JP4174898B2 - 超音波探傷装置および超音波探傷方法 - Google Patents

超音波探傷装置および超音波探傷方法 Download PDF

Info

Publication number
JP4174898B2
JP4174898B2 JP07685199A JP7685199A JP4174898B2 JP 4174898 B2 JP4174898 B2 JP 4174898B2 JP 07685199 A JP07685199 A JP 07685199A JP 7685199 A JP7685199 A JP 7685199A JP 4174898 B2 JP4174898 B2 JP 4174898B2
Authority
JP
Japan
Prior art keywords
bellows member
detection
flaw detection
ultrasonic
ultrasonic flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07685199A
Other languages
English (en)
Other versions
JP2000266735A (ja
Inventor
誠治 野田
貴也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP07685199A priority Critical patent/JP4174898B2/ja
Publication of JP2000266735A publication Critical patent/JP2000266735A/ja
Application granted granted Critical
Publication of JP4174898B2 publication Critical patent/JP4174898B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、検出部から発射する超音波によって、ベローズ部材を探傷する超音波探傷装置および超音波探傷方法に関する。
【0002】
【従来の技術】
例えば、ガスタービン等を備える装置での蒸気配管には、配管の熱収縮等を吸収する手段として、蛇腹状のベローズ部材を有する伸縮管継手が用いられることがある。こうした伸縮管継手のベローズ部材は、伸縮時の繰り返し応力による疲労等によって徐々に、ベローズ部材の一部に傷(クラック)が生じることが多い。こうしたクラックは、一般には、応力分布の特性などによりベローズ部材の内側の凹面の中央部に生じる。そして、こうしたクラックが一定以上の大きさになると、ベローズ部材が損傷する恐れが増大し、ガスタービン等の装置に不具合を生じさせてしまう可能性が大きくなる。このため、従来、こうした装置では、ベローズ部材を有する伸縮管継手を、所定の使用期間経過ごとに、新しいものに交換するといったことを行っている。
【0003】
【発明が解決しようとする課題】
しかしながら、上述したように、所定の期間経過ごとに伸縮管継手を交換していると、ベローズ部材にクラックの生じていない伸縮管継手、すなわち、まだ継続して使用可能な伸縮管継手まで交換する場合が生じるため、交換部品コストに多大な無駄が生じてしまう。また、これまで、ベローズ部材のクラックを探傷する技術が確立されていないので、所定の期間が経過していない伸縮管継手であっても、ベローズ部材のクラックによる損傷の恐れを拭い去ることができず、そのため、ベローズ部材のクラックを原因とする装置の不具合の可能性を低くすることは困難であった。
【0004】
本発明は、このような問題点に鑑みてなされたもので、ベローズ部材の探傷技術を確立し、ベローズ部材を備える部品の交換コストの低減を図るとともに、ベローズ部材のクラックを原因とする装置の不具合の可能性を低くすることを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決するため、第1の発明は、検出部から発射する超音波によってベローズ部材を探傷する超音波探傷装置であって、検出部の一部であるとともにベローズ部材の凹部に挿入されてベローズ部材の凹面に超音波を発射する検出ヘッドと、検出ヘッドを凹面に沿って相対的に周回させる走査手段とを備える技術が採用される。
【0006】
この超音波探傷装置は、検出ヘッドが、ベローズ部材の凹部に挿入された状態で、ベローズ部材の凹面に超音波を発射しながら凹面に沿って相対的に周回する。そのため、ベローズ部材でのクラックの発生場所である凹面を超音波によって連続的に探傷することが可能となる。
【0007】
第2の発明は、第1の発明に係る超音波探傷装置において、ベローズ部材と検出部との間に水を介在させるための給水手段を備える技術が採用される。この超音波探傷装置では、給水手段によって、ベローズ部材と検出部との間に水が介在するようになり、また、超音波は空気中に比べて水中では減衰しにくいので、検出部から発射された超音波がベローズ部材に届くまでの間に減衰されにくくなる。
【0008】
第3の発明は、第1または第2の発明に係る超音波探傷装置において、走査手段は、ベローズ部材の一端開口部に取り付けられる取付部と、取付部の内方でベローズ部材の軸心を中心に回転自在に設置される回転部と、ベローズ部材の軸方向へ移動自在に回転部に設置されるシャフト部とを備え、検出部は、シャフト部の一端に設置される技術が採用される。この超音波探傷装置では、ベローズ部材の開口部の内方で回転する回転部にシャフト部が設置され、このシャフト部の一端に検出部が設置されるので、ベローズ部材の内側で検出部が周回するようになる。また、シャフト部は、ベローズ部材の軸方向へ移動自在に設置されるので、ベローズの凹部ごとに検出部を移動させることが可能となる。
【0009】
第4の発明は、第3の発明に係る超音波探傷装置において、シャフト部は、ベローズ部材の軸心から偏心して回転部に設置される技術が採用される。この超音波探傷装置では、シャフト部が偏心して回転部に設置されているので、シャフト部自身を回転させることで、シャフト部の一端に取り付けられた検出部の検出ヘッドがベローズ部材の凹部に挿入されたり抜き出されたりするようになる。
【0010】
第5の発明は、第3または第4の発明に係る超音波探傷装置において、走査手段は、軸方向へのシャフト部の移動先を位置決めするための位置決め手段を備える技術が採用される。この超音波探傷装置では、位置決め手段によって、軸方向へのシャフト部の移動先が位置決めされるので、ベローズ部材の凹部から他の凹部への検出部の移動を行うことが可能となる。
【0011】
第6の発明は、超音波によって、ベローズ部材を探傷する超音波探傷方法であって、ベローズ部材の凹面に沿って、超音波の発射場所を相対的に周回させる技術が採用される。この超音波探傷方法は、ベローズ部材の凹面に沿って超音波の発射場所を相対的に周回させるので、ベローズ部材でのクラックの発生場所である凹面を超音波によって連続的に探傷することが可能となる。
【0012】
第7の発明は、第6の発明に係る超音波探傷方法において、水を介してベローズ部材の凹面に超音波を発射する技術が採用される。この超音波探傷方法では、水を介してベローズ部材に超音波を発射するので、超音波が水を媒体とすることで減衰しにくくなる。
【0013】
第8の発明は、第6の発明に係る超音波探傷方法において、軸心を水平にして設置されたベローズの凹部の一部に水を溜めて、この水を介してベローズの凹面に超音波を発射するとともに、ベローズを回転させる技術が採用される。この超音波探傷方法では、軸心を水平にして設置されたベローズ部材の凹部の一部に水を溜めて、この水を介して凹面に超音波を発射しながらベローズ部材を回転させることにより、凹部の一部のみに連続的に水を供給しながらベローズ部材を超音波探傷することが可能となる。
【0014】
【発明の実施の形態】
以下、本発明の一実施形態について図1〜図3を参照して説明する。
図1は、本実施形態の超音波探傷装置を、ベローズ部材を有する伸縮管継手に取り付けた様子を示している。この図1において、符号Bは伸縮管継手、符号1は検出部、符号2は制御手段、符号3は走査手段、符号4は水槽をそれぞれ示し、本実施形態の超音波探傷装置は、検出部1、制御手段2、走査手段3、水槽4を主体として構成されている。
【0015】
伸縮管継手Bが有するベローズ部材Baは、本実施形態では、円形(筒状)であり、ベローズ部材Baの材質にはステンレス鋼が用いられている。伸縮管継手Bは、ベローズ部材Baの中心軸Bm方向(上下方向)の両端に連結用のフランジBbを備えていて、この両端のフランジBbは、フランジBb同士の距離を定めるように、ボルトナットBcで両者の外周面同士が結ばれている。また、伸縮管継手Bは、中心軸Bmを垂直方向に立てた状態で、超音波探傷装置が備える設置部材10に搭載されることにより、水槽4内に設置されている。
【0016】
検出部1は、超音波を発射してベローズ部材Ba内部で反射された超音波(エコー)を受信するものであり、制御手段2に接続されている。また、検出部1は、略直方体状に形成されていて、その一面から棒状に突出した検出ヘッド1aを備えている。この検出ヘッド1aは、ベローズ部材Baの凹部Ba1に挿入されて、先端部からベローズ部材Baの凹面Ba2へ超音波を発射するようになっている。また、制御手段2は、図示しない電源部、制御部およびモニタ2aを備え、検出部1に受信されたエコーをモニタ2a上に表示するようになっている。
【0017】
走査手段3は、検出ヘッド1aを凹面Ba2に沿って周回させるためのものであり、ベローズ部材Baの上端開口部のフランジBbに締結される取付部11と、取付部11の内方でベローズ部材Baの中心軸Bmを中心に回転自在に設置される回転部12と、中心軸Bm方向(上下方向)へ移動自在に回転部12に設置されるシャフト部13とを備えている。
【0018】
このうち、取付部11は、中央部に凹部を持つ円盤状に形成され、凹部にはベアリング14が嵌合されている。さらに、取付部11の外側の端面には伸縮管継手BのフランジBbに連結されるように所定のピッチ径でボルト孔が形成されている。
【0019】
回転部12は、上部に段差面を有する略円柱状に形成され、下部がベアリング14の孔に嵌合されている。これにより、回転部12は、ベローズ部材Baの中心軸Bmを中心として回転するようになっている。回転部12の上端面には中心軸Bmから偏心した状態で、回転時の保持手段となる取っ手15が設置されている。また回転部12には、中心軸Bmから偏心した位置に貫通孔12aが形成され、この貫通孔12aにシャフト部13が挿入されている。
【0020】
シャフト部13は、丸棒部材から形成されていて、下方の先端に検出部1が接合されている。さらに、内部には検出部1と制御手段2とを接続するための導体(図示なし)が配されている。また、シャフト部13には、中心軸Bm方向(上下方向)への移動先を位置決めするための位置決め手段として、外周面に目盛13aが刻まれている。この目盛13aは、ベローズ部材Baの凹部Ba1同士のピッチ距離とほぼ同一ピッチで刻まれている。また、シャフト部13には、シャフト部13と回転部12とを固定するための円筒状のソケット16が取り付けられている。
【0021】
ソケット16は、内周面でシャフト部13と当接し、下端面で回転部12の上端面と当接するように配され、目盛13aをソケット16の上端面に合わせることで、検出ヘッド1aがベローズ部材Baの凹部Ba1とほぼ同じ高さとなるようになっている。また、ソケット16にはネジ孔が形成されていて、ボルト17をねじ込むことでソケット16とシャフト部13とを固定するようになっている。さらにソケット16の下端面には、ソケット16の位置決め用の図示しないボールプランジャが設置されていて、回転部12に形成される位置決め用のピン穴(図示なし)にボールプランジャの先端部が挿入するようになっている。
【0022】
水槽4は、ベローズ部材Baと検出部1との間に水を介在させるための給水手段であり、内部に伸縮管継手Bを設置可能な所定の大きさで形成され、ベローズ部材Baがすべて浸るように内部に水が溜められるようになっている。これにより、ベローズ部材Baの凹部Ba1すべてが水で充たされるようになっている。
【0023】
次に、このように構成された超音波探傷装置を用いたベローズ部材Baの超音波探傷方法の一例について、検出部1の動きを中心に図1〜図3を参照して説明する。
【0024】
超音波探傷を開始するにあたっては、検出部1のキャリブレーションが前もって行われており、これにより受信されるエコーの判定基準の校正が既に行われているものとする。また、制御手段2の電源は予め投入されており、検出部1から安定して超音波を発射している状態にある。なお、本実施形態での超音波の波長には、10〜25MHzを用いている。
【0025】
まず、水槽4内に検査対象の伸縮管継手Bを設置して水を溜める。このときの水の量は、伸縮管継手Bのベローズ部材Baが水に十分に浸る量である。そして、ベローズ部材Baの凹部Ba1に気泡が残留している場合は、伸縮管継手Bを動かすなどして凹部Ba1に気泡が残らないようにする。なお、ここで超音波探傷に水を用いるのは、ある大きさの波長以上の超音波は空気中で著しく減衰してしまうので、媒体として水を用いることで超音波が減衰されにくくするためである。
【0026】
次に、取付部11、回転部12、シャフト部13、およびベアリング14等によって組み立てられた走査手段3を、伸縮管継手Bにボルトナットで締結する。このとき、シャフト部13は、回転部12のベローズ部材Ba側から挿入され、ソケット16のボルト17によって仮止めされる。またこのとき、シャフト部13の下端に接合されている検出部1は、ベローズ部材Baと干渉しないように、図1の2点鎖線で示す検出ヘッド1aを内方へ向けた状態で、ベローズ部材Ba内へ投入される。
【0027】
続いて、シャフト13に刻まれている目盛13aのうち所定の目盛13aを、ソケット16の上端面に合わせ、ボルト17でその位置を固定する。所定の目盛13aをソケット16の上端面に合わせることで、検出ヘッド1aが所定の凹部Ba1と同じ高さに配される。そして、シャフト部13自身を回転させて、内方に向いている検出ヘッド1aを外方、すなわちベローズ部材Ba側へ向ける。これにより、検出ヘッド1aがベローズ部材Baの凹部Ba1に挿入された状態となる。またこのとき、検出ヘッド1aが正しく凹部Ba1へ挿入されると、図示しないボールプランジャによってシャフト部13が係止されて位置決めされるようになっている。
【0028】
検出ヘッド1aを凹部Ba1に挿入した後、取っ手15を動かして回転部12を回転させる。これにより、シャフト部13およびシャフト部13の下端に接合されている検出部1が、ベローズ部材Baの中心軸Bmを中心として周回する。
【0029】
ここで図2は、図1に示すA−A断面図である。シャフト部13は中心軸Bmに偏心して設置されており、図2に示すように、検出部1は、中心軸Bmを中心に所定のピッチ円周P1上を周回し、これにともなって超音波を発射する検出ヘッド1aがベローズ部材Baの凹面Ba2に沿って周回する。
【0030】
そして、図3は検出ヘッド1aから発射された超音波(Uw)の様子を示す模式図である。図3に示すように、検出ヘッド1a内に備えられた素子1bから発射された超音波(Uw)は、検出部1(検出ヘッド1a)とベローズ部材Baとの間の水(W)を介して、ベローズ部材Baの凹面Ba2で屈折し、そして、ベローズ部材Ba内部を反射しながら進んでいく。ベローズ部材Ba内部を進んだ超音波(Uw)の一部は、ベローズ部材Ba内部のいずれかの部分で反射され、反射された超音波の一部は、再び素子1bへ戻ることになる。また、超音波(Uw)の経路上に傷(クラックCR)があると、クラックCRによって超音波の一部が反射されて、進んできた経路を逆に戻り、その超音波(エコー)が素子1bに受信される。
【0031】
ところで、ベローズ部材Baでは、一般に、応力分布の特性などによりほぼ凹面Ba2の中央部にクラックCRが生じることが分かっている。そこで、本実施形態では、クラックCRが生じる凹面Ba2の中央部に超音波が当たるように、超音波の進路計算を元に素子1bの角度などが設定されている。そして、超音波の進路を元に、発射された超音波がクラックCRで反射され、再び素子1bで受信されるまでの時間差(受信時間差)が予め算出されている。すなわち、この受信時間差で受信されたエコーは、クラックCRで反射されたものである可能性が極めて高いことになる。
【0032】
また、超音波は、クラックCRが大きいほどクラックCRで反射される超音波が多くなり、モニタ2aに強く現れるようになる。よって、モニタ2aに表示される所定の受信時間差範囲内のエコーの大きさで、ベローズ部材BaのクラックCRの大きさを相対的に推定できることになる。
【0033】
そして、検出ヘッド1aをベローズ部材Baの凹面Ba2に沿って周回させながら、制御手段2のモニタ2aによって受信されるエコーの状態を確認し、所定の受信時間差範囲内に所定の判断基準以上のエコーが現れるか否かを連続的に検査する。このとき、所定の判断基準以上のエコーが現れた場合は、そのときのエコーの大きさを記録するとともに、エコーが現れた探傷場所を記録する。そして、検出ヘッド1aを一周させることで、一つの凹部Ba1の探傷が終了する。
【0034】
一つの凹部Ba1の探傷が終了すると、次の凹部Ba1の探傷を行う。まず、シャフト部13を回転させて検出ヘッド1aを再び内方に向けた後、シャフト部13を中心軸Bm方向(上下方向)に移動させる。目盛13aピッチは、凹部Ba1同士のピッチとほぼ同じ距離で刻まれているので、次の目盛13aをソケット16の上端面に合わせることで、検出ヘッド1aが次の凹部Ba1と同じ高さになる。そして、上述した動作と同様に、検出ヘッド1aを凹面Ba2に沿って回転させて超音波探傷を行う。こうした一連の動作を各凹部Ba1ごとに繰り返して行うことによって、ベローズ部材Baの凹部Ba1のすべてを探傷する。
【0035】
図4は、ベローズ部材Baの凹面Ba2の中央部に人工的に形成した3種類のクラックCRを、上述した実施形態の超音波探傷装置および方法によって探傷し、そのときのモニタ2aでの出力表示を示している。そして、図4において、
(a):クラックCRの形成されていない健全部
(b):長さ1.0mm,深さ0.3mm,幅0.07mmのクラックCR1
(c):長さ1.5mm,深さ0.5mm,幅0.07mmのクラックCR2
(d):長さ2.0mm,深さ0.7mm,幅0.07mmのクラックCR3
を探傷した結果をそれぞれ示している。また、探傷時の周波数は15MHzであり、横軸は受信時間差を距離に換算したもの(単位:mm)、縦軸はエコーの大きさ(単位:%)を示している。
【0036】
この図4を見ると、横軸24〜26(mm)の領域において、(a)では検出されていなかったエコーが、(b)(c)(d)に進むに従って大きく検出されていることが分かる。すなわち、この領域で検出されているエコーがベローズ部材Baの凹面Ba2に形成されたクラックCRであると推定され、そして、クラックCR1からクラックCR2、そしてクラックCR3へと、クラックCRが大きくなるに従い、前述したようにモニタ2aに強くエコーが現れている。これにより、本実施形態で示した装置および方法によって、ベローズ部材BaのクラックCRを探傷可能であることが分かる。
【0037】
このように本実施形態では、ベローズ部材Baの取付部11の内方で回転する回転部12にシャフト部13が設置され、このシャフト部13の下端に検出ヘッド1aを有する検出部1が設置されるので、ベローズ部材Baの内側で検出部1が周回するとともに、検出ヘッド1aがベローズ部材Baの凹面Ba2に挿入された状態で、凹面Ba2に超音波を発射しながら凹面Ba2に沿って周回することになり、ベローズ部材Baでのクラックの発生場所である凹面Ba2を超音波によって連続的に探傷することができる。さらに、ベローズ部材Baの内側で検出部1による探傷動作が行われるので、ベローズ部材Baの周囲の状態に制約されることなく小さなスペースで容易にベローズ部材Baを超音波探傷することができる。
【0038】
よって、ベローズ部材Baの探傷技術を実現できるとともに、ベローズ部材BaのクラックCRの様子を探ることが容易となるので、ベローズ部材BaのクラックCRを原因とする装置の不具合の可能性を低くすることができる。また、クラックの生じている伸縮管継手Bのみを新しいものと交換するといったことが可能となるので、交換部品コストを大幅に低減することができる。
【0039】
また、本実施形態では、水槽4に水を溜めることによって、ベローズ部材Baと検出部1との間に水を介在させているので、ベローズ部材Baと検出部1との間で超音波が減衰しにくくなり、確実に安定してベローズ部材Baを探傷することができる。
【0040】
さらに、シャフト部13が偏心して回転部12に設置されているので、シャフト部13自身を回転させることで、シャフト部13の下端に接合された検出部1の検出ヘッド1aがベローズ部材Baの凹部Ba1に挿入されたり抜き出されたりするようになる。そのため、複雑な機構を必要とすることなく、シンプルな構造で検出ヘッド1aを凹部Ba1から抜き出して他の凹部Ba1へ挿入するといったことを実現できる。
【0041】
また、本実施形態では、目盛13aによってシャフト部13の移動先が位置決めされるので、ベローズ部材Baの凹部Ba1から他の凹部Ba1への検出ヘッド1aの移動を確実に行うことができる。このため、ベローズ部材Ba内側の検出部1の動きが目視にて確認できない場合でも、確実に、検出部1をベローズ部材Baの凹部Ba1へ移動させることができる。
【0042】
なお、本実施形態では、円形のベローズ部材Baに対して超音波探傷を行っているが、ベローズ部材は円形に限るものではなく、矩形であってもよい。ベローズ部材が矩形の場合は、走査手段を、例えば検出部を矩形に周回させるような矩形の走査溝を備える構成とすることで適用可能となる。また、ベローズ部材の材質も本実施形態で示したステンレス鋼に限るものではなく、ベローズ部材に用いられる材質に応じて制御手段を調節することにより、軟鋼やゴム材質といった材質にも対応することが可能である。そのため、超音波探傷に用いられる波長も本実施形態で示した10〜25Hzに限られるものではない。
【0043】
また、本実施形態では、一つの検出部1を用いてベローズ部材Baの凹部Ba1を順に探傷しているが、複数の検出部を用いてもよい。検出部を複数とすることで、探傷作業に要する時間を低減するといったことが可能となる。
【0044】
さらに、本実施形態では、回転部12を人が回転させて検出部1を周回させていたが、これはもちろん、例えば電動モータ等の駆動手段を用いて、自動的に検出部1を回転させたり、あるいは、ベローズ部材Baの軸方向(上下方向)へ移動させるといったことを行ってもよい。これにより、より正確に検出部1の位置決めが行えるようにすることが可能となるととともに、探傷に要する労力を大幅に低減することが可能となる。
【0045】
また、本実施形態のように、ベローズ部材Ba内部側から探傷するのではなく、外側から探傷するといった構成でも本発明は適用可能である。この場合、一般には、探傷するためのスペースが大きくなったり、探傷装置が大きくなったりする。しかしながら、ベローズ部材Baを装置の配管部から取り外すことなく、超音波探傷可能な構成とすることで、伸縮管継手Bの脱着・取付のための労力を低減させることが可能となる。
【0046】
さらには、本実施形態のように、検出ヘッド1aを周回させるのではなく、ベローズ部材Baを回転させることによって、検出ヘッド1aを凹面Ba2に沿って相対的に周回させてもよい。この場合、例えば、走査手段3をベローズ部材Baに取り付けるのではなくベローズ部材Baと独立した構成とすることで、一つの走査手段3で大きさの異なる複数種類のベローズ部材Baの超音波探傷を行うことが可能となる。
【0047】
また、本発明の超音波探傷装置の他の実施形態として、軸心を水平にして設置されたベローズ部材の凹部の一部、すなわち下側に配される凹部に水を溜めて、この水を介してベローズ部材の凹面に超音波を発射するともに、このベローズ部材を回転させるような構成としてもよい。この実施形態では、軸心を水平にしてベローズ部材が設置されることで、ベローズ部材の凹部の一部にのみ水が溜まるようになり、そして、この水を介して凹面に超音波を発射しながらベローズ部材を回転させることにより、凹部の一部のみに連続的に水を供給しながらベローズ部材を超音波探傷できるようになる。このため、前述した実施形態のように、水槽を用いてベローズ部材を水中に浸水させるといった必要がなく、小さなスペースでベローズ部材を超音波探傷することができる。
【0048】
【発明の効果】
以上説明したように、この発明によれば以下の効果を得ることができる。第1の発明に係る超音波探傷装置は、検出ヘッドが、ベローズ部材の凹部に挿入された状態で、ベローズ部材の凹面に超音波を発射しながら凹面に沿って相対的に周回するので、ベローズ部材でのクラックの発生場所である凹面を超音波によって連続的に探傷することができる。このため、ベローズ部材の探傷技術を実現できるとともに、ベローズ部材のクラックCRの様子を探ることが容易となるので、ベローズ部材のクラックを原因とする装置の不具合の可能性を低くすることができる。また、クラックの生じている伸縮管継手のみを新しいものと交換するといったことが可能となるので、交換部品コストを大幅に低減することができる。
【0049】
第2の発明に係る超音波探傷装置では、給水手段によって、ベローズ部材と検出部との間に水が介在するようになり、ベローズ部材と検出部との間で超音波が減衰されにくくなるので、確実に安定してベローズ部材を探傷することができる。
【0050】
第3の発明に係る超音波探傷装置では、ベローズ部材の開口部の内方で回転する回転部にシャフト部が設置され、このシャフト部の一端に検出部が設置され、また、シャフト部がベローズ部材の軸方向へ移動自在に設置されるので、ベローズ部材の内側で検出部が周回するとともに、ベローズの凹部ごとに検出部を移動させることができるようになり、ベローズ部材の超音波探傷を実現することができる。また、ベローズ部材の内側で検出部による探傷動作が行われるので、ベローズ部材の外側の状態に制約されることなく小さなスペースで容易にベローズ部材を超音波探傷することができる。
【0051】
第4の発明に係る超音波探傷装置では、シャフト部が偏心して回転部に設置されているので、シャフト部自身を回転させることで、シャフト部の一端に取り付けられた検出部の検出ヘッドがベローズ部材の凹部に挿入されたり抜き出されたりするようになり、検出ヘッドを凹部へ挿入する動作を容易に行える。そのため、複雑な機構を必要とすることなく、シンプルな構造で検出ヘッドを凹部から他の凹部へ移動させることができる。
【0052】
第5の発明に係る超音波探傷装置では、位置決め手段によって、軸方向へのシャフト部の移動先が位置決めされるので、ベローズ部材の凹部から他の凹部への検出部の移動を確実に行うことができる。このため、ベローズ部材内側の検出部の動くが目視にて確認できない場合でも、確実に、検出部を所定の位置に移動させることができる。
【0053】
第6の発明に係る超音波探傷方法は、ベローズ部材の凹面に沿って超音波の発射場所を相対的に周回させるので、ベローズ部材でのクラックの発生場所である凹面を連続的に探傷することができる。
【0054】
第7の発明に係る超音波探傷方法では、水を介してベローズ部材の凹面に超音波を発射する技術が採用される。この超音波探傷方法では、水を介してベローズ部材に超音波を発射するので、超音波が水を媒体とすることで減衰しにくくなり、確実に安定してベローズ部材を探傷することができる。
【0055】
第8の発明に係る超音波探傷方法では、水平に設置されたベローズ部材の凹部の一部に水を溜めて、この水を介して凹面に超音波を発射しながらベローズ部材を回転させることにより、凹部の一部のみに連続的に水を供給させながらベローズ部材を超音波探傷することができる。このため、水槽等を用いてベローズ部材を水中に浸水させるといった必要がなく、小さなスペースでベローズ部材を超音波探傷することができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態を伸縮管継手に取り付けた様子を示す側面図である。
【図2】 図1に示すA−A断面図である。
【図3】 本発明の一実施形態の検出ヘッドから発射された超音波の様子を示す模式図である。
【図4】 本発明の一実施形態による探傷結果を示す説明図である。
【符号の説明】
B 伸縮管継手
Ba ベローズ部材
Ba1 凹部
Ba2 凹面
Bm 中心軸
1 検出部
1a 検出ヘッド
3 走査手段
4 水槽(給水手段)
11 取付部
12 回転部
13 シャフト部
13a 目盛(位置決め手段)

Claims (4)

  1. 検出部から発射する超音波によってベローズ部材を探傷する超音波探傷装置であって、
    前記検出部の一部であるとともに前記ベローズ部材の凹部に挿入されて該ベローズ部材の凹面に超音波を発射する検出ヘッドと、
    該検出ヘッドを前記凹面に沿って相対的に周回させる走査手段とを備え、
    該走査手段は、前記ベローズ部材の一端開口部に取り付けられる取付部と、該取付部の内方で該ベローズ部材の軸心を中心に回転自在に設置される回転部と、該ベローズ部材の軸方向へ移動自在に且つ該ベローズ部材の軸心から偏心して該回転部に設置されるシャフト部とを備え、前記検出部は、該シャフト部の一端に設置されることを特徴とする超音波探傷装置。
  2. 前記ベローズ部材と前記検出部との間に水を介在させるための給水手段を備えることを特徴とする請求項1記載の超音波探傷装置。
  3. 前記走査手段は、前記軸方向への前記シャフト部の移動先を位置決めするための位置決め手段を備えることを特徴とする請求項1または2に記載の超音波探傷装置。
  4. 超音波によって、ベローズ部材を探傷する超音波探傷方法であって、軸心を水平にして設置された前記ベローズ部材の凹部の一部に水を溜めて、該水を介して該ベローズ部材の凹面に超音波を発射するとともに、該ベローズ部材を回転させることを特徴とする超音波探傷方法。
JP07685199A 1999-03-19 1999-03-19 超音波探傷装置および超音波探傷方法 Expired - Fee Related JP4174898B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07685199A JP4174898B2 (ja) 1999-03-19 1999-03-19 超音波探傷装置および超音波探傷方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07685199A JP4174898B2 (ja) 1999-03-19 1999-03-19 超音波探傷装置および超音波探傷方法

Publications (2)

Publication Number Publication Date
JP2000266735A JP2000266735A (ja) 2000-09-29
JP4174898B2 true JP4174898B2 (ja) 2008-11-05

Family

ID=13617169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07685199A Expired - Fee Related JP4174898B2 (ja) 1999-03-19 1999-03-19 超音波探傷装置および超音波探傷方法

Country Status (1)

Country Link
JP (1) JP4174898B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7178341B2 (en) * 2004-06-17 2007-02-20 Siemens Power Generation, Inc. Multi-zone tubing assembly for a transition piece of a gas turbine
US20070289385A1 (en) * 2004-09-16 2007-12-20 Nsk Ltd. Ultrasonic Flaw Detection Method For Roller Bearing, And Method For Detecting Flaws
CN113984303B (zh) * 2021-10-29 2024-03-22 江西南塑科技有限公司 一种波纹管性能检测装置

Also Published As

Publication number Publication date
JP2000266735A (ja) 2000-09-29

Similar Documents

Publication Publication Date Title
CN102341700B (zh) 低外形超声波检查扫描仪
US6904818B2 (en) Internal riser inspection device
US20020134161A1 (en) Guided acoustic wave inspection system
US20070140403A1 (en) Method for inspection and maintenance of an inside of a nuclear power reactor
US6530278B1 (en) Ultrasonic testing of tank car welds
MX2014015677A (es) Sistemas y metodos para inspeccion, preparacion, y mantenimiento de recipiente.
JP4174898B2 (ja) 超音波探傷装置および超音波探傷方法
KR102013918B1 (ko) 이동검사장치 및 이를 포함하는 라이너플레이트 검사 시스템
KR101377448B1 (ko) 협소한 장소의 용접 비드부에 대한 수침 초음파 탐상장치
JP2000073389A (ja) 既存杭の健全性調査方法及び健全性調査装置
JPH04230847A (ja) 類似設計ガスボンベのネック−ショルダー内部欠陥を速やかに検査するための超音波試験装置と試験法
KR101922111B1 (ko) 초음파 탐촉자 검사 장치
CN108291894B (zh) 用于检查垫圈焊接部的方法、系统和固定装置
JP3567583B2 (ja) 水中移動ロボットの位置決め方法
JP2000249783A (ja) 炉内配管溶接部の位置検出方法およびその装置
JP3925470B2 (ja) 更生管検査装置及び該装置を用いた更生管検査システム
EP2947419A1 (en) Device for inspecting a surface of a wall
KR101908598B1 (ko) 자력 탈부착 구조가 구비된 비파괴 내부 회전 검사 시스템용 보조 장치
KR102273580B1 (ko) 라이너플레이트 배면 공극 검사장치 및 이를 이용한 라이너플레이트 배면 공극 검사방법
KR101103801B1 (ko) 협소 공간 필렛용접부 체적검사용 스캐너
KR102164938B1 (ko) 격납건물 라이너플레이트 검사 시스템의 제어방법 및 라이너플레이트 검사 방법
JP2001099817A (ja) 超音波探傷装置
EP4310493A1 (en) Inspection device for tubular good with ultrasonic sensors
KR101202185B1 (ko) 터빈로터 중심공을 통한 휠 도브테일 자동 초음파탐상 방법
JP2001116878A (ja) 原子炉内配管溶接部の検査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees