JP4173744B2 - 燃料電池ユニットおよびその運転方法 - Google Patents
燃料電池ユニットおよびその運転方法 Download PDFInfo
- Publication number
- JP4173744B2 JP4173744B2 JP2003020959A JP2003020959A JP4173744B2 JP 4173744 B2 JP4173744 B2 JP 4173744B2 JP 2003020959 A JP2003020959 A JP 2003020959A JP 2003020959 A JP2003020959 A JP 2003020959A JP 4173744 B2 JP4173744 B2 JP 4173744B2
- Authority
- JP
- Japan
- Prior art keywords
- power generation
- fuel cell
- fuel
- unit
- units
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Description
【発明の属する技術分野】
本発明は、電解質をアノード側電極とカソード側電極とで挟んで構成される複数の発電部が平面状に配設されるとともに、前記複数の発電部が電気的に直列に接続される燃料電池を備え、複数の燃料電池が積層される燃料電池ユニットおよびその運転方法に関する。
【0002】
【従来の技術】
通常、固体高分子型燃料電池は、高分子イオン交換膜(陽イオン交換膜)からなる電解質膜を採用している。この電解質膜の両側に、それぞれカーボンを主体とする基材に貴金属系の電極触媒層を接合したアノード側電極およびカソード側電極を対設して構成される電解質膜・電極構造体(発電部)を、セパレータ(バイポーラ板)によって挟持することにより構成される単位セルを備えている。通常、この単位セルは、所定数だけ積層して燃料電池スタックとして使用されている。
【0003】
この種の燃料電池において、アノード側電極に供給された燃料ガス、例えば、主に水素を含有するガス(以下、水素含有ガスともいう)は、電極触媒上で水素がイオン化され、電解質を介してカソード側電極側へと移動する。その間に生じた電子が外部回路に取り出され、直流の電気エネルギとして利用される。なお、カソード側電極には、酸化剤ガス、例えば、主に酸素を含有するガスあるいは空気(以下、酸素含有ガスともいう)が供給されているために、このカソード側電極において、水素イオン、電子および酸素が反応して水が生成される。
【0004】
ところで、例えば、車両に搭載される燃料電池スタックでは、所望の出力電圧を得るために、数100枚の単位セルを積層して電気的に直列に接続する必要がある。このため、1枚の単位セルに故障や不調が発生した場合、燃料電池スタック全体の発電不良が惹起してしまい、一旦、発電を停止した状態で、あるいは、負荷を低下させた状態で、燃料ガスを供給してパージ(掃気)を行うことが知られている。
【0005】
しかしながら、上記のように、燃料電池スタックを構成する1枚の単位セルに不具合が発生した際に、前記燃料電池スタック全体の発電を停止させるため、発電効率が著しく低下してしまう。特に、車載用として数100枚の単位セルが積層されている場合、各単位セルの信頼性を大幅に向上させることが望まれている。しかも、パージに使用された燃料ガスを処理するために、希釈装置等を付設しなければならず、設備費が高騰して経済的ではないという問題がある。
【0006】
そこで、例えば、複数の単位セルを平面状に1列または複数列に配設し、各単位セル同士を電気的に直列に接続した平面型燃料電池が採用されている(特許文献1参照)。このため、1枚の平面型燃料電池から所望の電圧を得ることができ、複数の前記平面型燃料電池を積層することによって電流が積層され、該平面型燃料電池の積層数に応じた電流値を得ることが可能になる。
【0007】
【特許文献1】
特開2002−56855号公報(図1)
【0008】
【発明が解決しようとする課題】
しかしながら、上記の特許文献1では、複数の平面型燃料電池が電気的に接続されているため、1枚の平面型燃料電池に不具合が発生すると、各平面型燃料電池間に大きな電圧差が惹起されるおそれがある。これにより、特に低電圧の平面型燃料電池に逆電圧がかかってしまい、前記平面型燃料電池が破損するという問題がある。
【0009】
本発明はこの種の問題を解決するものであり、いずれかの燃料電池に不具合が生じても、所望の発電を継続することができ、簡単な構成および工程で、効率的な発電を遂行することが可能な燃料電池ユニットおよびその運転方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明に係る燃料電池ユニットでは、電解質をアノード側電極とカソード側電極とで挟んで構成される複数の発電部が平面状に配設され、前記複数の発電部の両面を挟持する第1および第2金属拡散層を設けるとともに、前記第1および第2金属拡散層を第1および第2セパレータで挟持する燃料電池と、複数の燃料電池を負荷に対して並列に接続する発電回路と、前記複数の発電部が直列に接続された前記燃料電池毎に、前記発電回路に対して電気的に個別に接続および切断可能な断続機構とを備えている。そして、複数の発電部は、第1金属拡散層に向かってアノード側電極が配置される複数の第1発電部と、前記第1金属拡散層に向かってカソード側電極が配置される複数の第2発電部とを有し、前記第1および第2金属拡散層は、互いに隣接する前記第1発電部と前記第2発電部とを電気的に直列に接続する一方、前記第1および第2金属拡散層内には、前記第1発電部同士および前記第2発電部同士を電気的に絶縁し且つ前記第1発電部と前記第2発電部とを交互に接続するための樹脂製絶縁部が配設されている。
【0012】
このように、各燃料電池毎に所望の電圧が得られるため、1以上の燃料電池に発電不良等が発生しても、残余の燃料電池により所望の電圧を維持することができる。従って、1以上の燃料電池が故障しても、この故障した燃料電池を発電回路から切断することにより、該故障した燃料電池に逆電圧が作用することを阻止するとともに、燃料電池ユニットとして発電を継続して行うことができ、効率的な発電が遂行可能になる。
【0013】
また、各燃料電池には、個別に電圧調整を行うための可変抵抗器が前記燃料電池と直列に接続されるため、各燃料電池毎に個別に電圧調整が行われる。このため、各燃料電池に電圧差が発生することがなく、燃料電池ユニットとして良好な発電が確実に遂行される。
【0014】
さらに、燃料電池は、一方の極に接続される第1出力端子と、他方の極に接続される第2出力端子とを備えている。そして、少なくも第2出力端子は、第1出力端子からそれぞれ異なる数の発電部を直列に接続する2以上の第2出力端子を設けるとともに、任意の第2出力端子と前記第1出力端子とを発電回路に接続可能な接続切り替え機構が設けられている。これにより、発電状況等に応じて出力電圧を変更させることができ、燃料電池間の電圧差を調圧して効率的な発電が遂行される。
【0015】
さらにまた、複数の燃料電池ユニットを負荷に対し並列に接続して発電が行われるとともに、各燃料電池ユニットの発電状態が検出される。その際、異常が発生した燃料電池ユニットは、負荷から個別に切断される一方、残余の燃料電池ユニットにより発電が継続して行われる。
【0016】
このため、1以上の燃料電池ユニットに発電不良等が発生しても、残余の燃料電池ユニットにより所望の電圧を維持することができる。従って、1以上の燃料電池ユニットが故障しても、この故障した燃料電池ユニットを発電回路から切断することにより、該故障した燃料電池ユニットに逆電圧が作用することを阻止するとともに、発電を継続して行うことができ、効率的な発電が遂行可能になる。
【0017】
また、複数の燃料電池ユニットに燃料ガスを並列に供給する燃料ガス供給機構と、前記複数の燃料電池ユニットに酸化剤ガスを並列に供給する酸化剤ガス供給機構とを備え、前記燃料ガス供給機構および前記酸化剤ガス供給機構は、各燃料電池ユニット毎に前記燃料ガスおよび前記酸化剤ガスの供給を停止可能な開閉部を設けている。
【0018】
従って、各燃料電池ユニット毎に発電状態を調整することができ、例えば、通常の負荷よりも低い負荷である際、少なくとも一の前記燃料電池ユニットの発電を停止させることが可能になる。
【0019】
さらに、一定時間毎に異なる燃料電池ユニットの発電を、順次、停止させることができる。これにより、停止または発電している燃料電池ユニットの発電部が乾燥し過ぎたり、温度低下し過ぎたりすることを有効に阻止することが可能になる。しかも、定期的に任意の燃料電池ユニットを休止させることにより、パージ(掃気)効果を持たせることができる。
【0020】
さらにまた、発電を停止している燃料電池ユニットには、発電中の燃料電池ユニットに供給される冷却媒体よりも少量の冷却媒体が供給される。このため、停止している燃料電池ユニットを保温することができる。
【0021】
また、燃料ガス供給機構および前記酸化剤ガス供給機構は、それぞれ設定負荷に応じた設定流量の燃料ガスおよび酸化剤ガスを供給するための第1ポンプと、低負荷に応じた低流量の前記燃料ガスおよび前記酸化剤ガスを供給するための第2ポンプとを並列に接続している。これにより、低負荷運転時に、最も効率のよい燃料電池ユニット数を選択するとともに、低負荷用の第2ポンプを使用することによって、高効率運転が確実に遂行される。
【0022】
その際、冷却媒体供給機構は、設定負荷に応じた設定流量の冷却媒体を供給するための第1ポンプと、低負荷に応じた低流量の前記冷却媒体を供給するための第2ポンプとを並列に接続している。従って、冷却媒体の流量を負荷状況に応じて良好に調整するとともに、冷却媒体用ポンプを効率的に活用することが可能になる。
【0023】
さらに、金属拡散層自体が、発電部の電気的接続部材としての機能を有することができ、部品点数を大幅に削減することが可能になる。特に、多数の発電部を配置する際に経済的であるとともに、シール構造等の信頼性が有効に向上する。しかも、燃料電池全体の構成が簡素化される他、前記燃料電池の小型化が容易に図られる。
【0024】
【発明の実施の形態】
図1は、本発明の第1の実施形態に係る燃料電池ユニット100の概略構成説明図である。
【0025】
燃料電池ユニット100は、複数の燃料電池10a〜10nを矢印A方向に積層しており、前記燃料電池10a〜10nをモータ等の負荷102に並列に接続する発電回路104と、前記燃料電池10a〜10nを前記発電回路104に対して個別に接続および切断可能な断続機構106とを備える。
【0026】
各燃料電池10a〜10nは同様に構成されており、以下、燃料電池10aについて詳細に説明し、燃料電池10b〜10nの詳細な説明は省略する。図2および図3に示すように、燃料電池10aは、MEA(Membrane Electrode Assembly)ユニット12と、このMEAユニット12の両面に配置される第1および第2拡散層14、16と、前記第1および第2拡散層14、16に積層される第1および第2セパレータ18、20とを備える。
【0027】
燃料電池10aの矢印B方向の一端縁部には、積層方向である矢印A方向に連通して、酸化剤ガス、例えば、酸素含有ガスを供給するための酸化剤ガス入口連通孔22aと、燃料ガス、例えば、水素含有ガスを排出するための燃料ガス出口連通孔24bとが、矢印C方向に配列して設けられる。燃料電池10aの矢印B方向の他端縁部には、矢印A方向に連通して、燃料ガスを供給するための燃料ガス入口連通孔24aと、酸化剤ガスを排出するための酸化剤ガス出口連通孔22bとが設けられる。
【0028】
燃料電池10aの矢印C方向一端縁部には、矢印A方向に連通して、冷却媒体を供給するための冷却媒体入口連通孔26aが設けられるとともに、矢印C方向の他端縁部には、矢印A方向に連通して、前記冷却媒体を排出するための冷却媒体出口連通孔26bが設けられる。
【0029】
MEAユニット12は、例えば、パーフルオロスルホン酸の薄膜に水が含浸されてなる固体高分子電解質膜28を備える。この固体高分子電解質膜28を共通の電解質として、第1電解質膜・電極構造体(発電部)30、第2電解質膜・電極構造体(発電部)32、第3電解質膜・電極構造体(発電部)34および第4電解質膜・電極構造体(発電部)36が構成される。
【0030】
第1電解質膜・電極構造体30は、固体高分子電解質膜28の矢印C方向の一端縁部に位置し、矢印B方向に配列して、例えば、4つ設けられる。図4に示すように、各第1電解質膜・電極構造体30は、固体高分子電解質膜28の一方の面28aに設けられる長方形状のカソード側電極38と、前記固体高分子電解質膜28の他方の面28bに設けられる長方形状のアノード側電極40とを備える。カソード側電極38およびアノード側電極40は、白金合金が表面に担持された多孔質カーボン粒子が固体高分子電解質膜28の面28a、28bに塗布されて構成される。
【0031】
固体高分子電解質膜28の矢印C方向の他端縁部に位置し、例えば、4つの第2電解質膜・電極構造体32が矢印B方向に配列して設けられる。各第2電解質膜・電極構造体32は、面28aに設けられるアノード側電極40と、面28bに設けられるカソード側電極38とを備えるとともに、第1電解質膜・電極構造体30と点対称の位置に設けられる。
【0032】
第1電解質膜・電極構造体30の近傍には、例えば、7つの第3電解質膜・電極構造体34が矢印B方向に配列して設けられる。第3電解質膜・電極構造体34は、正方形状のアノード側電極42とカソード側電極44とを備え、前記アノード側電極42および前記カソード側電極44は、アノード側電極40およびカソード側電極38の長辺の略半分の長さに設定される。アノード側電極42は、面28aに設けられる一方、カソード側電極44は、面28bに設けられる。
【0033】
第3電解質膜・電極構造体34は、矢印B方向に7個ずつ、かつ矢印C方向に所定の間隔ずつ離間して3列に設けられる。第3電解質膜・電極構造体34間および該第3電解質膜・電極構造体34と第2電解質膜・電極構造体32間に第4電解質膜・電極構造体36が形成される。
【0034】
第4電解質膜・電極構造体36は、上記の第3電解質膜・電極構造体34と同様に構成されており、矢印B方向に7個ずつ、かつ矢印C方向に所定間隔ずつ離間して3列に設けられる。第4電解質膜・電極構造体36は、面28aに設けられるカソード側電極44と、面28bに設けられるアノード側電極42とを備えている。
【0035】
図2に示すように、固体高分子電解質膜28の両方の面28a、28bには、シリコンフィルム46a、46bが積層されており、前記シリコンフィルム46a、46bに第1〜第4電解質膜・電極構造体30〜36の形状に対応する切り抜き部48a、48bが形成されている。
【0036】
図5に示すように、第1拡散層14は、例えば、良導電性で水分による錆の発生がなく、強酸性下で腐食のないステンレス、チタンまたはニッケル等の金属材料性の発泡体で形成される金属拡散層50と、熱可塑性樹脂または熱硬化性樹脂で形成される樹脂層52とを備える。
【0037】
金属拡散層50は、第1〜第4電解質膜・電極構造体30〜36の形状に対応して形成されている。この金属拡散層50内には、第1および第3電解質膜・電極構造体30、34の間、第3および第4電解質膜・電極構造体34、36の間、並びに第4および第2電解質膜・電極構造体36、32間に配置され、矢印B方向に断続的に延在する樹脂製絶縁部54が設けられる。
【0038】
樹脂製絶縁部54は、矢印C方向に配列された各発電部(第1〜第4電解質膜・電極構造体30〜36)を、それぞれ1つおきに電気的に絶縁するように設けられる。具体的には、矢印C方向に隣り合う第1電解質膜・電極構造体30のカソード側電極38と第3電解質膜・電極構造体34のアノード側電極42とは、矢印B方向に沿って電気的接続と電気的絶縁とを交互に繰り返す。
【0039】
矢印C方向に互いに隣り合う第3電解質膜・電極構造体34のアノード側電極42と第4電解質膜・電極構造体36のカソード側電極44とは、矢印B方向に対して電気的接続と電気的絶縁とを交互に繰り返す。同様に、第4電解質膜・電極構造体36のカソード側電極44と第2電解質膜・電極構造体32のアノード側電極40とは、矢印B方向に沿って電気的接続と電気的絶縁とを交互に繰り返す。
【0040】
第1電解質膜・電極構造体30から第2電解質膜・電極構造体32に向かって矢印C方向に延在する樹脂製絶縁部56が設けられる。この樹脂製絶縁部56は、第1〜第4電解質膜・電極構造体30〜36を矢印B方向に1つずつ電気的に絶縁するように設けられる。
【0041】
図6に示すように、第2拡散層16は、第1拡散層14と同様に、金属拡散層58と樹脂層60とを備える。金属拡散層58内には、矢印B方向に断続的に設けられ、かつ矢印C方向に所定間隔ずつ離間して配列される複数本の樹脂製絶縁部62と、矢印C方向に延在し、かつ矢印B方向に所定間隔ずつ離間して配列される樹脂製絶縁部64とが設けられる。
【0042】
第1および第2拡散層14、16が積層された状態では、樹脂製絶縁部62と樹脂製絶縁部54とが交互に配置される。金属拡散層58には、対角位置に対応して接続端子部66a、66bおよび68a、68bが、樹脂層60を含浸して設けられる。接続端子部66a、66bおよび68a、68bは、金属部分が表面に露出するように形成される。
【0043】
図3に示すように、MEAユニット12が第1および第2拡散層14、16で挟持されると、矢印C方向に沿って第3電解質膜・電極構造体34のアノード側電極42と、第4電解質膜・電極構造体36のカソード側電極44とが、金属拡散層50を介して1つおきに電気的に接続される。一方、第3電解質膜・電極構造体34のカソード側電極44と、第4電解質膜・電極構造体36のアノード側電極42とが、金属拡散層58を介して1つおきに電気的に接続される。
【0044】
金属拡散層50、58では、樹脂製絶縁部54、62が交互に設けられることにより、矢印C方向に配列される第3および第4電解質膜・電極構造体34、36は、第1および第2電解質膜・電極構造体30、32間で電気的に直列に接続される。図4に示すように、第1および第2電解質膜・電極構造体30、32は、第3および第4電解質膜・電極構造体34、36の矢印B方向の長さの2倍の長さに設定されている。MEAユニット12では、第1〜第4電解質膜・電極構造体30〜36が、図4中、矢印方向に示すように、電気的に直列に接続される。
【0045】
図3および図7に示すように、第1セパレータ18のMEAユニット12に対向する面18aには、矢印B方向に延在する酸化剤ガス流路70と燃料ガス流路72とが矢印C方向に交互に形成される。酸化剤ガス流路70は、第1および第4電解質膜・電極構造体30、36に対応する複数本の流路溝を設けており、矢印B方向両端に矢印C方向に延在する連結流路74a、74bが連通する。連結流路74aは酸化剤ガス入口連通孔22aに連通する一方、連結流路74bは酸化剤ガス出口連通孔22bに連通する。
【0046】
燃料ガス流路72は、同様に第2および第3電解質膜・電極構造体32、34に対応する複数本の流路溝を設けており、矢印B方向両端に形成されたそれぞれ複数個の貫通孔76a、76bに連通する。図2に示すように、第1セパレータ18の他方の面18bには、複数の貫通孔76aに一体的に連通して矢印C方向に延在する連結流路78aが設けられ、この連結流路78aが燃料ガス入口連通孔24aに連通する。同様に、面18bには、複数の貫通孔76bに一体的に連通して矢印C方向に長尺な連結流路78bが形成され、この連結流路78bが燃料ガス出口連通孔24bに連通する。
【0047】
図2、図3および図8に示すように、第2セパレータ20のMEAユニット12に対向する面20aには、第2および第3電解質膜・電極構造体32、34に対応して矢印B方向に延在する酸化剤ガス流路80と、第1および第4電解質膜・電極構造体30、36に対応して矢印B方向に延在する燃料ガス流路82とが形成される。
【0048】
酸化剤ガス流路80は、複数本の流路溝を有しており、矢印B方向両端には、矢印C方向に延在する連結流路84a、84bが連通する。連結流路84aは、酸化剤ガス入口連通孔22aに連通する一方、連結流路84bは、酸化剤ガス出口連通孔22bに連通する。
【0049】
燃料ガス流路82は、複数本の流路溝を備えており、矢印B方向両端にはそれぞれ複数の貫通孔86a、86bが連通する。図9に示すように、第2セパレータ20の他方の面20bには、複数の貫通孔86aを一体的に連通して矢印C方向に延在する連結流路88aが形成され、この連結流路88aが燃料ガス入口連通孔24aに連通する。同様に、面20bには、複数の貫通孔86bを一体的に連通して矢印C方向に延在する連結流路88bが形成され、この連結流路88bが燃料ガス出口連通孔24bに連通する。
【0050】
面20bには、冷却媒体入口連通孔26aと、冷却媒体出口連通孔26bとを連通する冷却媒体流路90が形成される。この冷却媒体流路90は、矢印B方向に延在する複数本の流路溝を備えており、前記冷却媒体流路90の矢印B方向一端は、矢印C方向に延在する連結流路92aを介して冷却媒体入口連通孔26aに連通する。一方、冷却媒体流路90の矢印B方向他端部は、矢印C方向に延在する連結流路92bを介して冷却媒体出口連通孔26bに連通する。
【0051】
図8に示すように、第2セパレータ20の面20aには、第2拡散層16の接続端子部66a、66bに接続される端子部(第1出力端子)94a、94bと、接続端子部68a、68bに接続される端子部(第2出力端子)96a、96bとが組み込まれる。
【0052】
図1に示すように、発電回路104は、燃料電池10a〜10nの各端子部94aと負荷102に接続される導線108aと、前記負荷102と断続機構106を構成する断続器110a〜110nに接続される導線108bとを備える。断続器110a〜110nは、燃料電池10a〜10nの各端子部96aに接続自在である。燃料電池10a〜10nでは、例えば、それぞれの出力電圧(発電状態)を検出しており、設定電圧と比較して異常発生の有無を検出している。
【0053】
このように構成される燃料電池10a〜10nでは、第1〜第4電解質膜・電極構造体30〜36が、MEAユニット12内で、図4中、矢印方向に示すように、電気的に直列に接続されている。従って、最先端の第1電解質膜・電極構造体30aと最後端の第2電解質膜・電極構造体32aとの間には、所定の電圧が確保されている。
【0054】
その際、金属拡散層50、58自体が電極用接続部材としての機能を有している。このため、部品点数を大幅に削減することが可能になり、特に、多数の発電部を配置する際に経済的であるとともに、シール構造等の信頼性が有効に向上するという効果が得られる。しかも、燃料電池10a〜10n全体の構成が簡素化され、前記燃料電池10a〜10nの小型化が容易に図られる。
【0055】
次に、燃料電池ユニット100の動作について、以下に説明する。
【0056】
まず、燃料電池10aにおいて、図2に示すように、酸化剤ガス入口連通孔22aに酸素含有ガス等の酸化剤ガスが供給されるとともに、燃料ガス入口連通孔24aに水素含有ガス等の燃料ガスが供給される。さらに、冷却媒体入口連通孔26aに純水やエチレングリコールオイル等の冷却媒体が供給される。
【0057】
このため、酸化剤ガスは、図7に示すように、第1セパレータ18の面18aに形成される連結流路74aから酸化剤ガス流路70に供給され、矢印B方向に移動しながら第1および第4電解質膜・電極構造体30、36のカソード側電極38、44に沿って移動する。この酸化剤ガスは、連結流路74bから酸化剤ガス出口連通孔22bに排出される。
【0058】
また、酸化剤ガスは、図8に示すように、第2セパレータ20の面20aに形成される連結流路84aから酸化剤ガス流路80に導入され、矢印B方向に移動しながら第2および第3電解質膜・電極構造体32、34のカソード側電極38、44に沿って移動する。この酸化剤ガスは、連結流路84bから酸化剤ガス出口連通孔22bに排出される。
【0059】
一方、燃料ガスは、図2に示すように、第1セパレータ18の面18bに形成される連結流路78aに導入され、この連結流路78aに連通する複数の貫通孔76aを通って面18aに形成される燃料ガス流路72に導入される(図7参照)。この燃料ガス流路72では、燃料ガスが矢印B方向に移動しながら、第2および第3電解質膜・電極構造体32、34のアノード側電極40、42に沿って移動する。この燃料ガスは、複数の貫通孔76bを通って面18b側の連結流路78bに導入され、燃料ガス出口連通孔24bから排出される。
【0060】
また、燃料ガスは、図9に示すように、第2セパレータ20の面20bに設けられる連結流路88aに導入され、この連結流路88aに連通する複数の貫通孔86aを通って面20a側に導入される。図8に示すように、燃料ガスは、燃料ガス流路82を矢印B方向に移動しながら第1および第4電解質膜・電極構造体30、36のアノード側電極40、42に沿って移動する。この燃料ガスは、複数の貫通孔86bから面20bに設けられる連結流路88bに導入され、燃料ガス出口連通孔24bから排出される。
【0061】
従って、第1〜第4電解質膜・電極構造体30〜36では、カソード側電極38、44に供給される酸化剤ガスと、アノード側電極40、42に供給される燃料ガスとが電気化学反応により消費され、発電が行われる。これにより、端子部94a、96a間には、全ての発電部である第1〜第4電解質膜・電極構造体30〜36が電気的に直列に接続され、所望の電圧を発生させることができる。なお、燃料電池10b〜10nでは、上記の燃料電池10aと同様に発電が行われており、燃料電池10a〜10nが並列されることによって、それぞれの出力電流値が積層(加算)される。
【0062】
この場合、第1の実施形態では、燃料電池10a〜10nが発電回路104に並列に接続されるとともに、前記燃料電池10a〜10nは、断続機構106を構成する断続器110a〜110nを介して前記発電回路104に対して個別に接続および切断可能に構成されている。このため、各燃料電池10a〜10n毎に所望の電圧が得られ、例えば、燃料電池10aに発電不良等の異常が発生しても、残余の燃料電池10b〜10nにより所望の電圧を維持することができる。
【0063】
その際、異常が発生した燃料電池10aを断続器110aの作用下に発電回路104から切り離すことにより、前記燃料電池10aに逆電圧が作用することを阻止するとともに、燃料電池10b〜10nを備えた燃料電池ユニット100として、発電を継続して行うことができる。これにより、発電を停止した燃料電池10aに損傷等が発生することがなく、しかも効率的な発電を確実に遂行することが可能になるという効果が得られる。
【0064】
図10は、本発明の第2の実施形態に係る燃料電池ユニット120の概略構成説明図である。なお、第1の実施形態に係る燃料電池ユニット100と同一の構成要素には同一の参照符号を付して、その詳細な説明は省略する。また、以下に説明する第3および第4の実施形態においても同様に、その詳細な説明は省略する。
【0065】
燃料電池ユニット120では、各燃料電池10a〜10nを個別に電圧調整するための可変抵抗器122a〜122nが、前記燃料電池10a〜10nに対して断続器110a〜110nと直列に配置されている。
【0066】
このように構成される第2の実施形態では、可変抵抗器122a〜122nを調整することにより各燃料電池10a〜10n毎に個別に電圧調整が行われるため、各燃料電池10a〜10n間に電圧差が発生することがない。これにより、燃料電池ユニット120として良好な発電が確実に遂行されるという効果が得られる。なお、例えば、燃料電池10aに可変抵抗器122aの可変範囲を超える電圧差が発生した際には、異常が発生した燃料電池10aのみを発電回路104から切り離せばよい。
【0067】
図11は、本発明の第3の実施形態に係る燃料電池ユニット130の概略構成説明図である。
【0068】
この燃料電池ユニット130では、燃料電池10a〜10nにそれぞれ端子部96a、96b、96cおよび96dが設けられる。端子部96a〜96dは、端子部94aからそれぞれ異なる数の発電部(第1〜第4電解質膜・電極構造体30〜36)を直列に接続しており、前記端子部96a〜96dを発電回路104に接続する接続切り替え機構132a〜132nが設けられる。この接続切り替え機構132a〜132nは、それぞれ端子部96a〜96dを発電回路104に個別に接続および切断可能な断続器134a〜134dを備える。
【0069】
このように構成される第3の実施形態では、接続切り替え機構132a〜132n毎に断続器134a〜134dを選択的に接続することにより、端子部96a〜96dの任意の1つを発電回路104に接続することができる。このため、発電状況等に応じて出力電圧を変更させることができ、燃料電池10a〜10n間の電圧差を有効に調圧して、効率的な発電が遂行されるという効果が得られる。
【0070】
図12は、本発明の第4の実施形態に係る燃料電池ユニット140a、140b、140cおよび140dを組み込む燃料電池システム142の反応ガス回路の概略説明図であり、図13は、前記燃料電池システム142の冷却媒体回路の概略説明図である。
【0071】
燃料電池システム142は、図12に示すように、燃料電池ユニット140a〜140dを負荷102に対して並列に接続する発電回路104と、前記燃料電池ユニット140a〜140dを前記発電回路104に対して個別に接続および切断可能な断続機構106とを備える。燃料電池ユニット140a〜140dは、それぞれ第1の実施形態に係る燃料電池10a〜10nを積層して構成されるとともに、断続機構106は、前記燃料電池ユニット140a〜140dに対応して設けられる断続器110a〜110dを備える。
【0072】
燃料電池システム142は、燃料電池ユニット140a〜140dに燃料ガスを並列に供給する燃料ガス供給機構144と、前記燃料電池ユニット140a〜140dに酸化剤ガスを並列に供給する酸化剤ガス供給機構146と、前記燃料電池ユニット140a〜140dに冷却媒体を並列に供給する冷却媒体供給機構148とを備える(図12および図13参照)。
【0073】
燃料ガス供給機構144は、図12に示すように、燃料タンク150に第1燃料ポンプ152を介して接続される供給管路154を備え、この供給管路154には、第1燃料ポンプ152に並列して、低負荷専用の第2燃料ポンプ156が切り替え弁158を介して連通可能である。
【0074】
供給管路154は、燃料電池ユニット140a〜140dに対応して4本に分岐し、それぞれ開閉弁(開閉部)160a〜160dを介して前記燃料電池ユニット140a〜140dの燃料ガス供給側に開閉自在である。燃料電池ユニット140a〜140dの燃料ガス排出側は、排出管路162に連通しており、この排出管路162が供給管路154に連通して循環経路を構成している。
【0075】
酸化剤ガス供給機構146は、第1空気ポンプ164を配設した供給管路166を備える。この供給管路166は、4本に分岐してそれぞれ開閉弁(開閉部)168a〜168dを介し燃料電池ユニット140a〜140dの酸化剤ガス供給側に個別に開閉可能に接続される。供給管路166には、第1空気ポンプ164に並列して、低負荷専用の第2空気ポンプ170が切り替え弁172を介して連通可能である。燃料電池ユニット140a〜140dの酸化剤ガス排出側は、排出管路174を介して外部に開放される。
【0076】
図13に示すように、冷却媒体供給機構148は、熱交換器176が配設される循環管路178を備える。この循環管路178には、第1冷媒ポンプ180と低負荷専用の第2冷媒ポンプ182とが、切り替え弁184を介して選択的に連通する。
【0077】
循環管路178は、4本に分岐して燃料電池ユニット140a〜140dの冷却媒体供給側にそれぞれ流量制御弁186a〜186dを介して連通する一方、前記燃料電池ユニット140a〜140dの冷却媒体排出側は、切り替え弁188を介してバイパス管路190が連通自在である。このバイパス管路190は、熱交換器176をバイパスして第1および第2冷媒ポンプ180、182に連通する。
【0078】
このように構成される燃料電池システム142では、設定負荷(負荷102)に応じて第1燃料ポンプ152、第1空気ポンプ164および第1冷媒ポンプ180が駆動される。このため、燃料ガス供給機構144では、燃料タンク150に充填されている燃料が供給管路154に供給され、この供給管路154内で分岐して燃料電池ユニット140a〜140dに並列的に供給される。そして、燃料電池ユニット140a〜140dで使用された燃料ガスは、排出管路162を介して供給管路154側に戻される。
【0079】
酸化剤ガス供給機構146では、第1空気ポンプ164の作用下に、酸化剤ガスが供給管路166を介して燃料電池ユニット140a〜140dに並列的に導入された後、使用後の酸化剤ガスは、排出管路174を介して外部に排気される。これにより、燃料電池ユニット140a〜140dでは、燃料ガスと酸化剤ガスとが供給されて第1の実施形態と同様に発電が行われ、負荷102に電力が供給される。
【0080】
一方、冷却媒体供給機構148では、第1冷媒ポンプ180を介して循環管路178を冷却媒体が循環する。この冷却媒体は、燃料電池ユニット140a〜140dに並列的に供給されて前記燃料電池ユニット140a〜140dを冷却した後、バイパス管路190に供給される。また、冷却媒体は、必要に応じて熱交換器176を通ることにより温度を下げられた後、燃料電池ユニット140a〜140dの冷却に使用される。
【0081】
この場合、第4の実施形態では、燃料電池ユニット140a〜140dのそれぞれの発電状態が、例えば、出力電圧から検出され、この出力電圧が高すぎたり低すぎたりした際、すなわち、異常が発生した際に断続機構106が駆動される。このため、例えば、燃料電池ユニット140bに異常が発生した際には、断続器110bの作用下にこの燃料電池ユニット140bが発電回路104から切り離される。
【0082】
これにより、異常が発生した燃料電池ユニット140bに逆電圧が作用することを阻止するとともに、残余の燃料電池ユニット140a、140cおよび140dを介して発電を継続して行うことができ、効率的な発電が遂行可能になるという効果が得られる。その際、燃料ガス供給機構144および酸化剤ガス供給機構146では、開閉弁160b、168bを閉じることにより、燃料電池ユニット140bへの燃料ガスおよび酸化剤ガスの供給が停止され、前記燃料電池ユニット140bの発電のみを停止させることができる。
【0083】
さらにまた、負荷102が低負荷になった際には、燃料電池ユニット140a〜140dのいずれか1つ〜3つを選択的に停止させることができる。すなわち、図14と図15とは、燃料電池ユニット140a〜140dの全てを発電した場合(4UNIT ON)、燃料電池ユニット140a、140bのみを発電した場合(2UNIT ON)、および燃料電池ユニット140bのみを発電した場合(1UNIT ON)において、それぞれの補機電力と効率線図との説明図である。
【0084】
その際、2UNIT ONでは、燃料電池ユニット140c、140dに対する燃料ガスおよび酸化剤ガスの供給を停止するとともに、流量制御弁186c、186dを絞って前記燃料電池ユニット140c、140dに供給される冷却媒体の流量を減少させる。また、1UNIT ONでは、燃料電池ユニット140b〜140dにおいて、上記と同様に燃料ガスおよび酸化剤ガスの供給を停止するとともに、冷却媒体の流量を絞っている。
【0085】
図15に示すように、電流(負荷)がα以下では、2UNIT ONでの発電を行う一方、電流がαよりも低いβ以下では、1UNIT ONでの発電を行う。さらに、電流がαよりも低いγ以下では、1UNIT ONである燃料電池ユニット140aのみの発電を行うとともに、低負荷専用の第2燃料ポンプ156および第2空気ポンプ175を、切り替え弁158、172を介して供給管路154、166に連通し、燃料ガスおよび酸化剤ガスの低流量供給が行われる。
【0086】
その結果、図14および図15に示すように、低負荷発電では、電流がβよりもさらに低いγにおいて発電効率が向上している。従って、低負荷発電時には、電流(負荷)の値に応じて最も効率のよいユニット数を選択して運転することにより、効率運転が確実に遂行されるという効果が得られる。
【0087】
また、燃料電池ユニット140a〜140dの少なくとも1つの発電を停止させる際には、例えば、燃料電池ユニット140aを一定時間停止させた後、燃料電池ユニット140bの発電を停止させ、さらに一定時間経過後に燃料電池ユニット140cの発電を停止させる。
【0088】
これにより、停止または発電している燃料電池ユニット140a〜140dの発電部が乾燥し過ぎたり温度低下し過ぎたりすることを有効に阻止することが可能になる。しかも、定期的に任意の燃料電池ユニット140a〜140dを休止させることにより、パージ(掃気)効果を持たせることができる。
【0089】
さらに、休止中の燃料電池ユニット140aには、流量制御弁186aを絞ることにより他の発電している燃料電池ユニット140b〜140dに供給される冷却媒体流量よりも少ない流量の冷却媒体が供給される。このため、停止している燃料電池ユニット140aが必要以上に低温となることがなく、有効に保温することができるとともに、第1または第2冷却ポンプ180、182の仕事量を少なくして、効率の向上が図られる。
【0090】
さらに、低負荷運転時には、第2燃料ポンプ156、第2空気ポンプ170および第2冷媒ポンプ182を使用することによって、さらに効率を向上し得る運転条件が設定されるという利点がある。
【0091】
【発明の効果】
本発明に係る燃料電池ユニットおよびその運転方法では、燃料電池毎または燃料電池ユニット毎に所望の電圧が得られるため、1以上の燃料電池または燃料電池ユニットに発電不良等が発生しても、残余の燃料電池または燃料電池ユニットにより所望の電圧を維持することができる。
【0092】
従って、1以上の燃料電池または燃料電池ユニットが故障しても、この故障した燃料電池または燃料電池ユニットを発電回路から切断することにより、該故障した燃料電池または燃料電池ユニットに逆電圧が作用することを阻止するとともに、燃料電池ユニットとして発電を継続して行うことができ、効率的な発電が遂行可能になる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る燃料電池ユニットの概略構成説明図である。
【図2】前記燃料電池ユニットを構成する燃料電池の要部分解斜視図である。
【図3】前記燃料電池の要部断面説明図である。
【図4】前記燃料電池を構成するMEAユニットの接続状態を示す説明図である。
【図5】前記燃料電池を構成する第1拡散層の正面図である。
【図6】前記燃料電池を構成する第2拡散層の正面図である。
【図7】前記燃料電池を構成する第1セパレータの一方の面の正面図である。
【図8】前記燃料電池を構成する第2セパレータの一方の面の正面図である。
【図9】前記第2セパレータの他方の面の正面図である。
【図10】本発明の第2の実施形態に係る燃料電池ユニットの概略構成説明図である。
【図11】本発明の第3の実施形態に係る燃料電池ユニットの概略構成説明図である。
【図12】本発明の第4の実施形態に係る燃料電池ユニットを組み込む燃料電池システムの反応ガス回路の概略説明図である。
【図13】前記燃料電池システムの冷却媒体回路の概略説明図である。
【図14】発電されるユニット数と補機電力の説明図である。
【図15】前記ユニット数による効率線図の説明図である。
【符号の説明】
10a〜10n…燃料電池 12…MEAユニット
14、16…拡散層 18、20…セパレータ
28…固体高分子電解質膜
30、30a、32、32a、34、36…電解質膜・電極構造体
38、44…カソード側電極 40、42…アノード側電極
50、58…金属拡散層 52、60…樹脂層
54、56、62、64…樹脂製絶縁部 70、80…酸化剤ガス流路
72、82…燃料ガス流路
74a、74b、78a、78b、84a、84b、88a、88b、92a、92b…連結流路
76a、76b、86a、86b…貫通孔
90…冷却媒体流路
94a、94b、96a〜96d…端子部
100、120、130、140a〜140d…燃料電池ユニット
102…負荷 104…発電回路
106…断続機構
110a〜110n、134a〜134d…断続器
122a〜122n…可変抵抗器
132a〜132n…接続切り替え機構 142…燃料電池システム
144…燃料ガス供給機構 146…酸化剤ガス供給機構
148…冷却媒体供給機構 152、156…燃料ポンプ
154、166…供給管路
158、172、184…切り替え弁
160a〜160d、168a〜168d…開閉弁
164、170…空気ポンプ 176…熱交換器
178…循環管路 180、182…冷媒ポンプ
186a〜186d…流量制御弁
Claims (15)
- 電解質をアノード側電極とカソード側電極とで挟んで構成される複数の発電部が平面状に配設され、前記複数の発電部の両面を挟持する第1および第2金属拡散層を設けるとともに、前記第1および第2金属拡散層を第1および第2セパレータで挟持する燃料電池と、
複数の燃料電池を負荷に対して並列に接続する発電回路と、
前記複数の発電部が直列に接続された前記燃料電池毎に、前記発電回路に対して電気的に個別に接続および切断可能な断続機構と、
を備え、
前記複数の発電部は、前記第1金属拡散層に向かって前記アノード側電極が配置される複数の第1発電部と、
前記第1金属拡散層に向かって前記カソード側電極が配置される複数の第2発電部と、
を有し、
前記第1および第2金属拡散層は、互いに隣接する前記第1発電部と前記第2発電部とを電気的に直列に接続する一方、前記第1および第2金属拡散層内には、前記第1発電部同士および前記第2発電部同士を電気的に絶縁し且つ前記第1発電部と前記第2発電部とを交互に接続するための樹脂製絶縁部が配設されることを特徴とする燃料電池ユニット。 - 請求項1記載の燃料電池ユニットにおいて、前記第1セパレータは、前記第1発電部の前記アノード側電極に燃料ガスを供給する燃料ガス流路、および前記第2発電部の前記カソード側電極に酸化剤ガスを供給する酸化剤ガス流路を設けるとともに、
前記第2セパレータは、前記第2発電部の前記アノード側電極に燃料ガスを供給する燃料ガス流路、および前記第1発電部の前記カソード側電極に酸化剤ガスを供給する酸化剤ガス流路を設けることを特徴とする燃料電池ユニット。 - 電解質をアノード側電極とカソード側電極とで挟んで構成される複数の発電部が平面状に配設されるとともに、前記複数の発電部は、前記アノード側電極と前記カソード側電極とが反転されて配置される複数の第1発電部と複数の第2発電部とを有し、互いに隣接する前記第1発電部と前記第2発電部とが電気的に直列に接続される燃料電池と、
複数の前記燃料電池を負荷に対して並列に接続する発電回路と、
前記複数の発電部が直列に接続された前記燃料電池毎に、前記発電回路に対して電気的に個別に接続および切断可能な断続機構と、
を備え、
各燃料電池には、個別に電圧調整を行うための可変抵抗器が前記燃料電池と直列に接続されることを特徴とする燃料電池ユニット。 - 請求項1〜3のいずれか1項に記載の燃料電池ユニットにおいて、前記燃料電池は、一方の極に接続される第1出力端子と、
他方の極に接続される第2出力端子と、
を備え、
少なくも前記第2出力端子は、前記第1出力端子からそれぞれ異なる数の発電部を直列に接続する2以上の第2出力端子を設けるとともに、
任意の第2出力端子と前記第1出力端子とを前記発電回路に接続可能な接続切り替え機構が設けられることを特徴とする燃料電池ユニット。 - 電解質をアノード側電極とカソード側電極とで挟んで構成される複数の発電部が平面状に配設され、前記複数の発電部の両面を挟持する第1および第2金属拡散層を設けるとともに、前記第1および第2金属拡散層を第1および第2セパレータで挟持する燃料電池を備え、前記複数の燃料電池が積層される燃料電池ユニットと、
複数の燃料電池ユニットを負荷に対して並列に接続する発電回路と、
前記複数の燃料電池が直列に接続された前記燃料電池スタック毎に、前記発電回路に対して電気的に個別に接続および切断可能な断続機構と、
を備え、
複数の前記発電部は、前記第1金属拡散層に向かって前記アノード側電極が配置される複数の第1発電部と、
前記第1金属拡散層に向かって前記カソード側電極が配置される複数の第2発電部と、
を有し、
前記第1および第2金属拡散層は、互いに隣接する前記第1発電部と前記第2発電部とを電気的に直列に接続する一方、前記第1および第2金属拡散層内には、前記第1発電部同士および前記第2発電部同士を電気的に絶縁し且つ前記第1発電部と前記第2発電部とを交互に接続するための樹脂製絶縁部が配設されることを特徴とする燃料電池ユニット。 - 請求項5記載の燃料電池ユニットにおいて、前記複数の燃料電池ユニットに燃料ガスを並列に供給する燃料ガス供給機構と、
前記複数の燃料電池ユニットに酸化剤ガスを並列に供給する酸化剤ガス供給機構と、
を備え、
前記燃料ガス供給機構および前記酸化剤ガス供給機構は、各燃料電池ユニット毎に前記燃料ガスおよび前記酸化剤ガスの供給を停止可能な開閉部を設けることを特徴とする燃料電池ユニット。 - 請求項6記載の燃料電池ユニットにおいて、前記燃料ガス供給機構および前記酸化剤ガス供給機構は、それぞれ設定負荷に応じた設定流量の前記燃料ガスおよび前記酸化剤ガスを供給するための第1ポンプと、
低負荷に応じた低流量の前記燃料ガスおよび前記酸化剤ガスを供給するための第2ポンプと、
を並列に接続することを特徴とする燃料電池ユニット。 - 請求項5記載の燃料電池ユニットにおいて、前記複数の燃料電池ユニットに冷却媒体を並列に供給する冷却媒体供給機構を備え、
前記冷却媒体供給機構は、各燃料電池ユニット毎に前記冷却媒体の流量を調整する流量調整機構を設けることを特徴とする燃料電池ユニット。 - 請求項8記載の燃料電池ユニットにおいて、前記冷却媒体供給機構は、設定負荷に応じた設定流量の前記冷却媒体を供給するための第1ポンプと、
低負荷に応じた低流量の前記冷却媒体を供給するための第2ポンプと、
を並列に接続することを特徴とする燃料電池ユニット。 - 電解質をアノード側電極とカソード側電極とで挟んで構成される複数の発電部が平面状に配設され、前記複数の発電部の両面を挟持する第1および第2金属拡散層を設けるとともに、前記第1および第2金属拡散層を第1および第2セパレータで挟持する燃料電池を備え、前記複数の発電部は、前記第1金属拡散層に向かって前記アノード側電極が配置される複数の第1発電部と、前記第1金属拡散層に向かって前記カソード側電極が配置される複数の第2発電部とを有し、前記第1および第2金属拡散層は、互いに隣接する前記第1発電部と前記第2発電部とを電気的に直列に接続する一方、前記第1および第2金属拡散層内には、前記第1発電部同士および前記第2発電部同士を電気的に絶縁し且つ前記第1発電部と前記第2発電部とを交互に接続するための樹脂製絶縁部が配設され、複数の燃料電池が積層される燃料電池ユニットの運転方法であって、
前記複数の燃料電池を負荷に対し並列に接続して発電を行う工程と、
各燃料電池の発電状態を検出し、異常が発生した燃料電池を前記負荷から個別に切断する一方、残余の燃料電池により発電を継続する工程と、
を有することを特徴とする燃料電池ユニットの運転方法。 - 請求項10記載の運転方法において、前記複数の発電部が直列に接続された前記燃料電池毎に、個別に電圧調整が行われることを特徴とする燃料電池ユニットの運転方法。
- 電解質をアノード側電極とカソード側電極とで挟んで構成される複数の発電部が平面状に配設され、前記複数の発電部の両面を挟持する第1および第2金属拡散層を設けるとともに、前記第1および第2金属拡散層を第1および第2セパレータで挟持する燃料電池を備え、前記複数の発電部は、前記第1金属拡散層に向かって前記アノード側電極が配置される複数の第1発電部と、前記第1金属拡散層に向かって前記カソード側電極が配置される複数の第2発電部とを有し、前記第1および第2金属拡散層は、互いに隣接する前記第1発電部と前記第2発電部とを電気的に直列に接続する一方、前記第1および第2金属拡散層内には、前記第1発電部同士および前記第2発電部同士を電気的に絶縁し且つ前記第1発電部と前記第2発電部とを交互に接続するための樹脂製絶縁部が配設され、複数の燃料電池が積層される燃料電池ユニットの運転方法であって、
前記複数の燃料電池ユニットを負荷に対し並列に接続して発電を行う工程と、
各燃料電池ユニットの発電状態を検出し、異常が発生した燃料電池ユニットを前記負荷から個別に切断する一方、残余の燃料電池ユニットにより発電を継続する工程と、
を有することを特徴とする燃料電池ユニットの運転方法。 - 請求項12記載の運転方法において、通常の負荷よりも低い負荷である際、少なくとも一の前記燃料電池ユニットの発電を停止させるとともに、一定時間毎に異なる燃料電池ユニットの発電を、順次、停止させることを特徴とする燃料電池ユニットの運転方法。
- 請求項13記載の運転方法において、発電を停止している燃料電池ユニットには、発電中の前記燃料電池ユニットに供給される冷却媒体よりも少量の冷却媒体が供給されることを特徴とする燃料電池ユニットの運転方法。
- 請求項13または14記載の運転方法において、第1ポンプの作用下に、前記燃料電池ユニットに設定負荷に応じた設定流量の前記燃料ガス、前記酸化剤ガスおよび前記冷却媒体を供給する工程と、
前記第1ポンプよりも低負荷な第2ポンプの作用下に、前記燃料電池ユニットに低負荷に応じた低流量の前記燃料ガス、前記酸化剤ガスおよび前記冷却媒体を供給する工程と、
を有することを特徴とする燃料電池ユニットの運転方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003020959A JP4173744B2 (ja) | 2003-01-29 | 2003-01-29 | 燃料電池ユニットおよびその運転方法 |
US10/768,438 US7422814B2 (en) | 2003-01-29 | 2004-01-29 | Fuel cell system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003020959A JP4173744B2 (ja) | 2003-01-29 | 2003-01-29 | 燃料電池ユニットおよびその運転方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004234973A JP2004234973A (ja) | 2004-08-19 |
JP4173744B2 true JP4173744B2 (ja) | 2008-10-29 |
Family
ID=32950445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003020959A Expired - Fee Related JP4173744B2 (ja) | 2003-01-29 | 2003-01-29 | 燃料電池ユニットおよびその運転方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4173744B2 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006216283A (ja) * | 2005-02-01 | 2006-08-17 | Ishikawajima Harima Heavy Ind Co Ltd | 固体高分子型燃料電池発電装置用都市ガス供給装置 |
JP2007128666A (ja) * | 2005-11-01 | 2007-05-24 | Daihen Corp | 燃料電池発電システムの燃料供給方法 |
JP2011003477A (ja) * | 2009-06-19 | 2011-01-06 | Fuji Electric Holdings Co Ltd | 固体高分子形燃料電池 |
GB201103590D0 (en) * | 2011-03-01 | 2011-04-13 | Imp Innovations Ltd | Fuel cell |
FI123584B (fi) * | 2011-06-23 | 2013-07-31 | Convion Oy | Offsetin säätöjärjestely ja -menetelmä jännitearvojen säätämiseksi polttokennojärjestelmässä |
KR102063946B1 (ko) * | 2013-09-05 | 2020-01-09 | 에스케이이노베이션 주식회사 | 연료전지 시스템 제어 장치 및 제어 방법 |
US10177392B2 (en) * | 2013-10-03 | 2019-01-08 | Hamilton Sundstrand Corporation | Regulation of a fuel cell assembly |
JP7185562B2 (ja) * | 2019-02-28 | 2022-12-07 | 株式会社Subaru | 燃料電池システム及び発電方法 |
JP7330222B2 (ja) * | 2021-03-31 | 2023-08-21 | 本田技研工業株式会社 | 燃料電池システム |
-
2003
- 2003-01-29 JP JP2003020959A patent/JP4173744B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004234973A (ja) | 2004-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7132189B2 (en) | Fuel cell stack with bypass | |
JP4572062B2 (ja) | 燃料電池スタック | |
US6833207B2 (en) | Unitized regenerative fuel cell with bifunctional fuel cell humidifier and water electrolyzer | |
US5798186A (en) | Method and apparatus for commencing operation of a fuel cell electric power generation system below the freezing temperature of water | |
JP5791940B2 (ja) | 水排出構造を有する燃料電池スタック | |
JP4630529B2 (ja) | 燃料電池システム | |
US7247398B2 (en) | System stack contingency and efficiency switching | |
US7422814B2 (en) | Fuel cell system | |
CA2400452C (en) | A fuel cell stack and a method of supplying reactant gases to the fuel cell stack | |
EP1450432A2 (en) | Polymer electrolyte fuel cell | |
CA2626703C (en) | Fuel cell having a relay provided between cells of different stacks | |
JP4173744B2 (ja) | 燃料電池ユニットおよびその運転方法 | |
JP2004327089A (ja) | 燃料電池スタック | |
CA2735662C (en) | Fuel cell stack having only one reactant cooled | |
JP4612977B2 (ja) | 燃料電池スタックおよびその反応ガス供給方法 | |
JP2010061981A (ja) | 燃料電池システムの始動方法 | |
JP4886128B2 (ja) | 燃料電池スタック | |
US20040038103A1 (en) | Solid polymer electrolyte fuel cell assembly | |
JP2004134130A (ja) | 燃料電池スタック | |
JP2011113661A (ja) | 燃料電池スタックおよび燃料電池システム | |
JPH08138699A (ja) | 固体高分子電解質型燃料電池 | |
JP2005100705A (ja) | 燃料電池の始動方法 | |
JP4214045B2 (ja) | 燃料電池システム及び燃料電池スタック | |
JP2005141994A (ja) | 高分子電解質型燃料電池 | |
JP2006079880A (ja) | 燃料電池システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051202 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080408 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080606 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080805 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080814 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110822 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110822 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120822 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |