面図、
(b)はブラケットピン及びブラケット部分の正面図。
【図6】トータルステーションにて測距用ターゲットを視準する様子を示す解説図。
【符号の説明】
10 自由断面掘削機
11 掘削機本体
13 旋回部
14 掘削ブーム
15 切削ドラム
35 保持具
38 測距用ターゲット
40 トータルステーション
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for detecting an elevation angle and a turning angle of an excavating boom in a free section excavator, and in particular, an optical automatic tracking measurement device and an NC control device, and the position and posture of the excavator body and the cutting drum. The present invention relates to a method for detecting an elevation angle and a turning angle of an excavating boom in a free section excavator that detects a position and controls a cutting range.
[0002]
[Prior art]
A conventional free-section excavator of this type is provided with a revolving part that can be rotated in the horizontal direction at the front part of the excavator body, and an extendable excavating boom is mounted on the revolving part so as to be able to be raised and lowered. The cutting drum is attached to the part.
[0003]
A plurality of optical automatic tracking measurement devices are installed in the tunnel, and the same number of tracking targets are mounted on the excavator body, and the position of the tracking target is detected by the automatic tracking measurement device. The position and orientation are measured, and the turning center point of the excavating boom is calculated based on the measured value.
[0004]
Further, the turning angle of the turning portion, the elevation angle of the excavating boom and the amount of expansion / contraction are detected by detectors, and the position of the cutting drum is calculated by the NC control device based on the detected values and the position information of the turning center point. . And the position of the cutting drum with respect to the preset planned cross section is displayed on the screen automatically and in real time. Further, when the cutting drum exceeds the planned cross section, the excavation boom is automatically stopped to prevent overdigging.
[0005]
Here, the free section excavator is generally used by lease, and after assembling the airframe near the excavation site, a drilling boom, a cutting drum, and the like are mounted. Therefore, it is necessary to perform initial setting of the automatic tracking measurement device and the NC control device after the assembly of the airframe. For example, regarding an excavation boom, the excavation boom must be moved to detect the actual elevation angle and turning angle, and an error from the detected angle of the NC control device must be corrected.
[0006]
Conventionally, a distance measuring target is fixed to the tip of the cutting drum, the distance measuring target is collimated from the front of the machine by a total station, and the coordinates of the cutting drum are read to calculate the elevation angle and the turning angle. .
[0007]
[Problems to be solved by the invention]
Conventionally, since the coordinates of the tip of the cutting drum are read from the outside of the machine body, the calculation processing of the coordinate conversion becomes complicated, and it takes time to calculate the elevation angle and the turning angle of the excavating boom. For this reason, initial setting at the time of assembling the airframe was difficult.
[0008]
Therefore, when a free-section excavator is assembled, a technical problem to be solved arises in order to easily detect the elevation angle and turning angle of the excavating boom and to perform the initial setting of the NC control device easily and quickly. Therefore, an object of the present invention is to solve this problem.
[0009]
[Means for Solving the Problems]
The present invention has been proposed to achieve the above object, and a revolving part that can be rotated horizontally is provided at the front part of the excavator body, and a telescopic excavation boom is mounted on the revolving part so as to be lifted and lowered. In a free section excavator having a cutting drum attached to the tip of the excavating boom,
Attach a holding tool that holds the vertical posture to the tip of the cutting drum, provide a target for distance measurement on the upper part of the holding tool, and make the rotating part of the total station coincide with the turning center of the excavating boom at the upper part of the turning part To make it possible to collimate the distance measuring target,
Raising the excavating boom to an arbitrary angle and collimating the distance measuring target,
The coordinates of the ranging target are read to detect the elevation angle of the excavating boom, while the turning unit is turned to an arbitrary angle and the ranging target is collimated,
Read the coordinates of the ranging target to detect the turning angle of the excavating boom ,
The actual elevation angle and turning angle of the excavating boom detected using the total station are compared with the detection values of the angle detector of the NC control device, and the excavation boom elevation in the free-section excavator that performs the initial setting of the NC control device An angle and turning angle detection method is provided.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. 1 and 2 show a free-section excavator 10, and left and right crawlers 12 a and 12 b are attached to the lower part of the excavator body 11, and the free-section excavator 10 can be self-propelled by driving the crawlers 12 a and 12 b. . A swivel portion 13 that can be rotated in the horizontal direction is provided at the front portion of the excavator body 11, and a telescopic excavation boom 14 is attached to the front portion of the swivel portion 13. A cutting drum 15 is attached.
[0011]
The excavating boom 14 can be lifted up and down by a boom cylinder 16 and can be expanded and contracted back and forth by an expansion / contraction cylinder 17. The cutting drum 15 can be moved to arbitrary coordinates within a predetermined range.
[0012]
On the other hand, a soil collecting device 20 is provided at the front lower part of the excavator main body 11 so as to be movable up and down, and the soil excavated by the cutting drum 15 is scraped by the soil collecting device 20. The scraped-up scrape is sent to the rear of the excavator main body 11 by the feeder 21 and loaded on a dump truck or other transport means by the belt conveyor 22. Further, left and right outriggers 23a and 23b are attached to the rear portion of the excavator body 11, and the respective outriggers 23a and 23b are formed so as to be movable up and down independently.
[0013]
Further, a pair of left and right tracking targets 30a and 30b are mounted on the gantry 28 of the excavator main body 11 facing rearward (leftward in FIG. 1), and each of the tracking targets 30a and 30b has a reflecting prism. And a light emitting element.
[0014]
Here, the optical automatic tracking measurement device will be described. Two tracking measurement devices (not shown) are installed in the rear position in the tunnel in advance, and the tracking measurement device and the light wave distance are installed in the tracking measurement device. A meter is provided. The light emitted from the light emitting elements of the tracking targets 30a and 30b is received by the tracking device of the tracking measurement device, and the servo motor is driven by detecting the deviation between the received light image and the optical axis, and the tracking targets 30a and 30b are automatically operated. To track. Further, the light emitted from the lightwave distance meter is reflected by the reflecting prisms of the tracking targets 30a and 30b, and the reflected light is received by the lightwave distance meter, whereby the distance between the tracking measurement device and the tracking targets 30a and 30b. Measure.
[0015]
In this way, the two tracking measuring devices detect the three-dimensional positions of the tracking targets 30a and 30b and continuously automatically track, detect the yawing angle of the excavator body 11, and are mounted on the excavator body 11. If the pitching angle and the rolling angle are detected by the two-axis inclinometer (not shown), the position and posture of the excavator body 11 can be continuously detected. Further, the position of the cutting drum 15 is determined by detecting the turning angle of the turning portion 13 and the elevation angle and the amount of expansion / contraction of the excavating boom 14 with a detector such as a potentiometer or a rotation sensor, respectively. Based on this, it is calculated by the NC controller.
[0016]
Here, the free section excavator 10 has a swivel portion 13 attached to an excavator main body 11 in the vicinity of an excavation site, and an excavation boom 14 and a cutting drum 15 are mounted. In order to accurately calculate the position of the cutting drum by the automatic tracking measurement device and the NC control device, it is necessary to perform initial setting of each device after assembling the machine body. For example, regarding the excavating boom 14, the excavating boom 14 is moved to detect the actual elevation angle and turning angle.
[0017]
A method for detecting the elevation angle and the turning angle of the excavation boom 14 in the free section excavator 10 will be described with reference to FIGS. 3 to 6. As shown in FIGS. 3 to 5, a bracket pin 33 protrudes from the center of the tip end of the cutting drum 15 and on the central axis G of the excavating boom 14 passing through the center C of the cutting drum 15, A bracket 34 is pivotally attached to the tip of the bracket pin 33 so that the bracket 34 can be rotated in the left-right direction around the axis of the bracket pin 33. A holder 35 is loosely inserted between the left and right side plates 34a and 34b of the bracket 34. The shaft 36 is loosely fitted in the holder 35 in the left and right direction, and both ends of the shaft 36 are connected to the left and right side plates of the bracket. It is attached to 34a, 34b so that the holder 35 can swing in the front-rear direction around the shaft 36.
[0018]
A weight 37 is attached to the lower end portion of the holder 35. When the holder 35 and the bracket 34 are tilted to the left and right with the bracket pin 33 as a rotation axis, the weight 37 causes the holder 35 to be vertical. Back in the direction. On the other hand, when the holder 35 is tilted back and forth with the shaft 36 as the rotation axis, the weight 35 returns the holder 35 to the vertical direction. That is, even if the holder 35 is inclined in any of the front, rear, left and right directions, the holder 35 is immediately returned to the vertical direction to hold the vertical posture.
[0019]
Further, a distance measuring target 38 and an auxiliary target 39 are fixed on the holder 35, and the distance measuring target 38 is formed by a prism mirror. The auxiliary target 39 is a flat plate, and a marking line 39a is written on the surface of the plate parallel to the axial direction of the holder 35. Since the holder 35 holds the vertical direction, the distance measuring target 38 is positioned above the vertical surface of the bracket pin 33, and the marking line 39a of the auxiliary target 39 indicates the vertical direction.
[0020]
The distance L1 from the center C of the cutting drum 15 to the shaft 36, which is the swing fulcrum of the holder 35, and the height H1 from the shaft 36 to the reference point 38a of the distance measuring target 38 are measured in advance. deep. Since the holder 35 maintains a vertical posture regardless of the inclination of the excavating boom 14, the vertical line passing through the center portion C of the cutting drum 15 and the holder 35 are always parallel, and the shaft extends from the center portion C of the cutting drum 15. A parallelogram having one side (L1) up to 36 and the other side (H1) from the shaft 36 to the reference point 38a of the distance measuring target 38 is formed. Therefore, if the coordinates of the reference point 38a of the distance measuring target 38 are known, the coordinates of the central portion C of the cutting drum 15 can be calculated.
[0021]
Thus, as shown in FIG. 6, the total station 40 is installed on the upper part of the revolving part 13, and the rotating part of the total station 40 is made to coincide with the revolving center line O of the excavating boom 14. The distance measuring target 38 can be collimated. Regardless of the elevation angle and swivel angle of the excavating boom 14, the holder 35 maintains a vertical posture, so that the distance measuring target 38 is always positioned above the vertical plane of the central axis G of the excavating boom 14.
[0022]
When detecting the elevation angle of the excavating boom 14, the boom cylinder 16 is expanded and contracted to elevate the excavating boom 14 to an arbitrary angle, and the distance measuring target 38 is collimated by the total station 40. Depending on the distance and angle from the total station 40 to the ranging target 38, the coordinates of the ranging target 38 (that is, the coordinates of the reference point 38a obtained by correcting the distance from the position of the prism mirror of the ranging target 38) are obtained. read. As described above, if the coordinates of the reference point 38a are known, the coordinates of the center portion C of the cutting drum 15 can be calculated. Further, the elevation center point (not shown) of the excavating boom 14 and the center portion C of the cutting drum 15 can be calculated. From the relative angle, the actual elevation angle of the excavating boom 14 can be detected.
[0023]
On the other hand, when detecting the turning angle of the excavating boom 14, the turning unit 13 is turned to an arbitrary angle, and the distance measuring target 38 is collimated by the total station 40. Similar to the detection of the elevation angle, the coordinates of the reference point 38a of the distance measuring target are read, the coordinates of the center portion C of the cutting drum 15 are calculated, and the turning center line O of the excavating boom 14 and the cutting are calculated. The actual turning angle of the excavating boom 14 can be detected from the relative angle with the center portion C of the drum 15. Since the total station 40 is installed on the turning center line O of the excavating boom 14, the turning angle of the excavating boom 14 can be directly measured by forming a body coordinate system at the total station 40. In addition, the above-described elevation angle can be easily calculated.
[0024]
Thus, after detecting the actual elevation angle and turning angle of the excavating boom 14, the actual detection angle is compared with the detection value of the angle detector of the NC control device. If there is an error in the detection value of the angle detector, the actual elevation angle or turning angle value based on the collimation of the total station can be used as it is as the correction value of the angle detector.
[0025]
It should be noted that the present invention can be variously modified without departing from the spirit of the present invention, and the present invention naturally extends to the modified ones.
[0026]
【The invention's effect】
As described above, according to the present invention, the distance measuring target is attached to the tip of the cutting drum via a holder, and the distance measuring target is measured at the total station while raising the excavating boom or turning the turning part. The coordinates of the target are read to detect the elevation angle and turning angle of the excavating boom. Since the total station is installed at the upper part of the turning part, the turning angle of the excavating boom can be directly measured, the calculation of the elevation angle is easy, and the angle of the excavating boom can be detected simply and accurately.
[0027]
In addition, the actual elevation angle or turning angle value based on the total station collimation can be used as the correction value of the angle detector as it is, and the initial setting of the NC control device can be performed easily and quickly, and the NC control Accuracy can be improved.
[Brief description of the drawings]
The figure shows an embodiment of the present invention.
FIG. 1 is a side view of a free section excavator.
FIG. 2 is a front view of a free section excavator.
FIG. 3 is a side view of a holder and a distance measuring target attached to the tip of a cutting drum.
4 is an AA arrow view of FIG. 3;
FIG. 5A is a side view of a bracket pin and a bracket portion;
(B) is a front view of a bracket pin and a bracket part.
FIG. 6 is an explanatory diagram showing a state in which the target for distance measurement is collimated at the total station.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Free section excavator 11 Excavator main body 13 Turning part 14 Excavation boom 15 Cutting drum 35 Holder 38 Distance measuring target 40 Total station

Claims (1)

掘削機本体の前部に水平方向へ回動可能な旋回部を設け、この旋回部に伸縮式の掘削ブームを俯仰可能に装着し、該掘削ブームの先端部に切削ドラムを取り付けた自由断面掘削機に於いて、
前記切削ドラムの先端部に鉛直姿勢を保持する保持具を装着し、該保持具の上部に測距用ターゲットを設けるとともに、トータルステーションの回転部を前記旋回部上部の掘削ブームの旋回中心点一致させて設置して前記測距用ターゲットを視準可能にし、
前記掘削ブームを任意の角度に俯仰して前記測距用ターゲットを視準し、
該測距用ターゲットの座標を読み取って掘削ブームの俯仰角を検出し、一方、前記旋回部を任意の角度に旋回して前記測距用ターゲットを視準し、
該測距用ターゲットの座標を読み取って掘削ブームの旋回角を検出し、
前記トータルステーションを用いて検出した掘削ブームの実際の俯仰角及び旋回角をNC制御装置の角度検出器の検出値と比較して、NC制御装置の初期設定を行うことを特徴とする自由断面掘削機における掘削ブームの俯仰角及び旋回角検出方法。
A free-form cross section excavator is provided with a revolving part that can be rotated in the horizontal direction at the front part of the excavator body, a telescopic excavation boom mounted on the revolving part, and a cutting drum attached to the tip of the excavation boom. In the machine
Attach a holding tool that holds the vertical posture to the tip of the cutting drum, provide a target for distance measurement on the upper part of the holding tool, and make the rotating part of the total station coincide with the turning center of the excavating boom at the upper part of the turning part To make it possible to collimate the distance measuring target,
Raising the excavating boom to an arbitrary angle and collimating the distance measuring target,
The coordinates of the ranging target are read to detect the elevation angle of the excavating boom, while the turning unit is turned to an arbitrary angle and the ranging target is collimated,
Read the coordinates of the ranging target to detect the turning angle of the excavating boom ,
The free section excavator characterized in that the initial setting of the NC control device is performed by comparing the actual elevation angle and turning angle of the excavating boom detected using the total station with the detected value of the angle detector of the NC control device. Method for detecting the elevation angle and turning angle of an excavating boom.
JP9838299A 1999-04-06 1999-04-06 Method for detecting elevation angle and turning angle of excavation boom in free section excavator Expired - Fee Related JP4175727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9838299A JP4175727B2 (en) 1999-04-06 1999-04-06 Method for detecting elevation angle and turning angle of excavation boom in free section excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9838299A JP4175727B2 (en) 1999-04-06 1999-04-06 Method for detecting elevation angle and turning angle of excavation boom in free section excavator

Publications (2)

Publication Number Publication Date
JP2000292167A JP2000292167A (en) 2000-10-20
JP4175727B2 true JP4175727B2 (en) 2008-11-05

Family

ID=14218330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9838299A Expired - Fee Related JP4175727B2 (en) 1999-04-06 1999-04-06 Method for detecting elevation angle and turning angle of excavation boom in free section excavator

Country Status (1)

Country Link
JP (1) JP4175727B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102626946B1 (en) * 2023-10-26 2024-01-18 주식회사 우림 Positioning System For Inspection Of Excavator Bbody

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138422A (en) * 2002-10-16 2004-05-13 Nishimatsu Constr Co Ltd Method of surveying in tunnel hole and system of surveying in tunnel hole
CN109579768A (en) * 2017-09-29 2019-04-05 北京航空航天大学 A kind of direct measuring method of inertially stabilized platform and passive damper relative rotation angle
JP7278021B2 (en) * 2021-03-03 2023-05-19 ドリルマシン株式会社 Drilling system using self-luminous markers
JP7278022B2 (en) * 2021-05-13 2023-05-19 ドリルマシン株式会社 Rock bolt drilling system using self-luminous markers
CN113931649B (en) * 2021-09-26 2023-09-26 中国矿业大学 Position and posture regulating and controlling method of tunnel boring machine
JP7291995B1 (en) 2022-01-07 2023-06-16 ドリルマシン株式会社 Pre-receiving steel pipe placing position guidance system
CN116838360B (en) * 2023-09-01 2024-02-20 山东星河工业科技有限公司 Tunneling host and tunneling machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102626946B1 (en) * 2023-10-26 2024-01-18 주식회사 우림 Positioning System For Inspection Of Excavator Bbody

Also Published As

Publication number Publication date
JP2000292167A (en) 2000-10-20

Similar Documents

Publication Publication Date Title
US9428885B2 (en) Guidance system for earthmoving machinery
US11919176B2 (en) Mobile construction robot
US6389345B2 (en) Method and apparatus for determining a cross slope of a surface
JP3010377B2 (en) Method and apparatus for aligning feed beams in rock drilling equipment
US8091256B2 (en) Loader elevation control system
US20080087447A1 (en) Control and method of control for an earthmoving system
US20220267999A1 (en) Position Detection Device and Method for Detecting the Position of a Bucket of an Excavator
JP2017181340A (en) Construction machine and calibration method of construction machine
WO2018164079A1 (en) Method for acquiring tilt sensor correction amount in construction work machinery
NL9301864A (en) System for positioning a pile driver or similar device.
JP4175727B2 (en) Method for detecting elevation angle and turning angle of excavation boom in free section excavator
JP2011236589A (en) Excavator
JPH0843084A (en) Multifunctional measurement vehicle for tunnel
JP2003262090A (en) Position measuring device for tunnel excavator
JP4024422B2 (en) NC control accuracy confirmation method of cutting drum in free section excavator
JP4208336B2 (en) Tracking return method of automatic tracking measurement system
JP4067687B2 (en) Method for confirming damage to moving parts of free section excavator
JP4029953B2 (en) Accuracy check method of over-digging prevention device in free section excavator
JP4278766B2 (en) Method for detecting swivel center of swivel in free section excavator
JPH0814234B2 (en) Method and device for detecting position and orientation of tunnel excavator
JP4024421B2 (en) Horizontal installation method of free section excavator
JPH0611344A (en) Measuring method of position and attitude of moving body
JP2942109B2 (en) How to excavate a tunnel excavator
JPH0438399A (en) Position detecting device for excavator
JP2021001435A (en) Work machine and control method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031009

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees