JP4172321B2 - Solid phase polymerization method for powdered polymer - Google Patents

Solid phase polymerization method for powdered polymer Download PDF

Info

Publication number
JP4172321B2
JP4172321B2 JP2003128772A JP2003128772A JP4172321B2 JP 4172321 B2 JP4172321 B2 JP 4172321B2 JP 2003128772 A JP2003128772 A JP 2003128772A JP 2003128772 A JP2003128772 A JP 2003128772A JP 4172321 B2 JP4172321 B2 JP 4172321B2
Authority
JP
Japan
Prior art keywords
hot air
tray
polymer
phase polymerization
air passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003128772A
Other languages
Japanese (ja)
Other versions
JP2004331789A (en
Inventor
辰彦 松本
功 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2003128772A priority Critical patent/JP4172321B2/en
Publication of JP2004331789A publication Critical patent/JP2004331789A/en
Application granted granted Critical
Publication of JP4172321B2 publication Critical patent/JP4172321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、粉体状ポリマーの固相重合法に関し、詳しくは棚段式熱風循環型加熱炉を用いた固相重合の方法に関するものである。
【0002】
【従来の技術】
ポリエチレンテレフタレート、ポリブチレンテレフタレートや液晶性ポリエステル樹脂を不活性気体中で固相重合する方法は知られており、ポリマー品質のばらつきを小さくするため、タンブラー方式、流動床方式やパドル方式が知られている。しかしながら、これらの方式は装置の構造が複雑で高価であるのみならず、装置内部に製品が残り易く、品種の切替え時に前品種の少量の混合が避けられず、また完全に掃除するためには分解掃除が必要で多大な労力を要する。
また、皿状のトレーにポリマーを入れて、そのトレーを棚段に重ねて加熱炉に挿入して、ポリマー粉体が静止状態で固相重合する方法も知られている(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特許第3087430号公報
【0004】
【発明が解決しようとする課題】
しかしながら、トレーに粉体状ポリマーを入れ、そのトレーを棚段に重ねて加熱炉に挿入して固相重合する方法は、装置の構造が比較的簡単で、品種の切替え等が容易で好ましい方法であるが、単にトレーを棚段状に台車に乗せて行った場合には、温度分布が大きくなり、固相重合して得られるポリマーの品質が必ずしも満足できるものではなかった。
【0005】
【課題を解決するための手段】
本発明者らは、かかる課題を解決するために、均一で安定した品質のポリマーを製造すべく検討を重ねた結果、棚段状にトレーを乗せた台車の下部は熱風が流れ難く、また熱風の温度も、台車のフレームや炉本体に熱を奪われ易いため、低下する傾向にあり、特に最下段のトレーの下部に一定幅以上の熱風の通路を確保して行うことによって、温度分布が小さくなり、均一で安定した品質のポリマーが得られることを見出し、本発明に至った。
【0006】
すなわち本発明は、粉体状ポリマーをトレーに入れて棚段式熱風循環型加熱炉で加熱して固相重合する方法において、粉体状ポリマーを入れた最下段のトレーの下部と加熱室下部の内壁との間に50〜300mm幅の熱風通路を確保して行うことを特徴とするポリマーがポリエステルである粉体状ポリマーの固相重合方法である。
【0007】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明に用いられるポリマーとしては、ポリエステルが上げられる。
【0008】
ここで、ポリエステルとは、例えばポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ−m−フェニレンテレフタレート、ポリ−p−フェニレンイソフタレート、ポリ−1,4−シクロヘキサンジメチレンテレフタレート等のポリエステル、p−ヒドロキシ安息香酸や2−ヒドロキシ−6−ナフトエ酸等の芳香族ヒドロキシカルボン酸から得られるポリエステル、更にはこれらとテレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸等の芳香族ジカルボン酸とハイドロキノン、レゾルシン、4,4'−ジヒドロキシジフェニル、2,6−ジヒドロキシナフタレン等の芳香族ヒドロキシ化合物とから得られる液晶性ポリエステルなどが挙げられる。
【0009】
本発明に使用される粉体状ポリマーは、粉状でもペレット状であっても良く、平均粒径が約0.05〜10mm程度のものが通常使用される。
【0010】
図1は本発明における棚段式熱風循環加熱炉を模式的に示す断面図である。(A)は縦方向の断面図、(B)は横方向の断面図である。粉体状ポリマーを入れたトレー(1)が積載された台車(2)が扉(9)を開けて熱風循環加熱炉に搬入され、加熱室(10)内に静置される。加熱室内の熱風の流速を均一化するために入口および出口に整流板(11)が設置されている。加熱室の上部には熱媒を使用する熱交換器(7)温度センサー(4)および循環ファン(3)が設けられ、周囲は断熱材(8)で覆われている。熱交換器には加熱用熱媒入口(5)と冷却用熱媒入口(6)が設けられており、各々を昇温、冷却に対応して切替えを行う。
図2は、図1の(B)の拡大図である。車輪(12)付き台車が加熱室(10)内に搬入され、トレーと加熱室内壁との間に熱風通路(13、14、15)を確保して静置されている。
【0011】
トレーへの粉体状ポリマーの仕込み量は、1トレー当り約1〜10kg、トレー上の粉体厚みは約10〜200mmにし、トレー内部と表面の温度差が出ないように仕込むのが望ましい。
【0012】
棚段の形状は特に制限されるものではなく、固定棚であっても台車等の移動式の棚であってもよい。トレーが約20〜200枚程度を乗せることができる台車を1〜10台使用し、纏めて出し入れするほうが作業性、生産性の面から好ましい。工業的には、1回当り約200〜3,000kgを熱風循環型加熱炉に仕込んで行われる。
【0013】
本発明において、最下段のトレーの下部と加熱室下部の内壁との間に約50〜300mm幅、好ましくは約150〜200mm幅の熱風通路(13)を確保する。熱風通路の幅が大き過ぎると、通路を通過する熱風量が多くなるが、一方で棚の内部を通過する熱風量が低下し、好ましくない。台車のフレームが太く、通路断面を見た場合に、トレーとフレーム間に間隔がない場合は、台車の最外郭フレームと内壁との間に上記の幅の熱風通路を確保するのが好ましい。なお、通路幅は一定でなく、熱風を妨げる物がある個所等では通路幅を変え、熱風量を調整する場合もある。なお、台車によっては、棚段の最下段にトレーを積載すると上記の熱風通路幅を確保できない場合がある。この場合は、最下段にはトレーを積載しないで上記幅を確保するのが好ましい。
【0014】
熱風通路を流れる熱風の速度は約0.5〜8m/s、好ましくは約4〜8m/sである。熱風速度が大きいほど台車周囲からの伝熱が良いが、循環ファンが大型になるため設備費が高くなる。この速度は棚段内部のトレー間を流れる熱風の速度とほぼ同じである。
熱風速度の設定は、通常、流速計で予め測定した速度と循環ファンの回転数との関係をもとに、循環ファンの回転数を調整して行われる。
【0015】
また、トレーの側端と加熱室側部の内壁との間に約50〜300mm幅の熱風通路(14)を、最上段のトレーの上端と加熱室上部の内壁との間に約50〜300mm幅の熱風通路(15)を確保して行うのが好ましい。これらの熱風通路を流れる熱風の速度も約0.5〜8m/s、好ましくは約4〜8m/sであるのが好ましい。
【0016】
粉体状ポリマーの重合は、ポリマーの種類等にもよるが、窒素置換後、通常、比較的小さい熱風速度で数時間かけて加熱し、約270〜290℃に達した後は、熱風速度を上げて一定の熱風温度で数時間加熱して行われる。
加熱終了後、熱媒を冷媒に切替えて冷却し、冷却後、加熱炉内を空気置換した後、固相重合したポリマーが取出される。
【0017】
【実施例】
以下、本発明の実施例を示すが、本発明はこれらに限定されるものではない。なお、例中の各物性は以下の方法で測定した値である。
【0018】
(1)流動温度:
(株)島津製作所の高下式フローテスターCFT−500型を用い、4℃/分の昇温速度で加熱された樹脂を圧力10MPa下で、内径1mm、長さ10mmのノズルから押出す時に、溶融粘度が48,000ポイズを示す時点の温度である。この温度が低いほど流動性が大である。
【0019】
(2)耐ハンダブリスター性:
JIS K7113 1(1/2)号形小形試験片(厚さ:1.2mm)を所定の温度のH60Aはんだ(スズ60%、鉛40%)に60秒浸漬し、成形品に発泡(ブリスター)が見られる温度を測定した。温度が高いほど樹脂の耐熱性が良いことを表す。
【0020】
参考例(液晶ポリエステルの製造)
p−アセトキシ安息香酸1,304kg(7,238モル)、4,4'−ジアセトキシジフェニル651kg(2,408モル)、テレフタル酸300kg(1,806モル)、イソフタル酸100kg(602モル)を、櫂型攪拌機を有する3mのSUS316L製の重合槽に仕込んだ。
窒素ガス雰囲気下で1℃/分の速度で、攪拌、副生する酢酸を除去しながら180℃から300℃まで昇温、さらに300℃で60分保持した。その後、重合槽を密閉し、窒素で0.1MPaに加圧した状態で、ベルトクーラーで冷却しながら抜取りを行った。この反応物の得量は1,600kgで収率は98%であった。これを平均粒径0.4mmに粉砕し、流動温度が250℃の全芳香族ポリエステル(以下「プレポリマー」と称する)を得た。得られた樹脂について、偏光顕微鏡により液晶性を測定したところ、光学的異方性を有する溶融相を形成することが判った。
【0021】
実施例1
図1に示す棚段式熱風循環加熱炉を用い、プレポリマーの固相重合を行った。アルミ製のトレーに上記の参考例で得た液晶ポリエステルを各6.2kg充填し、このトレーを台車に52枚積載し、3台車を加熱炉に仕込んだ。台車と加熱室の間隔は、周囲に70mm確保した。トレーと加熱室内壁との間隔は下部が100mm、側部が100mm、上部が100mmであった。加熱炉には1Nm/分で窒素を吹流して30分間置換した後、同じ窒素吹流し下に250℃まで平均3.8℃/分、250〜280℃まで平均0.14℃/分の速度で昇温し、さらに280℃で300分保持した。台車の周辺の熱風通路を通過する熱風の風速は2m/sであった。その後、熱媒を冷却側に切替え、150℃まで冷却した。つぎに炉内部を空気置換後、固相重合品(以下「アドバンスポリマー」と言う)の取出しを行った。加熱炉の奥の台車の最上段、中段、最下段のトレーよりサンプリングを行い、台車内でのアドバンスポリマーの流動温度の分布を測定した。その後、台車全量まとめてブレンドした。ブレンドしたアドバンスポリマーについては旭ガラス製ミルドガラス(REV−8)を40重量%配合し混合した後、2軸押出機(池貝鉄工(株)PCM−30)を用いて、390℃で造粒した。得られたペレットを日精樹脂工業(株)製PS40E5ASE型射出成形機を用いて、シリンダー温度400℃、金型温度130℃で射出成形を行い、耐はんだブリスター性を評価した。評価結果を表1に示す。
【0022】
実施例2
台車と加熱室の間隔を、周囲120mmとした以外は実施例1と同様に行った。なお、トレーと加熱室内壁との間隔は下部が150mm、側部が150mm、上部が150mmであった。このとき台車の周辺の通路を通過する熱風の風速は6m/sであった。
【0023】
比較例1
台車と加熱室の間隔を、上部、左右を20mm、下部を0とした以外は実施例1と同様に行った。なお、トレーと加熱室内壁との間隔は下部が30mm、側部が50mm、上部が50mmであった。
【0024】
【表1】

Figure 0004172321
【0025】
実施例1と比較例1と比べると、所定幅の熱風通路を台車下部にも確保することによって、最下段トレーの流動温度が322℃から325℃に上がり、台車内での流動温度分布を6℃から3℃に小さくできた。さらに実施例2では、台車周囲の風道を大きくすることによって、流動温度の分布は1℃まで小さくできた。それにともない耐はんだブリスター性も向上した。
【0026】
【発明の効果】
本発明によれば、従来の方法に比べ炉内温度の分布が小さくなり、品質が安定したポリマーを製造することができる。
【図面の簡単な説明】
【図1】本発明で使用する棚段式熱風循環型加熱炉を模式的に示す断面図である。
【図2】本発明で使用する棚段式熱風循環型加熱炉を模式的に示す横方向の拡大断面図である。
【符号の説明】
1:トレー
2:台車
3:循環ファン
4:温度センサー
5:加熱用熱媒入口
6:冷却用冷媒入口
7:熱交換器
8:断熱材
9:扉
10:加熱室
11:整流板
12:車輪
13:熱風通路
14:熱風通路
15:熱風通路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid-phase polymerization method for a powdery polymer, and more particularly to a solid-phase polymerization method using a shelf-type hot air circulation type heating furnace.
[0002]
[Prior art]
A method for solid-phase polymerization of polyethylene terephthalate, polybutylene terephthalate or liquid crystalline polyester resin in an inert gas is known, and a tumbler method, a fluidized bed method, or a paddle method is known to reduce variation in polymer quality. Yes. However, these systems are not only complicated and expensive in the structure of the device, but also products are likely to remain inside the device, and a small amount of the previous product type cannot be avoided when changing the product type. It requires disassembly and cleaning and requires a lot of labor.
There is also known a method in which a polymer is put in a dish-shaped tray, the trays are stacked on a shelf and inserted into a heating furnace, and polymer powder is solid-phase polymerized in a stationary state (for example, Patent Document 1). reference.).
[0003]
[Patent Document 1]
Japanese Patent No. 3087430 gazette
[Problems to be solved by the invention]
However, a method in which a powdered polymer is placed in a tray and the trays are stacked on a shelf and inserted into a heating furnace to perform solid-phase polymerization is a preferable method because the structure of the apparatus is relatively simple and the type can be easily switched. However, when the tray is simply placed on a cart in the form of a shelf, the temperature distribution becomes large, and the quality of the polymer obtained by solid phase polymerization is not always satisfactory.
[0005]
[Means for Solving the Problems]
In order to solve such a problem, the present inventors have made studies to produce a polymer having a uniform and stable quality. As a result, it is difficult for hot air to flow in the lower part of the cart on which trays are placed in a shelf shape. However, the temperature distribution tends to decrease because heat is easily taken away by the bogie frame and the furnace body, and the temperature distribution can be improved by securing a passage of hot air of a certain width or less at the bottom of the lowermost tray. The inventors have found that a polymer having a small, uniform and stable quality can be obtained, and the present invention has been achieved.
[0006]
That is, the present invention relates to a method for solid-phase polymerization in which a powdery polymer is placed in a tray and heated in a shelf-type hot air circulation heating furnace, and the lower part of the lowermost tray containing the powdery polymer and the lower part of the heating chamber. This is a solid phase polymerization method of a powdery polymer in which the polymer is polyester, which is performed by securing a hot air passage having a width of 50 to 300 mm between the inner wall and the inner wall.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The polymer used in the present invention, Ru is raised is Po Riesuteru.
[0008]
Here, the polyester is, for example, polyester such as polyethylene terephthalate, polybutylene terephthalate, poly-m-phenylene terephthalate, poly-p-phenylene isophthalate, poly-1,4-cyclohexanedimethylene terephthalate, p-hydroxybenzoic acid, Polyesters obtained from aromatic hydroxycarboxylic acids such as 2-hydroxy-6-naphthoic acid, and these and aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, hydroquinone, resorcin, 4, Examples thereof include liquid crystalline polyesters obtained from aromatic hydroxy compounds such as 4′-dihydroxydiphenyl and 2,6-dihydroxynaphthalene.
[0009]
The powdery polymer used in the present invention may be in the form of powder or pellets, and those having an average particle size of about 0.05 to 10 mm are usually used.
[0010]
FIG. 1 is a cross-sectional view schematically showing a shelf type hot air circulation heating furnace in the present invention. (A) is a longitudinal sectional view, and (B) is a lateral sectional view. A cart (2) on which a tray (1) containing a powdered polymer is loaded opens a door (9) and is carried into a hot-air circulating heating furnace, and is left still in a heating chamber (10). In order to equalize the flow velocity of the hot air in the heating chamber, rectifying plates (11) are installed at the inlet and the outlet. A heat exchanger (7), a temperature sensor (4) and a circulation fan (3) using a heat medium are provided in the upper part of the heating chamber, and the surroundings are covered with a heat insulating material (8). The heat exchanger is provided with a heating medium inlet for heating (5) and a cooling medium inlet for cooling (6), and each of them is switched according to temperature rise and cooling.
FIG. 2 is an enlarged view of FIG. A carriage with wheels (12) is carried into the heating chamber (10), and is placed still with a hot air passage (13, 14, 15) secured between the tray and the heating chamber wall.
[0011]
It is desirable that the amount of powdery polymer charged in the tray is about 1 to 10 kg per tray, the thickness of the powder on the tray is about 10 to 200 mm, and the temperature is set so that there is no temperature difference between the inside of the tray and the surface.
[0012]
The shape of the shelf is not particularly limited, and may be a fixed shelf or a movable shelf such as a carriage. From the viewpoint of workability and productivity, it is preferable to use 1 to 10 carts on which about 20 to 200 trays can be placed and put them in and out collectively. Industrially, it is carried out by charging about 200 to 3,000 kg per time into a hot air circulation type heating furnace.
[0013]
In the present invention, a hot air passage (13) having a width of about 50 to 300 mm, preferably about 150 to 200 mm, is secured between the lower part of the lowermost tray and the inner wall of the lower part of the heating chamber. If the width of the hot air passage is too large, the amount of hot air passing through the passage increases, but the amount of hot air passing through the inside of the shelf is lowered, which is not preferable. When the frame of the carriage is thick and there is no space between the tray and the frame when the passage cross section is viewed, it is preferable to secure a hot air passage having the above width between the outermost frame of the carriage and the inner wall. Note that the passage width is not constant, and the passage width may be changed to adjust the amount of hot air in places where there is an obstacle that blocks hot air. Note that, depending on the carriage, there is a case where the hot air passage width cannot be secured when a tray is loaded on the lowest stage of the shelf. In this case, it is preferable to secure the width without loading a tray at the lowermost stage.
[0014]
The speed of the hot air flowing through the hot air passage is about 0.5 to 8 m / s, preferably about 4 to 8 m / s. The higher the hot air speed, the better the heat transfer from the surroundings of the carriage, but the equipment cost increases because the circulation fan becomes large. This speed is almost the same as the speed of hot air flowing between the trays inside the shelf.
The hot air speed is usually set by adjusting the rotational speed of the circulation fan based on the relationship between the speed measured in advance by the anemometer and the rotational speed of the circulation fan.
[0015]
Further, a hot air passage (14) having a width of about 50 to 300 mm is provided between the side edge of the tray and the inner wall of the side of the heating chamber, and about 50 to 300 mm is provided between the upper end of the uppermost tray and the inner wall of the upper part of the heating chamber. It is preferable that the hot air passage (15) having a width is secured. The speed of the hot air flowing through these hot air passages is also about 0.5 to 8 m / s, preferably about 4 to 8 m / s.
[0016]
Although the polymerization of the powdery polymer depends on the type of polymer, etc., after substitution with nitrogen, it is usually heated for several hours at a relatively low hot air speed, and after reaching about 270-290 ° C., the hot air speed is increased. And heated at a constant hot air temperature for several hours.
After the heating is completed, the heating medium is switched to a cooling medium to cool, and after cooling, the inside of the heating furnace is replaced with air, and then a solid-phase polymerized polymer is taken out.
[0017]
【Example】
Examples of the present invention will be described below, but the present invention is not limited thereto. In addition, each physical property in an example is the value measured with the following method.
[0018]
(1) Flow temperature:
When extruding a resin heated at a heating rate of 4 ° C./min from a nozzle having an inner diameter of 1 mm and a length of 10 mm using a high and low flow tester CFT-500 type manufactured by Shimadzu Corporation. This is the temperature at which the melt viscosity shows 48,000 poise. The lower the temperature, the greater the fluidity.
[0019]
(2) Solder blister resistance:
JIS K7113 1 (1/2) type small test piece (thickness: 1.2 mm) is immersed in H60A solder (60% tin, 40% lead) at a predetermined temperature for 60 seconds and foamed into a molded product (blister) The temperature at which is observed was measured. The higher the temperature, the better the heat resistance of the resin.
[0020]
Reference example (production of liquid crystalline polyester)
1,304 kg (7,238 mol) of p-acetoxybenzoic acid, 651 kg (2,408 mol) of 4,4′-diacetoxydiphenyl, 300 kg (1,806 mol) of terephthalic acid, 100 kg (602 mol) of isophthalic acid, A 3 m 3 SUS316L polymerization vessel with a vertical stirrer was charged.
While stirring and removing by-product acetic acid at a rate of 1 ° C./min in a nitrogen gas atmosphere, the temperature was raised from 180 ° C. to 300 ° C., and further maintained at 300 ° C. for 60 minutes. Thereafter, the polymerization tank was sealed, and with a pressure of 0.1 MPa with nitrogen, the polymerization tank was taken out while being cooled by a belt cooler. The yield of this reaction product was 1,600 kg and the yield was 98%. This was pulverized to an average particle size of 0.4 mm to obtain a wholly aromatic polyester (hereinafter referred to as “prepolymer”) having a flow temperature of 250 ° C. When the liquid crystallinity of the obtained resin was measured with a polarizing microscope, it was found that a molten phase having optical anisotropy was formed.
[0021]
Example 1
The prepolymer was subjected to solid phase polymerization using the shelf-type hot air circulation heating furnace shown in FIG. An aluminum tray was filled with 6.2 kg of the liquid crystalline polyester obtained in the above reference example, 52 trays were loaded on a cart, and three carts were placed in a heating furnace. The distance between the carriage and the heating chamber was 70 mm around. The distance between the tray and the heating chamber wall was 100 mm at the bottom, 100 mm at the side, and 100 mm at the top. After the heating furnace was replaced with nitrogen Te streamers 30 min at 1 Nm 3 / min, an average 3.8 ° C. / min up to 250 ° C. under the same nitrogen streamers, on average 0.14 ° C. / min to 250-280 ° C. The temperature was raised and the temperature was further maintained at 280 ° C. for 300 minutes. The wind speed of the hot air passing through the hot air passage around the carriage was 2 m / s. Thereafter, the heat medium was switched to the cooling side and cooled to 150 ° C. Next, after the inside of the furnace was replaced with air, a solid-phase polymerization product (hereinafter referred to as “advanced polymer”) was taken out. Sampling was performed from the uppermost, middle, and lowermost trays of the carriage at the back of the heating furnace, and the distribution of the flow temperature of the advance polymer in the carriage was measured. After that, all the carts were blended together. As for the blended advance polymer, 40% by weight of Asahi Glass Milled Glass (REV-8) was blended and mixed, and then granulated at 390 ° C. using a twin screw extruder (Ikegai Iron Works Co., Ltd. PCM-30). . The obtained pellets were injection-molded at a cylinder temperature of 400 ° C. and a mold temperature of 130 ° C. using a PS40E5ASE type injection molding machine manufactured by Nissei Plastic Industry Co., Ltd., and solder blister resistance was evaluated. The evaluation results are shown in Table 1.
[0022]
Example 2
The same procedure as in Example 1 was performed except that the distance between the carriage and the heating chamber was 120 mm. In addition, as for the space | interval of a tray and a heating chamber wall, the lower part was 150 mm, the side part was 150 mm, and the upper part was 150 mm. At this time, the wind speed of the hot air passing through the passage around the carriage was 6 m / s.
[0023]
Comparative Example 1
The distance between the carriage and the heating chamber was the same as in Example 1 except that the upper part, the left and right sides were 20 mm, and the lower part was 0. In addition, as for the space | interval of a tray and a heating chamber wall, the lower part was 30 mm, the side part was 50 mm, and the upper part was 50 mm.
[0024]
[Table 1]
Figure 0004172321
[0025]
Compared with Example 1 and Comparative Example 1, by ensuring a hot air passage of a predetermined width also at the bottom of the carriage, the flow temperature of the lowermost tray rises from 322 ° C. to 325 ° C., and the flow temperature distribution in the carriage is 6 The temperature could be reduced from 3 ° C to 3 ° C. Furthermore, in Example 2, the distribution of the flow temperature could be reduced to 1 ° C. by increasing the air passage around the carriage. As a result, solder blister resistance has also improved.
[0026]
【The invention's effect】
According to the present invention, the distribution of the furnace temperature becomes smaller than that of the conventional method, and a polymer with stable quality can be produced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a shelf type hot air circulation type heating furnace used in the present invention.
FIG. 2 is an enlarged cross-sectional view in a horizontal direction schematically showing a shelf type hot air circulation type heating furnace used in the present invention.
[Explanation of symbols]
1: tray 2: cart 3: circulation fan 4: temperature sensor 5: heating medium inlet 6: cooling refrigerant inlet 7: heat exchanger 8: heat insulating material 9: door 10: heating chamber 11: current plate 12: wheels 13: Hot air passage 14: Hot air passage 15: Hot air passage

Claims (4)

粉体状ポリマーをトレーに入れて棚段式熱風循環型加熱炉で加熱して固相重合する方法において、粉体状ポリマーを入れた最下段のトレーの下部と加熱室下部の内壁との間に50〜300mm幅の熱風通路を確保して行うことを特徴とするポリマーがポリエステルである粉体状ポリマーの固相重合方法。In the method of solid-phase polymerization in which a powdered polymer is placed in a tray and heated in a shelf-type hot-air circulating heating furnace, between the lower part of the lowermost tray containing the powdered polymer and the inner wall of the lower part of the heating chamber solid phase polymerization method of a polyester polymer characterized by performing to secure hot air passage 50~300mm width is powdery polymer. 該熱風通路を通過する熱風の速度が0.5〜8m/sである請求項1記載の方法。The method according to claim 1, wherein the speed of hot air passing through the hot air passage is 0.5 to 8 m / s. トレーの側端と加熱室側部の内壁との間に50〜300mm幅の熱風通路を確保して行う請求項1記載の方法。The method according to claim 1, wherein a hot air passage having a width of 50 to 300 mm is secured between a side edge of the tray and an inner wall of the side portion of the heating chamber. 最上段のトレーの上端と加熱室上部の内壁との間に50〜300mm幅の熱風通路を確保して行う請求項1記載の方法。  The method according to claim 1, wherein a hot air passage having a width of 50 to 300 mm is secured between the upper end of the uppermost tray and the inner wall of the upper part of the heating chamber.
JP2003128772A 2003-05-07 2003-05-07 Solid phase polymerization method for powdered polymer Expired - Fee Related JP4172321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003128772A JP4172321B2 (en) 2003-05-07 2003-05-07 Solid phase polymerization method for powdered polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003128772A JP4172321B2 (en) 2003-05-07 2003-05-07 Solid phase polymerization method for powdered polymer

Publications (2)

Publication Number Publication Date
JP2004331789A JP2004331789A (en) 2004-11-25
JP4172321B2 true JP4172321B2 (en) 2008-10-29

Family

ID=33504796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003128772A Expired - Fee Related JP4172321B2 (en) 2003-05-07 2003-05-07 Solid phase polymerization method for powdered polymer

Country Status (1)

Country Link
JP (1) JP4172321B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4935061B2 (en) * 2005-04-27 2012-05-23 住友化学株式会社 Method for flattening powder particles in tray

Also Published As

Publication number Publication date
JP2004331789A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
TWI293635B (en) Thermal crystallization of a molten polyester polymer in a fluid
TWI316948B (en) Low melting polyester polymers
TWI586750B (en) Liquid crystal polyester composition and process for producing the same
JP5172279B2 (en) Liquid crystal polymer composition and molded article comprising the same
JP6671869B2 (en) Liquid crystal polyester resin composition, connector and method for producing liquid crystal polyester resin composition
CN102431178B (en) Composite polymeric articles formed from extruded sheets containing a liquid crystal polymer
WO2017135365A1 (en) Wholly aromatic liquid crystal polyester resin and production method therefor
TWI765850B (en) Ovenware and resin composition for ovenware molding
US8759474B2 (en) Method for producing liquid crystal polyester
TW201942225A (en) Method for producing foam molded article and foam molded article
JP4172321B2 (en) Solid phase polymerization method for powdered polymer
KR102087451B1 (en) Solid-state polymerization system for a liquid crystalline polymer
CN109080026A (en) The manufacturing method of resin combination
JP3690390B2 (en) Solid phase polymerization method of powdery polymer
US8383759B2 (en) Method for producing liquid crystal polyester
JP4085202B2 (en) Solid phase polymerization method for powdered polymer
JP3566250B2 (en) Copolyester with improved extrudability and color
JP2013075990A (en) Liquid crystalline polymer, molded product, and methods for manufacturing liquid crystalline polymer
JP5407988B2 (en) Liquid crystalline resin composition and molded product thereof
TW201546112A (en) Wholly aromatic liquid crystalline polyester resin and injection molded body of said resin composition
JP7292157B2 (en) Blow-molded article and its manufacturing method
KR20130014389A (en) Method for producing liquid-crystalline polyester
JP4884920B2 (en) Liquid crystal polymer composition and molded article comprising the same
JPH05287080A (en) Method for solid-phase polymerization of powdered polymer
JP2023172360A (en) Method for producing liquid crystalline resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees