JP4172302B2 - Semiconductor module cooling device - Google Patents

Semiconductor module cooling device Download PDF

Info

Publication number
JP4172302B2
JP4172302B2 JP2003086459A JP2003086459A JP4172302B2 JP 4172302 B2 JP4172302 B2 JP 4172302B2 JP 2003086459 A JP2003086459 A JP 2003086459A JP 2003086459 A JP2003086459 A JP 2003086459A JP 4172302 B2 JP4172302 B2 JP 4172302B2
Authority
JP
Japan
Prior art keywords
flow path
cooling device
semiconductor module
forming member
path forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003086459A
Other languages
Japanese (ja)
Other versions
JP2004296748A (en
Inventor
幹夫 成瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003086459A priority Critical patent/JP4172302B2/en
Publication of JP2004296748A publication Critical patent/JP2004296748A/en
Application granted granted Critical
Publication of JP4172302B2 publication Critical patent/JP4172302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

【0001】
【発明の属する技術分野】
本発明は、電気自動車のインバータなどに用いられる半導体素子を冷却する半導体モジュールの冷却装置に関する。
【0002】
【従来の技術】
従来、この種の冷却装置として、水冷式の冷却装置が知られている(例えば特許文献1,2参照)。これによれば、半導体素子が装着された絶縁基板の裏面に金属製のヒートシンク部を設け、ヒートシンク部に水路を形成して冷却水を流すとともに、水路に複数の冷却フィンを配列する。これにより放熱部の面積を増やし、半導体素子の冷却性を高める。
【0003】
【特許文献1】
特開2002−158322号公報
【特許文献2】
特開2002−222905号公報
【0004】
【発明が解決しようとする課題】
上述した特許文献に記載のヒートシンク部は、銅やアルミ,またはそれらの合金で形成されている。したがって、重量増加およびコストアップの要因となる。
【0005】
本発明は、重量増加およびコストアップを抑制する半導体モジュールの冷却装置を提供するものである。
【0006】
【課題を解決するための手段】
本発明による半導体モジュールの冷却装置は、半導体素子を含むパワーモジュールに、パワーモジュールの取付面を構成する金属製の取付部材を介して隣接し、冷却水の流通により半導体素子を冷却する水冷式冷却部を備え、水冷式冷却部が、パワーモジュールの取付面に対向する面が開口された金属製の筐体と、筐体内にパワーモジュールの取付面の裏側から突設された金属製のフィン部材と、筐体の開口面を塞ぐ蓋部材と、開口面を介して筐体内に隙間なく収容されるとともに、フィン部材の周囲に配設され、フィン部材、取付部材および蓋部材とともに冷却水の流路を形成する樹脂製の流路形成部材とを有することを特徴とする。
【0007】
【発明の効果】
本発明では、半導体素子を冷却する水冷式冷却部における冷却水用流路の少なくとも一部を樹脂材により構成するようにしたので、重量増加を抑制することができるとともに、複雑形状の流路を容易に形成することができ、金型作成などに伴うコストを低減することができる。
【0008】
【発明の実施の形態】
−第1の実施の形態−
以下、図1〜図3を参照して本発明による半導体モジュールの冷却装置の第1の実施の形態について説明する。
図1は、第1の実施の形態に係わる半導体モジュール100を示す斜視図である。なお、以下では図示のように上下方向を定義し、この定義に基づいて各部の構成を説明する。半導体モジュール100は、電気自動車のインバータなどに用いられるIGBTやMOSFETといった半導体素子、および半導体素子を実装する基板などからなるパワーモジュールPMと、半導体素子を冷却するヒートシンク部HS(水冷式冷却部ともいう)とを有する。パワーモジュールPMは、ヒートシンク部HSの上面に接合されている。
【0009】
図2は、ヒートシンク部HSの構成を示す分解斜視図であり、半導体モジュール100を上下逆方向から見た図である。ヒートシンク部HSは、底面が開口された金属製のケース1と、ケース1の底面を塞ぐ蓋2と、ケース1内に収容される流路形成部材3とを有する。ケース1は、矩形筒状の枠部1aと上面のカバー部1bとを有し、枠部1aにはケース1内に冷却水を導くホース継手11およびケース1内から冷却水を排出するホース継手12が設けられている。ケース1と蓋2の接触面はシールされている。
【0010】
カバー部1bの下面(図2では上面)には、複数のフィン4が並設されている。フィン4はアルミや銅などの熱伝導性のよい金属により構成され、例えば鋳造加工などによりケース1と一体に成形される。図3は、ケース1内に流路形成部材3を収容した図である。フィン4の形状は2種類あり(4a,4b)、フィン4aの長さおよび幅はフィン4bの長さおよび幅よりも大きい。なお、図では3枚のフィン4aが互いに平行に配置され、各フィン4aの間およびフィン4aと枠体1bの間にそれぞれ2枚のフィン4bが互いに平行に配置されている。図3の符号5は、パワーモジュールPMの取付位置を示しており、パワーモジュールはケースカバー部1bを介してフィン4の裏側に設けられる。
【0011】
流路形成部材3は、例えばPE(ポリエチレン),PP(ポリプロピレン),PA(ポリアミド),PBT(ポリブチレンテレフタレート),PPS(ポリフェニレンサルファイド)などの樹脂材により成形される。樹脂の種類は、流路を流れる冷却水の種類や冷却水温を考慮して選定する。
【0012】
流路形成部材3の外側形状および厚さは枠部1aの内側形状および深さに等しく、流路形成部材3はケース1内に隙間なく収容される。流路形成部材3の内側には図2のように貫通孔3aが開口されている。貫通孔3aの周面には、内側に向けて突出する凸部3bが設けられ、凸部3bに対向する面には曲面状の凹部3cが設けられている。これにより流路形成部材3をケース1内に収容すると、図3に示すようにフィン4aの一方の端面に凸部3bが当接してフィン4aと凸部3bの隙間が塞がれ、フィン4aの他方の端面と凹部3cとの間に空隙が設けられる。その結果、図示のように通路形成部材3およびフィン4aによりジグザグ状の流路PA1が形成される。なお、流路形成部材3にはホース継手11,12の位置に対応して貫通口3d(図2)が設けられている。
【0013】
この場合、樹脂成形により流路形成部材3を形成するので、流路PA1の一部をなす曲面状の凹部3cや凸部3bを容易に、かつ、精度よく形成することができる。また、樹脂製の流路形成部材3と金属製フィン4aにより流路PA1を形成するので、金属のみで流路PA1を形成する場合に比べ、鋳造型(もしくはダイカスト用金型)を単純化できる。その結果、歩溜まりが向上し、フィン4の肉厚を均一化することができるとともに、型代も安価になる。
【0014】
図3において、ホース継手11,12を介して流路PA1に水を流すと、ケースカバー部1bおよびフィン4を介してパワーモジュールPMからの熱が水に奪われる。これにより半導体素子が冷却される。この場合、流路PA1に複数のフィン4が配置されるので、放熱面積が大きくなり、冷却が促進される。また、フィン4は発熱部品たるパワーモジュールPMの裏側に配置されるので、冷却効果が一層大きい。
【0015】
以上の第1の実施の形態の冷却装置によれば、次のような作用効果を奏する。
(1)樹脂製の流路形成部材3と金属製フィン4とケースカバー部1bと蓋2により冷却水の流路PA1を形成するので、ヒートシンク部HSを軽量化できる。また、樹脂成形により複雑な形状の流路を容易に形成することができるるとともに、その分、鋳造型を単純化でき、鋳造品の肉厚の均一化、および型代の低廉化を達成できる。
(2)冷却水流路PA1の上壁面、すなわちケースカバー部1bを金属により形成するので、パワーモジュールPMからの熱を効率的に放熱することができる。
(3)パワーモジュールPMの取付位置の裏側に複数のフィン4を配置するので、パワーモジュールPMを十分に冷却することができる。
(4)冷却水流路PA1をジグザグ状に形成するので、流路断面積が小さくなり、水の流れが速くなって、ケースカバー部1bおよびフィン4から水への熱伝達率が向上する。
(5)水の流れの向きが変化する折り返し部(凹部3cおよび凸部3b)を樹脂により形成するので、この折り返し部を滑らかな曲面形状に形成することができる。その結果、流路壁面に高応力が作用して破損することを防止することができるとともに、水の流れの損失が小さくなり、冷却効果を高めることができる。
【0016】
なお、上記ではケース1とフィン4を一体に鋳造するようにしたが、フィン4をケース1とは別に鋳造してもよい。流路PA1の折り返し部を樹脂成形により形成するようにしたが、鋳造しにくい他の箇所を樹脂成形により形成してもよい。ケース1内に流路形成部材3を収容した際に、放熱にそれほど影響がない箇所(例えば流路形成部材3と枠体1aの間)に接着剤を塗布し、両者を接着すればよい。接着テープを用いて接着してもよい。また、ケース1と流路形成部材3の間に隙間が設けられる場合には、隙間以外のケース1と流路形成部材3の接触面に凹凸部を設けて両者を係合してもよい。
【0017】
−第2の実施の形態−
図4,5を参照して本発明の第2の実施の形態について説明する。
第2の実施の形態が第1の実施の形態と異なるのは、冷却水流路の形状である。すなわち、第1の実施の形態では、流路形成部材3とフィン4aによりパワーモジュールPMの裏面側に流路PA1(第1の冷却水流路)を形成したが、第2の実施の形態では、この冷却水流路PA1に連通するように流路形成部材3により流路(第2の冷却水流路)を形成する。
【0018】
図4は、第2の実施の形態に係わる流路形成部材3の構成を示す斜視図であり、図5は、この流路形成部材3をケース1に収容した状態を示す平面図である。なお、図2,3と同一の箇所には同一の符号を付し、以下ではその相違点を主に説明する。流路形成部材3の上面には、ジグザグ状の溝6が形成され、溝6の両端部は、流路PA1の上流側および下流側の折り返し部(凹部3c)にそれぞれ連通している。これにより流路PA1に対して並列に流路PA2が形成される。この場合、流路形成部材3を樹脂材により構成するので、複雑な形状の流路PA2を容易に形成することができる。なお、図示は省略するが、流路形成部材3の下面は、溝6の裏側が空洞となるように凹状に形成され、流路形成部材3の軽量化を図っている。
【0019】
第2の実施の形態において、ホース継手11を介して流路PA1に流入した冷却水の一部は、最初の折り返し部3bで流路PA2に分岐する。そして、流路PA2を流れ、ケースカバー1b側から熱を奪い、下流側の折り返し部3bで流路PA1に合流する。これによりケースカバー1b側の流路面積が拡大し、ケースカバー1bを広範囲にわたって冷却することができる。この場合、流路PA1の断面積は流路PA2の断面積よりも小さいので、流路PA1により多くの冷却水が流れ、流路PA1側の冷却効果の方が高くなる。流路PA1と流路PA2の流量比は、溝6の深さなどを変更することで、調整可能である。
【0020】
第2の実施の形態によれば、さらに次のような作用効果を奏する。
(1)流路形成部材3のケースカバー1b側に、樹脂成形により流路PA2を形成するようにしたので、流路形成部材3の隅々にわたって複雑形状の流路PA2を形成することができ、ケースカバー1bを広範囲にわたって冷却することができる。
(2)流路PA2の断面積を流路PA1の断面積よりも小さくするとともに、流路PA1のみにフィン4を設けるので、流路P1側の冷却効率を流路P2側より高めることができる。したがって、パワーモジュールPMの発熱量の大きい場所に流路PA1を、発熱量の小さい場所に流路PA2を形成すれば、パワーモジュールPMを効率的に冷却することが可能である。
(3)流路形成部材3の溝6の裏側を空洞化するようにしたので、流路形成部材3を軽量化できる。
【0021】
なお、上記では、流路PA1に対して流路PA2を並列に設けるようにしたが、直列に設けるようにしてもよい。さらに多数の流路を設けてもよい。ケースカバー1b側に流路PA2を設けるようにしたが、蓋2側に設けてもよい。冷却水流路PA1にフィン4を設けるようにしたが、発熱量がそれほど大きくない場合にはフィン4を設けずに、樹脂成形のみで流路PA1を形成してもよい。
【0022】
−第3の実施の形態−
図6,7を参照して本発明の第3の実施の形態について説明する。
第1の実施の形態では、フィン4aの両端を流路PA1内で開放するようにしたが、第3の実施の形態では流路形成部材3に以下のようにフィン部7を設け、このフィン部7とフィン4aの両端を連接し、流路を形成する。
【0023】
図6は、第3の実施の形態に係わる流路形成部材3をケース1に収容した状態を示す平面図であり、図7は図6のVII-VII線断面図である。なお、図3と同一の箇所には同一の符号を付し、以下ではその相違点を主に説明する。第3の実施の形態では、流路形成部材3の折り返し部の近傍は上下方向に貫通せずに、折り返し部の底面には薄板部3eが設けられている。この薄板部3eの上面には、図6に示すように略U字状のフィン部7が成形され、フィン部7の両端はフィン4aの両端に連接している。これにより冷却水は折り返し部でフィン部7に沿って流れ、流速分布を均一化することができる。すなわち、折り返し部の外側(凹部3cに近い側)の流れが内側の流れよりも速くなることを、抑制できる。
【0024】
このように弟3の実施の形態では、折り返し部にフィン4aに対応してフィン部7を設け、折り返し部で流路PA1を分割するようにしたので、冷却水の流速分布を均一化することができ、ケースカバー部1bおよびその上部のパワーモジュールPMを均一に冷却することができる。この場合、フィン部7を流路形成部材3と一体に樹脂成形するので、フィン部の形成が容易である。また、樹脂成形によりフィン部7を滑らかな曲面形状にすることができるとともに、表面粗さも小さくすることができ、流路PA1の圧力損失の増加を抑えることができる。
【0025】
なお、上記では、流路形成部材3の底面に薄板部3eを設け、薄板部3eの上面にフィン部7を設けるようにしたが、流路形成部材3の上面に薄板部3eを設け、薄板部3eの下面にフィン部7を設けるようにしてもよい。流路形成部材3に貫通孔3aを設けることなく、流路形成部材3の底面全体にわたって薄板部3eを設けるようにしてもよい。
【0026】
−第4の実施の形態−
図8,9を参照して本発明の第4の実施の形態について説明する。
第4の実施の形態では、流路PA1の途中に緩衝部材(アキュムレータ)を設け、冷却水の圧力変動を吸収する。図8は、4の実施の形態に係わる流路形成部材3をケース1に収容した状態を示す平面図である。なお、図3と同一の箇所には同一の符号を付し、その相違点を主に説明する。
【0027】
図8に示すように流路形成部材3には、流路PA1の出口付近から分岐して凹部9が設けられている。凹部9は、頸部9aを介して平面視略矩形状に形成され(矩形部9b)、矩形部9bに上下方向から緩衝部材8が挿入されている。図9は、緩衝部材8の構成を示す平面図である。緩衝部材8は、外周材21と、通路PA1に面して設けられ、外周材21と同材質でかつ圧力変動を受けやすいように膜圧を薄くした受圧部22とを有し、外周材21と受圧部22の内側には空気や窒素ガスN2等からなる圧縮性ガス23が封入されている。外周材21の材質としては、シリコーン,NBR,EPDM等のゴム材を用いることが好ましい。
【0028】
第4の実施の形態では、流路PA1に連通するように緩衝部材8を設けたので、流路PA1内の水圧が変動すると、それに応じて緩衝部材8が圧縮変形し、圧力変動を吸収する。これにより流路PA1内の圧力の急激な増加が抑えられ、ケース1と蓋2の接合面のシール性をそれほど高めなくても、接合面からの冷却水の漏れを容易に防ぐことができる。また、緩衝部材8を流路形成部材3の内側に設けるので、緩衝部材8の配置が周辺機器の配置の妨げとならず、スペース効率がよい。
【0029】
上記では、冷却水流路PA1の出口付近に緩衝部材8を設けるようにしたが、他の場所に設けてもよい。また、緩衝部材8を複数箇所に設けてもよい。緩衝部材8の構成は上述したものに限らない。
【0030】
−第5の実施の形態−
図10を参照して本発明の第5の実施の形態について説明する。
第5の実施の形態では、ケース1と蓋2の接合面にシール部材を設け、接合面のシール性を高める。図10は、第5の実施の形態に係わるヒートシンク部HSの構成を示す分解斜視図である。なお、図2と同一の箇所には同一の符号を付し、以下ではその相違点を主に説明する。
【0031】
流路形成部材3の下面にはシール部材31が設けられ、シール部材31には流路形成部材3の貫通孔3aと同形状の貫通孔31aが開口されている。シール部材31は圧縮性の高いゴム部材からなり、例えばインサート成形により流路形成部材3と一体に形成される。シール部材31の周縁部31bは、流路形成部材3の周面よりも外側に突出している。ケース枠体1aの下端面(フランジ面41)の内側には全周にわたって溝42が設けられ、シール部材31の周縁部31bは溝42に嵌合される。なお、図示は省略するが、溝42の外側のフランジ面41には雌ねじ部が設けられ、この雌ねじ部に対応して蓋2には貫通孔が開口されている。そして、貫通孔を介してボルトを雌ねじ部に螺合し、シール部材31を介してケース1と蓋2を締結する。
【0032】
このように第5の実施の形態では、ケース1の下面にシール部材31を設け、シール部材31の周縁部31bをケース1と蓋2で挟んで加圧した状態で、ケース1と蓋2を締結するようにしたので、ケース1と蓋2の接合面のシール性を高めることができる。シール部材31を流路形成部材3と一体に設けるようにしたので、シートガスケットや液状ガスケットを別途設ける必要がない。また、シール部材31を挟んで固定することで、流路形成部材3も同時に固定される。ケース1のフランジ面41に溝42を設け、溝42にシール部材31を嵌合するので、ケース1と蓋2が密接した状態で締結される。これによりシート部材31を構成するゴムの経時劣化によってボルトの軸力が低下することを防ぐことができる。
【0033】
なお、流路形成部材3を形成する材料が圧縮性の高い樹脂材である場合には、本実施例のようにシール部材31をゴム材とする必要はなく、流路形成部材3と同一材料とすることができる。貫通孔31aを流路形成部材3の貫通孔3aと同形状とするのではなく、貫通孔3aよりも広げ、シール面の近傍のみにシール部材31を設けるようにしてもよい。
【0034】
−第6の実施の形態−
図11を参照して本発明の第6の実施の形態について説明する。
第6の実施の形態は、溝42およびシール部材31の形状が第5の実施の形態と異なる。図11は、第6の実施の形態に係わるヒートシンク部HSの要部斜視図(図10のA部拡大図)である。なお、図10と同一の箇所には同一の符号を付し、以下ではその相違点を主に説明する。
【0035】
図11(a)は流路形成部材3をケース1内に収容する前の状態を示し、図11(b)は収容した後の状態を示す。図11(a)に示すように、溝部42の内側にはフランジ面41よりも低い突起部43が設けられ、ケース枠体の下端面は断面略コ字状をなしている。図11(b)に示すように、シール部材31の周縁部31bは上下方向に膨出し、断面略円状の膨出部32が形成されている。膨出部32は、突起部43を乗り越えて溝部42に配置され、膨出部32の上端面は溝部42の表面に接触し、下端面はフランジ面41よりも下方に出っ張っている。
【0036】
これによりボルト結合によってケース1に蓋2を締結し、シール部材31に加圧力が作用すると、膨出部32が潰れる。すなわち、膨出部32はOリングと同様に機能し、シール性が高まる。また、突起部43により膨出部32の位置が規制され、シール部材31の位置ズレを防ぐことができる。その結果、シールの信頼性が高まる。
【0037】
図12は、第6の実施の形態の変形例を示す図である。図12(a)に示すように、突起部44は、溝42の長手方向にわたって部分的に設けられるとともに、図11の突起部43よりも下方に突出している。図12(b)に示すように、シール部材31の膨出部32の付け根には、突起部44に対応して貫通孔が開口され、貫通孔に突起部44の先端が挿入されている。これにより膨出部32の位置が固定されるとともに、シール部材31と膨出部32の接続が一部断たれ、膨出部32のOリングとしての機能が高まり、シール性が一層向上する。
【0038】
なお、上記では、流路形成部材3を樹脂材により構成するようにしたが、圧縮性の高いゴム部材により構成してもよい。これにより、流路形成部材3がシール部材としても機能し、シール部材31を省略することができる。
【0039】
上記実施の形態では、流路形成部材3の上面に発熱部品としてのパワーモジュールPMを配設するようにしたが、流路形成部材3の下面に配設するようにしてもよい。本発明は、冷却水流路PA1の少なくとも一部を樹脂材により構成したことを特徴とするものであり、パワーモジュールPMからの熱を冷却水に伝える伝熱部材としてのケースカバー部1bを除き、樹脂材によりヒートシンク部HSを構成してもよい。流路形状に曲線部(折り返し部)があるときは、その曲線部を樹脂成形とすれば、複雑な流路を容易に形成することができる。すなわち本発明の特徴、機能を実現できる限り、本発明は実施の形態の冷却装置に限定されない。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係わる半導体モジュールを示す斜視図。
【図2】第1の実施の形態に係わる半導体モジュールを構成するヒートシンク部の分解斜視図。
【図3】第1の実施の形態に係わる流路形成部材をケース内に収容した状態を示す平面図。
【図4】第2の実施の形態に係わる流路形成部材の構成を示す斜視図。
【図5】図4の流路形成部材をケース内に収容した状態を示す平面図。
【図6】第3の実施の形態に係わる流路形成部材をケース内に収容した状態を示す平面図。
【図7】図6のVII-VII線断面図。
【図8】第4の実施の形態に係わる流路形成部材をケース内に収容した状態を示す平面図。
【図9】図8の緩衝部材の詳細を示す図。
【図10】第5の実施の形態に係わるヒートシンク部の構成を示す分解斜視図。
【図11】第6の実施の形態に係わるヒートシンク部の要部構成を示す斜視図。
【図12】図11の変形例を示す図。
【符号の説明】
1 ケース 1a 枠体
1b カバー部 2 蓋
3 流路形成部材 3b 凹部
4 フィン 7 フィン部
8 緩衝部材 9 凹部
31 シール部材 31b 周縁部
32 膨出部 41 フランジ面
42 溝 43,44 突起部
PM パワーモジュール HS ヒートシンク部
PA1,PA2 冷却水流路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cooling device for a semiconductor module that cools a semiconductor element used in an inverter of an electric vehicle.
[0002]
[Prior art]
Conventionally, a water cooling type cooling device is known as this type of cooling device (for example, refer to Patent Documents 1 and 2). According to this, the heat sink part made of metal is provided on the back surface of the insulating substrate on which the semiconductor element is mounted, the water channel is formed in the heat sink part, the cooling water is made to flow, and the plurality of cooling fins are arranged in the water channel. As a result, the area of the heat radiating portion is increased and the cooling performance of the semiconductor element is enhanced.
[0003]
[Patent Document 1]
JP 2002-158322 A [Patent Document 2]
JP 2002-222905 A
[Problems to be solved by the invention]
The heat sink part described in the above-mentioned patent document is formed of copper, aluminum, or an alloy thereof. Therefore, it becomes a factor of weight increase and cost increase.
[0005]
The present invention provides a semiconductor module cooling apparatus that suppresses weight increase and cost increase.
[0006]
[Means for Solving the Problems]
A cooling device for a semiconductor module according to the present invention is a water-cooled cooling system that is adjacent to a power module including a semiconductor element via a metal mounting member constituting a mounting surface of the power module, and cools the semiconductor element by circulation of cooling water. comprising a part, water-cooled cooling unit is a metallic housing surface facing the mounting surface is the opening of the power over the module, a metallic fin member projecting from the rear side of the mounting surface of the power module in a housing And a lid member that closes the opening surface of the housing, and is accommodated in the housing without gaps through the opening surface, and is disposed around the fin member , and flows the cooling water together with the fin member , the mounting member, and the lid member. It has the resin-made flow-path formation member which forms a path | route, It is characterized by the above-mentioned.
[0007]
【The invention's effect】
In the present invention, since at least a part of the cooling water flow path in the water-cooled cooling section for cooling the semiconductor element is made of the resin material, the weight increase can be suppressed, and the complicated flow path can be provided. It can be formed easily, and the cost associated with mold production can be reduced.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
-First embodiment-
A first embodiment of a semiconductor module cooling device according to the present invention will be described below with reference to FIGS.
FIG. 1 is a perspective view showing a semiconductor module 100 according to the first embodiment. In the following, the vertical direction is defined as illustrated, and the configuration of each unit will be described based on this definition. The semiconductor module 100 includes a power module PM composed of a semiconductor element such as an IGBT or MOSFET used for an inverter of an electric vehicle and a substrate on which the semiconductor element is mounted, and a heat sink HS (also referred to as a water-cooled cooling part) that cools the semiconductor element. ). The power module PM is joined to the upper surface of the heat sink part HS.
[0009]
FIG. 2 is an exploded perspective view showing the configuration of the heat sink portion HS, and is a view of the semiconductor module 100 as viewed from the upside down direction. The heat sink portion HS includes a metal case 1 having an open bottom surface, a lid 2 that closes the bottom surface of the case 1, and a flow path forming member 3 accommodated in the case 1. The case 1 has a rectangular cylindrical frame portion 1a and an upper cover portion 1b. The frame portion 1a has a hose joint 11 that guides cooling water into the case 1 and a hose joint that discharges cooling water from the case 1. 12 is provided. The contact surface between the case 1 and the lid 2 is sealed.
[0010]
A plurality of fins 4 are arranged in parallel on the lower surface (upper surface in FIG. 2) of the cover portion 1b. The fin 4 is made of a metal having good thermal conductivity such as aluminum or copper, and is formed integrally with the case 1 by, for example, casting. FIG. 3 is a view in which the flow path forming member 3 is accommodated in the case 1. There are two types of fins 4 (4a, 4b), and the length and width of the fin 4a are larger than the length and width of the fin 4b. In the figure, three fins 4a are arranged in parallel to each other, and two fins 4b are arranged in parallel to each other between the fins 4a and between the fin 4a and the frame 1b. Reference numeral 5 in FIG. 3 indicates a mounting position of the power module PM, and the power module is provided on the back side of the fin 4 via the case cover portion 1b.
[0011]
The flow path forming member 3 is formed of a resin material such as PE (polyethylene), PP (polypropylene), PA (polyamide), PBT (polybutylene terephthalate), PPS (polyphenylene sulfide), and the like. The type of resin is selected in consideration of the type of cooling water flowing through the flow path and the cooling water temperature.
[0012]
The outer shape and thickness of the flow path forming member 3 are equal to the inner shape and depth of the frame portion 1a, and the flow path forming member 3 is accommodated in the case 1 without a gap. A through hole 3a is opened inside the flow path forming member 3 as shown in FIG. A convex portion 3b that protrudes inward is provided on the peripheral surface of the through hole 3a, and a curved concave portion 3c is provided on a surface that faces the convex portion 3b. Thus, when the flow path forming member 3 is accommodated in the case 1, as shown in FIG. 3, the convex portion 3b comes into contact with one end face of the fin 4a to close the gap between the fin 4a and the convex portion 3b, and the fin 4a. A gap is provided between the other end surface of the first and second recesses 3c. As a result, a zigzag channel PA1 is formed by the passage forming member 3 and the fins 4a as shown. The flow path forming member 3 is provided with through holes 3d (FIG. 2) corresponding to the positions of the hose joints 11 and 12.
[0013]
In this case, since the flow path forming member 3 is formed by resin molding, the curved concave portion 3c and the convex portion 3b forming a part of the flow channel PA1 can be easily and accurately formed. Further, since the flow path PA1 is formed by the resin flow path forming member 3 and the metal fin 4a, the casting mold (or die casting mold) can be simplified as compared with the case where the flow path PA1 is formed only by metal. . As a result, the yield is improved, the thickness of the fins 4 can be made uniform, and the mold cost is reduced.
[0014]
In FIG. 3, when water flows through the flow path PA <b> 1 via the hose joints 11 and 12, the heat from the power module PM is taken away by the water via the case cover portion 1 b and the fins 4. Thereby, the semiconductor element is cooled. In this case, since the plurality of fins 4 are arranged in the flow path PA1, the heat radiation area is increased and cooling is promoted. Further, since the fins 4 are arranged on the back side of the power module PM which is a heat generating component, the cooling effect is further increased.
[0015]
According to the cooling device of the first embodiment described above, the following operational effects can be obtained.
(1) Since the cooling water flow path PA1 is formed by the resin flow path forming member 3, the metal fin 4, the case cover portion 1b, and the lid 2, the heat sink portion HS can be reduced in weight. In addition, it is possible to easily form a complicated flow path by resin molding, simplify the casting mold, and achieve uniform thickness of the cast product and lower cost of the mold. .
(2) Since the upper wall surface of the cooling water flow path PA1, that is, the case cover portion 1b, is formed of metal, heat from the power module PM can be efficiently radiated.
(3) Since the plurality of fins 4 are disposed on the back side of the mounting position of the power module PM, the power module PM can be sufficiently cooled.
(4) Since the cooling water flow path PA1 is formed in a zigzag shape, the cross-sectional area of the flow path is reduced, the flow of water is increased, and the heat transfer rate from the case cover portion 1b and the fins 4 to the water is improved.
(5) Since the folded portion (the concave portion 3c and the convex portion 3b) in which the direction of the flow of water changes is formed of resin, the folded portion can be formed in a smooth curved surface shape. As a result, it is possible to prevent the high-stress from acting on the wall surface of the flow path and damage it, and the loss of water flow is reduced, so that the cooling effect can be enhanced.
[0016]
In the above description, the case 1 and the fin 4 are integrally cast. However, the fin 4 may be cast separately from the case 1. Although the folded portion of the flow path PA1 is formed by resin molding, other portions that are difficult to cast may be formed by resin molding. What is necessary is just to apply | coat an adhesive agent to the location (for example, between the flow path formation member 3 and the frame 1a) which does not affect heat dissipation when accommodating the flow path formation member 3 in the case 1, and to adhere both. You may adhere | attach using an adhesive tape. When a gap is provided between the case 1 and the flow path forming member 3, an uneven portion may be provided on the contact surface between the case 1 and the flow path forming member 3 other than the gap to engage the both.
[0017]
-Second Embodiment-
A second embodiment of the present invention will be described with reference to FIGS.
The second embodiment is different from the first embodiment in the shape of the cooling water flow path. That is, in the first embodiment, the flow path PA1 (first cooling water flow path) is formed on the back surface side of the power module PM by the flow path forming member 3 and the fins 4a. In the second embodiment, A flow path (second cooling water flow path) is formed by the flow path forming member 3 so as to communicate with the cooling water flow path PA1.
[0018]
FIG. 4 is a perspective view showing a configuration of the flow path forming member 3 according to the second embodiment, and FIG. 5 is a plan view showing a state in which the flow path forming member 3 is accommodated in the case 1. 2 and 3 are denoted by the same reference numerals, and the differences will be mainly described below. A zigzag groove 6 is formed on the upper surface of the flow path forming member 3, and both end portions of the groove 6 communicate with upstream and downstream folded portions (recesses 3c) of the flow path PA1, respectively. Thereby, the flow path PA2 is formed in parallel with the flow path PA1. In this case, since the flow path forming member 3 is made of a resin material, the complicated shape of the flow path PA2 can be easily formed. In addition, although illustration is abbreviate | omitted, the lower surface of the flow-path formation member 3 is formed in concave shape so that the back side of the groove | channel 6 may become a cavity, and the weight reduction of the flow-path formation member 3 is aimed at.
[0019]
In the second embodiment, a part of the cooling water that has flowed into the flow path PA1 via the hose joint 11 is branched into the flow path PA2 at the first turn-up portion 3b. Then, it flows through the flow path PA2, takes heat from the case cover 1b side, and merges with the flow path PA1 at the folded portion 3b on the downstream side. As a result, the flow passage area on the case cover 1b side is enlarged, and the case cover 1b can be cooled over a wide range. In this case, since the cross-sectional area of the flow path PA1 is smaller than the cross-sectional area of the flow path PA2, more cooling water flows through the flow path PA1, and the cooling effect on the flow path PA1 side becomes higher. The flow rate ratio between the flow path PA1 and the flow path PA2 can be adjusted by changing the depth of the groove 6 or the like.
[0020]
According to 2nd Embodiment, there exist the following effects.
(1) Since the flow path PA2 is formed by resin molding on the case cover 1b side of the flow path forming member 3, it is possible to form the flow path PA2 having a complicated shape over every corner of the flow path forming member 3. The case cover 1b can be cooled over a wide range.
(2) The cross-sectional area of the flow path PA2 is made smaller than the cross-sectional area of the flow path PA1, and the fins 4 are provided only in the flow path PA1, so that the cooling efficiency on the flow path P1 side can be increased from the flow path P2 side. . Therefore, if the flow path PA1 is formed in a place where the heat generation amount of the power module PM is large and the flow path PA2 is formed in a place where the heat generation amount is small, the power module PM can be efficiently cooled.
(3) Since the back side of the groove 6 of the flow path forming member 3 is made hollow, the flow path forming member 3 can be reduced in weight.
[0021]
In the above description, the flow path PA2 is provided in parallel to the flow path PA1, but may be provided in series. Further, a large number of flow paths may be provided. Although the flow path PA2 is provided on the case cover 1b side, it may be provided on the lid 2 side. Although the fins 4 are provided in the cooling water flow path PA1, the flow path PA1 may be formed only by resin molding without providing the fins 4 when the heat generation amount is not so large.
[0022]
-Third embodiment-
A third embodiment of the present invention will be described with reference to FIGS.
In the first embodiment, both ends of the fin 4a are opened in the flow path PA1, but in the third embodiment, the fin portion 7 is provided in the flow path forming member 3 as follows, and this fin The ends of the portion 7 and the fin 4a are connected to form a flow path.
[0023]
6 is a plan view showing a state in which the flow path forming member 3 according to the third embodiment is accommodated in the case 1, and FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG. In addition, the same code | symbol is attached | subjected to the location same as FIG. 3, and the difference is mainly demonstrated below. In the third embodiment, the vicinity of the folded portion of the flow path forming member 3 does not penetrate in the vertical direction, and the thin plate portion 3e is provided on the bottom surface of the folded portion. A substantially U-shaped fin portion 7 is formed on the upper surface of the thin plate portion 3e as shown in FIG. 6, and both ends of the fin portion 7 are connected to both ends of the fin 4a. Thereby, the cooling water flows along the fin portion 7 at the folded portion, and the flow velocity distribution can be made uniform. That is, it can suppress that the flow of the outer side (side near the recessed part 3c) of a folding | turning part becomes quicker than the flow of an inner side.
[0024]
As described above, in the embodiment of the younger brother 3, since the fin portion 7 is provided in the folded portion corresponding to the fin 4a and the flow path PA1 is divided at the folded portion, the flow velocity distribution of the cooling water is made uniform. Thus, the case cover portion 1b and the power module PM above the case cover portion 1b can be uniformly cooled. In this case, since the fin part 7 is resin-molded integrally with the flow path forming member 3, the fin part 7 can be easily formed. Further, the fin portion 7 can be formed into a smooth curved surface shape by resin molding, and the surface roughness can be reduced, and an increase in pressure loss of the flow path PA1 can be suppressed.
[0025]
In the above description, the thin plate portion 3e is provided on the bottom surface of the flow path forming member 3, and the fin portion 7 is provided on the top surface of the thin plate portion 3e. However, the thin plate portion 3e is provided on the top surface of the flow path forming member 3, You may make it provide the fin part 7 in the lower surface of the part 3e. You may make it provide the thin-plate part 3e over the whole bottom face of the flow-path formation member 3, without providing the through-hole 3a in the flow-path formation member 3. FIG.
[0026]
-Fourth embodiment-
A fourth embodiment of the present invention will be described with reference to FIGS.
In 4th Embodiment, a buffer member (accumulator) is provided in the middle of flow path PA1, and the pressure fluctuation of cooling water is absorbed. FIG. 8 is a plan view showing a state in which the flow path forming member 3 according to the fourth embodiment is accommodated in the case 1. In addition, the same code | symbol is attached | subjected to the location same as FIG. 3, and the difference is mainly demonstrated.
[0027]
As shown in FIG. 8, the flow path forming member 3 is provided with a recess 9 that branches off from the vicinity of the outlet of the flow path PA1. The concave portion 9 is formed in a substantially rectangular shape in plan view via the neck portion 9a (rectangular portion 9b), and the buffer member 8 is inserted into the rectangular portion 9b from the up and down direction. FIG. 9 is a plan view showing the configuration of the buffer member 8. The shock-absorbing member 8 has an outer peripheral member 21 and a pressure receiving portion 22 that is provided facing the passage PA1, is made of the same material as the outer peripheral member 21, and has a reduced film pressure so as to be easily subjected to pressure fluctuation. A compressible gas 23 made of air, nitrogen gas N2, or the like is sealed inside the pressure receiving portion 22. As the material of the outer peripheral material 21, it is preferable to use a rubber material such as silicone, NBR, EPDM or the like.
[0028]
In the fourth embodiment, since the buffer member 8 is provided so as to communicate with the flow path PA1, when the water pressure in the flow path PA1 fluctuates, the buffer member 8 is compressed and deformed accordingly and absorbs the pressure fluctuation. . Thereby, a rapid increase in the pressure in the flow path PA1 can be suppressed, and leakage of the cooling water from the joint surface can be easily prevented without increasing the sealing performance of the joint surface between the case 1 and the lid 2 so much. Further, since the buffer member 8 is provided inside the flow path forming member 3, the arrangement of the buffer member 8 does not hinder the arrangement of the peripheral devices, and the space efficiency is good.
[0029]
In the above description, the buffer member 8 is provided in the vicinity of the outlet of the cooling water flow path PA1, but it may be provided in another location. Moreover, you may provide the buffer member 8 in multiple places. The configuration of the buffer member 8 is not limited to that described above.
[0030]
-Fifth embodiment-
A fifth embodiment of the present invention will be described with reference to FIG.
In the fifth embodiment, a sealing member is provided on the joint surface between the case 1 and the lid 2 to enhance the sealing performance of the joint surface. FIG. 10 is an exploded perspective view showing the configuration of the heat sink portion HS according to the fifth embodiment. In addition, the same code | symbol is attached | subjected to the location same as FIG. 2, and the difference is mainly demonstrated below.
[0031]
A seal member 31 is provided on the lower surface of the flow path forming member 3, and a through hole 31 a having the same shape as the through hole 3 a of the flow path forming member 3 is opened in the seal member 31. The seal member 31 is made of a highly compressible rubber member, and is formed integrally with the flow path forming member 3 by, for example, insert molding. The peripheral edge 31 b of the seal member 31 protrudes outward from the peripheral surface of the flow path forming member 3. A groove 42 is provided on the entire inner periphery of the lower end surface (flange surface 41) of the case frame 1a, and the peripheral edge portion 31b of the seal member 31 is fitted into the groove 42. Although not shown, a female thread portion is provided on the outer flange surface 41 of the groove 42, and a through hole is opened in the lid 2 corresponding to the female thread portion. Then, the bolt is screwed into the female screw portion through the through hole, and the case 1 and the lid 2 are fastened through the seal member 31.
[0032]
As described above, in the fifth embodiment, the seal member 31 is provided on the lower surface of the case 1, and the case 1 and the lid 2 are placed in a state where the peripheral portion 31 b of the seal member 31 is sandwiched between the case 1 and the lid 2 and pressed. Since it fastens, the sealing performance of the joint surface of case 1 and the lid | cover 2 can be improved. Since the seal member 31 is provided integrally with the flow path forming member 3, there is no need to separately provide a sheet gasket or a liquid gasket. In addition, the flow path forming member 3 is fixed at the same time by fixing the seal member 31 therebetween. Since the groove 42 is provided in the flange surface 41 of the case 1 and the seal member 31 is fitted into the groove 42, the case 1 and the lid 2 are fastened in close contact. Thereby, it is possible to prevent the axial force of the bolt from being lowered due to the deterioration of the rubber constituting the sheet member 31 with time.
[0033]
When the material forming the flow path forming member 3 is a highly compressible resin material, the seal member 31 does not need to be a rubber material as in this embodiment, and the same material as the flow path forming member 3 is used. It can be. The through hole 31a may not be the same shape as the through hole 3a of the flow path forming member 3, but may be wider than the through hole 3a and the seal member 31 may be provided only in the vicinity of the seal surface.
[0034]
-Sixth embodiment-
A sixth embodiment of the present invention will be described with reference to FIG.
In the sixth embodiment, the shapes of the groove 42 and the seal member 31 are different from those of the fifth embodiment. FIG. 11 is a perspective view of the main part of the heat sink part HS according to the sixth embodiment (enlarged view of part A in FIG. 10). In addition, the same code | symbol is attached | subjected to the location same as FIG. 10, and the difference is mainly demonstrated below.
[0035]
11A shows a state before the flow path forming member 3 is housed in the case 1, and FIG. 11B shows a state after the housing. As shown in FIG. 11A, a protrusion 43 lower than the flange surface 41 is provided inside the groove 42, and the lower end surface of the case frame has a substantially U-shaped cross section. As shown in FIG. 11B, the peripheral edge 31b of the sealing member 31 bulges in the vertical direction, and a bulged portion 32 having a substantially circular cross section is formed. The bulging portion 32 is disposed in the groove portion 42 over the protruding portion 43, the upper end surface of the bulging portion 32 is in contact with the surface of the groove portion 42, and the lower end surface protrudes below the flange surface 41.
[0036]
As a result, when the lid 2 is fastened to the case 1 by bolt connection and a pressure is applied to the seal member 31, the bulging portion 32 is crushed. That is, the bulging portion 32 functions in the same manner as the O-ring, and the sealing performance is enhanced. Further, the position of the bulging portion 32 is regulated by the protrusion 43, and the positional deviation of the seal member 31 can be prevented. As a result, the reliability of the seal is increased.
[0037]
FIG. 12 is a diagram illustrating a modification of the sixth embodiment. As shown in FIG. 12A, the protrusion 44 is partially provided over the longitudinal direction of the groove 42 and protrudes downward from the protrusion 43 of FIG. As shown in FIG. 12B, a through hole is opened at the base of the bulging portion 32 of the seal member 31 corresponding to the protrusion 44, and the tip of the protrusion 44 is inserted into the through hole. As a result, the position of the bulging portion 32 is fixed, and the connection between the seal member 31 and the bulging portion 32 is partially cut off, so that the function of the bulging portion 32 as an O-ring is enhanced and the sealing performance is further improved.
[0038]
In the above description, the flow path forming member 3 is made of a resin material, but may be made of a highly compressible rubber member. Thereby, the flow path forming member 3 also functions as a seal member, and the seal member 31 can be omitted.
[0039]
In the above embodiment, the power module PM as the heat generating component is disposed on the upper surface of the flow path forming member 3, but may be disposed on the lower surface of the flow path forming member 3. The present invention is characterized in that at least a part of the cooling water flow path PA1 is made of a resin material, except for the case cover portion 1b as a heat transfer member that transfers heat from the power module PM to the cooling water, You may comprise the heat sink part HS with a resin material. When there is a curved portion (folded portion) in the flow channel shape, a complicated flow channel can be easily formed by forming the curved portion with resin. That is, the present invention is not limited to the cooling device of the embodiment as long as the features and functions of the present invention can be realized.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a semiconductor module according to a first embodiment of the present invention.
FIG. 2 is an exploded perspective view of a heat sink portion constituting the semiconductor module according to the first embodiment.
FIG. 3 is a plan view showing a state in which the flow path forming member according to the first embodiment is housed in a case.
FIG. 4 is a perspective view showing a configuration of a flow path forming member according to a second embodiment.
5 is a plan view showing a state in which the flow path forming member of FIG. 4 is housed in a case. FIG.
FIG. 6 is a plan view showing a state in which a flow path forming member according to a third embodiment is housed in a case.
7 is a sectional view taken along line VII-VII in FIG.
FIG. 8 is a plan view showing a state in which a flow path forming member according to a fourth embodiment is housed in a case.
FIG. 9 is a diagram showing details of the buffer member in FIG. 8;
FIG. 10 is an exploded perspective view showing a configuration of a heat sink part according to a fifth embodiment.
FIG. 11 is a perspective view showing the main configuration of a heat sink according to the sixth embodiment.
12 is a view showing a modification of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Case 1a Frame 1b Cover part 2 Lid 3 Flow path forming member 3b Recessed part 4 Fin 7 Fin part 8 Buffer member 9 Recessed part 31 Seal member 31b Peripheral part 32 Swelling part 41 Flange surface 42 Groove 43, 44 Projection part PM Power module HS Heat sink PA1, PA2 Cooling water flow path

Claims (5)

半導体素子を含むパワーモジュールに、前記パワーモジュールの取付面を構成する金属製の取付部材を介して隣接し、冷却水の流通により前記半導体素子を冷却する水冷式冷却部を備え、
前記水冷式冷却部は、
前記パワーモジュールの取付面に対向する面が開口された金属製の筐体と、
前記筐体内に前記パワーモジュールの取付面の裏側から突設された金属製のフィン部材と、
前記筐体の開口面を塞ぐ蓋部材と、
前記開口面を介して前記筐体内に隙間なく収容されるとともに、前記フィン部材の周囲に配設され、前記フィン部材、前記取付部材および前記蓋部材とともに冷却水の流路を形成する樹脂製の流路形成部材とを有することを特徴とする半導体モジュールの冷却装置。
A power module including a semiconductor element is adjacent to the power module through a metal mounting member that constitutes a mounting surface of the power module, and includes a water-cooled cooling unit that cools the semiconductor element by circulating cooling water.
The water-cooled cooling unit is
A metal housing having an opening on the surface facing the mounting surface of the power module;
A metal fin member projecting from the back side of the mounting surface of the power module in the housing ;
A lid member for closing the opening surface of the housing;
A resin-made resin that is accommodated in the housing without any gap through the opening surface and that is disposed around the fin member and forms a cooling water flow path together with the fin member , the attachment member, and the lid member . A cooling device for a semiconductor module, comprising a flow path forming member.
請求項1に記載の半導体モジュールの冷却装置において、
前記フィン部材は、前記取付部材と一体に設けられることを特徴とする半導体モジュールの冷却装置。
In the cooling device of the semiconductor module according to claim 1,
The fin member, the cooling device of the semiconductor module and which are located before the member integral with Quito.
請求項1または2に記載の半導体モジュールの冷却装置において、
前記流路は、直線状の流路部と曲線状の流路部を有し、前記フィン部材は直線状の流路部を形成し、前記流路形成部材は曲線状の流路部を形成することを特徴とする半導体モジュールの冷却装置。
In the cooling device of the semiconductor module according to claim 1 or 2,
The flow path has a straight flow path section and a curved flow path section, the fin member forms a straight flow path section, and the flow path forming member forms a curved flow path section. A cooling device for a semiconductor module.
請求項1〜3のいずれか1項記載の半導体モジュールの冷却装置において、
前記流路形成部材には、前記流路に連通する凹部が設けられ、
この凹部に圧力変動吸収用の緩衝部材が挿入されることを特徴とする半導体モジュールの冷却装置。
In the cooling device of the semiconductor module of any one of Claims 1-3,
The flow path forming member is provided with a recess communicating with the flow path,
A cooling device for a semiconductor module, wherein a buffer member for absorbing pressure fluctuation is inserted into the recess.
請求項1〜4のいずれか1項に記載の半導体モジュールの冷却装置において、
前記流路形成部材と一体に成形され、前記筐体の開口端面と前記蓋部材の接触面にかけて周縁部が延設されるシール部材を有し、
前記シール部材の周縁部は、前記筐体の開口端面の全周にわたって設けられた段部に収容されるとともに、前記筐体と前記蓋部材とで前記周縁部を挟んで押圧し、前記接触面をシールするようにしたことを特徴とする半導体モジュールの冷却装置。
In the cooling device of the semiconductor module according to any one of claims 1 to 4,
A seal member that is molded integrally with the flow path forming member and has a peripheral edge extending from the opening end surface of the housing to the contact surface of the lid member;
The peripheral portion of the seal member is accommodated in a step provided over the entire circumference of the opening end surface of the housing, and the contact surface is pressed by sandwiching the peripheral portion between the housing and the lid member. A cooling device for a semiconductor module, wherein the semiconductor module is sealed .
JP2003086459A 2003-03-26 2003-03-26 Semiconductor module cooling device Expired - Fee Related JP4172302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003086459A JP4172302B2 (en) 2003-03-26 2003-03-26 Semiconductor module cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003086459A JP4172302B2 (en) 2003-03-26 2003-03-26 Semiconductor module cooling device

Publications (2)

Publication Number Publication Date
JP2004296748A JP2004296748A (en) 2004-10-21
JP4172302B2 true JP4172302B2 (en) 2008-10-29

Family

ID=33401114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003086459A Expired - Fee Related JP4172302B2 (en) 2003-03-26 2003-03-26 Semiconductor module cooling device

Country Status (1)

Country Link
JP (1) JP4172302B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4333587B2 (en) * 2005-01-14 2009-09-16 三菱電機株式会社 Heat sink and cooling unit
JP4517862B2 (en) * 2005-01-18 2010-08-04 日産自動車株式会社 Spot welding gun
JP4710621B2 (en) * 2006-01-16 2011-06-29 三菱電機株式会社 Heat dissipation structure
JP2007214157A (en) * 2006-02-07 2007-08-23 Meidensha Corp Water-cooled cooling structure
JP4586772B2 (en) * 2006-06-21 2010-11-24 日本電気株式会社 COOLING STRUCTURE AND COOLING STRUCTURE MANUFACTURING METHOD
JP2010080455A (en) * 2006-12-22 2010-04-08 Nec Corp Cooling device and cooling method for electronic equipment
KR101504291B1 (en) 2007-11-26 2015-03-23 주식회사 에이티티알앤디 A cooling apparatus
JP4813600B2 (en) * 2008-02-08 2011-11-09 東京エレクトロン株式会社 Liquid processing apparatus and liquid processing method
DE102008008534A1 (en) 2008-02-11 2009-08-13 Robert Bosch Gmbh Modular cooling concept
US8933557B2 (en) 2009-08-10 2015-01-13 Fuji Electric Co., Ltd. Semiconductor module and cooling unit
JP2011155055A (en) * 2010-01-26 2011-08-11 Mitsubishi Electric Corp Piping device for cooling liquid, cooling device, and electronic apparatus
JP5813300B2 (en) 2010-08-23 2015-11-17 三桜工業株式会社 Cooling system
KR101209686B1 (en) * 2010-12-03 2012-12-10 기아자동차주식회사 Cooling device for electric parts of electric vehicle and hybridelectric vehicle
JP5800057B2 (en) * 2014-05-26 2015-10-28 三菱電機株式会社 Liquid cooling piping device and cooling device
JP6696453B2 (en) * 2017-02-03 2020-05-20 株式会社デンソー Power converter
KR101795657B1 (en) * 2017-04-14 2017-11-08 주식회사 사이어트 (SYATT Co.,Ltd.) A Regulating Pressure Type of a Cooling Apparatus Having a Cooling Structure of a Thermoelement
JP6972949B2 (en) * 2017-11-13 2021-11-24 トヨタ自動車株式会社 Power controller
JP6981307B2 (en) * 2018-02-28 2021-12-15 株式会社デンソー Power converter
CN108827761A (en) * 2018-08-28 2018-11-16 丹阳丹金航空材料科技有限公司 A kind of cooling cushion block structure for high-module high-strength composite material high temperature tension test
JP7333690B2 (en) * 2018-11-21 2023-08-25 三井化学株式会社 cooling systems and structures
JP2020088108A (en) * 2018-11-21 2020-06-04 三井化学株式会社 Cooler and structure
US20220200081A1 (en) * 2019-03-28 2022-06-23 Mitsui Chemicals, Inc. Cooling unit, cooling apparatus, battery structure, and electric vehicle
WO2021204374A1 (en) * 2020-04-08 2021-10-14 HELLA GmbH & Co. KGaA Heat sink for a power inverter of an electric motor of a vehicle, power inverter and vehicle
CN113363617B (en) * 2021-06-18 2022-07-08 中国第一汽车股份有限公司 Battery liquid cooling plate assembly, power battery assembly and electric vehicle

Also Published As

Publication number Publication date
JP2004296748A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
JP4172302B2 (en) Semiconductor module cooling device
US9562728B2 (en) Cooling device with corrugated fins in communication with serpentine fluid passageway
KR100629220B1 (en) Electronic unit casing
US8310830B2 (en) Electronic device and frequency converter of motor
US20130206371A1 (en) Cooling structure
WO2014046004A1 (en) Electronic control apparatus
JP6642753B1 (en) Capacitors
US10440864B2 (en) Power conversion device
JP2007110025A (en) Power converter
JP6710283B2 (en) Power converter
US20160234976A1 (en) Power Conversion Device
JP2008306048A (en) Electronic unit case
JP2014079117A (en) On-vehicle power conversion apparatus
CN113906663A (en) Power conversion device
US8253041B2 (en) Electronic element packaging module
JP5772171B2 (en) Heat exchanger
CN216773384U (en) Battery box and battery package
JP4075535B2 (en) Electronic component housing structure
JP7160216B2 (en) semiconductor equipment
JP2005197562A (en) Power conversion apparatus
US11432440B2 (en) Power conversion apparatus
JP2015065310A (en) Seal member, cooler and semiconductor device
TWI544200B (en) Water-cooled Heat spreader and manufacturing method thereof
CN219372305U (en) Inverter heat radiation structure and inverter
US20230361001A1 (en) Power Semiconductor Device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees