JP4085202B2 - Solid phase polymerization method for powdered polymer - Google Patents

Solid phase polymerization method for powdered polymer Download PDF

Info

Publication number
JP4085202B2
JP4085202B2 JP2003080083A JP2003080083A JP4085202B2 JP 4085202 B2 JP4085202 B2 JP 4085202B2 JP 2003080083 A JP2003080083 A JP 2003080083A JP 2003080083 A JP2003080083 A JP 2003080083A JP 4085202 B2 JP4085202 B2 JP 4085202B2
Authority
JP
Japan
Prior art keywords
polymer
hot air
temperature
speed
phase polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003080083A
Other languages
Japanese (ja)
Other versions
JP2004285247A (en
Inventor
祥佐 近藤
歓喜 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2003080083A priority Critical patent/JP4085202B2/en
Priority to CNA2004100399889A priority patent/CN1534053A/en
Publication of JP2004285247A publication Critical patent/JP2004285247A/en
Application granted granted Critical
Publication of JP4085202B2 publication Critical patent/JP4085202B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、粉体状ポリマーの固相重合法に関し、詳しくは熱風循環型炉を用いた固相重合の方法に関するものである。
【0002】
【従来の技術】
ポリエチレンテレフタレート、ポリブチレンテレフタレートや液晶性ポリエステル樹脂を不活性気体中で固相重合する方法は知られており、ポリマー品質のばらつきを小さくするため、タンブラー方式、流動床方式やパドル方式が知られている。しかしながら、これらの方式は装置の構造が複雑で高価であるのみならず、装置内部に製品が残り易く、品種の切替え時に前品種の少量の混合が避けられず、また完全に掃除するためには分解掃除が必要で多大な労力を要する。
また、皿状のトレーにポリマーを入れて、そのトレーを棚段に重ねて加熱炉に挿入して、ポリマー粉体が静止状態で固相重合する方法も知られている(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特許第3087430号公報
【0004】
【発明が解決しようとする課題】
しかしながら、トレーに粉体状ポリマーを入れ、加熱炉に挿入して固相重合する方法は、装置の構造が比較的簡単で、品種の切替え等が容易で好ましい方法であるが、トレー間の風速を上げると粉体状ポリマーが飛散し、トレーよりこぼれてロスが発生するとともに、そのポリマーが熱劣化を起こし、次バッチに混入するという問題が発生する。また風速を下げると炉内の温度分布が大きくなり、固相重合して得られる製品の品質が低下する問題を有している。
【0005】
【課題を解決するための手段】
本発明者らは、かかる課題を解決するために、均一で安定した品質のポリマーを効率的に製造すべく検討を重ねた結果、粉体状ポリマーを部分熱融着させた後、熱風の速度を上げて加熱することによって、ポリマーは飛散することなくトレー間の風速を上げることが可能となり、その結果炉内の温度分布を小さくでき、均一で安定した品質のポリマーが得られること、また温度分布が小さくなることにより1トレー当りのポリマーの仕込み量を増やせることを見出し、本発明を完成するに至った。
【0006】
すなわち本発明は、粉体状ポリマーを熱風循環型炉で加熱して固相重合する方法において、熱風循環路が棚段形式の熱風循環型炉を用い、平均粒径が0.05〜5mmである粉体状ポリエステル熱風の温度をポリマーの流動温度より10℃低い温度から20℃高い温度の範囲にし、かつ熱風の速度がトレー間の速度で0.5〜2m/秒の範囲で部分熱融着させた後、トレー間の熱風の速度を3〜8m/秒に上げて加熱することを特徴とする粉体状ポリマーの固相重合方法である。
本発明の方法は、品質が均一で、熱劣化ポリマーの混入の少ない固相重合ポリマーを得る方法であり、生産性の高い工業的に優れた固相重合方法を提供するものである。
【0007】
以下、本発明を詳細に説明する。
本発明に用いられるポリマーとしては、特に限定されるものではないが、例えばポリエステル、ポリアミド、ポリアミドイミド、ポリイミド、ポリフェニレンスルフィド等が上げられる。中でもポリエステルが好ましく使用される。
【0008】
ここで、ポリエステルとは、例えばポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ−m−フェニレンテレフタレート、ポリ−p−フェニレンイソフタレート、ポリ−1,4−シクロヘキサンジメチレンテレフタレート等のポリエステル、p−ヒドロキシ安息香酸や2−ヒドロキシ−6−ナフトエ酸等の芳香族ヒドロキシカルボン酸から得られるポリエステル、さらにはこれらとテレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸等の芳香族ジカルボン酸とハイドロキノン、レゾルシン、4,4’−ジヒドロキシジフェニル、2,6−ジヒドロキシナフタレン等の芳香族ヒドロキシ化合物とから得られる液晶性ポリエステルなどが挙げられる。
【0009】
また本発明に使用される粉末状ポリマーは、特に粒径に制限されるものではないが、平均粒径が0.05〜5mm程度のものが通常使用される。
【0010】
図1は本発明における棚段式熱風循環型炉を模式的に示す断面図である。(A)は縦方向の断面図、(B)は横方向の断面図である。粉体状ポリマーを入れたトレー(1)が積載された台車(2)が扉(9)を開けて熱風循環型炉に搬入され、熱風風洞(10)内に静置される。上部に熱媒を使用する熱交換器(7)、温度センサー(4)および循環ファン(3)が設けられ、周囲は断熱材(8)で覆われている。熱交換器には加熱用熱媒入口(5)と冷却用熱媒入口(6)が設けられており、各々を昇温、冷却に応じ切替えを行う。
【0011】
棚段の形状は特に制限されるものではなく、トレーが約20〜200枚程度を乗せることができる台車を1〜約10台使用し、纏めて出し入れするほうが作業性、生産性の面で好ましい。工業的には、1回当り約200〜3,000kgを熱風循環型炉に仕込んで行われる。
【0012】
また、1トレー当りの粉体状ポリマーの仕込み量は約1〜10kg、トレー上の粉体状ポリマーの厚みは10〜200mmとし、トレー内部と表面の温度差が出ないように仕込むことが望ましい。
【0013】
粉体状ポリマーを仕込んだ熱風循環型炉内は窒素置換し、窒素ガスを流しながら加熱し、固相重合を行う。当初、熱風の速度は低く抑え、粉体状ポリマーの飛散を防止する。粉体状ポリマーを加熱して粉体状ポリマーを部分熱融着させた後、熱風の速度を上げ、炉内の温度分布を小さくして加熱する。このことによって、粉体状ポリマーの飛散による、ポリマーのロスおよび汚染を防止すると共に、均一で安定した品質のポリマーが得られる。
【0014】
粉体状ポリマーの部分熱融着は、熱風の温度をポリマーの流動温度より10℃低い温度から20℃高い温度の範囲にして行う。ポリマーの流動温度は、その重合度によって異なり、予め加熱パターンによるポリマーの流動温度を求めておき、上記温度範囲になるよう熱風の温度を設定する。熱風の温度が流動温度より低過ぎると部分熱融着が不十分になり、高過ぎるとポリマーが融着し過ぎて好ましくない。本発明においては熱風の温度は図1の温度センサー(4)で測定される。
【0015】
熱風の速度は、トレー間の速度で、粉体状ポリマーを部分熱融着させる迄は約0.5〜2m/秒、粉体状ポリマーを部分熱融着させた後は約3〜8m/秒が好ましい。トレー間の熱風速度の設定は、通常、流速計で予め測定した速度と循環ファンの回転数との関係をもとに、循環ファンの回転数を調整して行われる。
樹脂組成にもよるが、通常、トレー間の熱風速度が約0.5〜2m/秒で、熱風温度をポリマーの流動温度より10℃低い温度から20℃高い温度の範囲で、約3〜4時間加熱し、約270〜290℃に達した後は、トレー間の熱風速度が約3〜8m/秒で、そのまま一定の熱風温度で約4〜6時間加熱して重合を進める。
【0016】
具体的には図2を用いて説明する。図2には実施例における熱風温度およびポリマー流動温度のパターンを示す。熱風温度は250℃まで平均3.8℃/分で、250〜280℃までは平均0.135℃/分で昇温させ、その後は280℃で一定としている。ポリマー流動温度は、別途これと同じ熱風温度パターンで加熱して測定した値である。加熱してから約30〜240分間において、重合の進行と共にポリマー流動温度が上昇して行く。熱風温度をこのポリマー流動温度より10℃低い温度から20℃高い温度の範囲になるよう昇温する。この間にポリマーは部分熱融着して飛散し難くなる。その後は熱風の速度を上げて加熱する。
【0017】
加熱方法は電気ヒーターでも熱媒ヒーターでも良い。熱風の速度の変更方法についても特に制限されるものではないが、循環ファンのモーターをインバーター、ポールチェンジによる変速する方法、外部に機械的な変速機を設置する方法、可変ダンパーにより風量を調整する方法が一般的に行われる。
【0018】
【実施例】
以下、本発明の実施例を示すが、本発明はこれらに限定されるものではない。なお、例中の各物性は以下の方法で測定した値である。
【0019】
(1)流動温度:
(株)島津製作所の高下式フローテスターCFT−500型を用い、4℃/分の昇温速度で加熱された樹脂を圧力10MPa下で、内径1mm、長さ10mmのノズルから押出す時に、溶融粘度が48,000ポイズを示す時点の温度である。この温度が低いほど流動性が大である。
【0020】
(2)耐はんだハンダブリスター性:
JIS K7113 1(1/2)号形小形試験片(厚さ:1.2mm)を所定の温度のH60Aはんだ(スズ60%、鉛40%)に60秒浸漬し、成形品に発泡(ブリスター)が見られる温度を測定した。温度が高いほど樹脂の耐熱性が良いことを表す。
【0021】
参考例
(液晶ポリエステルの製造)
p−アセトキシ安息香酸1,304kg(7,238モル)、4,4'−ジアセトキシジフェニル651kg(2,408モル)、テレフタル酸300kg(1,806モル)、イソフタル酸100kg(602モル)を、櫂型攪拌機を有する3mのSUS316L製の重合槽に仕込んだ。
窒素ガス雰囲気下で1℃/分の速度で、攪拌、副生する酢酸を除去しながら180℃から300℃まで昇温、さらに300℃で60分保持した。その後、重合槽を密閉し、窒素で0.1MPaに加圧した状態で、ベルトクーラーで冷却しながら抜取りを行った。この反応物の得量は1,600kgで収率は98%であった。これを平均粒径0.4mmに粉砕し、流動温度が250℃の全芳香族ポリエステル(以下「プレポリマー」と称する)を得た。得られた樹脂について、偏光顕微鏡により液晶性を測定したところ、光学的異方性を有する溶融相を形成していることが判った。
【0022】
実施例1
図2に示す棚段式熱風循環型炉を用い、プレポリマーの固相重合を行った。アルミ製のトレーに前述の参考例で得たプレポリマーを各6.2kg充填し、このトレーを台車に52枚積載し、3台車を熱風循環型炉に仕込んだ。熱風循環型炉には1Nm/分で窒素を吹流して25分間置換した後、同じ窒素吹流し下に250℃まで平均3.8℃/分、250〜280℃まで平均0.135℃/分の速度で熱風を昇温し、さらに280℃で300分保持した。昇温開始から280℃到達までは、循環ファンはトレー間の風速が1.5m/秒、280℃到達後は同風速を4m/秒になるように回転数を調整した。その後、熱媒を冷却側に切替え、150℃まで冷却した。次に炉内部をエアー置換後、固相重合体(以下「アドバンスポリマー」と言う)の取出しを行った。炉奥の最上段、最下段及び扉側最上段、最下段よりサンプリングを行い、炉内のアドバンスポリマーの流動温度分布を測定し、残りのアドバンスポリマーについては全量ブレンドした。ブレンドしたアドバンスポリマーについては旭ガラス製ミルドガラス(REV−8)を40重量%配合し、混合した後、2軸押出機(池貝鉄工(株)PCM−30)を用いて、390℃で造粒した。得られたペレットを日精樹脂工業(株)製PS40E5ASE型射出成形機を用いて、シリンダー温度400℃、金型温度130℃で射出成形を行い、耐はんだブリスター性を評価した。評価結果を表1に示す。
【0023】
実施例2
アルミ製のトレーにプレポリマーを各7.5kg充填した以外は実施例1と同様に行った。評価結果を表1に示す。
【0024】
比較例1
280℃になった後も、トレー間の風速を1.5m/秒のままになるよう循環ファンの回転数を変えなかった以外は実施例1と同様に行った。評価結果を表1に示す。
【0025】
比較例2
初めからトレー間の風速を4.0m/秒になるように循環ファンの回転数を設定した以外は実施例1と同様に行った。評価結果を表1に示す。
【表1】

Figure 0004085202
【0026】
昇温後の熱風速度を上げた実施例1とそのままの比較例1と比べると、同一処理量の場合でアドバンスポリマーの流動温度の分布は8℃から3℃に向上、さらに耐はんだブリスター性も大巾に向上している。処理量を増やした実施例2の場合でも流動温度の分布は6℃、耐はんだブリスター性も比較例1の従来法より向上している。一方粒子間の熱融着を考慮せず最初から熱風の速度を上げた比較例2の場合は、温度分布及び耐はんだブリスター性は実施例1と同等で良好な結果であるが、熱風により粉体状ポリマーの飛散が起こり約2%のロスが発生した。また飛散したポリマーにより炉内が汚染された、次バッチ以降への焼けポリマー混入の懸念があり全体の掃除により飛散ポリマーを除去する必要があった。
【0027】
【発明の効果】
本発明によれば、従来の方法に比べ炉内温度の分布が小さくなり、品質が安定したポリマーを生産性良く製造することができる。
【図面の簡単な説明】
【図1】本発明で使用する棚段式熱風循環型炉を模式的に示す断面図である。
【図2】実施例における熱風温度およびポリマー流動温度のパターンを示す。
【符号の説明】
1:トレー
2:台車
3:循環ファン
4:温度センサー
5:加熱用熱媒入口
6:冷却用熱媒入口
7:熱交換器
8:断熱材
9:扉
10:熱風風洞[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid phase polymerization method of a powdery polymer, and more particularly to a solid phase polymerization method using a hot-air circulating furnace.
[0002]
[Prior art]
A method for solid-phase polymerization of polyethylene terephthalate, polybutylene terephthalate or liquid crystalline polyester resin in an inert gas is known, and a tumbler method, a fluidized bed method, or a paddle method is known to reduce variation in polymer quality. Yes. However, these systems are not only complicated and expensive in the structure of the device, but also products are likely to remain inside the device, and a small amount of the previous product type cannot be avoided when changing the product type. It requires disassembly and cleaning and requires a lot of labor.
There is also known a method in which a polymer is put in a dish-shaped tray, the trays are stacked on a shelf and inserted into a heating furnace, and polymer powder is solid-phase polymerized in a stationary state (for example, Patent Document 1). reference.).
[0003]
[Patent Document 1]
Japanese Patent No. 3087430 gazette
[Problems to be solved by the invention]
However, the method of solid-phase polymerization in which a powdered polymer is placed in a tray and inserted into a heating furnace is a preferable method because the structure of the apparatus is relatively simple and the type can be easily switched. When the value is raised, the powdery polymer scatters and spills from the tray to cause loss, and the polymer is thermally deteriorated and mixed into the next batch. Further, when the wind speed is lowered, the temperature distribution in the furnace becomes large, and there is a problem that the quality of a product obtained by solid phase polymerization is lowered.
[0005]
[Means for Solving the Problems]
In order to solve such problems, the present inventors have made extensive studies to efficiently produce a polymer having a uniform and stable quality. As a result, after partially heat-sealing the powdered polymer, the speed of the hot air By heating up and heating the polymer, it becomes possible to increase the wind speed between the trays without scattering, and as a result, the temperature distribution in the furnace can be reduced, and a uniform and stable quality polymer can be obtained. It has been found that the amount of polymer charged per tray can be increased by reducing the distribution, and the present invention has been completed.
[0006]
That is, the present invention relates to a method of solid-phase polymerization by heating a powdered polymer in a hot air circulation furnace, using a hot air circulation furnace with a hot air circulation path having a shelf type, and an average particle size of 0.05 to 5 mm. A powdered polyester is partially heated when the temperature of the hot air is in the range of 10 ° C. to 20 ° C. higher than the polymer flow temperature, and the hot air speed is 0.5-2 m / sec. After fusing, the method is a solid-state polymerization method of a powdery polymer characterized by heating by increasing the speed of hot air between trays to 3 to 8 m / sec .
The method of the present invention is a method for obtaining a solid phase polymerization polymer having a uniform quality and containing little heat-degraded polymer, and provides an industrially excellent solid phase polymerization method with high productivity.
[0007]
Hereinafter, the present invention will be described in detail.
The polymer used in the present invention is not particularly limited, and examples thereof include polyester, polyamide, polyamideimide, polyimide, polyphenylene sulfide and the like. Of these, polyester is preferably used.
[0008]
Here, the polyester is, for example, a polyester such as polyethylene terephthalate, polybutylene terephthalate, poly-m-phenylene terephthalate, poly-p-phenylene isophthalate, poly-1,4-cyclohexanedimethylene terephthalate, p-hydroxybenzoic acid, Polyesters obtained from aromatic hydroxycarboxylic acids such as 2-hydroxy-6-naphthoic acid, and these and aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid, hydroquinone, resorcin, 4, Examples thereof include liquid crystalline polyesters obtained from aromatic hydroxy compounds such as 4′-dihydroxydiphenyl and 2,6-dihydroxynaphthalene.
[0009]
Further, the powdery polymer used in the present invention is not particularly limited to the particle size, but those having an average particle size of about 0.05 to 5 mm are usually used.
[0010]
FIG. 1 is a cross-sectional view schematically showing a shelf type hot air circulation furnace in the present invention. (A) is a longitudinal sectional view, and (B) is a lateral sectional view. A cart (2) on which a tray (1) containing a powdered polymer is loaded opens a door (9) and is carried into a hot-air circulation type furnace, and is left in the hot-air wind tunnel (10). A heat exchanger (7) using a heat medium, a temperature sensor (4), and a circulation fan (3) are provided at the top, and the surroundings are covered with a heat insulating material (8). The heat exchanger is provided with a heating medium inlet (5) for heating and a heating medium inlet (6) for cooling, and each of them is switched according to temperature rise and cooling.
[0011]
The shape of the shelf is not particularly limited, and it is preferable in terms of workability and productivity to use 1 to about 10 carts on which about 20 to 200 trays can be placed and put them in and out collectively. . Industrially, it is carried out by charging about 200 to 3,000 kg per time into a hot air circulation type furnace.
[0012]
The amount of powdery polymer per tray is about 1 to 10 kg, the thickness of the powdery polymer on the tray is 10 to 200 mm, and it is desirable to charge so that there is no temperature difference between the inside of the tray and the surface. .
[0013]
The inside of the hot-air circulating furnace charged with the powdered polymer is purged with nitrogen, heated while flowing nitrogen gas, and solid phase polymerization is performed. Initially, the speed of the hot air is kept low to prevent the powdered polymer from scattering. After the powdered polymer is heated and the powdered polymer is partially heat-sealed, the hot air speed is increased, and the temperature distribution in the furnace is reduced to heat. This prevents the loss and contamination of the polymer due to the scattering of the powdery polymer, and provides a uniform and stable quality polymer.
[0014]
The partial heat fusion of the powdery polymer is performed by setting the temperature of the hot air in a range from a temperature 10 ° C. lower than the polymer flow temperature to a temperature 20 ° C. higher. The flow temperature of the polymer differs depending on the degree of polymerization, and the flow temperature of the polymer according to the heating pattern is obtained in advance, and the temperature of the hot air is set so as to be in the above temperature range. If the temperature of the hot air is too lower than the flow temperature, partial heat fusion will be insufficient, and if it is too high, the polymer will be too fused, which is not preferable. In the present invention, the temperature of the hot air is measured by the temperature sensor (4) in FIG.
[0015]
The speed of the hot air is the speed between the trays, about 0.5 to 2 m / second until the powdered polymer is partially heat-sealed, and about 3 to 8 m / second after the powdery polymer is partially heat-sealed. Seconds are preferred. The setting of the hot air speed between the trays is usually performed by adjusting the rotation speed of the circulation fan based on the relationship between the speed measured in advance by the anemometer and the rotation speed of the circulation fan.
Depending on the resin composition, the hot air speed between the trays is usually about 0.5 to 2 m / second, and the hot air temperature is about 3 to 4 in the range of 10 ° C. to 20 ° C. higher than the polymer flow temperature. After heating for about 270 to 290 ° C., the hot air speed between the trays is about 3 to 8 m / second, and the polymerization is carried out by heating at a constant hot air temperature for about 4 to 6 hours.
[0016]
This will be specifically described with reference to FIG. FIG. 2 shows a pattern of hot air temperature and polymer flow temperature in the example. The hot air temperature is an average of 3.8 ° C./min up to 250 ° C., the temperature is raised at an average of 0.135 ° C./min from 250 to 280 ° C., and then constant at 280 ° C. The polymer flow temperature is a value measured by separately heating with the same hot air temperature pattern. In about 30 to 240 minutes after heating, the polymer flow temperature rises with the progress of polymerization. The hot air temperature is raised so as to be in the range of a temperature 10 ° C. lower than the polymer flow temperature to a temperature 20 ° C. higher. During this time, the polymer is partially heat-sealed and becomes difficult to scatter. After that, it is heated by increasing the speed of hot air.
[0017]
The heating method may be an electric heater or a heat medium heater. The method of changing the speed of hot air is not particularly limited, but the speed of the circulating fan motor is changed by an inverter, pole change, a mechanical transmission is installed outside, and the air volume is adjusted by a variable damper. The method is generally performed.
[0018]
【Example】
Examples of the present invention will be described below, but the present invention is not limited thereto. In addition, each physical property in an example is the value measured with the following method.
[0019]
(1) Flow temperature:
When extruding a resin heated at a heating rate of 4 ° C./min from a nozzle having an inner diameter of 1 mm and a length of 10 mm using a high and low flow tester CFT-500 type manufactured by Shimadzu Corporation. This is the temperature at which the melt viscosity shows 48,000 poise. The lower the temperature, the greater the fluidity.
[0020]
(2) Resistance to solder solder blistering:
JIS K7113 1 (1/2) type small test piece (thickness: 1.2 mm) is immersed in H60A solder (60% tin, 40% lead) at a predetermined temperature for 60 seconds and foamed into a molded product (blister) The temperature at which is observed was measured. The higher the temperature, the better the heat resistance of the resin.
[0021]
Reference example (production of liquid crystalline polyester)
p-acetoxybenzoic acid 1,304 kg (7,238 mol), 4,4′-diacetoxydiphenyl 651 kg (2,408 mol), terephthalic acid 300 kg (1,806 mol), isophthalic acid 100 kg (602 mol), A 3 m 3 SUS316L polymerization vessel with a vertical stirrer was charged.
While stirring and removing by-product acetic acid at a rate of 1 ° C./min in a nitrogen gas atmosphere, the temperature was raised from 180 ° C. to 300 ° C., and further maintained at 300 ° C. for 60 minutes. Thereafter, the polymerization tank was sealed, and with a pressure of 0.1 MPa with nitrogen, the polymerization tank was taken out while being cooled by a belt cooler. The yield of this reaction product was 1,600 kg and the yield was 98%. This was pulverized to an average particle size of 0.4 mm to obtain a wholly aromatic polyester (hereinafter referred to as “prepolymer”) having a flow temperature of 250 ° C. When the liquid crystallinity of the obtained resin was measured with a polarizing microscope, it was found that a molten phase having optical anisotropy was formed.
[0022]
Example 1
The prepolymer was subjected to solid phase polymerization using the shelf type hot air circulation furnace shown in FIG. An aluminum tray was filled with 6.2 kg of the prepolymer obtained in the above-mentioned reference example, 52 trays were loaded on the cart, and the three carts were charged into a hot-air circulating furnace. The hot air circulation furnace was blown with nitrogen at 1 Nm 3 / min and replaced for 25 minutes, then averaged 3.8 ° C./min to 250 ° C. and averaged 0.135 ° C./min from 250 to 280 ° C. under the same nitrogen blowing. The hot air was heated at a speed and further maintained at 280 ° C. for 300 minutes. The rotation speed of the circulating fan was adjusted so that the wind speed between the trays was 1.5 m / sec and the wind speed was 4 m / sec after reaching 280 ° C. until the temperature reached 280 ° C. Thereafter, the heat medium was switched to the cooling side and cooled to 150 ° C. Next, after the inside of the furnace was replaced with air, a solid phase polymer (hereinafter referred to as “advance polymer”) was taken out. Sampling was performed from the uppermost stage, the lowermost stage, the uppermost stage on the door side, and the lowermost stage on the back of the furnace, the flow temperature distribution of the advanced polymer in the furnace was measured, and the remaining advanced polymer was blended in total. For blended advance polymer, 40% by weight of Asahi Glass Milled Glass (REV-8) was blended and mixed, then granulated at 390 ° C. using a twin screw extruder (Ikegai Iron Works Co., Ltd. PCM-30). did. The obtained pellets were injection-molded at a cylinder temperature of 400 ° C. and a mold temperature of 130 ° C. using a PS40E5ASE type injection molding machine manufactured by Nissei Plastic Industry Co., Ltd., and solder blister resistance was evaluated. The evaluation results are shown in Table 1.
[0023]
Example 2
The same procedure as in Example 1 was conducted except that 7.5 kg of each prepolymer was filled in an aluminum tray. The evaluation results are shown in Table 1.
[0024]
Comparative Example 1
Even after reaching 280 ° C., the same procedure as in Example 1 was performed except that the rotational speed of the circulation fan was not changed so that the wind speed between the trays remained at 1.5 m / sec. The evaluation results are shown in Table 1.
[0025]
Comparative Example 2
The same procedure as in Example 1 was performed except that the rotational speed of the circulation fan was set so that the wind speed between the trays was 4.0 m / sec from the beginning. The evaluation results are shown in Table 1.
[Table 1]
Figure 0004085202
[0026]
Compared with Example 1 where the hot air velocity after the temperature increase was increased and Comparative Example 1 as it was, the flow temperature distribution of the advance polymer was improved from 8 ° C. to 3 ° C. in the case of the same processing amount, and solder blister resistance was also improved. Greatly improved. Even in the case of Example 2 in which the amount of treatment was increased, the distribution of the flow temperature was 6 ° C., and the solder blister resistance was also improved compared to the conventional method of Comparative Example 1. On the other hand, in the case of Comparative Example 2 in which the speed of the hot air was increased from the beginning without considering the heat fusion between the particles, the temperature distribution and the solder blister resistance were the same as those in Example 1, but good results were obtained. The body polymer was scattered and a loss of about 2% occurred. In addition, the inside of the furnace was contaminated by the scattered polymer, and there was a concern that the burned polymer was mixed into the next batch and thereafter, and it was necessary to remove the scattered polymer by cleaning the whole.
[0027]
【The invention's effect】
According to the present invention, the temperature distribution in the furnace is smaller than that of the conventional method, and a polymer with stable quality can be produced with high productivity.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a shelf-type hot air circulation furnace used in the present invention.
FIG. 2 shows a pattern of hot air temperature and polymer flow temperature in Examples.
[Explanation of symbols]
1: Tray 2: Cart 3: Circulation fan 4: Temperature sensor 5: Heating medium inlet 6: Heating medium inlet 7: Heat exchanger 8: Heat insulating material 9: Door 10: Hot air wind tunnel

Claims (1)

粉体状ポリマーを熱風循環型炉で加熱して固相重合する方法において、熱風循環路が棚段形式の熱風循環型炉を用い、平均粒径が0.05〜5mmである粉体状ポリエステル熱風の温度をポリマーの流動温度より10℃低い温度から20℃高い温度の範囲にし、かつ熱風の速度がトレー間の速度で0.5〜2m/秒の範囲で部分熱融着させた後、トレー間の熱風の速度を3〜8m/秒に上げて加熱することを特徴とする粉体状ポリマーの固相重合方法。In a method of solid-phase polymerization by heating a powdered polymer in a hot air circulation furnace , a powdered polyester having an average particle diameter of 0.05 to 5 mm using a hot air circulation furnace with a hot air circulation path After the temperature of the hot air is set within the range of 10 ° C. to 20 ° C. higher than the flow temperature of the polymer, and the hot air speed is between the trays and partially heat- sealed in the range of 0.5 to 2 m / sec. A method for solid-phase polymerization of a powdery polymer, wherein heating is performed by increasing the speed of hot air between trays to 3 to 8 m / sec .
JP2003080083A 2003-03-24 2003-03-24 Solid phase polymerization method for powdered polymer Expired - Fee Related JP4085202B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003080083A JP4085202B2 (en) 2003-03-24 2003-03-24 Solid phase polymerization method for powdered polymer
CNA2004100399889A CN1534053A (en) 2003-03-24 2004-03-22 Solid phase polymerizing method of powdery polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003080083A JP4085202B2 (en) 2003-03-24 2003-03-24 Solid phase polymerization method for powdered polymer

Publications (2)

Publication Number Publication Date
JP2004285247A JP2004285247A (en) 2004-10-14
JP4085202B2 true JP4085202B2 (en) 2008-05-14

Family

ID=33294038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003080083A Expired - Fee Related JP4085202B2 (en) 2003-03-24 2003-03-24 Solid phase polymerization method for powdered polymer

Country Status (2)

Country Link
JP (1) JP4085202B2 (en)
CN (1) CN1534053A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107636044B (en) * 2014-12-18 2021-06-15 罗地亚经营管理公司 Process for producing aromatic polyimide

Also Published As

Publication number Publication date
CN1534053A (en) 2004-10-06
JP2004285247A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
JP5914935B2 (en) Liquid crystal polyester composition, method for producing liquid crystal polyester composition, and molded article
TWI316948B (en) Low melting polyester polymers
KR102173693B1 (en) Wholly aromatic liquid crystal polyester resin
TW200526699A (en) Thermal crystallization of a molten polyester polymer in a fluid
WO2011033892A1 (en) Method for molding liquid crystal polyester resin composition and molded body of liquid crystal polyester resin composition
JP5556223B2 (en) Liquid crystal polymer composition, method for producing the same, and molded article
WO2019098228A1 (en) Liquid crystal polyester composition and resin molded body
CN111205601B (en) Pellets of liquid crystal polyester resin composition and process for producing pellets of liquid crystal polyester resin composition
WO2017135365A1 (en) Wholly aromatic liquid crystal polyester resin and production method therefor
TWI803602B (en) Method for producing foam molded article and foam molded article
JP7256759B2 (en) resin composition
JP4644933B2 (en) Method for producing molten liquid crystalline resin
TWI549998B (en) Method of manufacturing resin composition
JP4085202B2 (en) Solid phase polymerization method for powdered polymer
JP3690390B2 (en) Solid phase polymerization method of powdery polymer
JP4172321B2 (en) Solid phase polymerization method for powdered polymer
TWI229098B (en) Method for increasing solid state polymerization rate
JP4243963B2 (en) Method for producing thermotropic liquid crystal polymer
TW201546112A (en) Wholly aromatic liquid crystalline polyester resin and injection molded body of said resin composition
JP5407988B2 (en) Liquid crystalline resin composition and molded product thereof
JP2004351860A (en) Manufacturing method of pellet
JP3282272B2 (en) Method for producing aromatic polyester
WO2023276902A1 (en) Resin composition and molded body
WO2022153945A1 (en) Liquid crystal polyester composition, method for producing liquid crystal polyester composition, and method for producing injection molded article
JP4884920B2 (en) Liquid crystal polymer composition and molded article comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees