JP4171890B2 - Red light emitting phosphor and light emitting device - Google Patents

Red light emitting phosphor and light emitting device Download PDF

Info

Publication number
JP4171890B2
JP4171890B2 JP2003021461A JP2003021461A JP4171890B2 JP 4171890 B2 JP4171890 B2 JP 4171890B2 JP 2003021461 A JP2003021461 A JP 2003021461A JP 2003021461 A JP2003021461 A JP 2003021461A JP 4171890 B2 JP4171890 B2 JP 4171890B2
Authority
JP
Japan
Prior art keywords
light
light emitting
red light
phosphor
emitting phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003021461A
Other languages
Japanese (ja)
Other versions
JP2004231770A (en
Inventor
勉 小田喜
Original Assignee
株式会社ファインラバー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ファインラバー研究所 filed Critical 株式会社ファインラバー研究所
Priority to JP2003021461A priority Critical patent/JP4171890B2/en
Publication of JP2004231770A publication Critical patent/JP2004231770A/en
Application granted granted Critical
Publication of JP4171890B2 publication Critical patent/JP4171890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、350〜420nmの長波長紫外線又は短波長可視光線により励起され赤色に発光する赤色発光蛍光体及びその赤色発光蛍光体を用いた発光装置に関する。
【0002】
【従来の技術】
発光ダイオード(LED:Light Emitting Diode)は、光を放射する半導体発光素子であり、電気エネルギーを紫外光、可視光、赤外光などに変換するものである。例えば、可視光を利用するものとしては、GaP、GaAsP、GaAlAs等の発光材料で形成した半導体発光素子があり、これらを透明樹脂等で封止したLEDランプが広く使用されている。また、発光材料をプリント基板や金属リードの上面に固定し、数字や文字をかたどった透明樹脂ケースで封止したディスプレイ型のLEDランプなども多用されている。
【0003】
また、発光ダイオードは半導体素子であるため、寿命が長く、信頼性も高く、光源として用いた場合には、その交換作業も軽減できることから、携帯通信機器、パーソナルコンピュータ周辺機器、OA機器、家庭用電気機器、オーディオ機器、各種スイッチ、バックライト用光源、掲示板等の各種表示装置などの構成部品として広く使用されている。
【0004】
このようなLEDランプは、各種の蛍光体粉末を、半導体発光素子を封止する透明樹脂中に含有させることにより、LEDランプから放射される光の色を変化させることが可能であり、使用用途に応じて青色から赤色まで可視光領域の広い範囲の色を得ることが可能である。
【0005】
しかしながら、最近では、上記各種表示装置の色彩に対する需要者の要求が高まり、表示装置に微妙な色合いをより精密に再現できる性能が要求されていると共に、1個のLEDランプにより白色や各種の中間色を発光させることができることが強く求められている。
【0006】
そのため、LEDランプの半導体発光素子の表面に、赤色、緑色、青色の各種蛍光体を塗布したり、LEDランプの封止材、コーティング材等に上記各種蛍光体を含有させたりすることにより、1個のLEDランプで白色や各種の中間色を表示できるように構成することも試行されている。
【0007】
このような蛍光体の中で、長波長紫外線又は短波長可視光線(350〜420nm)で励起する蛍光体として、現在、主に使用されているものとしては、発光色が青色のBaMg2Al1627:Eu、(Sr,Ca,Ba)5(PO43Cl:Eu、発光色が緑色のBaMg2Al1627:Eu,Mn、Zn2GeO4:Mn、発光色が赤色のY22S:Eu、La22S:Eu、3.5MgO・0.5MgF2・GeO2:Mnなどがあり、これらの発光蛍光体を適宜用いることにより広い範囲の発光色を得ることができる。
【0008】
しかしながら、上記赤色発光蛍光体には、青色、緑色発光蛍光体と比較して長波長紫外線及び短波長可視光線(350〜420nm)に対する発光が弱いという問題がある。
【0009】
そのため、これらの波長の光を用いて白色系の発光色を得る場合、赤色発光蛍光体の割合を多くしなければならず、コストが高くなること、白色系の発光色は、赤色、緑色、青色の発光量のバランスを合わせることにより白色を得ることができるものであるから、白色系の発光色を得るためには、赤色の発光量に合わせて緑色及び青色の発光量を減らさざるを得ず、また、蛍光体の使用量にも上限があるため、得られる白色光の発光量が少なくなってしまい、高輝度の白色が得られないことなどが問題となっている。
【0010】
更に、酸化物系化合物の電子対の励起エネルギーに対応する波長は紫外領域にあり、長波長紫外線及び短波長可視光線(350〜420nm)の波長は蛍光体の吸収端と重なるため、特に、赤色発光蛍光体には、半導体発光素子の発光波長のピークが変動すると蛍光体の発光量が著しく変化してしまうという問題もある。
【0011】
この問題を解決するためユーロピウムで付活された希土類酸硫化物蛍光体が特開平11−246857号公報(特許文献1)や特開2000−144130号公報(特許文献2)などで提案されており、このような蛍光体は、励起波長が長波長側へシフトしていることが報告されている。
【0012】
しかしながら、これらの赤色発光蛍光体でも350nmより長波長側での吸収強度は、波長が長くなるに従って急激に低下しており、350〜420nmを発光ピークとする励起光源、例えば紫外LEDを励起光源に用いた場合、製造上避けられないLEDの発光波長、即ち励起光の波長の変動により蛍光体の発光量が著しく変化してしまう。これは、緑色、青色の発光蛍光体と併用して白色や中間色を表示する場合には、色合いがばらつくことになるため、従来の赤色発光蛍光体では、微妙な色合いをより精密に再現することが困難であった。
【0013】
【特許文献1】
特開平11−246857号公報
【特許文献2】
特開2000−144130号公報
【0014】
【発明が解決しようとする課題】
本発明は、上記問題点を解決するためになされたものであり、波長が350〜420nmの励起光に対して赤色光を効率よく高輝度で発光でき、赤色を表示する発光装置又は緑色発光蛍光体、青色発光蛍光体と併用して白色若しくは中間色を表示する発光装置に実用的に使用できる赤色発光蛍光体及びその赤色発光蛍光体を用いた発光装置を提供することを目的とする。
【0015】
【課題を解決するための手段及び発明の実施の形態】
本発明者は、上記問題を解決するため鋭意検討を重ねた結果、波長が350〜420nmの光により励起されて発光する赤色発光蛍光体であって、下記組成式(1)
AEuxLn(1-x)28…(1)
(式中、AはLi、Na、K、Rb及びCsからなる群より選ばれる少なくとも1種であり、LnはYを含む希土類元素(Euを除く)からなる群より選ばれる少なくとも1種であり、MはW及びMoからなる群より選ばれる少なくとも1種であり、xは0<x≦1を満たす正数である。)
で表わされ、上記組成式(1)中のAの一部が、共付活剤として添加されるMg、Ca、Sr及びBaからなる群より選ばれる少なくとも1種で置換されたものであり、かつ上記赤色発光蛍光体を構成する元素を含む原料を混合した原料混合物を焼成して得た焼成物をアルカリ水溶液で洗浄することにより得られた赤色発光蛍光体が、波長が350〜420nmの励起光に対して赤色光を効率よく高輝度で発光し、長波長紫外線から短波長可視光線の領域の広い範囲の波長に対して安定した強度で赤色を発光できることを見出した。
【0016】
また、波長が350〜420nmの光により励起されて発光する赤色発光蛍光体であって、下記組成式(2)
0.5EuyLn(1-y)28…(2)
(式中、DはMg、Ca、Sr及びBaからなる群より選ばれる少なくとも1種であり、LnはYを含む希土類元素(Euを除く)からなる群より選ばれる少なくとも1種であり、MはW及びMoからなる群より選ばれる少なくとも1種であり、yは0<y≦1を満たす正数である。)
で表わされ、上記赤色発光蛍光体を構成する元素を含む原料を混合した原料混合物を焼成して得た焼成物を酸水溶液で洗浄することにより得られた赤色発光蛍光体が、波長が350〜420nmの励起光に対して赤色光を効率よく高輝度で発光し、長波長紫外線から短波長可視光線の領域の広い範囲の波長に対して安定した強度で赤色を発光できることを見出した。
【0017】
更に、これらの赤色発光蛍光体は、赤色を表示する発光装置又は緑色発光蛍光体、青色発光蛍光体と併用して白色若しくは中間色を表示する発光装置に実用的に使用できる赤色発光蛍光体であること、特に、この赤色発光蛍光体は、励起光の波長の変動の影響を受けにくいため、緑色発光蛍光体、青色発光蛍光体と併用して上記波長の光を発光する半導体発光素子からの光により蛍光体を発光させて白色若しくは中間色を表示する場合、微妙な色合いをより精密に再現性よく表示することができることを見出し、本発明をなすに至った。
【0018】
即ち、本発明は、
[1] 波長が350〜420nmの光により励起されて発光する赤色発光蛍光体であって、下記組成式(1)
AEuxLn(1-x)28…(1)
(式中、AはLi、Na、K、Rb及びCsからなる群より選ばれる少なくとも1種であり、LnはYを含む希土類元素(Euを除く)からなる群より選ばれる少なくとも1種であり、MはW及びMoからなる群より選ばれる少なくとも1種であり、xは0<x≦1を満たす正数である。)
で表わされ、上記組成式(1)中のAの一部が、共付活剤として添加されるMg、Ca、Sr及びBaからなる群より選ばれる少なくとも1種で置換されたものであり、かつ上記赤色発光蛍光体を構成する元素を含む原料を混合した原料混合物を焼成して得た焼成物をアルカリ水溶液で洗浄して得たものであることを特徴とする赤色発光蛍光体
[2] 波長が350〜420nmの光により励起されて発光する赤色発光蛍光体であって、下記組成式(2)
0.5EuyLn(1-y)28…(2)
(式中、DはMg、Ca、Sr及びBaからなる群より選ばれる少なくとも1種であり、LnはYを含む希土類元素(Euを除く)からなる群より選ばれる少なくとも1種であり、MはW及びMoからなる群より選ばれる少なくとも1種であり、yは0<y≦1を満たす正数である。)
で表わされるものであり、かつ上記赤色発光蛍光体を構成する元素を含む原料を混合した原料混合物を焼成して得た焼成物を酸水溶液で洗浄して得たものであることを特徴とする赤色発光蛍光体
[3] 上記式中のLnがY、La、Gd及びLuからなる群より選ばれる少なくとも1種であることを特徴とする[1]又は[2]記載の赤色発光蛍光体、
] 波長が350〜420nmの光を発光する半導体発光素子が封止材内に封止されてなる発光装置であって、上記封止材に[1]乃至[]のいずれか1項記載の赤色発光蛍光体を分散させたことを特徴とする発光装置、
] 波長が350〜420nmの光を発光する半導体発光素子が封止材内に封止されてなる発光装置であって、上記半導体発光素子から発光する光の光路上に[1]乃至[]のいずれか1項記載の赤色発光蛍光体を含む蛍光層を設けたことを特徴とする発光装置、
] 上記半導体発光素子上又は封止材上に蛍光層を設けたことを特徴とする[]記載の発光装置、及び
] 上記蛍光層が上記赤色発光蛍光体を樹脂、ゴム、エラストマー又はガラスに分散してなるものであることを特徴とする[]記載の発光装置
を提供する。
【0019】
以下、本発明について更に詳述する。
まず、本発明の赤色発光蛍光体の第1の態様について説明する。この第1の態様の赤色発光蛍光体は、波長が350〜420nmの光により励起されて発光する赤色発光蛍光体であり、下記組成式(1)
AEuxLn(1-x)28…(1)
(式中、AはLi、Na、K、Rb及びCsからなる群より選ばれる少なくとも1種であり、LnはYを含む希土類元素(Euを除く)からなる群より選ばれる少なくとも1種であり、MはW及びMoからなる群より選ばれる少なくとも1種であり、xは0<x≦1、好ましくは0.3≦x≦1、特に好ましくは0.5≦x≦1を満たす正数である。)
で表わされるものであり、かつ上記赤色発光蛍光体を構成する元素を含む原料を混合した原料混合物を焼成して得た焼成物をアルカリ水溶液で洗浄して得たものである。
【0020】
この赤色発光蛍光体は、原料として、例えば、赤色発光蛍光体を構成する元素を含む酸化物、炭酸塩等をボールミルなどで混合して得た原料混合物を焼成し、必要に応じて粉砕、篩分して得た焼成物をアルカリ水溶液で洗浄することにより得たものであり、この場合、アルカリ水溶液としては、例えば、水酸化リチウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液等を用いることができ、pHは8以上であることが好ましい。アルカリ水溶液による洗浄は、アルカリ水溶液中に焼成物を浸漬し、必要に応じて攪拌するなどの方法で可能であり、アルカリ水溶液により洗浄された焼成物を、更に、アルカリ水溶液と分離し、水洗、乾燥することにより赤色発光蛍光体を得ることができる。
【0021】
また、上記組成式(1)中LnはYを含む希土類元素(Euを除く)からなる群より選ばれる少なくとも1種であるが、これらの中ではY、La、Gd又はLuが好ましく挙げられる。また、AはEuと近いイオン半径を有するLi及びNaからなる群より選ばれる少なくとも1種であることが好ましい。このようなものとしては、LiEuM28、LiEux(1-x)28が特に好ましい。
【0022】
更に、本発明においては、上記組成式(1)で表わされる赤色発光蛍光体の、式中のA(即ち、Li、Na、K、Rb及びCsからなる群より選ばれる少なくとも1種)の一部が、共付活剤として添加されるMg、Ca、Sr及びBaからなる群より選ばれる少なくとも1種で置換されたものも好適である。この場合の置換率は、Li、Na、K、Rb及びCsの総量に対するMg、Ca、Sr及びBaの総量の比で0.5(原子比)未満、好ましくは0.3(原子比)以下、更に好ましくは0.2(原子比)以下、特に好ましくは0.1(原子比)以下であることが好ましい。
【0023】
次に、本発明の赤色発光蛍光体の第2の態様について説明する。この第2の態様の赤色発光蛍光体は、波長が350〜420nmの光により励起されて発光する赤色発光蛍光体であり、下記組成式(2)
0.5EuyLn(1-y)28…(2)
(式中、DはMg、Ca、Sr及びBaからなる群より選ばれる少なくとも1種であり、LnはYを含む希土類元素(Euを除く)からなる群より選ばれる少なくとも1種であり、MはW及びMoからなる群より選ばれる少なくとも1種であり、yは0<y≦1、好ましくは0.3≦y≦1、特に好ましくは0.5≦y≦1を満たす正数である。)
で表わされるものである。
【0024】
この赤色発光蛍光体は、原料として、例えば、赤色発光蛍光体を構成する元素を含む酸化物、炭酸塩等をボールミルなどで混合して得た原料混合物を焼成し、必要に応じて粉砕、篩分することにより得ることができるが、特に、この方法で得られた焼成物を更に酸水溶液で洗浄して得たものであることが好ましい。この場合、酸水溶液としては、例えば、塩酸水溶液、硫酸水溶液、硝酸水溶液等を用いることができ、pHは6以下であることが好ましい。酸水溶液による洗浄は、酸水溶液中に焼成物を浸漬し、必要に応じて攪拌するなどの方法で可能であり、酸水溶液により洗浄された焼成物を、更に、酸水溶液と分離し、水洗、乾燥することにより赤色発光蛍光体を得ることができる。
【0025】
また、上記組成式(2)中LnはYを含む希土類元素(Euを除く)からなる群より選ばれる少なくとも1種であるが、これらの中ではY、La、Gd又はLuが好ましく挙げられる。また、DはEuと近いイオン半径を有するCa及びSrからなる群より選ばれる少なくとも1種であることが好ましい。
【0026】
更に、本発明の赤色発光蛍光体は、上記赤色発光蛍光体を構成するEuが3価のEuイオン(Eu3+)をなしていることが好ましく、特に、この3価のEuイオンが2次元又は1次元に配列していることが好ましい。ここで、3価のEuイオンが2次元に配列したとは、図1に示すように、赤色発光蛍光体中の3価のEuイオンが、平面状に配列して3価のEuイオンのみで平面構造をなしている状態、3価のEuイオンが1次元に配列した構造とは、図2に示すように、赤色発光蛍光体中の3価のEuイオンが、直線状に配列して3価のEuイオンのみで直線構造をなしている状態をいう。
【0027】
酸化物系蛍光体は、母体結晶により励起光を吸収し、その励起エネルギーを発光イオンに伝達し発光するが、一般的な酸化物系蛍光体では電子対の励起エネルギーに対応する波長は紫外領域にあるため、長波長紫外線から短波長可視光線(350〜420nm)の吸収は十分でない。
【0028】
また、一般的な蛍光体において発光イオン(付活剤)濃度は母体結晶に対し数モル%添加され、それ以上の濃度では、▲1▼付活剤の間に共鳴伝達による交差緩和が生じ、励起エネルギーの一部が失われる、▲2▼付活剤間の共鳴伝達による励起の回遊が生じ、これが結晶表面や非発光中心への励起の移行と消滅を助長する、▲3▼付活剤同士が凝集あるいはイオン対を形成することによって、非発光中心やキラー(蛍光抑制剤)に変わる、などの理由によって濃度消光が起こることが知られている。
【0029】
一方、3価のEuイオンが2次元又は1次元に配列しているものは、3価のEuイオン(Eu3+)は、励起光の吸収と発光中心として作用し、発光イオンである3価のEuイオンが、長波長紫外線から短波長可視光線(350〜420nm)を直接吸収する。更に、発光イオンが配列している層と層との間隔が広いため、励起エネルギーの回遊が制御されることによって濃度消光を示さない。このことから3価のEuイオンの4f軌道内の不対電子によって長波長紫外線から短波長可視光線(350〜420nm)を効率よく吸収できるため、高輝度の赤色発光を得ることができる。
【0030】
続いて、本発明の発光装置について説明する。
まず、本発明の発光装置の第1の態様について説明する。この第1の態様の発光装置は、波長が350〜420nmの光を発光する半導体発光素子が封止材内に封止されてなる発光装置であって、上記封止材に上述した本発明の赤色発光蛍光体を分散させたものである。
【0031】
具体的には、図3に示されるような、リード1,2、波長が350〜420nmの光を発光する半導体発光素子3、半導体発光素子3とリード2とを電気的に接続するリード細線4を、封止材5で砲弾型に封止した構造の、いわゆる砲弾タイプの発光ダイオードや、図4に示されるような、上面が開口した箱形の発光体収容部材6の内底から一対のリード1,2を発光体収容部材6の外部へ延出し、この発光体収容部材6の内部に波長が350〜420nmの光を発光する半導体発光素子3やリード細線4,4を収容し、これらを接続して発光体収容部材6内部を封止材5で封止した構造の、いわゆるチップ型の発光ダイオードなどの封止材5中に、本発明の赤色発光蛍光体を分散させたものが挙げられる。
【0032】
この場合、封止材5中に上述した本発明の赤色発光蛍光体のみを分散させれば、高輝度の赤色を発光する発光装置となり、BaMg2Al1627:Eu,Mn、Zn2GeO4:Mn等の緑色発光蛍光体、BaMg2Al1627:Eu、(Sr,Ca,Ba)5(PO43Cl:Eu等の青色蛍光発光体と共に分散させれば、高輝度の白色又は中間色を発光する発光装置となる。これらいずれの発光装置においても、赤色発光蛍光体として本発明の赤色発光蛍光体以外の赤色発光蛍光体、例えば、Y22S:Eu、La22S:Eu、3.5MgO・0.5MgF2・GeO2:Mn等を添加することが可能である。
【0033】
なお、この発光装置は、半導体発光素子等を封止する際に、樹脂、ゴム、エラストマー、ガラスなどの封止材材料に蛍光体を混合して封止することにより製造することができる。特に、複数種の蛍光体を用いる場合、本発明の赤色発光蛍光体は、一般的な蛍光体に比べ、真比重が高いため封止材料と混合したときに他の蛍光体よりも速く沈降して色むらを引き起こすおそれがある。そのため、本発明の赤色発光蛍光体は、粘度の高いもの、例えば、チキソトロピー調整剤で粘度を調整したシリコーンゴム組成物、シリコーン樹脂組成物などに混合し、これを硬化させる方法で封止材中に分散させることが好ましい。また、封止材中には色調変換材料として上述した蛍光体の他に、顔料、染料、擬似顔料などを添加してもよい。
【0034】
次に、本発明の発光装置の第2の態様について説明する。この第2の態様の発光装置は、波長が350〜420nmの光を発光する半導体発光素子が封止材内に封止されてなる発光装置であって、上記半導体発光素子から発光する光の光路上に上述した本発明の赤色発光蛍光体を含む蛍光層を設けたものである。
【0035】
このようなものとしては、例えば、半導体発光素子上又は封止材上に本発明の赤色発光蛍光体を含む蛍光層を設けたものが挙げられ、具体的には、図5に示されるような、リード1,2、波長が350〜420nmの光を発光する半導体発光素子3、半導体発光素子3とリード2とを電気的に接続するリード細線4を、封止材5で砲弾型に封止した構造の、いわゆる砲弾タイプの発光ダイオードの半導体発光素子3上に蛍光層9を設けて半導体発光素子3等と共に封止したもの、図6に示されるような上面が開口した箱形の発光体収容部材6の内底から一対のリード1,2を発光体収容部材6の外部へ延出し、この発光体収容部材6の内部に波長が350〜420nmの光を発光する半導体発光素子3やリード細線4,4を収容し、これらを接続して、発光体収容部材6内部を封止材5で封止した構造の、いわゆるチップ型の発光ダイオードの半導体発光素子3上に蛍光層7を設けて半導体発光素子3等と共に封止したもの、図7に示されるような砲弾タイプの発光ダイオードの封止材5上に封止材5を被覆するように蛍光層7を設けたもの、図8に示されるようなチップ型の発光ダイオードの封止材5上に蛍光層7を設けたものが挙げられる。なお、図7、図8中の蛍光層以外の構成は図3、図4に各々示される構成と同様であるため説明を省略する。
【0036】
また、上述したような、蛍光層を発光ダイオード内部に又は発光ダイオードと隣接して設けたいわゆる透過型のものに限らず、図9に示されるように、蛍光層7を発光ダイオード8から離間する位置に設けると共に、この蛍光層から発光した光を反射板9で反射させるいわゆる反射型の発光装置も挙げられる。また、図7、図8に示されるような封止材上に蛍光層を設けた発光装置の蛍光層を、更に封止材で封止することも可能である。
【0037】
この場合、蛍光層中に上述した本発明の赤色発光蛍光体のみを分散させれば、高輝度の赤色を発光する発光装置となり、BaMg2Al1627:Eu,Mn、Zn2GeO4:Mn等の緑色発光蛍光体、BaMg2Al1627:Eu、(Sr,Ca,Ba)5(PO43Cl:Eu等の青色蛍光発光体と共に分散させれば、高輝度の白色又は中間色を発光する発光装置となる。これらいずれの発光装置においても、赤色発光蛍光体として本発明の赤色発光蛍光体以外の赤色発光蛍光体、例えば、Y22S:Eu、La22S:Eu、3.5MgO・0.5MgF2・GeO2:Mn等を添加することが可能である。
【0038】
なお、蛍光層を半導体発光素子上に設ける場合は、蛍光体をそのままで用いてもバインダーと共に混合して用いてもよい。この場合、図5、図6に示されるように、蛍光層は半導体発光素子と共に封止材中に封止されることとなる。
【0039】
一方、蛍光層を封止材上に設ける場合、赤色発光蛍光体を透光性の樹脂、ゴム、エラストマー又はガラス、特にシリコーン樹脂又はシリコーンゴムに分散させて用いることが好ましい。特に、複数種の蛍光体を蛍光層に分散させる場合、上述した封止材に本発明の赤色発光蛍光体を分散させる場合と同様、チキソトロピー調整剤で粘度を調整したシリコーンゴム組成物、シリコーン樹脂組成物などに混合し、これを硬化させる方法で蛍光層中に分散させることが好ましい。また、蛍光層は、蛍光体を混合して1層としたものでも、蛍光体をいくつかの層にわけて積層したものでもよい。また、蛍光層中には色調変換材料として上述した蛍光体の他に、顔料、染料、擬似顔料などを添加してもよい。
【0040】
【実施例】
以下、実施例を挙げて本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。
【0041】
[実施例1]
蛍光体構成原料としてWO3粉末を46.37g、Eu23粉末を17.60g、Li2CO3粉末を3.69g各々秤量し、これらをボールミルで均一に混合して原料混合物とした。
【0042】
次に、得られた原料混合物を、アルミナ製坩堝に入れ900℃の温度で6時間焼成した。得られた焼成物を純水にて十分洗浄して不要な可溶成分を除去し、その後、ボールミルにより細かく粉砕し、篩分け(目開き53μm)し、これを2%水酸化ナトリウム水溶液に30分間浸漬するアルカリ水溶液洗浄処理を施して、その後水洗、濾過、乾燥してLiEuW28なる組成の赤色発光蛍光体を得た。
【0043】
この赤色発光蛍光体LiEuW28について、380nm励起下において小型分光蛍光光度計FP−750(日本分光(株)製)で発光強度を測定したところ、アルカリ水溶液洗浄処理を施さなかったものの発光強度を100としたときの相対発光強度が120.1という高い値が得られた。
【0044】
[実施例2〜4]
2%水酸化ナトリウム水溶液の代わりにpH=11の水酸化リチウム水溶液(実施例2)、pH=11の水酸化ナトリウム水溶液(実施例3)、pH=11の水酸化カリウム水溶液(実施例4)を用いた以外は実施例1と同様の方法でLiEuW28なる組成の赤色発光蛍光体を得た。
【0045】
これらの赤色発光蛍光体LiEuW28について、380nm励起下において小型分光蛍光光度計FP−750(日本分光(株)製)で発光強度を測定したところ、アルカリ水溶液洗浄処理を施さなかったものの発光強度を100としたときの相対発光強度が101.0(実施例2)、103.3(実施例3)、108.4(実施例4)という高い値が得られた。
【0046】
[実施例5]
蛍光体構成原料としてWO3粉末を46.37g、Eu23粉末を17.60g、CaCO3粉末を5.00g各々秤量し、これらをボールミルで均一に混合して原料混合物とした。
【0047】
次に、得られた原料混合物を、アルミナ製坩堝に入れ900℃の温度で6時間焼成した。得られた焼成物を純水にて十分洗浄して不要な可溶成分を除去し、その後、ボールミルにより細かく粉砕し、篩分け(目開き53μm)してCa0.5EuW28なる組成の赤色発光蛍光体を得た。
【0048】
この赤色発光蛍光体Ca0.5EuW28について380nm励起下において、従来のY22S:Eu蛍光体を標準にして小型分光蛍光光度計FP−750(日本分光(株)製)で発光強度を測定したところ、1.11倍という高い値が得られた。
【0049】
[実施例6]
蛍光体構成原料としてWO3粉末を46.37g、Eu23粉末を17.60g、CaCO3粉末を5.00g各々秤量し、これらをボールミルで均一に混合して原料混合物とした。
【0050】
次に、得られた原料混合物を、アルミナ製坩堝に入れ900℃の温度で6時間焼成した。得られた焼成物を純水にて十分洗浄して不要な可溶成分を除去し、その後、ボールミルにより細かく粉砕し、篩分け(目開き53μm)し、これを2%塩酸水溶液に30分間浸漬する酸水溶液洗浄処理を施して、その後水洗、濾過、乾燥してCa0.5EuW28なる組成の赤色発光蛍光体を得た。
【0051】
この赤色発光蛍光体Ca0.5EuW28について、380nm励起下において小型分光蛍光光度計FP−750(日本分光(株)製)で発光強度を測定したところ、酸水溶液洗浄処理を施さなかったものの発光強度を100としたときの相対発光強度が117.5という高い値が得られた。
【0052】
【発明の効果】
以上のように、本発明の赤色発光蛍光体は、波長が350〜420nmの励起光に対して赤色光を効率よく高輝度で発光するものであり、この赤色発光蛍光体を用いた発光装置の赤色領域における発光輝度を大幅に向上させることができ、長波長紫外線から短波長可視光線の領域の広い範囲の波長に対して安定した強度で赤色を発光できる。
【0053】
また、この赤色発光蛍光体は、励起光の波長の変動の影響を受けにくいため、緑色発光蛍光体、青色発光蛍光体と併用して上記波長の光を発光する半導体発光素子からの光により蛍光体を発光させて白色若しくは中間色を表示する場合、微妙な色合いをより精密に再現性よく表示することができる。
【図面の簡単な説明】
【図1】3価のEuイオン(Eu3+)が2次元に配列した状態を説明するための説明図である。
【図2】3価のEuイオン(Eu3+)が1次元に配列した状態を説明するための説明図である。
【図3】本発明の光学装置の一例を示す図であり、砲弾型の発光ダイオードの封止材に本発明の赤色発光蛍光体を分散させた発光装置を示す断面図である。
【図4】本発明の光学装置の一例を示す図であり、チップ型の発光ダイオードの封止材に本発明の赤色発光蛍光体を分散させた発光装置を示す断面図である。
【図5】本発明の光学装置の一例を示す図であり、砲弾型の発光ダイオードの半導体発光素子上に本発明の赤色発光蛍光体を含む蛍光層を設けた発光装置を示す断面図である。
【図6】本発明の光学装置の一例を示す図であり、チップ型の発光ダイオードの半導体発光素子上に本発明の赤色発光蛍光体を含む蛍光層を設けた発光装置を示す断面図である。
【図7】本発明の光学装置の一例を示す図であり、砲弾型の発光ダイオードの封止材上に本発明の赤色発光蛍光体を含む蛍光層を設けた発光装置を示す断面図である。
【図8】本発明の光学装置の一例を示す図であり、チップ型の発光ダイオードの封止材上に本発明の赤色発光蛍光体を含む蛍光層を設けた発光装置を示す断面図である。
【図9】本発明の光学装置の一例を示す図であり、蛍光層を発光ダイオードから離間する位置に設けると共に、この蛍光層から発光した光を反射させる発光装置を示す断面図である。
【符号の説明】
1,2 リード
3 半導体発光素子
4 リード細線
5 封止材
6 発光体収容部材
7 蛍光層
8 発光ダイオード
9 反射板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a red light-emitting phosphor that emits red light when excited by long-wavelength ultraviolet light or short-wavelength visible light of 350 to 420 nm, and a light-emitting device using the red light-emitting phosphor.
[0002]
[Prior art]
A light emitting diode (LED: Light Emitting Diode) is a semiconductor light emitting element that emits light, and converts electrical energy into ultraviolet light, visible light, infrared light, and the like. For example, as a device using visible light, there is a semiconductor light emitting element formed of a light emitting material such as GaP, GaAsP, or GaAlAs, and an LED lamp in which these are sealed with a transparent resin or the like is widely used. In addition, a display-type LED lamp in which a light emitting material is fixed on the upper surface of a printed circuit board or a metal lead and sealed with a transparent resin case shaped like a number or letter is also frequently used.
[0003]
In addition, since the light emitting diode is a semiconductor element, it has a long life, high reliability, and when used as a light source, the replacement work can be reduced. Therefore, portable communication devices, personal computer peripheral devices, OA devices, home use It is widely used as a component of various display devices such as electric devices, audio devices, various switches, backlight light sources, and bulletin boards.
[0004]
Such an LED lamp can change the color of light emitted from the LED lamp by including various phosphor powders in a transparent resin that seals the semiconductor light emitting device. Accordingly, it is possible to obtain a wide range of colors in the visible light region from blue to red.
[0005]
However, recently, demands from consumers for the colors of the above various display devices have increased, and the display devices have been required to have a performance capable of reproducing subtle hues more precisely, and white and various intermediate colors can be achieved with a single LED lamp. There is a strong demand to be able to emit light.
[0006]
Therefore, by applying various phosphors of red, green, and blue to the surface of the semiconductor light emitting element of the LED lamp, or by incorporating the various phosphors into the sealing material, coating material, etc. of the LED lamp, 1 Attempts have also been made to configure white LED and various intermediate colors with a single LED lamp.
[0007]
Among such phosphors, currently used as a phosphor that is excited by long-wavelength ultraviolet light or short-wavelength visible light (350 to 420 nm), the light emission color is BaMg.2Al16O27: Eu, (Sr, Ca, Ba)Five(POFour)ThreeCl: Eu, green color of BaMg2Al16O27: Eu, Mn, Zn2GeOFour: Mn, Y whose emission color is red2O2S: Eu, La2O2S: Eu, 3.5MgO / 0.5MgF2・ GeO2: Mn and the like, and by using these light emitting phosphors as appropriate, a wide range of emission colors can be obtained.
[0008]
However, the red light-emitting phosphor has a problem that light emission with respect to long-wavelength ultraviolet light and short-wavelength visible light (350 to 420 nm) is weaker than blue and green light-emitting phosphors.
[0009]
Therefore, when obtaining a white emission color using light of these wavelengths, the proportion of the red light emitting phosphor must be increased, the cost is increased, and the white emission color is red, green, Since white can be obtained by adjusting the balance of the blue light emission amount, in order to obtain a white light emission color, the green and blue light emission amounts must be reduced in accordance with the red light emission amount. In addition, since there is an upper limit to the amount of phosphor used, there is a problem in that the amount of white light obtained is reduced, and high brightness white cannot be obtained.
[0010]
Furthermore, the wavelength corresponding to the excitation energy of the electron pair of the oxide compound is in the ultraviolet region, and the wavelengths of long-wavelength ultraviolet light and short-wavelength visible light (350 to 420 nm) overlap with the absorption edge of the phosphor. The light emitting phosphor also has a problem that when the peak of the emission wavelength of the semiconductor light emitting element fluctuates, the light emission amount of the phosphor changes remarkably.
[0011]
In order to solve this problem, rare earth oxysulfide phosphors activated with europium have been proposed in JP-A-11-246857 (Patent Document 1) and JP-A 2000-144130 (Patent Document 2). Such a phosphor has been reported to have an excitation wavelength shifted to the longer wavelength side.
[0012]
However, even in these red light emitting phosphors, the absorption intensity on the longer wavelength side than 350 nm rapidly decreases as the wavelength becomes longer, and an excitation light source having an emission peak at 350 to 420 nm, for example, an ultraviolet LED is used as the excitation light source. When used, the light emission amount of the phosphor is remarkably changed due to fluctuations in the light emission wavelength of the LED, that is, the wavelength of the excitation light, which cannot be avoided in production. This means that when white and neutral colors are displayed in combination with green and blue light-emitting phosphors, the hue will vary, so the conventional red light-emitting phosphors will reproduce subtle colors more precisely. It was difficult.
[0013]
[Patent Document 1]
JP 11-246857 A
[Patent Document 2]
JP 2000-144130 A
[0014]
[Problems to be solved by the invention]
The present invention has been made in order to solve the above-described problems. A light-emitting device or a green-emitting fluorescent light that can emit red light efficiently and with high luminance with respect to excitation light having a wavelength of 350 to 420 nm and displays red. It is an object of the present invention to provide a red light-emitting phosphor that can be used practically in a light-emitting device that displays white or an intermediate color in combination with a blue light-emitting phosphor and a light-emitting device using the red light-emitting phosphor.
[0015]
Means for Solving the Problem and Embodiment of the Invention
  As a result of intensive studies to solve the above problems, the present inventor is a red light emitting phosphor that emits light when excited by light having a wavelength of 350 to 420 nm, and has the following composition formula (1)
  AEuxLn(1-x)M2O8... (1)
(In the formula, A is at least one selected from the group consisting of Li, Na, K, Rb and Cs, and Ln is at least one selected from the group consisting of rare earth elements including Y (excluding Eu). M is at least one selected from the group consisting of W and Mo, and x is a positive number satisfying 0 <x ≦ 1.)
Represented byA part of A in the composition formula (1) was substituted with at least one selected from the group consisting of Mg, Ca, Sr and Ba added as a coactivator.The red light-emitting phosphor obtained by washing a fired product obtained by firing a raw material mixture in which raw materials containing elements constituting the red light-emitting phosphor are mixed with an alkaline aqueous solution has a wavelength of 350. It has been found that red light can be efficiently emitted with high luminance with respect to excitation light of ˜420 nm, and red can be emitted with a stable intensity with respect to a wide range of wavelengths from a long-wavelength ultraviolet ray to a short-wavelength visible light region.
[0016]
  Moreover, it is a red light-emitting phosphor that emits light when excited by light having a wavelength of 350 to 420 nm, and has the following composition formula (2)
  D0.5EuyLn(1-y)M2O8... (2)
(Wherein, D is at least one selected from the group consisting of Mg, Ca, Sr and Ba, Ln is at least one selected from the group consisting of rare earth elements including Y (excluding Eu), M Is at least one selected from the group consisting of W and Mo, and y is a positive number satisfying 0 <y ≦ 1.)
Represented byAndExcitation light having a wavelength of 350 to 420 nm is obtained by washing a fired product obtained by firing a raw material mixture containing raw materials containing elements constituting the red light emitting phosphor with an acid aqueous solution. In contrast, the present inventors have found that red light can be efficiently emitted with high luminance, and red can be emitted with a stable intensity with respect to a wide range of wavelengths from the long wavelength ultraviolet to the short wavelength visible light region.
[0017]
Further, these red light emitting phosphors are red light emitting phosphors that can be used practically in light emitting devices that display red, green light emitting phosphors, and light emitting devices that display white or intermediate colors in combination with blue light emitting phosphors. In particular, since this red light emitting phosphor is not easily affected by fluctuations in the wavelength of the excitation light, light emitted from a semiconductor light emitting element that emits light of the above wavelength in combination with a green light emitting phosphor or a blue light emitting phosphor. When the phosphor is caused to emit light to display white or an intermediate color, it has been found that a delicate hue can be displayed more precisely and with good reproducibility, and the present invention has been made.
[0018]
  That is, the present invention
[1] A red light-emitting phosphor that emits light when excited by light having a wavelength of 350 to 420 nm, and has the following composition formula (1)
  AEuxLn(1-x)M2O8... (1)
(In the formula, A is at least one selected from the group consisting of Li, Na, K, Rb and Cs, and Ln is at least one selected from the group consisting of rare earth elements including Y (excluding Eu). M is at least one selected from the group consisting of W and Mo, and x is a positive number satisfying 0 <x ≦ 1.)
Represented byA part of A in the composition formula (1) was substituted with at least one selected from the group consisting of Mg, Ca, Sr and Ba added as a coactivator.A red light-emitting fluorescent material characterized by being obtained by washing a fired product obtained by firing a raw material mixture obtained by mixing raw materials containing the elements constituting the red light-emitting phosphor with an alkaline aqueous solution body,
[2It is a red light emitting phosphor that emits light when excited by light having a wavelength of 350 to 420 nm, and has the following composition formula (2)
  D0.5EuyLn(1-y)M2O8... (2)
(Wherein, D is at least one selected from the group consisting of Mg, Ca, Sr and Ba, Ln is at least one selected from the group consisting of rare earth elements including Y (excluding Eu), M Is at least one selected from the group consisting of W and Mo, and y is a positive number satisfying 0 <y ≦ 1.)
Represented byAnd obtained by washing a fired product obtained by firing a raw material mixture obtained by mixing raw materials containing the elements constituting the red light emitting phosphor with an aqueous acid solution.A red-emitting phosphor characterized in that,
[3Ln in the above formula is at least one selected from the group consisting of Y, La, Gd and Lu [1]Or [2]The red light emitting phosphor as described,
[4A light-emitting device in which a semiconductor light-emitting element that emits light having a wavelength of 350 to 420 nm is sealed in a sealing material, and the sealing material includes [1] to [1]3A light-emitting device, wherein the red-emitting phosphor according to any one of the above is dispersed;
[5A light-emitting device in which a semiconductor light-emitting element that emits light having a wavelength of 350 to 420 nm is encapsulated in a sealing material, and [1] to [[3A light emitting device comprising a fluorescent layer containing the red light emitting phosphor according to any one of the above,
[6A fluorescent layer is provided on the semiconductor light emitting device or the sealing material.5A light-emitting device according to claim 1, and
[7The fluorescent layer is formed by dispersing the red light-emitting phosphor in a resin, rubber, elastomer, or glass.6] The light-emitting device of description
I will provide a.
[0019]
The present invention will be described in detail below.
First, the 1st aspect of the red light emission fluorescent substance of this invention is demonstrated. The red light-emitting phosphor according to the first aspect is a red light-emitting phosphor that emits light when excited by light having a wavelength of 350 to 420 nm, and has the following composition formula (1)
AEuxLn(1-x)M2O8... (1)
(In the formula, A is at least one selected from the group consisting of Li, Na, K, Rb and Cs, and Ln is at least one selected from the group consisting of rare earth elements including Y (excluding Eu)) , M is at least one selected from the group consisting of W and Mo, and x is a positive number satisfying 0 <x ≦ 1, preferably 0.3 ≦ x ≦ 1, particularly preferably 0.5 ≦ x ≦ 1. .)
The fired product obtained by firing a raw material mixture obtained by mixing the raw materials containing the elements constituting the red light emitting phosphor is washed with an alkaline aqueous solution.
[0020]
This red light-emitting phosphor is obtained by firing a raw material mixture obtained by mixing, for example, an oxide, carbonate, or the like containing an element constituting the red light-emitting phosphor with a ball mill or the like, and grinding and sieving as necessary. In this case, for example, a lithium hydroxide aqueous solution, a sodium hydroxide aqueous solution, or a potassium hydroxide aqueous solution may be used as the alkaline aqueous solution. The pH is preferably 8 or more. Washing with an aqueous alkali solution is possible by a method such as immersing the fired product in an aqueous alkali solution and stirring as necessary. The fired product washed with the aqueous alkali solution is further separated from the aqueous alkaline solution, washed with water, A red light-emitting phosphor can be obtained by drying.
[0021]
In the composition formula (1), Ln is at least one selected from the group consisting of rare earth elements including Y (excluding Eu), and among these, Y, La, Gd, or Lu is preferable. A is preferably at least one selected from the group consisting of Li and Na having an ionic radius close to Eu. As such, LiEuM2O8, LiEuxY(1-x)M2O8Is particularly preferred.
[0022]
Furthermore, in the present invention, one of the red light emitting phosphors represented by the composition formula (1) in the formula (that is, at least one selected from the group consisting of Li, Na, K, Rb and Cs). It is also preferable that the part is substituted with at least one selected from the group consisting of Mg, Ca, Sr and Ba added as a coactivator. The substitution rate in this case is less than 0.5 (atomic ratio), preferably 0.3 (atomic ratio) or less, in terms of the ratio of the total amount of Mg, Ca, Sr and Ba to the total amount of Li, Na, K, Rb and Cs. More preferably, it is 0.2 (atomic ratio) or less, and particularly preferably 0.1 (atomic ratio) or less.
[0023]
Next, a second aspect of the red light emitting phosphor of the present invention will be described. The red light-emitting phosphor of the second embodiment is a red light-emitting phosphor that emits light when excited by light having a wavelength of 350 to 420 nm, and has the following composition formula (2)
D0.5EuyLn(1-y)M2O8... (2)
(Wherein, D is at least one selected from the group consisting of Mg, Ca, Sr and Ba, Ln is at least one selected from the group consisting of rare earth elements including Y (excluding Eu), M Is at least one selected from the group consisting of W and Mo, and y is a positive number satisfying 0 <y ≦ 1, preferably 0.3 ≦ y ≦ 1, particularly preferably 0.5 ≦ y ≦ 1. .)
It is represented by
[0024]
This red light-emitting phosphor is obtained by firing a raw material mixture obtained by mixing, for example, an oxide or carbonate containing an element constituting the red light-emitting phosphor with a ball mill or the like, and pulverizing and sieving as necessary. In particular, it is preferable that the fired product obtained by this method is further washed with an acid aqueous solution. In this case, as the acid aqueous solution, for example, a hydrochloric acid aqueous solution, a sulfuric acid aqueous solution, a nitric acid aqueous solution or the like can be used, and the pH is preferably 6 or less. Washing with an acid aqueous solution can be performed by immersing the fired product in an acid aqueous solution and stirring as necessary. The fired product washed with the acid aqueous solution is further separated from the acid aqueous solution, washed with water, A red light-emitting phosphor can be obtained by drying.
[0025]
In the compositional formula (2), Ln is at least one selected from the group consisting of rare earth elements including Y (excluding Eu). Among these, Y, La, Gd, or Lu is preferably exemplified. Further, D is preferably at least one selected from the group consisting of Ca and Sr having an ionic radius close to Eu.
[0026]
Further, in the red light emitting phosphor of the present invention, Eu constituting the red light emitting phosphor is a trivalent Eu ion (Eu3+In particular, it is preferable that the trivalent Eu ions are arranged two-dimensionally or one-dimensionally. Here, the trivalent Eu ions are arranged two-dimensionally, as shown in FIG. 1, the trivalent Eu ions in the red light-emitting phosphor are arranged in a plane and are only trivalent Eu ions. In a state in which a planar structure is formed, a structure in which trivalent Eu ions are arranged one-dimensionally means that trivalent Eu ions in a red light emitting phosphor are arranged in a straight line as shown in FIG. This refers to a state in which a linear structure is formed only by valence Eu ions.
[0027]
Oxide phosphors absorb excitation light by the host crystal and transmit the excitation energy to luminescent ions to emit light, but in general oxide phosphors, the wavelength corresponding to the excitation energy of electron pairs is in the ultraviolet region. Therefore, absorption of long-wavelength ultraviolet rays to short-wavelength visible rays (350 to 420 nm) is not sufficient.
[0028]
Further, in a general phosphor, the concentration of luminescent ions (activator) is added by several mol% with respect to the base crystal, and at a concentration higher than that, (1) cross relaxation occurs due to resonance transmission between activators, Part of the excitation energy is lost. (2) Excitation migration occurs due to resonance transfer between activators, which promotes the transfer and extinction of excitation to the crystal surface and non-luminescent center. (3) Activator It is known that concentration quenching occurs for reasons such as non-radiative centers and killer (fluorescence inhibitor) being formed by aggregation of each other or formation of ion pairs.
[0029]
On the other hand, trivalent Eu ions arranged in two dimensions or one dimension are trivalent Eu ions (Eu3+) Acts as absorption and emission center of excitation light, and trivalent Eu ions which are luminescent ions directly absorb short wavelength visible light (350 to 420 nm) from long wavelength ultraviolet rays. Furthermore, since the distance between the layers where the light-emitting ions are arranged is wide, concentration quenching is not shown by controlling the excitatory energy migration. From this, it is possible to efficiently absorb short-wavelength visible light (350 to 420 nm) from long-wavelength ultraviolet light by unpaired electrons in the 4f orbit of trivalent Eu ions, so that high-luminance red light emission can be obtained.
[0030]
Next, the light emitting device of the present invention will be described.
First, the 1st aspect of the light-emitting device of this invention is demonstrated. The light-emitting device according to the first aspect is a light-emitting device in which a semiconductor light-emitting element that emits light having a wavelength of 350 to 420 nm is sealed in a sealing material. A red light emitting phosphor is dispersed.
[0031]
Specifically, as shown in FIG. 3, leads 1 and 2, a semiconductor light emitting element 3 that emits light having a wavelength of 350 to 420 nm, and a lead thin wire 4 that electrically connects the semiconductor light emitting element 3 and the lead 2. Of a so-called shell-type light emitting diode having a structure sealed in a shell shape with a sealing material 5 or a pair of box-shaped light emitter housing members 6 having an open top surface as shown in FIG. The leads 1 and 2 are extended to the outside of the light emitter housing member 6, and the semiconductor light emitting element 3 and the lead thin wires 4 and 4 that emit light having a wavelength of 350 to 420 nm are housed inside the light emitter housing member 6. Are obtained by dispersing the red light emitting phosphor of the present invention in a sealing material 5 such as a so-called chip-type light emitting diode having a structure in which the inside of the light emitting body housing member 6 is sealed with a sealing material 5. Can be mentioned.
[0032]
In this case, if only the above-described red light-emitting phosphor of the present invention is dispersed in the sealing material 5, a light-emitting device that emits red with high luminance is obtained.2Al16O27: Eu, Mn, Zn2GeOFour: Green light emitting phosphor such as Mn, BaMg2Al16O27: Eu, (Sr, Ca, Ba)Five(POFour)ThreeWhen dispersed together with a blue fluorescent light emitting material such as Cl: Eu, a light emitting device that emits white or intermediate color with high luminance is obtained. In any of these light emitting devices, red light emitting phosphors other than the red light emitting phosphor of the present invention, such as Y2O2S: Eu, La2O2S: Eu, 3.5MgO / 0.5MgF2・ GeO2: Mn or the like can be added.
[0033]
This light-emitting device can be manufactured by mixing a phosphor with a sealing material such as resin, rubber, elastomer, or glass when sealing a semiconductor light-emitting element or the like. In particular, when a plurality of types of phosphors are used, the red light emitting phosphor of the present invention has a higher true specific gravity than a general phosphor, and therefore settles faster than other phosphors when mixed with a sealing material. May cause uneven color. Therefore, the red light-emitting phosphor of the present invention is mixed with a high viscosity material such as a silicone rubber composition or a silicone resin composition whose viscosity is adjusted with a thixotropy adjusting agent, and then cured in a sealing material. It is preferable to be dispersed. In addition to the phosphor described above as a color tone conversion material, pigments, dyes, pseudo pigments, and the like may be added to the sealing material.
[0034]
Next, a second aspect of the light emitting device of the present invention will be described. The light-emitting device according to the second aspect is a light-emitting device in which a semiconductor light-emitting element that emits light having a wavelength of 350 to 420 nm is sealed in a sealing material, and the light emitted from the semiconductor light-emitting element. A fluorescent layer containing the above-described red light emitting phosphor of the present invention is provided on the road.
[0035]
As such a thing, what provided the fluorescent layer containing the red light emission fluorescent substance of this invention on a semiconductor light emitting element or a sealing material, for example is mentioned, Specifically, as shown in FIG. The lead 1 and 2, the semiconductor light emitting device 3 that emits light having a wavelength of 350 to 420 nm, and the lead thin wire 4 that electrically connects the semiconductor light emitting device 3 and the lead 2 are sealed in a shell shape with a sealing material 5. A so-called shell-type light-emitting diode semiconductor light-emitting element 3 having a fluorescent layer 9 and sealed together with the semiconductor light-emitting element 3 and the like, and a box-shaped light-emitting body with an open top as shown in FIG. A pair of leads 1 and 2 are extended from the inner bottom of the housing member 6 to the outside of the light emitter housing member 6, and the semiconductor light emitting element 3 and leads that emit light having a wavelength of 350 to 420 nm inside the light emitter housing member 6. Accommodates fine wires 4 and 4 Subsequently, a phosphor layer 7 is provided on the semiconductor light emitting element 3 of a so-called chip-type light emitting diode having a structure in which the inside of the light emitter housing member 6 is sealed with the sealing material 5 and sealed together with the semiconductor light emitting element 3 and the like. 7, a bullet-type light emitting diode as shown in FIG. 7 provided with a fluorescent layer 7 so as to cover the sealing material 5, a chip type light emitting diode as shown in FIG. The thing which provided the fluorescent layer 7 on the sealing material 5 of this is mentioned. 7 and FIG. 8 are the same as those shown in FIG. 3 and FIG.
[0036]
Further, the fluorescent layer 7 is not limited to the so-called transmission type in which the fluorescent layer is provided in the light emitting diode or adjacent to the light emitting diode as described above, and the fluorescent layer 7 is separated from the light emitting diode 8 as shown in FIG. There is also a so-called reflection type light-emitting device that is provided at a position and reflects light emitted from the fluorescent layer by the reflection plate 9. In addition, the fluorescent layer of the light emitting device in which the fluorescent layer is provided on the sealing material as illustrated in FIGS. 7 and 8 can be further sealed with the sealing material.
[0037]
In this case, if only the above-described red light-emitting phosphor of the present invention is dispersed in the fluorescent layer, a light-emitting device that emits high-brightness red is obtained.2Al16O27: Eu, Mn, Zn2GeOFour: Green light emitting phosphor such as Mn, BaMg2Al16O27: Eu, (Sr, Ca, Ba)Five(POFour)ThreeWhen dispersed together with a blue fluorescent light emitting material such as Cl: Eu, a light emitting device that emits white or intermediate color with high luminance is obtained. In any of these light emitting devices, red light emitting phosphors other than the red light emitting phosphor of the present invention, such as Y2O2S: Eu, La2O2S: Eu, 3.5MgO / 0.5MgF2・ GeO2: Mn or the like can be added.
[0038]
In addition, when providing a fluorescent layer on a semiconductor light-emitting device, the phosphor may be used as it is or may be mixed with a binder. In this case, as shown in FIGS. 5 and 6, the fluorescent layer is sealed in the sealing material together with the semiconductor light emitting element.
[0039]
On the other hand, when the fluorescent layer is provided on the sealing material, it is preferable to use the red light-emitting phosphor dispersed in a light-transmitting resin, rubber, elastomer or glass, particularly silicone resin or silicone rubber. In particular, when a plurality of types of phosphors are dispersed in the phosphor layer, as in the case of dispersing the red light-emitting phosphor of the present invention in the sealing material described above, a silicone rubber composition and a silicone resin whose viscosity is adjusted with a thixotropic modifier It is preferable to disperse in the phosphor layer by a method of mixing with a composition or the like and curing it. The fluorescent layer may be a single layer obtained by mixing phosphors, or may be a laminate of phosphors divided into several layers. In addition to the phosphor described above as a color tone conversion material, pigments, dyes, pseudo pigments, and the like may be added to the fluorescent layer.
[0040]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to the following Example.
[0041]
[Example 1]
WO as phosphor constituent materialThree46.37 g of powder, Eu2OThree17.60 g of powder, Li2COThree3.69 g of each powder was weighed and uniformly mixed with a ball mill to obtain a raw material mixture.
[0042]
Next, the obtained raw material mixture was put in an alumina crucible and fired at a temperature of 900 ° C. for 6 hours. The obtained fired product is sufficiently washed with pure water to remove unnecessary soluble components, and then finely pulverized with a ball mill and sieved (aperture 53 μm). Apply alkaline aqueous solution washing treatment soaked for minutes, then wash with water, filter and dry to LiEuW2O8A red light-emitting phosphor having the following composition was obtained.
[0043]
This red light emitting phosphor LiEuW2O8When luminescence intensity was measured with a compact spectrofluorometer FP-750 (manufactured by JASCO Corporation) under excitation at 380 nm, the relative luminescence intensity when the luminescence intensity was 100 when the alkaline aqueous solution cleaning treatment was not performed. Was as high as 120.1.
[0044]
[Examples 2 to 4]
PH = 11 lithium hydroxide aqueous solution (Example 2), pH = 11 sodium hydroxide aqueous solution (Example 3), pH = 11 potassium hydroxide aqueous solution (Example 4) instead of 2% sodium hydroxide aqueous solution LiEuW in the same manner as in Example 1 except that2O8A red light-emitting phosphor having the following composition was obtained.
[0045]
These red light emitting phosphors LiEuW2O8When luminescence intensity was measured with a compact spectrofluorometer FP-750 (manufactured by JASCO Corporation) under excitation at 380 nm, the relative luminescence intensity when the luminescence intensity was 100 when the alkaline aqueous solution cleaning treatment was not performed. Of 101.0 (Example 2), 103.3 (Example 3), and 108.4 (Example 4).
[0046]
[Example 5]
WO as phosphor constituent materialThree46.37 g of powder, Eu2OThree17.60 g of powder, CaCOThree5.00 g of each powder was weighed and mixed uniformly with a ball mill to obtain a raw material mixture.
[0047]
Next, the obtained raw material mixture was put in an alumina crucible and fired at a temperature of 900 ° C. for 6 hours. The obtained fired product is thoroughly washed with pure water to remove unnecessary soluble components, and then finely pulverized with a ball mill and sieved (opening 53 μm) to obtain Ca.0.5EuW2O8A red light-emitting phosphor having the following composition was obtained.
[0048]
This red light emitting phosphor Ca0.5EuW2O8Under conventional excitation at 380 nm2O2When the emission intensity was measured with a small spectrofluorometer FP-750 (manufactured by JASCO Corporation) using S: Eu phosphor as a standard, a value as high as 1.11 times was obtained.
[0049]
[Example 6]
WO as phosphor constituent materialThree46.37 g of powder, Eu2OThree17.60 g of powder, CaCOThree5.00 g of each powder was weighed and mixed uniformly with a ball mill to obtain a raw material mixture.
[0050]
Next, the obtained raw material mixture was put in an alumina crucible and fired at a temperature of 900 ° C. for 6 hours. The obtained fired product is thoroughly washed with pure water to remove unnecessary soluble components, then finely pulverized with a ball mill, sieved (aperture 53 μm), and immersed in a 2% aqueous hydrochloric acid solution for 30 minutes. The solution is washed with water, filtered, dried and then washed with Ca.0.5EuW2O8A red light-emitting phosphor having the following composition was obtained.
[0051]
This red light emitting phosphor Ca0.5EuW2O8When luminescence intensity was measured with a small spectrofluorometer FP-750 (manufactured by JASCO Corporation) under excitation at 380 nm, the relative luminescence intensity when the luminescence intensity was 100 when the acid aqueous solution washing treatment was not performed Was as high as 117.5.
[0052]
【The invention's effect】
As described above, the red light-emitting phosphor of the present invention emits red light efficiently and with high luminance with respect to excitation light having a wavelength of 350 to 420 nm, and a light-emitting device using this red light-emitting phosphor. The light emission luminance in the red region can be significantly improved, and red can be emitted with a stable intensity with respect to a wide range of wavelengths from the long wavelength ultraviolet region to the short wavelength visible region.
[0053]
In addition, since this red light emitting phosphor is not easily affected by fluctuations in the wavelength of the excitation light, it is fluorescent by light from a semiconductor light emitting element that emits light of the above wavelength in combination with the green light emitting phosphor and the blue light emitting phosphor. When displaying a white or intermediate color by emitting light from the body, it is possible to display a subtle hue more precisely and with good reproducibility.
[Brief description of the drawings]
FIG. 1 Trivalent Eu ion (Eu3+) Is an explanatory diagram for explaining a state in which the two-dimensional array is arranged in two dimensions.
FIG. 2 Trivalent Eu ions (Eu3+) Is an explanatory diagram for explaining a state in which they are arranged one-dimensionally.
FIG. 3 is a diagram showing an example of the optical device of the present invention, and is a cross-sectional view showing a light emitting device in which the red light emitting phosphor of the present invention is dispersed in a shell-type light emitting diode sealing material.
FIG. 4 is a diagram showing an example of the optical device of the present invention, and is a cross-sectional view showing a light emitting device in which the red light emitting phosphor of the present invention is dispersed in a sealing material for a chip type light emitting diode.
FIG. 5 is a diagram showing an example of the optical device of the present invention, and is a cross-sectional view showing a light emitting device in which a fluorescent layer containing the red light emitting phosphor of the present invention is provided on a semiconductor light emitting element of a shell-type light emitting diode. .
FIG. 6 is a diagram showing an example of the optical device of the present invention, and is a cross-sectional view showing a light emitting device in which a fluorescent layer containing the red light emitting phosphor of the present invention is provided on a semiconductor light emitting element of a chip type light emitting diode. .
FIG. 7 is a diagram showing an example of the optical device of the present invention, and is a cross-sectional view showing a light emitting device in which a fluorescent layer containing the red light emitting phosphor of the present invention is provided on a sealing material of a shell-type light emitting diode. .
FIG. 8 is a diagram showing an example of the optical device of the present invention, and is a cross-sectional view showing a light emitting device in which a phosphor layer containing the red light emitting phosphor of the present invention is provided on a sealing material of a chip type light emitting diode. .
FIG. 9 is a diagram showing an example of an optical device according to the present invention, and is a cross-sectional view showing a light emitting device that provides a fluorescent layer at a position away from a light emitting diode and reflects light emitted from the fluorescent layer.
[Explanation of symbols]
1, 2 lead
3 Semiconductor light emitting device
4 Lead wire
5 Sealing material
6 Light emitter housing member
7 Fluorescent layer
8 Light emitting diode
9 Reflector

Claims (7)

波長が350〜420nmの光により励起されて発光する赤色発光蛍光体であって、下記組成式(1)
AEuxLn(1-x)28…(1)
(式中、AはLi、Na、K、Rb及びCsからなる群より選ばれる少なくとも1種であり、LnはYを含む希土類元素(Euを除く)からなる群より選ばれる少なくとも1種であり、MはW及びMoからなる群より選ばれる少なくとも1種であり、xは0<x≦1を満たす正数である。)
で表わされ、上記組成式(1)中のAの一部が、共付活剤として添加されるMg、Ca、Sr及びBaからなる群より選ばれる少なくとも1種で置換されたものであり、かつ上記赤色発光蛍光体を構成する元素を含む原料を混合した原料混合物を焼成して得た焼成物をアルカリ水溶液で洗浄して得たものであることを特徴とする赤色発光蛍光体。
A red light-emitting phosphor that emits light when excited by light having a wavelength of 350 to 420 nm, the composition formula (1)
AEu x Ln (1-x) M 2 O 8 (1)
(In the formula, A is at least one selected from the group consisting of Li, Na, K, Rb and Cs, and Ln is at least one selected from the group consisting of rare earth elements including Y (excluding Eu). M is at least one selected from the group consisting of W and Mo, and x is a positive number satisfying 0 <x ≦ 1.)
And a part of A in the composition formula (1) is substituted with at least one selected from the group consisting of Mg, Ca, Sr and Ba added as a coactivator . And a red light-emitting phosphor obtained by washing a fired product obtained by firing a raw material mixture obtained by mixing raw materials containing elements constituting the red light-emitting phosphor with an alkaline aqueous solution.
波長が350〜420nmの光により励起されて発光する赤色発光蛍光体であって、下記組成式(2)
0.5EuyLn(1-y)28…(2)
(式中、DはMg、Ca、Sr及びBaからなる群より選ばれる少なくとも1種であり、LnはYを含む希土類元素(Euを除く)からなる群より選ばれる少なくとも1種であり、MはW及びMoからなる群より選ばれる少なくとも1種であり、yは0<y≦1を満たす正数である。)
で表わされるものであり、かつ上記赤色発光蛍光体を構成する元素を含む原料を混合した原料混合物を焼成して得た焼成物を酸水溶液で洗浄して得たものであることを特徴とする赤色発光蛍光体。
A red light emitting phosphor that emits light when excited by light having a wavelength of 350 to 420 nm, the composition formula (2)
D 0.5 Eu y Ln (1-y) M 2 O 8 (2)
(Wherein, D is at least one selected from the group consisting of Mg, Ca, Sr and Ba, Ln is at least one selected from the group consisting of rare earth elements including Y (excluding Eu), M Is at least one selected from the group consisting of W and Mo, and y is a positive number satisfying 0 <y ≦ 1.)
And is obtained by washing a fired product obtained by firing a raw material mixture obtained by mixing raw materials containing the elements constituting the red light emitting phosphor with an acid aqueous solution. Red light emitting phosphor.
上記式中のLnがY、La、Gd及びLuからなる群より選ばれる少なくとも1種であることを特徴とする請求項1又は2記載の赤色発光蛍光体。The red light-emitting phosphor according to claim 1 or 2 , wherein Ln in the above formula is at least one selected from the group consisting of Y, La, Gd and Lu. 波長が350〜420nmの光を発光する半導体発光素子が封止材内に封止されてなる発光装置であって、上記封止材に請求項1乃至のいずれか1項記載の赤色発光蛍光体を分散させたことを特徴とする発光装置。The semiconductor light-emitting device having a wavelength to emit light of 350~420nm is a light-emitting device in which sealed in the sealing material, the red light-emitting phosphor of any one of claims 1 to 3 in the sealing material A light emitting device in which a body is dispersed. 波長が350〜420nmの光を発光する半導体発光素子が封止材内に封止されてなる発光装置であって、上記半導体発光素子から発光する光の光路上に請求項1乃至のいずれか1項記載の赤色発光蛍光体を含む蛍光層を設けたことを特徴とする発光装置。The semiconductor light-emitting device having a wavelength to emit light of 350~420nm is a light-emitting device in which sealed in the sealing material, any one of claims 1 to 3 on the optical path of light emitted from the semiconductor light emitting element A light emitting device comprising a fluorescent layer containing the red light emitting phosphor according to item 1. 上記半導体発光素子上又は封止材上に蛍光層を設けたことを特徴とする請求項記載の発光装置。The light emitting device according to claim 5, characterized in that a fluorescent layer in the semiconductor light-emitting element or on the sealing material on. 上記蛍光層が上記赤色発光蛍光体を樹脂、ゴム、エラストマー又はガラスに分散してなるものであることを特徴とする請求項記載の発光装置。7. The light emitting device according to claim 6, wherein the fluorescent layer is formed by dispersing the red light emitting phosphor in resin, rubber, elastomer or glass.
JP2003021461A 2003-01-30 2003-01-30 Red light emitting phosphor and light emitting device Expired - Fee Related JP4171890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003021461A JP4171890B2 (en) 2003-01-30 2003-01-30 Red light emitting phosphor and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003021461A JP4171890B2 (en) 2003-01-30 2003-01-30 Red light emitting phosphor and light emitting device

Publications (2)

Publication Number Publication Date
JP2004231770A JP2004231770A (en) 2004-08-19
JP4171890B2 true JP4171890B2 (en) 2008-10-29

Family

ID=32950791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003021461A Expired - Fee Related JP4171890B2 (en) 2003-01-30 2003-01-30 Red light emitting phosphor and light emitting device

Country Status (1)

Country Link
JP (1) JP4171890B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101216550B1 (en) 2010-08-26 2012-12-31 신라대학교 산학협력단 Synthesizing process of phospher and manufacturin method of phospher thick film with the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7102152B2 (en) * 2004-10-14 2006-09-05 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Device and method for emitting output light using quantum dots and non-quantum fluorescent material
JP2006348262A (en) * 2005-05-17 2006-12-28 Fine Rubber Kenkyusho:Kk Light emitting device and red-emitting phosphor particle
KR101128672B1 (en) * 2005-05-17 2012-03-19 가부시키가이샤 화인 라버 겐큐쇼 Light-emitting device and red light-emtting phosphor particle
WO2006126392A1 (en) * 2005-05-23 2006-11-30 Keio University Fine particle and red fluorescence conversion medium using same
JP2007254517A (en) * 2006-03-22 2007-10-04 Niigata Univ Composite oxide for phosphor and phosphor
JP2011021161A (en) * 2009-07-21 2011-02-03 National Printing Bureau Phosphor
JP6519746B2 (en) 2014-10-23 2019-05-29 パナソニックIpマネジメント株式会社 Phosphor material and light emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101216550B1 (en) 2010-08-26 2012-12-31 신라대학교 산학협력단 Synthesizing process of phospher and manufacturin method of phospher thick film with the same

Also Published As

Publication number Publication date
JP2004231770A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
US6982523B2 (en) Red light emitting phosphor, its production and light emitting device
JP5721873B2 (en) Light emitting element
JP4223879B2 (en) Sm-activated red light emitting phosphor and light emitting device using the same
US7691293B2 (en) Red light-emitting phosphor and light-emitting device
JP5127455B2 (en) White light emitting device and method for manufacturing the same, backlight using the same, and liquid crystal display device
JP5398141B2 (en) White light emitting LED lamp, backlight using the same, and liquid crystal display device
KR100892800B1 (en) White Light-Emitting Lamp, Backlight Using Same, Display and Illuminating Device
JP5330263B2 (en) Phosphor and LED light emitting device using the same
JP4238980B2 (en) Red light emitting phosphor and light emitting device
JP2006348262A (en) Light emitting device and red-emitting phosphor particle
WO2007037662A1 (en) Light emitting device and lcd backlight using the same
JP4965840B2 (en) Manufacturing method of white light emitting LED lamp, manufacturing method of backlight using the same, and manufacturing method of liquid crystal display device
JP4171890B2 (en) Red light emitting phosphor and light emitting device
JP2003041252A (en) Red color-emitting phosphor and light-emitting device using the same
JP4619509B2 (en) Light emitting device
JP4535236B2 (en) Fluorescent member, fluorescent member manufacturing method, and semiconductor light emitting device
JP2003160785A (en) Red-light-emitting phosphor and light emitter using the same
KR101128672B1 (en) Light-emitting device and red light-emtting phosphor particle
US7238304B2 (en) Green light emitting phosphor and light emitting device
JP2004331934A (en) Fluorescent material and luminescent element using the same
JP4525907B2 (en) Green light emitting phosphor and light emitting device
JP2005054159A (en) Red light-emitting fluorescent material and light-emitting element given by using the same
JP2004335579A (en) Light emitting device
JP2004111344A (en) Light emitting element
JP2004269834A (en) Red color light-emitting fluorescent material and light-emitting element by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080716

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080729

R150 Certificate of patent or registration of utility model

Ref document number: 4171890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees