JPH05287080A - Method for solid-phase polymerization of powdered polymer - Google Patents

Method for solid-phase polymerization of powdered polymer

Info

Publication number
JPH05287080A
JPH05287080A JP4083712A JP8371292A JPH05287080A JP H05287080 A JPH05287080 A JP H05287080A JP 4083712 A JP4083712 A JP 4083712A JP 8371292 A JP8371292 A JP 8371292A JP H05287080 A JPH05287080 A JP H05287080A
Authority
JP
Japan
Prior art keywords
polymer
tray
heat transfer
solid
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4083712A
Other languages
Japanese (ja)
Other versions
JP3087430B2 (en
Inventor
Kazuo Hayatsu
一雄 早津
Kuniaki Asai
邦明 浅井
Ryoichi Nakamura
良一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP04083712A priority Critical patent/JP3087430B2/en
Publication of JPH05287080A publication Critical patent/JPH05287080A/en
Application granted granted Critical
Publication of JP3087430B2 publication Critical patent/JP3087430B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyamides (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PURPOSE:To obtain a polymer having a uniform quality in a short time by conducting the solid-phase polymn. of a polymer powder by putting the powder into a tray, and inserting a specific thermal conductor into the powder to thereby transfer heat quickly to the powder from the atmosphere in a heating oven through the conductor. CONSTITUTION:The solid-phase polymn. of a polymer powder (e.g. a powder of a wholly arom. polyester obtd. by reacting p-acetoxybenzoic acid, 4, 4'- diacetoxydiphenyl, and terephthalic acid) is conducted by putting the powder into a tray and inserting a thermal conductor made of a metal having a thermal conductivity at 200 deg.C of 10 W/m.K or higher (e.g. aluminum) into the powder in a tray with the upper end of the conductor jutting out by at least 0.5cm from the upper surface of the powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉体状ポリマーの固相
重合方法に関する。さらに詳しくは、短時間で品質のば
らつきの小さいポリマーを製造し得る新規な固相重合方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid phase polymerization method for powdery polymers. More specifically, the present invention relates to a novel solid-state polymerization method capable of producing a polymer having a small variation in quality in a short time.

【0002】[0002]

【従来の技術】ポリエチレンテレフタレートやポリブチ
レンテレフタレートなどのポリエステルポリマーを不活
性気体中で固相重合する方法は従来から知られている。
2. Description of the Related Art A method of solid-phase polymerizing a polyester polymer such as polyethylene terephthalate or polybutylene terephthalate in an inert gas has been conventionally known.

【0003】このとき、ポリマーの品質のばらつきを小
さくする方法としては、タンブラー方式(特開昭56−
43324号公報)や流動床方式があるが、これらの方
法は装置の構造が複雑で高価なものとなるという欠点を
有する。さらに、装置内にポリマーが残存しやすいの
で、品種やグレード切替時には、その都度装置の分解、
掃除が必要であった。このため、これらの方法は特に小
量多品種の生産において作業性が悪く、経済的な方法で
はなかった。
At this time, a tumbler method (Japanese Patent Laid-Open No. 56-
No. 43324) and a fluidized bed method, but these methods have the drawback that the structure of the device is complicated and the cost is high. In addition, the polymer tends to remain in the equipment, so every time you change the product type or grade, disassemble the equipment,
Needed cleaning. For this reason, these methods are not economical in terms of workability particularly in the production of a large amount of small quantities.

【0004】一方、静置した皿状のトレーにポリマーを
入れて、そのトレーを加熱炉に挿入して、ポリマーを攪
拌しないで、加熱して、固相重合する方式(以下静置ト
レー方式という)も考えられる。しかしながら、ポリマ
ー自身の伝熱が悪いので、この場合、ポリマーの品質の
ばらつきを小さくするためには、生産性を犠牲にしなけ
ればならなかった。すなわち、大きなトレーを用いた
り、トレーに入れるポリマー層の厚みを大きくしたりす
ると、長時間の加熱処理が必要となった。また、トレー
のサイズおよびポリマー層の厚みを小さくすれば短時間
で処理できるものの、ポリマーの充填、抜き取りに手間
がかかり、所定の加熱装置で一回に処理できる量が少な
くなった。いずれにしても、ポリマーの固相重合を大量
に行うためには、従来の静置トレー方式は効率的ではな
かった。
On the other hand, a method in which a polymer is placed in a stationary dish-shaped tray and the tray is inserted into a heating furnace to heat the polymer without stirring it to perform solid phase polymerization (hereinafter referred to as a stationary tray method) ) Is also considered. However, since the heat transfer of the polymer itself is poor, in this case, the productivity had to be sacrificed in order to reduce the variation in the quality of the polymer. That is, when a large tray was used or the thickness of the polymer layer placed in the tray was increased, a long heat treatment was required. Further, if the size of the tray and the thickness of the polymer layer are reduced, the treatment can be performed in a short time, but it takes time to fill and extract the polymer, and the amount that can be treated at once with a predetermined heating device is reduced. In any case, the conventional stationary tray system was not efficient for carrying out a large amount of solid-state polymerization of the polymer.

【0005】[0005]

【発明が解決しようとする課題】本発明は、これらの問
題を克服し、簡便で経済的に極めて有利に効率よくポリ
マーの固相重合を行い、均一で安定した品質のポリマー
を製造する方法を提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides a method for overcoming these problems and carrying out solid-state polymerization of a polymer conveniently, economically and extremely advantageously, efficiently and producing a polymer of uniform and stable quality. Is provided.

【0006】[0006]

【課題を解決するための手段】本発明者らは、このよう
な問題を解決するため鋭意検討した結果、大きなトレー
を用いて固相重合する際に、熱伝導性の良好な材質で作
製した伝熱体を挿入することにより上記の問題を解決で
きることを見出した。
Means for Solving the Problems As a result of intensive studies for solving the above problems, the present inventors have made a material having good thermal conductivity when solid-phase polymerizing using a large tray. It has been found that the above problem can be solved by inserting a heat transfer body.

【0007】すなわち、本発明は、粉体状ポリマーをト
レーに充填し、固相重合する際に、200℃における熱
伝導率が10W/m・K以上の金属からなる伝熱体を粉
体状ポリマー中に挿入することを特徴とする固相重合方
法に関するものである。
That is, according to the present invention, when a powdery polymer is filled in a tray and solid-phase polymerization is carried out, a heat transfer material made of a metal having a thermal conductivity at 200 ° C. of 10 W / m · K or more is powdery. The present invention relates to a solid-state polymerization method characterized by being inserted into a polymer.

【0008】本発明の固相重合方法を適用できるポリマ
ーは、特に限定されるものではないが、具体的にはポリ
エステル、ポリアミド、ポリアミドイミド、ポリイミ
ド、ポリフェニレンスルフィドなどが挙げられる。
The polymer to which the solid-state polymerization method of the present invention can be applied is not particularly limited, and specific examples thereof include polyester, polyamide, polyamideimide, polyimide, polyphenylene sulfide and the like.

【0009】ポリエステルとしては、ポリエチレンテレ
フタレート、ポリブチレンテレフタレート、ポリ−m−
フェニレンテレフタレート、ポリ−p−フェニレンイソ
フタレート、ポリ1,4−シクロヘキサンジメチレンテ
レフタレートなどのポリエステル、p−ヒドロキシ安息
香酸や2−ヒドロキシ6−ナフトエ酸などの芳香族ヒド
ロキシカルボン酸から得られるポリエステル、さらにこ
れらとテレフタル酸、イソフタル酸、2,6−ナフタレ
ンジカルボン酸などの芳香族ジカルボン酸とハイドロキ
ノン、レゾルシン、4,4’−ジヒドロキシジフェニ
ル、2,6−ジヒドロキシナフタレンなどの芳香族ジヒ
ドロキシ化合物とから得られる液晶性ポリエステルなど
が挙げられる。
As the polyester, polyethylene terephthalate, polybutylene terephthalate, poly-m-
Polyesters such as phenylene terephthalate, poly-p-phenylene isophthalate and poly 1,4-cyclohexanedimethylene terephthalate, polyesters obtained from aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and 2-hydroxy 6-naphthoic acid, and Obtained from these and aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid, and aromatic dihydroxy compounds such as hydroquinone, resorcin, 4,4′-dihydroxydiphenyl and 2,6-dihydroxynaphthalene. Examples include liquid crystal polyester.

【0010】ポリマーの形状は、粉体状または粒状、ペ
レット状が適する。具体的には、ポリマーの平均粒径が
0.05〜5mm、好ましくは0.1〜2mmのものが
よい。ここでは、これらのものを総称して粉体状ポリマ
ーと呼ぶ。
The polymer is preferably in the form of powder, particles or pellets. Specifically, the average particle size of the polymer is 0.05 to 5 mm, preferably 0.1 to 2 mm. Here, these are collectively referred to as a powdery polymer.

【0011】固相重合を行うときに、伝熱体を粉体状ポ
リマー中に挿入して、伝熱体と粉体状ポリマーを接触さ
せる。さらに、伝熱体は、その上端がポリマー層表面よ
り0.5cm以上、好ましくは1cm以上、上に出るこ
とが好ましい。さらに、伝熱体とトレーの底面板、側壁
板とを接触させることが好ましい。これにより、均一で
安定した品質の粉体状ポリマーを得ることができる。
When conducting solid-state polymerization, the heat transfer body is inserted into the powdery polymer to bring the heat transfer body and the powdery polymer into contact with each other. Furthermore, it is preferable that the upper end of the heat transfer member is above the surface of the polymer layer by 0.5 cm or more, preferably 1 cm or more. Further, it is preferable to bring the heat transfer member into contact with the bottom plate and side wall plate of the tray. This makes it possible to obtain a powdery polymer having a uniform and stable quality.

【0012】伝熱体の材質としては、200℃における
熱伝導率が10W/m・K以上、好ましくは100W/
m・K以上の金属がよい。さらに、強度、操作性、価格
などを考慮するとアルミニウム、銅、亜鉛、ステンレス
およびそれらの合金が好ましく、アルミニウムおよびそ
の合金が特に好ましい。
The material of the heat transfer material has a thermal conductivity at 200 ° C. of 10 W / m · K or more, preferably 100 W / m.
A metal of m · K or higher is preferable. Further, considering strength, operability, price, etc., aluminum, copper, zinc, stainless steel and alloys thereof are preferable, and aluminum and alloys thereof are particularly preferable.

【0013】伝熱体の形状としては、板状、網状、棒状
などを挙げることができる。これらの中では、加熱炉雰
囲気の熱の粉体状ポリマーへの伝えやすさ、および粉体
状ポリマー中に伝熱体を挿入する、または固相重合を終
えたあと粉体状ポリマー中から伝熱体を取り出すなどの
操作性などを考えると、板状が好ましい。特に、厚みが
0.5〜10mm、好ましくは1〜5mmの板状のもの
が好ましい。伝熱板は短冊状のものをトレーに充填され
たポリマー中に挿入することもできるが、図1に示すよ
うな複数の短冊状の伝熱板を格子状に組み合わせたもの
が、操作性に優れているので好ましい。トレーに充填さ
れた粉体状ポリマー中に格子状伝熱板が挿入された状態
の断面概略図を図2に示す。
Examples of the shape of the heat transfer body include a plate shape, a net shape, and a rod shape. Among these, the ease with which the heat in the heating furnace atmosphere is transferred to the powdery polymer, and the transfer of heat from the powdery polymer after inserting the heat transfer material into the powdery polymer or completing the solid-state polymerization. The plate shape is preferable in consideration of operability such as taking out the heat element. Particularly, a plate-shaped material having a thickness of 0.5 to 10 mm, preferably 1 to 5 mm is preferable. A strip-shaped heat transfer plate can be inserted into the polymer filled in the tray, but a combination of a plurality of strip-shaped heat transfer plates as shown in FIG. It is preferable because it is excellent. FIG. 2 shows a schematic cross-sectional view of a state in which the lattice-shaped heat transfer plate is inserted in the powdery polymer filled in the tray.

【0014】伝熱板を垂直方向に用いる場合は、トレー
と伝熱板および伝熱板相互の間隔は30cm以下、特に
20cm以下が好ましい。ここで、伝熱板相互の間隔と
は、短冊状の場合では短冊相互の間隔であり、図1に示
すような複数の短冊状の伝熱板を格子状に組み合わせた
場合では一つの格子において対面する伝熱板相互の間隔
をいう。
When the heat transfer plate is used in the vertical direction, the distance between the tray and the heat transfer plate and the heat transfer plate is preferably 30 cm or less, particularly 20 cm or less. Here, the space between the heat transfer plates is the space between the strips in the case of strips, and in the case of combining a plurality of strip-shaped heat transfer plates as shown in FIG. The distance between the heat transfer plates facing each other.

【0015】伝熱板をトレーに充填されたポリマー中に
挿入する方法としては、伝熱板をトレーの側壁板および
底面板に密着するように挿入するのが好ましい。ただ
し、トレーと伝熱板との間に若干のポリマー層が存在し
ても特に支障はない。伝熱板の高さは、伝熱板をトレー
の底面板に密着するように挿入したときに、伝熱板の上
端がポリマー層表面より0.5cm以上、好ましくは1
cm以上、上に出るのが好ましい。
As a method for inserting the heat transfer plate into the polymer filled in the tray, it is preferable to insert the heat transfer plate so as to be in close contact with the side wall plate and the bottom plate of the tray. However, there is no particular problem even if some polymer layer is present between the tray and the heat transfer plate. The height of the heat transfer plate is 0.5 cm or more, preferably 1 cm or more from the polymer layer surface at the upper end of the heat transfer plate when the heat transfer plate is inserted so as to be in close contact with the bottom plate of the tray.
It is preferable to go above the cm.

【0016】トレーの形状、大きさは、特に限定される
ものではないが、一般的な加熱装置の形状や伝熱板の挿
入の操作性などを考慮すると、上面が開放された直方体
形状(重箱状)のトレー形状が好ましい。トレーの材質
は、200℃における熱伝導率が10W/m・K以上、
好ましくは100W/m・K以上の金属がよい。さら
に、強度、操作性、価格などを考慮するとアルミニウ
ム、銅、亜鉛、ステンレスおよびそれらの合金が好まし
く、アルミニウムおよびその合金が特に好ましい。固相
重合の雰囲気は、不活性ガス雰囲気が好ましい。
The shape and size of the tray are not particularly limited, but in consideration of the shape of a general heating device and the operability of inserting a heat transfer plate, a rectangular parallelepiped shape with an open top (heavy box) is used. Shape) is preferred. The material of the tray has a thermal conductivity of 10 W / mK or more at 200 ° C,
A metal of 100 W / m · K or more is preferable. Further, considering strength, operability, price, etc., aluminum, copper, zinc, stainless steel and alloys thereof are preferable, and aluminum and alloys thereof are particularly preferable. The solid-state polymerization atmosphere is preferably an inert gas atmosphere.

【0017】このように伝熱板を挿入することにより、
1トレー当りのポリマー層を厚くして充填量を増やし、
さらに処理時間も大幅に短縮して、しかも品質の均一な
ポリマーの製造が可能となったので、工業的に極めて価
値が大きい。
By inserting the heat transfer plate in this way,
Thicken the polymer layer per tray to increase the filling amount,
Furthermore, the processing time has been greatly shortened, and it has become possible to produce polymers of uniform quality, which is extremely valuable industrially.

【0018】[0018]

【実施例】以下、本発明の実施例を示すが、本発明はこ
れらに限定されるものではない。なお、実施例中の物性
は次の方法で測定された。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited thereto. The physical properties in the examples were measured by the following methods.

【0019】・流動温度:(株)島津製作所製の高化式
フローテスター CFT−500型で測定され、4℃/
分の昇温速度で加熱溶融された樹脂を荷重100kg/
cm 2 の下で内径1mm、長さ10mmのノズルから押
出す時に、該溶融粘度が48,000ポイズを示す点に
おける温度である。この温度の低い樹脂ほど流動性が大
である。
Flowing temperature: Shimadzu's high-performance type
Measured with a flow tester CFT-500 type, 4 ° C /
Resin heated and melted at a heating rate of 100
cm 2The nozzle with an inner diameter of 1 mm and a length of 10 mm under
At the point of melting, the melt viscosity shows 48,000 poise.
Temperature. The lower the temperature, the greater the fluidity
Is.

【0020】・光学異方性:溶融状態における樹脂の光
学異方性は、加熱ステージ上に置かれた粉末状の樹脂を
偏光下10℃/分で昇温して肉眼観察により行った。そ
して液晶開始温度を求めた。なお静置下で完全溶融しな
い場合はスプリング圧を利用し加圧下で行った。
Optical anisotropy: The optical anisotropy of the resin in a molten state was determined by observing the powdered resin placed on a heating stage under polarized light at a temperature of 10 ° C./min by visual observation. Then, the liquid crystal starting temperature was determined. In addition, when it was not completely melted under standing, it was carried out under pressure by using spring pressure.

【0021】・引張強度、加熱変形温度(HDT):A
STM4号引張ダンベル、HDT測定用試験片(127
mm長×12.7mm幅×6.4mm厚)を成形し、そ
れぞれASTM D638、ASTM D648に準じ
て測定した。
Tensile strength, heat distortion temperature (HDT): A
STM4 tensile dumbbell, test piece for HDT measurement (127
(mm length × 12.7 mm width × 6.4 mm thickness) was molded and measured according to ASTM D638 and ASTM D648, respectively.

【0022】参考例1(液晶ポリエステルAの製造) P−アセトキシ安息香酸10.81kg(60モル)、
4,4’−ジアセトキシジフェニル5.41kg(20
モル)、テレフタル酸3.32kg(20モル)を櫛型
撹拌翼を有す50l SUS−316L製重合槽に仕込
んだ。窒素ガス雰囲気下昇温し180℃から撹拌しなが
ら1℃/分の速度で昇温し副生する酢酸を留去しながら
300℃で60分重合した。その後、系を密閉し窒素で
槽内圧を1kg/cm2 Gに保ち、重合槽底部のバルブ
を開け、反応物をステンレス製トレーに約1cmの厚み
で抜き出した。この反応物の得量は13.41kgで理
論収量の99.2%であった。これをホソカワミクロン
(株)製のハンマーミルで平均粒径約0.5mmに粉砕
して、流動温度が285℃で下記の繰り返し構造単位か
らなる全芳香族ポリエステル(以下「液晶ポリエステル
A」と言う)を得た。このポリマーは加圧下で305℃
以上で光学異方性を示した。すなわち液晶開始温度は3
05℃であった。液晶ポリエステルAの繰り返し構造単
位は、一般式化1の通りである。
Reference Example 1 (Production of Liquid Crystal Polyester A) P-acetoxybenzoic acid 10.81 kg (60 mol),
5,4 kg of 4,4'-diacetoxydiphenyl (20
Mol) and 3.32 kg (20 mol) of terephthalic acid were charged into a 50 l SUS-316L polymerization tank having a comb-shaped stirring blade. The temperature was raised in a nitrogen gas atmosphere and the temperature was raised from 180 ° C. with stirring at a rate of 1 ° C./min to distill off acetic acid produced as a by-product and polymerization was carried out at 300 ° C. for 60 minutes. After that, the system was closed, the internal pressure of the tank was kept at 1 kg / cm 2 G with nitrogen, the valve at the bottom of the polymerization tank was opened, and the reaction product was extracted into a stainless tray with a thickness of about 1 cm. The yield of this reaction product was 13.41 kg, which was 99.2% of the theoretical yield. This was crushed with a hammer mill manufactured by Hosokawa Micron Co., Ltd. to an average particle size of about 0.5 mm, and a wholly aromatic polyester (hereinafter referred to as "liquid crystal polyester A") having a flow temperature of 285 ° C. and comprising the following repeating structural units. Got This polymer is 305 ° C under pressure
Above, optical anisotropy was shown. That is, the liquid crystal starting temperature is 3
It was 05 ° C. The repeating structural unit of the liquid crystal polyester A is as shown in the general formula 1.

【0023】[0023]

【化1】 [Chemical 1]

【0024】参考例2(液晶ポリエステルBの製造) P−アセトキシ安息香酸10.81kg(60モル)、
4,4’−ジアセトキシジフェニル5.41kg(20
モル)、テレフタル酸2.49kg(15モル)、イソ
フタル酸0.83kg(5モル)を仕込み、参考例1と
同様に300℃で60分重合し、反応物を抜き出した。
この反応物の得量は、13.11kgで理論収量の9
7.0%であった。
Reference Example 2 (Production of Liquid Crystal Polyester B) P-acetoxybenzoic acid 10.81 kg (60 mol),
5,4 kg of 4,4'-diacetoxydiphenyl (20
Mol), 2.49 kg (15 mol) of terephthalic acid and 0.83 kg (5 mol) of isophthalic acid were charged, and polymerization was carried out at 300 ° C. for 60 minutes in the same manner as in Reference Example 1, and the reaction product was extracted.
The yield of this reaction product was 13.11 kg, which was 9 the theoretical yield.
It was 7.0%.

【0025】これをホソカワミクロン(株)製のハンマ
ーミルで平均粒径約0.5mmに粉砕して、流動温度が
270℃で下記の繰り返し構造単位からなる全芳香族ポ
リエステル(以下「液晶ポリエステルB」と言う)を得
た。また、このポリマーは加圧下で290℃以下で光学
異方性を示し、液晶開始温度は290℃であった。液晶
ポリエステルBの繰り返し構造単位は、一般式化2の通
りである。
This was crushed with a hammer mill manufactured by Hosokawa Micron Co., Ltd. to an average particle size of about 0.5 mm, and a wholly aromatic polyester (hereinafter referred to as "liquid crystalline polyester B") having a flow temperature of 270 ° C. and consisting of the following repeating structural units. I got). Further, this polymer exhibited optical anisotropy at 290 ° C. or lower under pressure, and the liquid crystal starting temperature was 290 ° C. The repeating structural unit of the liquid crystal polyester B is as shown in the general formula 2.

【0026】[0026]

【化2】 [Chemical 2]

【0027】実施例1 トレーの材料として、JISH4000で規定されるA
1080Pのアルミニウムを用いた。該アルミニウムの
200℃における熱伝導率は230W/m・K(0.5
5cal/sec・cm・℃)である。内寸120cm
×120cm×深さ10cmのアルミニウム製トレーに
参考例1の条件でくり返し合成した液晶ポリエステルA
を53kg仕込んだ(ポリマー厚みは6.5cm)。次
に長さ119cm、高さ8cmのアルミニウム板で20
cm間隔の格子状に組立てた伝熱板をトレーの底板に接
するように挿入した。伝熱板の上端は、粉体状ポリマー
の上面より1.5cm上に出ていた。
Example 1 As a material for the tray, A specified by JIS H4000
Aluminum of 1080P was used. The thermal conductivity of the aluminum at 200 ° C. is 230 W / m · K (0.5
5 cal / sec · cm · ° C). Inner size 120 cm
Liquid crystal polyester A repeatedly synthesized under the conditions of Reference Example 1 on an aluminum tray having a size of 120 cm and a depth of 10 cm.
Was charged (polymer thickness is 6.5 cm). Then, using an aluminum plate with a length of 119 cm and a height of 8 cm, 20
A heat transfer plate assembled in a grid pattern with a cm interval was inserted into contact with the bottom plate of the tray. The upper end of the heat transfer plate was projected 1.5 cm above the upper surface of the powdery polymer.

【0028】このものを窒素雰囲気下のオーブンに入
れ、室温から250℃まで1時間で上げ、その後4時間
で320℃まで昇温し、320℃で5時間保持して、さ
らに200℃まで冷却し、固相重合を終了した。
This was placed in an oven under a nitrogen atmosphere, heated from room temperature to 250 ° C. in 1 hour, heated to 320 ° C. in 4 hours, kept at 320 ° C. for 5 hours, and further cooled to 200 ° C. , Solid phase polymerization was completed.

【0029】全体がシンタリングもなく、きれいな粉体
で回収でき、重量減少は2.5%であった。このポリマ
ーの格子間中心部の表面部と中間層部のポリマーをサン
プリングし、流動温度を測定するとそれぞれ376℃、
374℃で差は小さく、また、全量混合したポリマーの
流動温度は375℃であり、液晶開始温度は396℃で
あった。
There was no sintering as a whole, and it could be recovered as a clean powder, and the weight loss was 2.5%. When the polymer of the surface portion of the interstitial center portion of this polymer and the polymer of the intermediate layer portion were sampled and the flow temperature was measured, each was 376 ° C
The difference was small at 374 ° C, and the flow temperature of the polymer in which all the components were mixed was 375 ° C, and the liquid crystal initiation temperature was 396 ° C.

【0030】次にこのポリマー600gとガラス繊維
(セントラル硝子(株)製EFH75−01)400g
を混合し、二軸押出機(池貝鉄工(株)製PCM−3
0)を用いて、350℃で溶融混練しペレットを得た。
これらのペレットを射出成形機(日精樹脂工業(株)製
PS40E5ASE)を用いて、シリンダー温度390
℃、金型温度130℃で、引張強度、HDT、及び薄肉
(0.8mm厚み)成形品でのフクレ発生有無評価用の
0.8mm厚の短冊試験片を成形し、上記方法により測
定した。
Next, 600 g of this polymer and 400 g of glass fiber (EFH75-01 manufactured by Central Glass Co., Ltd.)
And a twin-screw extruder (PCM-3 manufactured by Ikegai Tekko KK)
0) was melt-kneaded at 350 ° C. to obtain pellets.
Using an injection molding machine (PS40E5ASE manufactured by Nissei Plastic Industry Co., Ltd.), these pellets were heated to a cylinder temperature of 390.
At 0.8 ° C. and a mold temperature of 130 ° C., a tensile strength, HDT, and a 0.8 mm-thick strip test piece for evaluating the presence or absence of blistering in a thin-walled (0.8 mm-thick) molded product were molded and measured by the above method.

【0031】結果を表1に示すが、比較例1に比べ物性
は全般に高く薄肉成形品にフクレも観察されなかった。
The results are shown in Table 1. The physical properties were generally higher than those of Comparative Example 1, and no blister was observed in the thin-walled molded product.

【0032】実施例2 実施例1で用いた伝熱板の間隔を10cmと狭くした以
外は、すべて同条件で固相重合した。この時のポリマー
の重量減少は2.6%でシンタリング等も全くなかっ
た。
Example 2 Solid-state polymerization was conducted under the same conditions except that the distance between the heat transfer plates used in Example 1 was narrowed to 10 cm. At this time, the weight loss of the polymer was 2.6% and there was no sintering or the like.

【0033】また、このポリマーの格子間中心部の表面
部と中間層部でサンプリングしたポリマーの流動温度
は、それぞれ377℃、377℃で、また、全量混合し
たポリマーの流動温度も377℃であり、液晶開始温度
は400℃であった。
The flow temperature of the polymer sampled at the surface portion of the interstitial center portion of this polymer and the flow temperature of the polymer sampled at the intermediate layer portion are 377 ° C. and 377 ° C., respectively. The liquid crystal starting temperature was 400 ° C.

【0034】このポリマーも実施例1と全く同条件で溶
融混練、射出成形し各試験片を作製し、物性を測定し
た。結果を表1に示すが全般に良好な物性であった。
This polymer was melt-kneaded and injection-molded under the same conditions as in Example 1 to prepare test pieces, and their physical properties were measured. The results are shown in Table 1, and the physical properties were generally good.

【0035】実施例3 実施例1で用いた伝熱板の間隔を40cmと広くした以
外はすべて同条件で固相重合した。
Example 3 Solid-state polymerization was conducted under the same conditions except that the distance between the heat transfer plates used in Example 1 was widened to 40 cm.

【0036】この時のポリマーの重量減少は2.0%
で、この時の表面部と中間層部のサンプリングポリマー
の流動温度は、それぞれ372℃、364℃で全量混合
ポリマーの流動温度は366℃、液晶開始温度は387
℃であった。
The weight loss of the polymer at this time is 2.0%
At this time, the flowing temperatures of the sampling polymer in the surface portion and the intermediate layer portion are 372 ° C. and 364 ° C., respectively, and the flowing temperature of the total amount of mixed polymer is 366 ° C.
It was ℃.

【0037】このポリマーも実施例1と同条件で溶融混
練、射出成形し各試験片を得、物性を測定したが、薄肉
成形品の表面に数個のフクレが見られた。結果を表1に
示す。
This polymer was melt-kneaded and injection-molded under the same conditions as in Example 1 to obtain each test piece, and its physical properties were measured. As a result, several blisters were observed on the surface of the thin-walled molded product. The results are shown in Table 1.

【0038】比較例1 伝熱板を用いない以外は実施例1と同条件で固相重合し
た。この時のポリマーの重量減少は、1.7%であり、
トレー中心部の表面層と中間層部のサンプリングポリマ
ーの流動温度は、それぞれ369℃、358℃で全量混
合ポリマーの流動温度は360℃であり、液晶開始温度
は380℃であった。
Comparative Example 1 Solid-state polymerization was carried out under the same conditions as in Example 1 except that no heat transfer plate was used. The weight loss of the polymer at this time was 1.7%,
The flow temperatures of the sampling polymer in the surface layer and the intermediate layer of the tray were 369 ° C. and 358 ° C., respectively, and the total mixed polymer flow temperature was 360 ° C., and the liquid crystal starting temperature was 380 ° C.

【0039】このポリマーも実施例1と同条件で溶融混
練し、390℃で射出成形したが成形品全般にバリが多
く、380℃で成形し、各試験片を得た。全般に物性は
低く、薄肉成形品に多くのフクレが見られた。結果を表
1に示す。
This polymer was also melt-kneaded under the same conditions as in Example 1 and injection-molded at 390 ° C., but there were many burrs in the entire molded product, and the product was molded at 380 ° C. to obtain each test piece. In general, the physical properties were low, and many blisters were observed in the thin-walled molded product. The results are shown in Table 1.

【0040】比較例2 比較例1と同様に伝熱板を用いず、仕込みの液晶ポリエ
ステルAの量を20kg(ポリマー厚みは2.5cm)
と少なくし、他はすべて同条件で固相重合した。
Comparative Example 2 As in Comparative Example 1, without using a heat transfer plate, the amount of liquid crystal polyester A charged was 20 kg (polymer thickness was 2.5 cm).
Solid phase polymerization under the same conditions for all others.

【0041】この時の重量減少は、2.5%で、全量混
合ポリマーの流動温度は376℃で液晶開始温度は、3
98℃であった。このポリマーも実施例1と同条件で溶
融混練、射出成形し各試験片を得た。いずれも問題はな
く物性も良好であり、薄肉成形品にもフクレは見られな
かった。結果を表1に示すが、生産量は実施例1、2ま
たは3の約40%で生産効率が悪かった。
At this time, the weight loss was 2.5%, the flow temperature of the whole mixed polymer was 376 ° C., and the liquid crystal starting temperature was 3%.
It was 98 ° C. This polymer was melt-kneaded and injection-molded under the same conditions as in Example 1 to obtain each test piece. All had no problems and had good physical properties, and no blister was observed in the thin-walled molded product. The results are shown in Table 1, and the production amount was about 40% of that of Example 1, 2 or 3, and the production efficiency was poor.

【0042】実施例4 実施例1と同じトレーに参考例2の条件でくり返し合成
した液晶ポリエステルBを53kg仕込んだ(ポリマー
厚みは、6.5cm)。次に実施例1と同じ格子間隔2
0cmの伝熱板をトレーの底板に接するように挿入し
た。伝熱板の上端は、粉体状ポリマーの上面より1.5
cm上に出ていた。
Example 4 53 kg of liquid crystal polyester B repeatedly synthesized under the conditions of Reference Example 2 was charged in the same tray as in Example 1 (polymer thickness was 6.5 cm). Next, the same lattice spacing 2 as in Example 1
A 0 cm heat transfer plate was inserted in contact with the bottom plate of the tray. The upper end of the heat transfer plate is 1.5 from the upper surface of the powdery polymer.
It was above the cm.

【0043】これを窒素雰囲気下のオーブンに入れ、室
温から250℃まで1時間で上げ、その後、3時間で2
75℃まで昇温し、275℃で5時間保持し、固相重合
を終了した。固相重合での重量減少は、1.4%で、こ
の時のポリマーの格子間中心部の表面部と中間層部のポ
リマーをサンプリングし、流動温度を測定すると、それ
ぞれ330℃、329℃で全体混合品も330℃とむら
のないポリマーが得られた。また、このポリマーの液晶
開始温度は、350℃であった。
This was placed in an oven under a nitrogen atmosphere, the temperature was raised from room temperature to 250 ° C. in 1 hour, and then 2 hours in 3 hours.
The temperature was raised to 75 ° C. and the temperature was maintained at 275 ° C. for 5 hours to complete the solid phase polymerization. The weight loss in the solid state polymerization was 1.4%, and when the polymer of the surface part of the interstitial center part of the polymer and the polymer of the intermediate layer part were sampled and the flow temperature was measured, it was 330 ° C and 329 ° C, respectively. The whole mixture was 330 ° C., and a polymer having no unevenness was obtained. The liquid crystal starting temperature of this polymer was 350 ° C.

【0044】次に実施例1と同様に、このポリマー60
0gとガラス繊維温度400gを混合し、二軸押出機を
用い330℃で溶融混練しペレットを得、シリンダー温
度350℃、金型温度130℃で射出成形した。成形品
の物性を表2に示すが、外観もきれいで物性も良好であ
った。
Next, as in Example 1, this polymer 60 was used.
0 g and a glass fiber temperature of 400 g were mixed, melt-kneaded at 330 ° C. using a twin-screw extruder to obtain pellets, and injection-molded at a cylinder temperature of 350 ° C. and a mold temperature of 130 ° C. The physical properties of the molded product are shown in Table 2. The appearance was clean and the physical properties were good.

【0045】実施例5 実施例4で用いた伝熱板の間隔を10cmに狭くした以
外は、すべて同条件で固相重合した。この時のポリマー
の重量減少は、1.5%で、このポリマーの格子間中心
部の表面部と中間層部でサンプリングしたポリマーの流
動温度は、それぞれ331℃、330℃で全体混合品は
332℃であった。このポリマーの液晶開始温度は、3
53℃であった。
Example 5 Solid-state polymerization was conducted under the same conditions except that the distance between the heat transfer plates used in Example 4 was narrowed to 10 cm. At this time, the weight loss of the polymer was 1.5%, and the flow temperatures of the polymer sampled at the surface portion of the interstitial center portion and the intermediate layer portion of this polymer were 331 ° C and 330 ° C, respectively, and the total mixture was 332 ° C. It was ℃. The liquid crystal onset temperature of this polymer is 3
It was 53 ° C.

【0046】このポリマーも実施例1と同条件で溶融混
練し、射出成形して試験片を作製し、物性を測定した。
結果を表2に示すが全般に良好な物性であった。
This polymer was melt-kneaded under the same conditions as in Example 1 and injection-molded to prepare a test piece, and its physical properties were measured.
The results are shown in Table 2, and the physical properties were generally good.

【0047】比較例3 伝熱板を用いない以外は実施例4と同条件で固相重合し
た。この時のポリマーの重量減少は1.1%であり、ト
レー中心部の表面層と中間層部でサンプリングしたポリ
マーの流動温度は、それぞれ324℃、316℃で全体
混合品は318℃であった。このポリマーの液晶開始温
度は336℃であった。このポリマーも実施例4と同条
件で溶融混練、射出成形できたが、各試験片には、少し
バリが発生し、物性は全般に低く、0.8mm厚の薄肉
成形品の表面には、フクレが見られた。結果を表2に示
す。
Comparative Example 3 Solid-state polymerization was carried out under the same conditions as in Example 4 except that a heat transfer plate was not used. At this time, the weight loss of the polymer was 1.1%, the flow temperatures of the polymer sampled in the surface layer in the center of the tray and in the intermediate layer were 324 ° C and 316 ° C, respectively, and the total mixture was 318 ° C. .. The liquid crystal initiation temperature of this polymer was 336 ° C. This polymer was also melt-kneaded and injection-molded under the same conditions as in Example 4, but each test piece had some burrs, and the physical properties were generally low, and the surface of the 0.8 mm-thick thin-walled molded product was Blisters were seen. The results are shown in Table 2.

【0048】比較例4 仕込みの液晶ポリエステルBの量を20kg(ポリマー
厚みは、2.5cm)とした以外は、比較例3と同様に
固相重合した。この時の重量減少は、1.6%で全量混
合ポリマーの流動温度は、334℃で液晶開始温度は3
56℃であった。
Comparative Example 4 Solid-state polymerization was carried out in the same manner as in Comparative Example 3 except that the amount of the liquid crystal polyester B charged was 20 kg (polymer thickness was 2.5 cm). At this time, the weight loss was 1.6%, the flow temperature of the whole mixed polymer was 334 ° C, and the liquid crystal starting temperature was 3
It was 56 ° C.

【0049】このポリマーも同様に溶融混練し、射出成
形して、各物性を測定した。物性は表2に示すがいずれ
も良好であった。しかし、比較例2と同様、生産性が極
めて悪かった。
Similarly, this polymer was melt-kneaded and injection-molded to measure each physical property. The physical properties are shown in Table 2, but all were good. However, as in Comparative Example 2, the productivity was extremely poor.

【0050】[0050]

【表1】 [Table 1]

【0051】[0051]

【表2】 [Table 2]

【0052】[0052]

【発明の効果】本発明によれば、粉体状ポリマーを静置
トレー方法で、固相重合する際に、伝熱体を粉体状ポリ
マー中に挿入することにより、伝熱体を介して加熱炉の
雰囲気の熱を粉体状ポリマーに素早く伝えることができ
て、品質のばらつきの小さいポリマーを合理的、経済的
に製造することができる。比較例のように伝熱体がない
場合は、品質の安定したポリマーは得られず、品質の安
定したポリマーを得ようとすればトレー当りの仕込み量
を非常に少なくする必要があり、工業的には不利であ
る。これに対し、本発明によれば実施例からも明らかな
ように簡便な装置で、しかも作業性にも問題なく効率的
に製造できる。
According to the present invention, when the powdery polymer is solid-phase polymerized by the stationary tray method, by inserting the heat transfer material into the powdery polymer, the heat transfer material is inserted through the heat transfer material. The heat of the atmosphere of the heating furnace can be quickly transferred to the powdery polymer, and the polymer with a small quality variation can be manufactured rationally and economically. When there is no heat transfer material as in Comparative Example, a polymer of stable quality cannot be obtained, and in order to obtain a polymer of stable quality, it is necessary to reduce the amount charged per tray very much. Is a disadvantage to On the other hand, according to the present invention, as is apparent from the examples, it is possible to efficiently manufacture the apparatus with a simple apparatus and without any problem in workability.

【図面の簡単な説明】[Brief description of drawings]

【図1】格子状の伝熱板の斜視図。FIG. 1 is a perspective view of a grid-shaped heat transfer plate.

【図2】トレーに充填された粉体状ポリマー中に格子状
伝熱板が挿入された状態の断面概略図。
FIG. 2 is a schematic cross-sectional view of a state in which a lattice-shaped heat transfer plate is inserted in a powdery polymer filled in a tray.

【符号の説明】[Explanation of symbols]

1.伝熱板。 2.トレー。 3.粉体状ポリマー。 1. Heat transfer plate. 2. tray. 3. Powdered polymer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】粉体状ポリマーをトレーに充填し、固相重
合する際に、200℃における熱伝導率が10W/m・
K以上の金属からなる伝熱体を粉体状ポリマー中に挿入
することを特徴とする固相重合方法。
1. A thermal conductivity at 200 ° C. of 10 W / m · when a powdery polymer is packed in a tray and solid-phase polymerized.
A solid-state polymerization method, characterized in that a heat conductor made of a metal of K or more is inserted into a powdery polymer.
【請求項2】伝熱体の上端がトレーに充填されたポリマ
ーの上面より0.5cm以上、上に出ていることを特徴
とする請求項1記載の固相重合方法。
2. The solid-state polymerization method according to claim 1, wherein the upper end of the heat transfer member is protruded above the upper surface of the polymer filled in the tray by 0.5 cm or more.
JP04083712A 1992-04-06 1992-04-06 Solid state polymerization of powdery polymer Expired - Fee Related JP3087430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04083712A JP3087430B2 (en) 1992-04-06 1992-04-06 Solid state polymerization of powdery polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04083712A JP3087430B2 (en) 1992-04-06 1992-04-06 Solid state polymerization of powdery polymer

Publications (2)

Publication Number Publication Date
JPH05287080A true JPH05287080A (en) 1993-11-02
JP3087430B2 JP3087430B2 (en) 2000-09-11

Family

ID=13810119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04083712A Expired - Fee Related JP3087430B2 (en) 1992-04-06 1992-04-06 Solid state polymerization of powdery polymer

Country Status (1)

Country Link
JP (1) JP3087430B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072750A (en) * 1999-09-03 2001-03-21 Sumitomo Chem Co Ltd Aromatic liquid crystal polyester and its production
JP2011178936A (en) * 2010-03-03 2011-09-15 Toray Ind Inc Liquid crystalline polyester and liquid crystalline polyester composition
JP2013502482A (en) * 2009-08-20 2013-01-24 インタープレックス,キューエルピー,インコーポレイテッド Ultra-high temperature plastic chip package and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072750A (en) * 1999-09-03 2001-03-21 Sumitomo Chem Co Ltd Aromatic liquid crystal polyester and its production
JP4576644B2 (en) * 1999-09-03 2010-11-10 住友化学株式会社 Aromatic liquid crystalline polyester and method for producing the same
JP2013502482A (en) * 2009-08-20 2013-01-24 インタープレックス,キューエルピー,インコーポレイテッド Ultra-high temperature plastic chip package and manufacturing method thereof
JP2011178936A (en) * 2010-03-03 2011-09-15 Toray Ind Inc Liquid crystalline polyester and liquid crystalline polyester composition

Also Published As

Publication number Publication date
JP3087430B2 (en) 2000-09-11

Similar Documents

Publication Publication Date Title
KR101436164B1 (en) Resin molded article and method for producing the same
US8178646B2 (en) Method for producing liquid-crystalline polyester powder
CN101240106B (en) Liquid-crystalline polymer composition, method for producing the same and molded article using the same
TW200925176A (en) Wholly aromatic liquid-crystalline polyester
JP2008075063A (en) Liquid crystalline polymer molding
JPH02173156A (en) Liquid crystalline polyester resin composition having improved fluidity
KR20160096086A (en) Wholly aromatic liquid crystal polyester resin composition and camera module component including injection-molded article of same as constituent member
JP4670153B2 (en) Aromatic liquid crystal polyester and method for producing the same
CN102803338B (en) Methods of preparing wholly aromatic liquid crystalline polyester resin and wholly aromatic liquid crystalline polyester resin compound with constant melt viscosity
CN102431178A (en) Composite polymeric articles formed from extruded sheets containing a liquid crystal polymer
JP2012214736A (en) Method for producing liquid crystal polyester
CN109080026A (en) The manufacturing method of resin combination
CN109561791B (en) Ovenware, method for producing same, and resin composition for forming ovenware
JPH05287080A (en) Method for solid-phase polymerization of powdered polymer
JP2010077397A (en) Liquid crystal polyester particle, and method of manufacturing modified liquid crystal polyester particle using the same
JP2847188B2 (en) Method for producing aromatic polyester
JP2012214737A (en) Method for producing liquid crystal polyester
KR20200136902A (en) Aromatic liquid crystal polyester, aromatic liquid crystal polyester composition and molded article
JP3282272B2 (en) Method for producing aromatic polyester
JP2013075990A (en) Liquid crystalline polymer, molded product, and methods for manufacturing liquid crystalline polymer
JP2010168576A (en) Liquid crystalline polyester powder and method for producing the same
JP3690390B2 (en) Solid phase polymerization method of powdery polymer
JP3419070B2 (en) Method for producing aromatic polyester
JPH1036492A (en) Production of wholly aromatic polyester
JP4172321B2 (en) Solid phase polymerization method for powdered polymer

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080714

Year of fee payment: 8

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees