JP4525907B2 - Green light emitting phosphor and light emitting device - Google Patents

Green light emitting phosphor and light emitting device Download PDF

Info

Publication number
JP4525907B2
JP4525907B2 JP2004218445A JP2004218445A JP4525907B2 JP 4525907 B2 JP4525907 B2 JP 4525907B2 JP 2004218445 A JP2004218445 A JP 2004218445A JP 2004218445 A JP2004218445 A JP 2004218445A JP 4525907 B2 JP4525907 B2 JP 4525907B2
Authority
JP
Japan
Prior art keywords
light
green
light emitting
phosphor
green light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004218445A
Other languages
Japanese (ja)
Other versions
JP2005068412A (en
Inventor
勉 小田喜
Original Assignee
株式会社ファインラバー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ファインラバー研究所 filed Critical 株式会社ファインラバー研究所
Priority to JP2004218445A priority Critical patent/JP4525907B2/en
Publication of JP2005068412A publication Critical patent/JP2005068412A/en
Application granted granted Critical
Publication of JP4525907B2 publication Critical patent/JP4525907B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Description

本発明は、350〜500nmの長波長紫外線又は可視光線により励起され緑色に発光する緑色発光蛍光体及びその緑色発光蛍光体を用いた発光装置に関する。   The present invention relates to a green light-emitting phosphor that emits green light when excited by long-wavelength ultraviolet light or visible light of 350 to 500 nm, and a light-emitting device using the green light-emitting phosphor.

発光ダイオード(LED:Light Emitting Diode)は、光を放射する半導体発光素子であり、電気エネルギーを紫外光、可視光、赤外光などに変換するものである。例えば、可視光を利用するものとしては、GaP、GaAsP、GaAlAs等の発光材料で形成した半導体発光素子があり、これらを透明樹脂等で封止したLEDランプが広く使用されている。また、発光材料をプリント基板や金属リードの上面に固定し、数字や文字をかたどった透明樹脂ケースで封止したディスプレイ型のLEDランプなども多用されている。   A light emitting diode (LED: Light Emitting Diode) is a semiconductor light emitting element that emits light, and converts electrical energy into ultraviolet light, visible light, infrared light, and the like. For example, as a device using visible light, there is a semiconductor light emitting element formed of a light emitting material such as GaP, GaAsP, or GaAlAs, and an LED lamp in which these are sealed with a transparent resin or the like is widely used. In addition, a display-type LED lamp in which a light emitting material is fixed on the upper surface of a printed circuit board or a metal lead and sealed with a transparent resin case shaped like a number or letter is also frequently used.

また、発光ダイオードは半導体素子であるため、寿命が長く、信頼性も高く、光源として用いた場合には、その交換作業も軽減できることから、携帯通信機器、パーソナルコンピュータ周辺機器、OA機器、家庭用電気機器、オーディオ機器、各種スイッチ、バックライト用光源、掲示板等の各種表示装置などの構成部品として広く使用されている。更に、車載機器の表示部のバックライト照明用光源としてLEDランプが注目され、メーター、ヒーターコントロールパネル、オーディオなどの表示部のバックライト照明に利用されており、特に白色又は青緑領域において高輝度で発光するLEDランプが求められている。   In addition, since the light emitting diode is a semiconductor element, it has a long life, high reliability, and when used as a light source, the replacement work can be reduced. It is widely used as a component of various display devices such as electric devices, audio devices, various switches, backlight light sources, and bulletin boards. In addition, LED lamps are attracting attention as a backlight illumination light source for in-vehicle device displays, and are used for backlight illumination in displays such as meters, heater control panels, and audio, especially in the white or blue-green region. There is a need for LED lamps that emit light.

このようなLEDランプは、各種の蛍光体粉末を、半導体発光素子を封止する透明樹脂中に含有させることにより、LEDから放射される光の色を変化させることにより得ることが可能であり、使用用途に応じて青色から赤色まで可視光領域の広い範囲の色を得ることが可能である。しかしながら、従来、蛍光灯(3波長型蛍光ランプ)等に用いられている蛍光体、例えば、LaPO4:Ce3+,Tb3+やCeMgAl1119:Tb3+等に代表されるTb3+イオンの5475遷移により発光する緑色発光蛍光体は、蛍光灯で利用される短波長の紫外線領域においては良好な発光を与えるものの、高輝度LEDランプで利用する波長350〜500nmの長波長紫外線又は可視光線に対しては、十分な発光が得られないものであった。 Such an LED lamp can be obtained by changing the color of the light emitted from the LED by including various phosphor powders in the transparent resin that seals the semiconductor light emitting element. Depending on the application, it is possible to obtain a wide range of colors in the visible light region from blue to red. However, phosphors conventionally used in fluorescent lamps (three-wavelength fluorescent lamps) and the like, for example, Tb 3 represented by LaPO 4 : Ce 3+ , Tb 3+ , CeMgAl 11 O 19 : Tb 3+ and the like. + green-emitting phosphor which emits light by 5 D 47 F 5 transition ions, although giving good luminous in the ultraviolet region of the short wavelength is used in fluorescent lamps, the wavelength utilized in the high-intensity LED lamps 350 Sufficient light emission was not obtained with respect to 500 nm long wavelength ultraviolet rays or visible rays.

最近では、上記各種表示装置の色彩に対する需要者の要求が高まり、表示装置に微妙な色合いをより精密に再現できる性能が要求されていると共に、1個のLEDランプにより白色や各種の中間色を発光させることができることが強く求められている。そのため、LEDランプの半導体発光素子の表面に、赤色、緑色、青色の各種蛍光体を塗布したり、LEDランプの封止材、コーティング材等に上記各種蛍光体を含有させたりすることにより、1個のLEDランプで白色や各種の中間色を表示できるように構成することも試行されている。   Recently, demands of consumers for the colors of the various display devices are increasing, and the display devices are required to have a performance capable of reproducing subtle hues more precisely. In addition, a single LED lamp emits white and various intermediate colors. There is a strong demand to be able to make it happen. Therefore, by applying various phosphors of red, green, and blue to the surface of the semiconductor light emitting element of the LED lamp, or by incorporating the various phosphors into the sealing material, coating material, etc. of the LED lamp, 1 Attempts have also been made to configure white LED and various intermediate colors with a single LED lamp.

しかしながら、波長350〜500nmの長波長紫外線又は可視光線を用いて白色系の発光色を得る場合、例えば、緑色発光蛍光体として上記した緑色発光蛍光体を用いても、得られる緑色光の視感度がずれているため、高輝度の白色光が得られない。   However, when a white emission color is obtained using long-wavelength ultraviolet light or visible light having a wavelength of 350 to 500 nm, for example, even when the above-described green light emitting phosphor is used as the green light emitting phosphor, the obtained green light visibility is obtained. Therefore, white light with high luminance cannot be obtained.

そこで、長波長紫外線又は可視光線により励起されて発光する蛍光体が種々検討され、例えば、長波長紫外線又は短波長可視光線(350〜420nm)で励起する緑色発光蛍光体としてBaMg2Al1627:Eu,Mn、Zn2GeO4:Mnなどが開発され、また、発光色が青色のBaMg2Al1627:Eu、(Sr,Ca,Ba)5(PO43Cl:Eu、発光色が赤色のY22S:Eu、La22S:Eu、3.5MgO・0.5MgF2・GeO2:Mnなども開発されている。これらの蛍光体を適宜用いることにより広い範囲の発光色を得ることができるようになりつつあるが、高輝度白色光を与えるLEDランプの実用化のためには、更に発光強度が高く、視感度が良好な光を発光する蛍光体を開発することが必要である。特に、視感度の点では、上記した緑色発光蛍光体で得られる緑色光は、視感度が良好とされる555nmからかなりずれており、これが高輝度化を妨げる要因となっていた。 Therefore, various phosphors that emit light when excited by long-wavelength ultraviolet light or visible light have been studied. For example, BaMg 2 Al 16 O 27 is used as a green light-emitting phosphor excited by long-wavelength ultraviolet light or short-wavelength visible light (350 to 420 nm). : Eu, Mn, Zn 2 GeO 4 : Mn, and the like, and the emission color is blue, BaMg 2 Al 16 O 27 : Eu, (Sr, Ca, Ba) 5 (PO 4 ) 3 Cl: Eu, light emission Red Y 2 O 2 S: Eu, La 2 O 2 S: Eu, 3.5MgO · 0.5MgF 2 · GeO 2 : Mn, and the like have also been developed. By using these phosphors as appropriate, it is becoming possible to obtain a wide range of emission colors. However, for practical use of LED lamps that give high-intensity white light, the emission intensity is higher and the visibility is high. It is necessary to develop a phosphor that emits good light. In particular, in terms of visibility, the green light obtained with the above-described green light-emitting phosphor is considerably deviated from 555 nm, which is considered to have good visibility, and this has been a factor that hinders high brightness.

一方、青色乃至青緑色の可視光(430〜500nm)を発光するLEDと、この波長で黄色を発光する蛍光体YAG:Ce3+等の蛍光体とを用いれば、白色光を発光するLEDランプを得ることができるが、この波長領域で有効な緑色発光を与える蛍光体がなかったため、自由に発光色を変化させることができなかった。 On the other hand, if an LED that emits blue to blue-green visible light (430 to 500 nm) and a phosphor such as YAG: Ce 3+ that emits yellow light at this wavelength are used, an LED lamp that emits white light. However, since there was no phosphor that gave effective green emission in this wavelength region, the emission color could not be changed freely.

なお、この発明に関する先行技術文献情報としては以下のものがある。   The prior art document information relating to the present invention includes the following.

特開2002−60747号公報JP 2002-60747 A 特開2002−226846号公報Japanese Patent Laid-Open No. 2002-226846 西村慶一、他1名,「蛍光ランプと環境保全」,照明学会誌,社団法人照明学会,平成9年,第81巻,第9号,p.834−839Keiichi Nishimura and 1 other, “Fluorescent Lamps and Environmental Conservation”, Journal of the Illuminating Society of Japan, Illuminating Society of Japan, 1997, Vol. 81, No. 9, p. 834-839

本発明は、上記問題点を解決するためになされたものであり、350〜500nmの波長において、高い発光強度を示す緑色発光蛍光体及びこれを用いた発光装置を提供することを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a green light-emitting phosphor exhibiting high emission intensity at a wavelength of 350 to 500 nm and a light-emitting device using the green light-emitting phosphor.

本発明者は、上記問題を解決するため鋭意検討を重ねた結果、波長が350〜500nmの光により励起されて発光する緑色発光蛍光体であって、発光イオンとしてTb3+イオンを高濃度で含有し、かつ濃度消光を起こさない緑色発光蛍光体、特に、波長が350〜500nmの光により励起されて発光する緑色発光蛍光体であって、下記組成式(1)
ATbxLn(1-x)28…(1)
(式中、AはLiとNaとを共に含むもの、LnはYを含む希土類元素(Tbを除く)から選ばれる少なくとも1種、MはMo及びWから選ばれる少なくとも1種、xは0.4≦x≦1を満たす正数である。)
で表わされる緑色発光蛍光体が、発光イオンであるTb3+イオンを高濃度で含有しているにもかかわらず、濃度消光を引き起こさずに安定して高い発光強度で緑色を発光し、特に、短波長紫外線領域である350〜385nm、又は青色乃至青緑色の可視光領域である475〜500nmの波長において、視感度にあった従来にない良好な緑色発光を示すものであることを見出した。
As a result of intensive studies to solve the above problems, the present inventor is a green light-emitting phosphor that emits light when excited by light having a wavelength of 350 to 500 nm, and has a high concentration of Tb 3+ ions as light-emitting ions. A green light-emitting phosphor that contains and does not cause concentration quenching, in particular, a green light-emitting phosphor that emits light when excited by light having a wavelength of 350 to 500 nm, and has the following composition formula (1)
ATb x Ln (1-x) M 2 O 8 (1)
( Wherein A includes both Li and Na , Ln is at least one selected from rare earth elements including Y (excluding Tb), M is at least one selected from Mo and W, and x is 0.8. (It is a positive number satisfying 4 ≦ x ≦ 1.)
Even though the green light-emitting phosphor represented by Tb 3+ ion, which is a luminescent ion, contains a high concentration, it emits green light stably and with high emission intensity without causing concentration quenching, The present inventors have found that the present invention exhibits excellent green light emission unprecedented in visual sensitivity at a wavelength of 350 to 385 nm which is a short wavelength ultraviolet region or a wavelength of 475 to 500 nm which is a visible light region of blue to blue green.

更に、この緑色発光蛍光体を用いた緑色を表示する発光装置、赤色発光蛍光体、青色発光蛍光体と併用して白色若しくは中間色を表示する発光装置、又は黄色発光蛍光体と併用して白色若しくは中間色を表示する発光装置が、高輝度で発光する発光装置となり、微妙な色合いをより精密に再現性よく表示することができることを見出し、本発明をなすに至った。   Further, a light emitting device that displays green using the green light emitting phosphor, a red light emitting phosphor, a light emitting device that displays white or an intermediate color in combination with a blue light emitting phosphor, or a white light The light-emitting device that displays intermediate colors has become a light-emitting device that emits light with high luminance, and has been found to be able to display subtle shades more precisely and with good reproducibility, leading to the present invention.

即ち、本発明は、
[1]波長が350〜500nmの光により励起されて発光する緑色発光蛍光体であって、下記組成式(1)
ATbxLn(1-x)28…(1)
(式中、AはLiとNaとを共に含むもの、LnはYを含む希土類元素(Tbを除く)から選ばれる少なくとも1種、MはMo及びWから選ばれる少なくとも1種、xは0.4≦x≦1を満たす正数である。)
で表わされるものであることを特徴とする緑色発光蛍光体、
[2]上記組成式(1)中のLnがY、Dy、La、Gd又はLuであることを特徴とする[1]記載の緑色発光蛍光体、
[3]平均粒子径が10〜200μmの粒子であることを特徴とする[1]又は[2]記載の緑色発光蛍光体、
[4]発光ダイオード用の蛍光体であることを特徴とする[1]乃至[3]のいずれか1項記載の緑色発光蛍光体、
[5]上記組成式(1)中のAにおいて、LiとNaとの比率が、Liが85%≧Li≧40%,かつNaが15%≦Na≦60%(但し、Li+Na=100%)である[1]乃至[4]のいずれか1項記載の緑色発光蛍光体
[6]波長が350〜500nmの光を発光する半導体発光素子が封止材内に封止されてなる発光装置であって、上記封止材に[1]乃至[5]のいずれか1項記載の緑色発光蛍光体を分散させたことを特徴とする発光装置
[7]波長が350〜500nmの光を発光する半導体発光素子が封止材内に封止されてなる発光装置であって、上記半導体発光素子から発光する光の光路上に[1]乃至[5]のいずれか1項記載の緑色発光蛍光体を含む蛍光層を設けたことを特徴とする発光装置、
[8]上記半導体発光素子上又は封止材上に上記蛍光層を設けたことを特徴とする[7]記載の発光装置、及び
[9]上記蛍光層が上記緑色発光蛍光体を樹脂、ゴム、エラストマー又はガラスに分散してなるものであることを特徴とする[8]記載の発光装置
を提供する。
That is, the present invention
[1] A green-emitting phosphor that emits light when excited by light having a wavelength of 350 to 500 nm, and has the following composition formula (1)
ATb x Ln (1-x) M 2 O 8 (1)
(In the formula, A includes both Li and Na, Ln is at least one selected from rare earth elements including Y (excluding Tb), M is at least one selected from Mo and W, and x is 0.8. (It is a positive number satisfying 4 ≦ x ≦ 1.)
A green light-emitting phosphor, characterized in that
[2] The green-emitting phosphor according to [1], wherein Ln in the composition formula (1) is Y, Dy, La, Gd, or Lu,
[3] The green light-emitting phosphor according to [1] or [2], wherein the green-emitting phosphor is an average particle diameter of 10 to 200 μm,
[4] The green-emitting phosphor according to any one of [1] to [3], which is a phosphor for a light-emitting diode,
[5] In A in the composition formula (1), the ratio of Li to Na is such that Li is 85% ≧ Li ≧ 40% and Na is 15% ≦ Na ≦ 60% (where Li + Na = 100%) The green light-emitting phosphor according to any one of [1] to [4] ,
[6] A light-emitting device in which a semiconductor light-emitting element that emits light having a wavelength of 350 to 500 nm is sealed in a sealing material, and the sealing material includes any one of [1] to [5] A light emitting device characterized by dispersing the green light emitting phosphor described above ,
[7] A light-emitting device in which a semiconductor light-emitting element that emits light having a wavelength of 350 to 500 nm is sealed in a sealing material, and the light-emitting device emits light from the semiconductor light-emitting element. 5], a light emitting device comprising a fluorescent layer containing the green light emitting phosphor according to any one of
[8] The light-emitting device according to [7], wherein the phosphor layer is provided on the semiconductor light-emitting element or the sealing material, and [9] the phosphor layer comprises the green light-emitting phosphor as a resin or rubber. The light emitting device according to [8], wherein the light emitting device is dispersed in an elastomer or glass .

本発明の緑色発光蛍光体は、350〜500nm、特に、短波長紫外線領域である350〜385nm、又は青色乃至青緑色の可視光領域である475〜500nmの波長において、発光強度が高く、視感度にあった従来にない良好な緑色発光、特に、視感度が良好とされる555nm付近の波長、とりわけ545nm前後の波長の緑色発光を示すものであり、緑色発光蛍光体を用いた緑色を表示する発光装置、赤色発光蛍光体、青色発光蛍光体と併用して白色若しくは中間色を表示する発光装置、又は黄色発光蛍光体と併用して白色若しくは中間色を表示する発光装置に用いることにより高輝度で緑色又は白色若しくは中間色を発光する発光装置が得られる。   The green light-emitting phosphor of the present invention has a high emission intensity at a wavelength of 350 to 500 nm, particularly 350 to 385 nm which is a short wavelength ultraviolet region, or 475 to 500 nm which is a blue to blue-green visible light region, and has a visibility. The green light emission of the conventional green light emission, particularly the green light emission near the wavelength of 555 nm, particularly the wavelength around 545 nm, which is considered to have good visibility, is displayed using the green light emitting phosphor. High brightness and green when used in light emitting devices, red light emitting phosphors, light emitting devices that display white or neutral colors in combination with blue light emitting phosphors, or light emitting devices that display white or intermediate colors in combination with yellow light emitting phosphors Alternatively, a light-emitting device that emits white or intermediate color can be obtained.

以下、本発明について更に詳述する。
本発明の緑色発光蛍光体は、波長が350〜500nmの光により励起されて発光する緑色発光蛍光体であり、発光イオンとしてTb3+イオンを高濃度で含有し、かつ濃度消光を起こさないものである。この場合、発光イオンであるTb3+イオンの増感剤としてY3+イオン、Dy3+イオン、La3+イオン、Gd3+イオン又はLu3+イオンを含有していることが好ましい。
The present invention will be described in detail below.
The green light-emitting phosphor of the present invention is a green light-emitting phosphor that emits light when excited by light having a wavelength of 350 to 500 nm, contains Tb 3+ ions as light-emitting ions at a high concentration, and does not cause concentration quenching. It is. In this case, it is preferable that Y 3+ ion, Dy 3+ ion, La 3+ ion, Gd 3+ ion or Lu 3+ ion is contained as a sensitizer for Tb 3+ ion which is a luminescent ion.

一般的な蛍光体において発光イオン(付活剤)濃度は母体結晶に対し数モル%添加され、それ以上の濃度では、〔1〕付活剤の間に共鳴伝達による交差緩和が生じ、励起エネルギーの一部が失われる、〔2〕付活剤間の共鳴伝達による励起の回遊が生じ、これが結晶表面や非発光中心への励起の移行と消滅を助長する、〔3〕付活剤同士が凝集あるいはイオン対を形成することによって、非発光中心やキラー(蛍光抑制剤)に変わる、などの理由によって濃度消光が起こることが知られている。これに対して、本発明の緑色発光蛍光体は、Tb3+イオンを濃度消光が起こるとされる濃度をはるかに超えた高濃度で含有するものであるにもかかわらず、濃度消光を起こさずに高い発光強度で緑色を発光するものである。 In general phosphors, the concentration of luminescent ions (activator) is added by several mol% with respect to the base crystal. At concentrations higher than that, [1] cross relaxation occurs due to resonance transfer between the activators, and excitation energy [2] Excitation migration due to resonance transmission between activators occurs, which promotes the transition and extinction of excitation to the crystal surface and non-luminescent center, [3] It is known that concentration quenching occurs due to reasons such as agglomeration or formation of ion pairs that change to non-luminescent centers or killer (fluorescence inhibitors). In contrast, the green light-emitting phosphor of the present invention does not cause concentration quenching even though it contains Tb 3+ ions at a high concentration far exceeding the concentration at which concentration quenching occurs. It emits green light with a high emission intensity.

このような緑色発光蛍光体としては、例えば、下記組成式(1)
ATbxLn(1-x)28…(1)
(式中、AはLi,Na,K及びAgから選ばれる少なくとも1種、LnはYを含む希土類元素(Tbを除く)から選ばれる少なくとも1種、MはMo及びWから選ばれる少なくとも1種、xは0.4≦x≦1を満たす正数である。)
で表わされるものが挙げられる。このような組成式(1)で示される緑色発光蛍光体は、350〜500nmの波長、特に、短波長紫外線領域である350〜385nmの波長、又は青色乃至青緑色の可視光領域である475〜500nmの波長において、発光強度が高く、視感度にあった良好な緑色発光を示す。
As such a green light-emitting phosphor, for example, the following composition formula (1)
ATb x Ln (1-x) M 2 O 8 (1)
(In the formula, A is at least one selected from Li, Na, K and Ag, Ln is at least one selected from rare earth elements including Y (excluding Tb), and M is at least one selected from Mo and W. , X is a positive number satisfying 0.4 ≦ x ≦ 1.)
The thing represented by is mentioned. The green light emitting phosphor represented by the composition formula (1) has a wavelength of 350 to 500 nm, particularly a wavelength of 350 to 385 nm which is a short wavelength ultraviolet region, or 475 which is a blue to blue-green visible light region. At a wavelength of 500 nm, the emission intensity is high, and good green light emission suitable for visual sensitivity is exhibited.

本発明の緑色発光蛍光体においては、Tbと共にLnで表される希土類元素(Yを含み、Tbを除く。以下同じ。)を含む場合があるが、このようなものとしては、例えば、下記組成式(2)、
ATbM28…(2)
(A、Mは上記組成式(1)と同じ)
で表される金属酸化物の結晶中のTb(Tbイオン)サイトの一部がLnで表される希土類元素(希土類元素イオン)で置換された構造のものが挙げられる。結晶中にTbと希土類元素とを共存させることにより、特に高強度の緑色発光を示す緑色発光蛍光体が得られる。Tbと共存させる希土類元素としては、特に、Y(イットリウム)、Dy(ディスプロシウム)、La(ランタン)、Gd(ガドリニウム)又はLu(ルテチウム)が好ましい。Tbと、Y、Dy、La、Gd又はLuとを共存させたもの、即ち、発光イオンであるTb3+イオンの増感剤としてY3+イオン、Dy3+イオン、La3+イオン、Gd3+イオン又はLu3+イオンを含有するものは、青色乃至青緑色の可視光領域である475〜500nmの波長において、発光強度が高く、視感度にあった良好な緑色発光を示すと共に、短波長紫外線領域である350〜385nmの波長においても、発光強度が高く、視感度にあった良好な緑色発光、特に、視感度が良好とされる波長555nm付近、とりわけ波長545nm前後の緑色発光を特に高輝度で与えるものとなる。
The green light-emitting phosphor of the present invention may contain a rare earth element represented by Ln together with Tb (including Y, excluding Tb; the same shall apply hereinafter). Formula (2),
ATbM 2 O 8 (2)
(A and M are the same as the above composition formula (1))
And a structure in which a part of a Tb (Tb ion) site in a metal oxide crystal represented by the above is substituted with a rare earth element (rare earth element ion) represented by Ln. By coexisting Tb and a rare earth element in the crystal, a green light emitting phosphor exhibiting particularly high intensity green light emission can be obtained. As the rare earth element to coexist with Tb, Y (yttrium), Dy (dysprosium), La (lanthanum), Gd (gadolinium) or Lu (lutetium) is particularly preferable. Coexisting Tb and Y, Dy, La, Gd or Lu, ie, Y 3+ ion, Dy 3+ ion, La 3+ ion, Gd as a sensitizer for Tb 3+ ion which is a luminescent ion Those containing 3+ ions or Lu 3+ ions have high emission intensity at a wavelength of 475 to 500 nm in the blue to blue-green visible light region, and exhibit good green light emission suitable for visual sensitivity. Even at a wavelength of 350 to 385 nm in the wavelength ultraviolet region, the emission intensity is high, and good green light emission suitable for visual sensitivity, especially green light emission around wavelength 555 nm, especially around 545 nm, where visual sensitivity is good, It is given with high brightness.

また、TbとLnで表される希土類元素との比は、上記組成式(1)中のxが0.4≦x≦1、好ましくは0.4≦x<1を満たす正数(TbイオンからLnで表される希土類元素のイオンへの置換率Rが0≦R≦60at%、好ましくは0<R≦60at%)となる比率である。   The ratio of Tb to the rare earth element represented by Ln is a positive number (Tb ion where x in the composition formula (1) satisfies 0.4 ≦ x ≦ 1, preferably 0.4 ≦ x <1. To a ratio of the substitution rate R of rare earth elements represented by Ln to ions with 0 ≦ R ≦ 60 at%, preferably 0 <R ≦ 60 at%.

Lnで表される希土類元素としてYを含む場合、上記組成式(1)中のxが0.8≦x<1、特に0.95≦x<1を満たす正数(TbイオンからLnで表される希土類元素のイオンへの置換率Rが0<R≦20at%、特に0<R≦5at%)となる比率であることが好ましい。   When Y is included as the rare earth element represented by Ln, x in the composition formula (1) is a positive number satisfying 0.8 ≦ x <1, particularly 0.95 ≦ x <1 (from Tb ion to Ln. It is preferable that the substitution ratio R of rare earth elements to ions is such that 0 <R ≦ 20 at%, particularly 0 <R ≦ 5 at%.

Lnで表される希土類元素としてDyを含む場合は、上記組成式(1)中のxが0.8≦x<1、特に0.95≦x<1を満たす正数(TbイオンからLnで表される希土類元素のイオンへの置換率Rが0<R≦20at%、特に0<R≦5at%)となる比率であることが好ましい。   When Dy is included as the rare earth element represented by Ln, x in the composition formula (1) is a positive number satisfying 0.8 ≦ x <1, particularly 0.95 ≦ x <1 (from Tb ion to Ln It is preferable that the substitution rate R of the rare earth element represented by ions is such that 0 <R ≦ 20 at%, particularly 0 <R ≦ 5 at%.

Lnで表される希土類元素としてLaを含む場合は、上記組成式(1)中のxが0.4≦x<1、特に0.5≦x≦0.9、とりわけ0.6≦x≦0.8を満たす正数(TbイオンからLnで表される希土類元素のイオンへの置換率Rが0<R≦60at%、特に10≦R≦50at%、とりわけ20≦R≦40at%)となる比率であることが好ましい。   When La is contained as the rare earth element represented by Ln, x in the composition formula (1) is 0.4 ≦ x <1, particularly 0.5 ≦ x ≦ 0.9, especially 0.6 ≦ x ≦. A positive number satisfying 0.8 (replacement ratio R from Tb ion to rare earth element ion represented by Ln is 0 <R ≦ 60 at%, particularly 10 ≦ R ≦ 50 at%, especially 20 ≦ R ≦ 40 at%) The ratio is preferably

Lnで表される希土類元素としてGdを含む場合は、上記組成式(1)中のxが0.5≦x<1、特に0.95≦x<1を満たす正数(TbイオンからLnで表される希土類元素のイオンへの置換率Rが0<R≦50at%、特に0<R≦5at%)となる比率であることが好ましい。   When Gd is included as the rare earth element represented by Ln, x in the composition formula (1) is a positive number satisfying 0.5 ≦ x <1, particularly 0.95 ≦ x <1 (from Tb ion to Ln It is preferable that the substitution rate R of the rare earth element represented by ions is such that 0 <R ≦ 50 at%, particularly 0 <R ≦ 5 at%.

Lnで表される希土類元素としてLuを含む場合は、上記組成式(1)中のxが0.97≦x<1、特に0.99≦x<1を満たす正数(TbイオンからLnで表される希土類元素のイオンへの置換率Rが0<R≦3at%、特に0<R≦1at%)となる比率であることが好ましい。   When Lu is contained as the rare earth element represented by Ln, x in the composition formula (1) is a positive number satisfying 0.97 ≦ x <1, particularly 0.99 ≦ x <1 (from Tb ion to Ln It is preferable that the substitution rate R of the rare earth element represented by ions is such that 0 <R ≦ 3 at%, particularly 0 <R ≦ 1 at%.

上記組成式(1)中のxがこれらの範囲を満たす(即ち、置換率Rがこれらの範囲を満たす)場合、この緑色発光蛍光体は、視感度に合った良好な緑色を高強度で発光するものとなる。一方、xの値が上記範囲未満の場合(置換率Rが上記範囲を超える場合)は、十分な強度の緑色発光が得られない場合がある。   When x in the composition formula (1) satisfies these ranges (that is, the substitution rate R satisfies these ranges), this green light-emitting phosphor emits good green that matches the visibility with high intensity. To be. On the other hand, when the value of x is less than the above range (when the substitution rate R exceeds the above range), sufficient green light emission may not be obtained.

一方、AはLiとNaとを共に含むものが選ばれる。 On the other hand, A containing both Li and Na is selected.

即ち、上記組成式(1)中のAとしてLiとNaとを共に含むものとは、換言すれば、Li+イオンのサイトの一部がNa+イオンで置換されたものである。この場合、LiとNaとの比率は、Liが100%>Li>0%、好ましくは85%≧Li≧40%、より好ましくは70%≧Li≧50%、かつNaが0%<Na<100%、好ましくは15%≦Na≦60%、より好ましくは30%≦Na≦50%(但し、Li+Na=100%)であることが好ましい。 That is, what contains both Li and Na as A in the composition formula (1) is, in other words, a part of the site of Li + ions substituted with Na + ions . In this case, the ratio of Li to Na is such that Li is 100%>Li> 0%, preferably 85% ≧ Li ≧ 40%, more preferably 70% ≧ Li ≧ 50%, and Na is 0% <Na < It is preferable that 100%, preferably 15% ≦ Na ≦ 60%, more preferably 30% ≦ Na ≦ 50% (where Li + Na = 100%).

本発明において、緑色発光蛍光体は、原料として、緑色発光蛍光体を構成する元素を含む酸化物、炭酸塩など、例えば、Li2CO3、Na2CO3、Tb47、Y23、Dy23、La23、Gd23、Lu23、W23等を、焼成後に上記組成式(1)で示される所定の組成となるように化学量論比で配合し、ボールミル等で混合して得た原料混合物を焼成し、必要に応じて水洗、粉砕、篩分けして得ることができる。 In the present invention, the green light emitting phosphor is used as a raw material such as an oxide or carbonate containing an element constituting the green light emitting phosphor, such as Li 2 CO 3 , Na 2 CO 3 , Tb 4 O 7 , Y 2 O. 3 , Dy 2 O 3 , La 2 O 3 , Gd 2 O 3 , Lu 2 O 3 , W 2 O 3, etc. are stoichiometrically so as to have a predetermined composition represented by the above composition formula (1) after firing. The raw material mixture obtained by mixing in a ratio and mixing with a ball mill or the like is fired, and can be obtained by washing, pulverizing, and sieving as necessary.

焼成の方法は、蛍光体として用いられる金属酸化物の製造に用いられる従来公知の方法を適用することが可能であり、特に限定されないが、例えばアルミナ製坩堝中に上記原料混合物を入れて、電気炉等の焼成炉で焼成して製造する方法が採用し得る。この場合、焼成温度は800〜1,000℃、特に850〜900℃であることが好ましく、また、焼成時間は30分〜48時間、特に2〜12時間であることが好ましい。   The firing method can be a conventionally known method used for the production of a metal oxide used as a phosphor, and is not particularly limited. For example, the raw material mixture is placed in an alumina crucible, A method of producing by firing in a firing furnace such as a furnace may be employed. In this case, the firing temperature is preferably 800 to 1,000 ° C., particularly preferably 850 to 900 ° C., and the firing time is preferably 30 minutes to 48 hours, particularly preferably 2 to 12 hours.

更に、本発明においては、上記組成式(1)で表わされる緑色発光蛍光体の、式中のAで表される元素の一部が、共付活剤として添加されるRb、Cs、Mg、Ca、Sr及びBaからなる群より選ばれる少なくとも1種で置換されたものも好適である。この場合の置換率は、Aの総量に対するRb、Cs、Mg、Ca、Sr及びBaの総量の比で0.5(原子比)未満、好ましくは0.3(原子比)以下、更に好ましくは0.2(原子比)以下、特に好ましくは0.1(原子比)以下であることが好ましい。また、この場合、置換率の下限は特に限定されるものではないが、好ましくは0.01(原子比)以上、更に好ましくは0.05(原子比)以上である。 Furthermore, in the present invention, a part of the element represented by A in the green light emitting phosphor represented by the composition formula (1) is added as a coactivator Rb, Cs, Mg, Those substituted with at least one selected from the group consisting of Ca, Sr and Ba are also suitable. The substitution rate in this case is less than 0.5 (atomic ratio), preferably 0.3 (atomic ratio) or less, more preferably less than 0.5 (atomic ratio) in terms of the ratio of the total amount of Rb, Cs, Mg, Ca, Sr and Ba to the total amount of A. It is preferably 0.2 (atomic ratio) or less, particularly preferably 0.1 (atomic ratio) or less. In this case, the lower limit of the substitution rate is not particularly limited, but is preferably 0.01 (atomic ratio) or more, more preferably 0.05 (atomic ratio) or more.

本発明の緑色発光蛍光体は、平均粒子径が10〜200μm、特に75〜150μmの粒子が好ましい。平均粒子径が上記範囲のものを用いることにより、特に高い強度の蛍光発光を得ることが可能となる。平均粒子径が200μmを超えると、蛍光体の均一な分散が得られなくなるおそれがあり、また、他の蛍光体を併用した場合、色むらが起こるおそれがある。一方、平均粒子径が10μm未満では、かえって強度が低下するおそれがある。   The green light-emitting phosphor of the present invention is preferably particles having an average particle diameter of 10 to 200 μm, particularly 75 to 150 μm. By using a particle having an average particle diameter in the above range, particularly high intensity fluorescence can be obtained. When the average particle diameter exceeds 200 μm, there is a possibility that uniform dispersion of the phosphor cannot be obtained, and when other phosphors are used in combination, color unevenness may occur. On the other hand, if the average particle size is less than 10 μm, the strength may be lowered.

次に、本発明の発光装置について説明する。
まず、本発明の発光装置の第1の態様について説明する。この第1の態様の発光装置は、波長が350〜500nmの光を発光する半導体発光素子が封止材内に封止されてなる発光装置であって、上記封止材に上述した本発明の緑色発光蛍光体を分散させたものである。
Next, the light emitting device of the present invention will be described.
First, the 1st aspect of the light-emitting device of this invention is demonstrated. The light-emitting device according to the first aspect is a light-emitting device in which a semiconductor light-emitting element that emits light having a wavelength of 350 to 500 nm is sealed in a sealing material. A green light emitting phosphor is dispersed.

具体的には、図1に示されるような、リード1,2、波長が350〜500nmの光を発光する半導体発光素子3、半導体発光素子3とリード2とを電気的に接続するリード細線4を、封止材5で砲弾型に封止した構造の、いわゆる砲弾タイプの発光ダイオードや、図2に示されるような、上面が開口した箱形の発光体収容部材6の内底から一対のリード1,2を発光体収容部材6の外部へ延出し、この発光体収容部材6の内部に波長が350〜500nmの光を発光する半導体発光素子3やリード細線4,4を収容し、これらを接続して発光体収容部材6内部を封止材5で封止した構造の、いわゆるチップ型の発光ダイオードなどの封止材5中に、本発明の緑色発光蛍光体を分散させたものが挙げられる。   Specifically, as shown in FIG. 1, leads 1 and 2, a semiconductor light emitting element 3 that emits light having a wavelength of 350 to 500 nm, and a thin lead wire 4 that electrically connects the semiconductor light emitting element 3 and the lead 2. Of a so-called shell-type light emitting diode having a structure sealed in a shell shape with a sealing material 5 or a pair of box-shaped light emitter housing members 6 having an open top surface as shown in FIG. The leads 1 and 2 are extended to the outside of the light emitter housing member 6, and the semiconductor light emitting element 3 and the lead thin wires 4 and 4 that emit light having a wavelength of 350 to 500 nm are housed inside the light emitter housing member 6. Is obtained by dispersing the green light-emitting phosphor of the present invention in a sealing material 5 such as a so-called chip-type light emitting diode having a structure in which the inside of the light-emitting body housing member 6 is sealed with a sealing material 5. Can be mentioned.

この場合、封止材5中に上述した本発明の緑色発光蛍光体のみを分散させれば、視感度にあった高輝度の緑色を発光する発光装置となり、Y22S:Eu、La22S:Eu、3.5MgO・0.5MgF2・GeO2:Mn等の赤色発光蛍光体、BaMg2Al1627:Eu、(Sr,Ca,Ba)5(PO43Cl:Eu等の青色発光蛍光体と共に分散させれば、視感度にあった高輝度の白色又は中間色を発光する発光装置となる。また、半導体発光素子3として青色乃至青緑色を発光する素子を用い、YAG:Ce3+等の黄色発光蛍光体と共に本発明の緑色発光蛍光体を用いれば、視感度にあった高輝度の白色又は中間色を発光する発光装置となる。これらいずれの発光装置においても、緑色発光蛍光体として本発明の緑色発光蛍光体以外の緑色発光蛍光体、例えば、BaMg2Al1627:Eu,Mn、Zn2GeO4:Mn等を添加することが可能である。 In this case, if only the above-described green light-emitting phosphor of the present invention is dispersed in the sealing material 5, a light-emitting device that emits green with high luminance suitable for visual sensitivity is obtained, and Y 2 O 2 S: Eu, La 2 O 2 S: Eu, 3.5MgO.0.5MgF 2 .GeO 2 : Mn and other red light emitting phosphors, BaMg 2 Al 16 O 27 : Eu, (Sr, Ca, Ba) 5 (PO 4 ) 3 Cl When dispersed together with a blue light-emitting phosphor such as Eu, a light-emitting device that emits white or intermediate color with high luminance suitable for visual sensitivity is obtained. Further, when a blue to blue-green light emitting element is used as the semiconductor light emitting element 3 and the green light emitting phosphor of the present invention is used together with a yellow light emitting phosphor such as YAG: Ce 3+ , a high-intensity white color suitable for visual sensitivity is obtained. Alternatively, a light emitting device that emits an intermediate color is obtained. In any of these light emitting devices, a green light emitting phosphor other than the green light emitting phosphor of the present invention, for example, BaMg 2 Al 16 O 27 : Eu, Mn, Zn 2 GeO 4 : Mn, or the like is added as the green light emitting phosphor. It is possible.

なお、この発光装置は、半導体発光素子等を封止する際に、樹脂、ゴム、エラストマー、ガラスなどの封止材材料に蛍光体を混合して封止することにより製造することができる。特に、複数種の蛍光体を用いる場合、蛍光体の比重がそれぞれ異なるため、比重の大きい蛍光体が比重の小さい蛍光体より速く沈降して色むらを引き起こすおそれがある。そのため、本発明の発光装置において、蛍光体は、粘度の高いもの、例えば、チキソトロピー調整剤で粘度を調整したシリコーンゴム組成物、シリコーン樹脂組成物などに混合し、これを硬化させる方法で封止材中に分散させることが好ましい。また、封止材中には色調変換材料として上述した蛍光体の他に、顔料、染料、擬似顔料などを添加してもよい。   This light-emitting device can be manufactured by mixing a phosphor with a sealing material such as resin, rubber, elastomer, or glass when sealing a semiconductor light-emitting element or the like. In particular, when a plurality of types of phosphors are used, the specific gravity of the phosphors is different, so that a phosphor having a large specific gravity may settle faster than a phosphor having a small specific gravity, thereby causing color unevenness. Therefore, in the light emitting device of the present invention, the phosphor is sealed by a method of mixing a high viscosity material such as a silicone rubber composition or a silicone resin composition whose viscosity is adjusted with a thixotropy adjusting agent and curing the mixture. It is preferable to disperse in the material. In addition to the phosphor described above as a color tone conversion material, pigments, dyes, pseudo pigments, and the like may be added to the sealing material.

次に、本発明の発光装置の第2の態様について説明する。この第2の態様の発光装置は、波長が350〜500nmの光を発光する半導体発光素子が封止材内に封止されてなる発光装置であって、上記半導体発光素子から発光する光の光路上に上述した本発明の緑色発光蛍光体を含む蛍光層を設けたものである。   Next, a second aspect of the light emitting device of the present invention will be described. The light-emitting device of the second aspect is a light-emitting device in which a semiconductor light-emitting element that emits light having a wavelength of 350 to 500 nm is sealed in a sealing material, and the light emitted from the semiconductor light-emitting element. A fluorescent layer containing the above-described green light emitting phosphor of the present invention is provided on the road.

このようなものとしては、例えば、半導体発光素子上又は封止材上に本発明の緑色発光蛍光体を含む蛍光層を設けたものが挙げられ、具体的には、図3に示されるような、リード1,2、波長が350〜500nmの光を発光する半導体発光素子3、半導体発光素子3とリード2とを電気的に接続するリード細線4を、封止材5で砲弾型に封止した構造の、いわゆる砲弾タイプの発光ダイオードの半導体発光素子3上に蛍光層7を設けて半導体発光素子3等と共に封止したもの、図4に示されるような上面が開口した箱形の発光体収容部材6の内底から一対のリード1,2を発光体収容部材6の外部へ延出し、この発光体収容部材6の内部に波長が350〜500nmの光を発光する半導体発光素子3やリード細線4,4を収容し、これらを接続して、発光体収容部材6内部を封止材5で封止した構造の、いわゆるチップ型の発光ダイオードの半導体発光素子3上に蛍光層7を設けて半導体発光素子3等と共に封止したもの、図5に示されるような砲弾タイプの発光ダイオードの封止材5上に封止材5を被覆するように蛍光層7を設けたもの、図6に示されるようなチップ型の発光ダイオードの封止材5上に蛍光層7を設けたものが挙げられる。なお、図5、図6中の蛍光層以外の構成は図1、図2に各々示される構成と同様であるため説明を省略する。   As such a thing, what provided the fluorescent layer containing the green light emission fluorescent substance of this invention on a semiconductor light emitting element or a sealing material, for example is mentioned, Specifically, as shown in FIG. The lead 1 and 2, the semiconductor light emitting device 3 that emits light having a wavelength of 350 to 500 nm, and the lead thin wire 4 that electrically connects the semiconductor light emitting device 3 and the lead 2 are sealed in a shell shape with a sealing material 5. A so-called shell-type light-emitting diode semiconductor light-emitting element 3 having a fluorescent layer 7 sealed with the semiconductor light-emitting element 3 and the like, and a box-shaped light-emitting body with an open top as shown in FIG. A pair of leads 1 and 2 are extended from the inner bottom of the housing member 6 to the outside of the light emitter housing member 6, and the semiconductor light emitting element 3 and leads that emit light having a wavelength of 350 to 500 nm inside the light emitter housing member 6. Accommodates fine wires 4 and 4 Subsequently, a phosphor layer 7 is provided on the semiconductor light emitting element 3 of a so-called chip-type light emitting diode having a structure in which the inside of the light emitter housing member 6 is sealed with the sealing material 5 and sealed together with the semiconductor light emitting element 3 and the like. 5, a bullet-type light emitting diode as shown in FIG. 5 provided with a fluorescent layer 7 so as to cover the sealing material 5, a chip type light emitting diode as shown in FIG. The thing which provided the fluorescent layer 7 on the sealing material 5 of this is mentioned. The configuration other than the fluorescent layer in FIGS. 5 and 6 is the same as the configuration shown in FIGS.

また、上述したような、蛍光層を発光ダイオード内部に又は発光ダイオードと隣接して設けたいわゆる透過型のものに限らず、図7に示されるように、蛍光層7を発光ダイオード8から離間する位置に設けると共に、この蛍光層から発光した光を反射板9で反射させるいわゆる反射型の発光装置も挙げられる。また、図5、図6に示されるような封止材上に蛍光層を設けた発光装置の蛍光層を、更に封止材で封止することも可能である。   Further, the fluorescent layer 7 is not limited to the so-called transmission type in which the fluorescent layer is provided in the light emitting diode or adjacent to the light emitting diode as described above, but the fluorescent layer 7 is separated from the light emitting diode 8 as shown in FIG. There is also a so-called reflection type light-emitting device that is provided at a position and reflects light emitted from the fluorescent layer by the reflection plate 9. Further, the fluorescent layer of the light emitting device in which the fluorescent layer is provided on the sealing material as shown in FIGS. 5 and 6 can be further sealed with the sealing material.

この場合、蛍光層7中に上述した本発明の緑色発光蛍光体のみを分散させれば、視感度にあった高輝度の緑色を発光する発光装置となり、Y22S:Eu、La22S:Eu、3.5MgO・0.5MgF2・GeO2:Mn等の赤色発光蛍光体、BaMg2Al1627:Eu、(Sr,Ca,Ba)5(PO43Cl:Eu等の青色発光蛍光体と共に分散させれば、視感度にあった高輝度の白色又は中間色を発光する発光装置となる。また、半導体発光素子3として青色乃至青緑色を発光する素子を用い、YAG:Ce3+等の黄色発光蛍光体と共に本発明の緑色発光蛍光体を用いれば、視感度にあった高輝度の白色又は中間色を発光する発光装置となる。これらいずれの発光装置においても、緑色発光蛍光体として本発明の緑色発光蛍光体以外の緑色発光蛍光体、例えば、BaMg2Al1627:Eu,Mn、Zn2GeO4:Mn等を添加することが可能である。 In this case, if only the above-described green light-emitting phosphor of the present invention is dispersed in the fluorescent layer 7, a light-emitting device that emits high-brightness green light suitable for visual sensitivity is obtained, and Y 2 O 2 S: Eu, La 2 is obtained. O 2 S: Eu, 3.5MgO.0.5MgF 2 .GeO 2 : red light emitting phosphor such as Mn, BaMg 2 Al 16 O 27 : Eu, (Sr, Ca, Ba) 5 (PO 4 ) 3 Cl: When dispersed together with a blue-emitting phosphor such as Eu, a light-emitting device that emits a high-luminance white or intermediate color suitable for visibility. Further, when a blue to blue-green light emitting element is used as the semiconductor light emitting element 3 and the green light emitting phosphor of the present invention is used together with a yellow light emitting phosphor such as YAG: Ce 3+ , a high-intensity white color suitable for visual sensitivity is obtained. Alternatively, a light emitting device that emits an intermediate color is obtained. In any of these light emitting devices, a green light emitting phosphor other than the green light emitting phosphor of the present invention, for example, BaMg 2 Al 16 O 27 : Eu, Mn, Zn 2 GeO 4 : Mn, or the like is added as the green light emitting phosphor. It is possible.

なお、蛍光層を半導体発光素子上に設ける場合は、蛍光体をそのままで用いてもバインダーと共に混合して用いてもよい。この場合、図3、図4に示されるように、蛍光層は半導体発光素子と共に封止材中に封止されることとなる。   In addition, when providing a fluorescent layer on a semiconductor light-emitting device, the phosphor may be used as it is or may be mixed with a binder. In this case, as shown in FIGS. 3 and 4, the fluorescent layer is sealed in a sealing material together with the semiconductor light emitting element.

一方、蛍光層を封止材上に設ける場合、緑色発光蛍光体を透光性の樹脂、ゴム、エラストマー又はガラス、特にシリコーン樹脂又はシリコーンゴムに分散させて用いることが好ましい。特に、複数種の蛍光体を蛍光層に分散させる場合、上述した封止材に本発明の緑色発光蛍光体を分散させる場合と同様、チキソトロピー調整剤で粘度を調整したシリコーンゴム組成物、シリコーン樹脂組成物などに混合し、これを硬化させる方法で蛍光層中に分散させることが好ましい。また、蛍光層は、蛍光体を混合して1層としたものでも、蛍光体をいくつかの層にわけて積層したものでもよい。また、蛍光層中には色調変換材料として上述した蛍光体の他に、顔料、染料、擬似顔料などを添加してもよい。   On the other hand, when the fluorescent layer is provided on the sealing material, it is preferable to use the green light-emitting phosphor dispersed in a light-transmitting resin, rubber, elastomer or glass, particularly silicone resin or silicone rubber. In particular, when a plurality of types of phosphors are dispersed in the phosphor layer, as in the case of dispersing the green light-emitting phosphor of the present invention in the sealing material described above, a silicone rubber composition and a silicone resin whose viscosity is adjusted with a thixotropic modifier It is preferable to disperse in the phosphor layer by a method of mixing with a composition or the like and curing it. The fluorescent layer may be a single layer obtained by mixing phosphors, or may be a laminate of phosphors divided into several layers. In addition to the phosphor described above as a color tone conversion material, pigments, dyes, pseudo pigments, and the like may be added to the fluorescent layer.

本発明の発光装置に用いる緑色発光蛍光体として上記組成式(1)で示される発光イオンがTb3+イオンである緑色発光蛍光体を用いれば、発光ピークが視感度のピークである555nmに近いため、発光装置を高輝度化することができ、白色若しくは中間色を表示する場合、微妙な色合いをより精密に再現性よく表示することができる。 If a green light emitting phosphor in which the light emitting ion represented by the above composition formula (1) is a Tb 3+ ion is used as the green light emitting phosphor used in the light emitting device of the present invention, the light emission peak is close to 555 nm, which is the peak of visual sensitivity. Therefore, the luminance of the light-emitting device can be increased, and when displaying white or intermediate colors, a delicate hue can be displayed more precisely and with good reproducibility.

以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited to the following Example.

比較参考例1
蛍光体構成原料として、表1に示すように、WO3粉末を3.9056g、Tb47粉末を1.5587g、Li2CO3粉末を0.3112g各々秤量し、これらをボールミルで均一に混合して原料混合物とした。
[ Comparative Reference Example 1 ]
As shown in Table 1, as the phosphor constituting raw material, 3.9056 g of WO 3 powder, 1.5587 g of Tb 4 O 7 powder and 0.3112 g of Li 2 CO 3 powder were weighed, and these were uniformly mixed with a ball mill. The raw material mixture was obtained by mixing.

次に、得られた原料混合物を、アルミナ製坩堝に入れ900℃の温度で6時間焼成した。得られた焼成物を純水にて十分洗浄して不要な可溶成分を除去し、その後、ボールミルにより細かく粉砕し、篩分け(目開き53μm)してLiTbW28で示される組成の緑色発光蛍光体を得た。 Next, the obtained raw material mixture was put in an alumina crucible and fired at a temperature of 900 ° C. for 6 hours. The obtained fired product is thoroughly washed with pure water to remove unnecessary soluble components, then finely pulverized by a ball mill, sieved (opening 53 μm), and green having a composition represented by LiTbW 2 O 8. A luminescent phosphor was obtained.

この緑色発光蛍光体について、350nm、370nm、380nm及び490nm励起下において小型分光蛍光光度計FP−750(日本分光(株)製)で各々の励起波長における発光強度を測定した。結果を表1,2及び図9に示す。また、この緑色発光蛍光体の励起スペクトルを図8に示す。   With respect to this green light-emitting phosphor, emission intensity at each excitation wavelength was measured with a small spectrofluorometer FP-750 (manufactured by JASCO Corporation) under excitation at 350 nm, 370 nm, 380 nm and 490 nm. The results are shown in Tables 1 and 2 and FIG. Moreover, the excitation spectrum of this green light-emitting phosphor is shown in FIG.

比較参考例2、比較例1〜3]
Tb47粉末の量を表1に示すようにし、更にY23粉末を表1に示す量で添加した以外は、比較参考例1と同様の方法で緑色発光蛍光体(LiTb0.80.228比較参考例2)、LiTb0.60.428(比較例1)、LiTb0.40.628(比較例2)、LiTb0.20.828(比較例3))を得、比較参考例1と同様に発光強度を測定した。発光強度は、比較参考例1で得られた緑色発光蛍光体の発光強度を100とした相対強度として求めた。結果を表1に示す。また、これらの緑色発光蛍光体の励起スペクトルを図8に示す。
[ Comparative Reference Example 2 and Comparative Examples 1 to 3]
Tb 4 O 7 for the amount of powder as shown in Table 1, further Y 2 O 3 powder except for adding in the amounts shown in Table 1 to a green-emitting phosphor in the same manner as in Comparative Example 1 (litb 0.8 Y 0.2 W 2 O 8 ( Comparative Reference Example 2 ), LiTb 0.6 Y 0.4 W 2 O 8 (Comparative Example 1), LiTb 0.4 Y 0.6 W 2 O 8 (Comparative Example 2), LiTb 0.2 Y 0.8 W 2 O 8 (Comparative) Example 3)) was obtained, and the emission intensity was measured in the same manner as in Comparative Reference Example 1 . The emission intensity was obtained as a relative intensity with the emission intensity of the green light emitting phosphor obtained in Comparative Reference Example 1 as 100. The results are shown in Table 1. Moreover, the excitation spectrum of these green light-emitting phosphors is shown in FIG.

Figure 0004525907
Figure 0004525907

比較参考例3〜7
Tb47粉末の量を表2に示すようにし、更にDy23粉末を表2に示す量で添加した以外は、比較参考例1と同様の方法で緑色発光蛍光体(LiTb0.99Dy0.0128比較参考例3)、LiTb0.97Dy0.0328比較参考例4)、LiTb0.95Dy0.0528比較参考例5)、LiTb0.90Dy0.1028比較参考例6)、LiTb0.80Dy0.2028比較参考例7))を得、比較参考例1と同様に発光強度を測定した。発光強度は市販の緑色発光蛍光体ZnS:Cu,Au,Al(Phosphor Tech製)の発光強度を100とした相対強度として求めた。結果を表2及び図9に示す。また、比較参考例5で得られた緑色発光蛍光体の励起スペクトルを図10に、また380nmの励起光で得られた発光スペクトルを図11に各々市販の緑色発光蛍光体ZnS:Cu,Au,Al(Phosphor Tech製)の結果と共に示す。
[ Comparative Reference Examples 3 to 7 ]
The amount of Tb 4 O 7 powder is as shown in Table 2, and the green light emitting phosphor (LiTb 0.99 Dy) was prepared in the same manner as in Comparative Reference Example 1 except that Dy 2 O 3 powder was added in the amount shown in Table 2. 0.01 W 2 O 8 ( Comparative Reference Example 3 ), LiTb 0.97 Dy 0.03 W 2 O 8 ( Comparative Reference Example 4 ), LiTb 0.95 Dy 0.05 W 2 O 8 ( Comparative Reference Example 5 ), LiTb 0.90 Dy 0.10 W 2 O 8 ( Comparative Reference Example 6 ), LiTb 0.80 Dy 0.20 W 2 O 8 ( Comparative Reference Example 7 )) were obtained, and the emission intensity was measured in the same manner as Comparative Reference Example 1 . The emission intensity was determined as a relative intensity with the emission intensity of a commercially available green light emitting phosphor ZnS: Cu, Au, Al (manufactured by Phosphor Tech) as 100. The results are shown in Table 2 and FIG. Further, the excitation spectrum of the green light emitting phosphor obtained in Comparative Reference Example 5 is shown in FIG. 10, and the emission spectrum obtained with the excitation light of 380 nm is shown in FIG. It shows with the result of Al (product made from Phosphor Tech).

Figure 0004525907
Figure 0004525907

比較参考例8〜12
Tb47粉末の量を表3に示すようにし、更にLa23粉末を表3に示す量で添加した以外は、比較参考例1と同様の方法で緑色発光蛍光体(LiTb0.95La0.0528比較参考例8)、LiTb0.85La0.1528比較参考例9)、LiTb0.7La0.328比較参考例10)、LiTb0.4La0.628比較参考例11)、LiTb0.1La0.928比較参考例12))を得、比較参考例1と同様に発光強度を測定した。発光強度は比較参考例1で得られた緑色発光蛍光体の発光強度を100とした相対強度として求めた。結果を表3に示す。
[ Comparative Reference Examples 8 to 12 ]
The amount of Tb 4 O 7 powder was as shown in Table 3, and La 2 O 3 powder was added in the amount shown in Table 3 in the same manner as in Comparative Reference Example 1 except that the green-emitting phosphor (LiTb 0.95 La 0.05 W 2 O 8 ( Comparative Reference Example 8 ), LiTb 0.85 La 0.15 W 2 O 8 ( Comparative Reference Example 9 ), LiTb 0.7 La 0.3 W 2 O 8 ( Comparative Reference Example 10 ), LiTb 0.4 La 0.6 W 2 O 8 ( Comparative Reference Example 11 ), LiTb 0.1 La 0.9 W 2 O 8 ( Comparative Reference Example 12 )) were obtained, and the emission intensity was measured in the same manner as Comparative Reference Example 1 . The emission intensity was determined as a relative intensity with the emission intensity of the green light emitting phosphor obtained in Comparative Reference Example 1 as 100. The results are shown in Table 3.

Figure 0004525907
Figure 0004525907

[実施例1〜7]
Li2CO3粉末の量を表4に示すようにし、更にNa2CO3粉末を表4に示す量で添加した以外は、比較参考例1と同様の方法で緑色発光蛍光体(Li0.95Na0.05TbW28実施例1)、Li0.85Na0.15TbW28実施例2)、Li0.75Na0.25TbW28実施例3)、Li0.7Na0.3TbW28実施例4)、Li0.6Na0.4TbW28実施例5)、Li0.5Na0.5TbW28実施例6)、Li0.4Na0.6TbW28実施例7)、NaTbW28比較参考例13))を得、比較参考例1と同様に発光強度を測定した。発光強度は比較参考例1で得られた緑色発光蛍光体の発光強度を100とした相対強度として求めた。結果を表4に示す。また、図12に比較参考例1実施例1〜7及び比較参考例13の緑色発光蛍光体の380nmの励起光による発光強度をNaの置換率に対してプロットしたグラフを示す。
[Examples 1-7]
The amount of Li 2 CO 3 powder is set as shown in Table 4, and a green light emitting phosphor (Li 0.95 Na is added in the same manner as in Comparative Reference Example 1 except that Na 2 CO 3 powder is added in the amount shown in Table 4. 0.05 TbW 2 O 8 ( Example 1 ), Li 0.85 Na 0.15 TbW 2 O 8 ( Example 2 ), Li 0.75 Na 0.25 TbW 2 O 8 ( Example 3 ), Li 0.7 Na 0.3 TbW 2 O 8 ( Example) 4 ), Li 0.6 Na 0.4 TbW 2 O 8 ( Example 5 ), Li 0.5 Na 0.5 TbW 2 O 8 ( Example 6 ), Li 0.4 Na 0.6 TbW 2 O 8 ( Example 7 ), NaTbW 2 O 8 ( Example 6 ) Comparative Reference Example 13 ))) was obtained, and the emission intensity was measured in the same manner as Comparative Reference Example 1 . The emission intensity was determined as a relative intensity with the emission intensity of the green light emitting phosphor obtained in Comparative Reference Example 1 as 100. The results are shown in Table 4. FIG. 12 shows a graph in which the emission intensity of excitation light at 380 nm of the green light emitting phosphors of Comparative Reference Example 1 , Examples 1 to 7 and Comparative Reference Example 13 is plotted against the Na substitution rate.

Figure 0004525907
Figure 0004525907

比較参考例14〜17
Tb47粉末の量を表5に示すようにし、更にGd23粉末を表5に示す量で添加した以外は、比較参考例1と同様の方法で緑色発光蛍光体(LiTb0.95Gd0.0528比較参考例14)、LiTb0.9Gd0.128比較参考例15)、LiTb0.7Gd0.328比較参考例16)、LiTb0.5Gd0.528比較参考例17))を得、比較参考例1と同様に発光強度を測定した。発光強度は比較参考例1で得られた緑色発光蛍光体の発光強度を100とした相対強度として求めた。結果を表5に示す。
[ Comparative Reference Examples 14 to 17 ]
The amount of Tb 4 O 7 powder is set as shown in Table 5, and Gd 2 O 3 powder was added in the amount shown in Table 5 in the same manner as in Comparative Reference Example 1 in the same manner as in the green light emitting phosphor (LiTb 0.95 Gd 0.05 W 2 O 8 ( Comparative Reference Example 14 ), LiTb 0.9 Gd 0.1 W 2 O 8 ( Comparative Reference Example 15 ), LiTb 0.7 Gd 0.3 W 2 O 8 ( Comparative Reference Example 16 ), LiTb 0.5 Gd 0.5 W 2 O 8 ( Comparative Reference Example 17 )) was obtained, and the emission intensity was measured in the same manner as Comparative Reference Example 1 . The emission intensity was determined as a relative intensity with the emission intensity of the green light emitting phosphor obtained in Comparative Reference Example 1 as 100. The results are shown in Table 5.

Figure 0004525907
Figure 0004525907

比較参考例18、比較例4〜6]
Tb47粉末の量を表6に示すようにし、更にLu23粉末を表6に示す量で添加した以外は、比較参考例1と同様の方法で緑色発光蛍光体(LiTb0.97Lu0.0328比較参考例18)、LiTb0.95Lu0.0528(比較例4)、LiTb0.9Lu0.128(比較例5)、LiTb0.5Lu0.528(比較例6))を得、実施例1と同様に発光強度を測定した。発光強度は比較参考例1で得られた緑色発光蛍光体の発光強度を100とした相対強度として求めた。結果を表6に示す。
[ Comparative Reference Example 18 and Comparative Examples 4 to 6]
The amount of Tb 4 O 7 powder is as shown in Table 6, and Lu 2 O 3 powder was added in the amount shown in Table 6 in the same manner as in Comparative Reference Example 1 , except that the green-emitting phosphor (LiTb 0.97 Lu 0.03 W 2 O 8 ( Comparative Reference Example 18 ), LiTb 0.95 Lu 0.05 W 2 O 8 (Comparative Example 4), LiTb 0.9 Lu 0.1 W 2 O 8 (Comparative Example 5), LiTb 0.5 Lu 0.5 W 2 O 8 (Comparative) Example 6)) was obtained, and the emission intensity was measured in the same manner as in Example 1. The emission intensity was determined as a relative intensity with the emission intensity of the green light emitting phosphor obtained in Comparative Reference Example 1 as 100. The results are shown in Table 6.

Figure 0004525907
Figure 0004525907

実施例8〜11
蛍光体構成原料として、WO3粉末を77.2800g、Tb47粉末を31.1542g、Li2CO3粉末を4.3091g、Na2CO3粉末を2.6490g各々秤量し、これらをボールミルで均一に混合して原料混合物とした。
[ Examples 8 to 11 ]
As phosphor constituent materials, 77.2800 g of WO 3 powder, 31.1542 g of Tb 4 O 7 powder, 4.3091 g of Li 2 CO 3 powder and 2.6490 g of Na 2 CO 3 powder were weighed and ball milled. Were mixed uniformly to obtain a raw material mixture.

次に、得られた原料混合物を、アルミナ製坩堝に入れ900℃の温度で12時間焼成した。得られた焼成物を純水にて十分洗浄して不要な可溶成分を除去し、その後、粉砕、篩分けを行い,平均粒子径が15.5μm(実施例8)、75.2μm(実施例9)、130.4μm(実施例10)、188.8μm(実施例11)のLi0.7Na0.3TbW28で示される組成の緑色発光蛍光体を得た。 Next, the obtained raw material mixture was put into an alumina crucible and fired at a temperature of 900 ° C. for 12 hours. The obtained fired product is sufficiently washed with pure water to remove unnecessary soluble components, and then pulverized and sieved to obtain an average particle size of 15.5 μm ( Example 8 ) and 75.2 μm ( implemented ). Example 9 ), a green light emitting phosphor having a composition represented by Li 0.7 Na 0.3 TbW 2 O 8 of 130.4 μm ( Example 10 ) and 188.8 μm ( Example 11 ) was obtained.

この緑色発光蛍光体について、350nm、370nm、380nm及び490nm励起下において小型分光蛍光光度計FP−750(日本分光(株)製)で各々の励起波長における発光強度を反射光により測定した。発光強度は、平均粒子径15.5μm(実施例8)の緑色発光蛍光体の発光強度を100とした相対強度として求めた。結果を表7に示す。この結果より、平均粒子径が大きい方がより高い発光強度を示すことがわかる。 With respect to this green light-emitting phosphor, emission intensity at each excitation wavelength was measured by reflected light with a small spectrofluorometer FP-750 (manufactured by JASCO Corporation) under excitation with 350 nm, 370 nm, 380 nm and 490 nm. The emission intensity was determined as a relative intensity with the emission intensity of a green light emitting phosphor having an average particle diameter of 15.5 μm ( Example 8 ) as 100. The results are shown in Table 7. From this result, it can be seen that the larger the average particle diameter, the higher the emission intensity.

Figure 0004525907
Figure 0004525907

つぎに、上記各々の緑色発光蛍光体(実施例8〜11)をシリコーンゴム100質量部に対して実施例8の緑色発光蛍光体を50質量部、実施例9の緑色発光蛍光体を90質量部、実施例10の緑色発光蛍光体を150質量部、実施例11の緑色発光蛍光体を170質量部各々分散させた厚み0.6mmのシリコーンゴムシートを各々作製した。この場合、得られた各々シリコーンゴムシートは、発光ピーク385nmの近紫外LEDからの385nmの透過光の強度がほぼ同一となるように緑色発光蛍光体の配合量が調整されている。 Next, for each of the green light emitting phosphors ( Examples 8 to 11 ), 50 parts by mass of the green light emitting phosphor of Example 8 and 90 parts by mass of the green light emitting phosphor of Example 9 with respect to 100 parts by mass of silicone rubber. Part, 150 parts by weight of the green light-emitting phosphor of Example 10, and 170 parts by weight of the green light-emitting phosphor of Example 11 were dispersed, respectively. In this case, the blending amount of the green light emitting phosphor is adjusted so that the obtained silicone rubber sheets have almost the same intensity of transmitted light of 385 nm from the near ultraviolet LED having an emission peak of 385 nm.

このシートを発光ピーク385nmの近紫外LEDの発光方向前方に設置し、シートを透過した透過光およびシートの発光スペクトルを分光放射輝度計PR−704(Photo Research製)を用いて測定した。用いた緑色発光蛍光体の粒子径に対する波長545nmの緑色発光ピーク強度をプロットしたグラフを図13に示す。   This sheet was placed in front of the emission direction of a near-ultraviolet LED having an emission peak of 385 nm, and the transmitted light transmitted through the sheet and the emission spectrum of the sheet were measured using a spectral radiance meter PR-704 (manufactured by Photo Research). A graph plotting the green light emission peak intensity at a wavelength of 545 nm with respect to the particle diameter of the green light emitting phosphor used is shown in FIG.

本発明の光学装置の一例を示す図であり、砲弾型の発光ダイオードの封止材に本発明の緑色発光蛍光体を分散させた発光装置を示す断面図である。It is a figure which shows an example of the optical apparatus of this invention, and is sectional drawing which shows the light-emitting device which disperse | distributed the green light emission fluorescent substance of this invention to the sealing material of a bullet-type light emitting diode. 本発明の光学装置の一例を示す図であり、チップ型の発光ダイオードの封止材に本発明の緑色発光蛍光体を分散させた発光装置を示す断面図である。It is a figure which shows an example of the optical apparatus of this invention, and is sectional drawing which shows the light-emitting device which disperse | distributed the green light emission fluorescent substance of this invention to the sealing material of a chip-type light emitting diode. 本発明の光学装置の一例を示す図であり、砲弾型の発光ダイオードの半導体発光素子上に本発明の緑色発光蛍光体を含む蛍光層を設けた発光装置を示す断面図である。It is a figure which shows an example of the optical apparatus of this invention, and is sectional drawing which shows the light-emitting device which provided the fluorescent layer containing the green light emission fluorescent substance of this invention on the semiconductor light-emitting device of a bullet-type light emitting diode. 本発明の光学装置の一例を示す図であり、チップ型の発光ダイオードの半導体発光素子上に本発明の緑色発光蛍光体を含む蛍光層を設けた発光装置を示す断面図である。It is a figure which shows an example of the optical apparatus of this invention, and is sectional drawing which shows the light-emitting device which provided the fluorescent layer containing the green light emission fluorescent substance of this invention on the semiconductor light emitting element of a chip-type light emitting diode. 本発明の光学装置の一例を示す図であり、砲弾型の発光ダイオードの封止材上に本発明の緑色発光蛍光体を含む蛍光層を設けた発光装置を示す断面図である。It is a figure which shows an example of the optical apparatus of this invention, and is sectional drawing which shows the light-emitting device which provided the fluorescent layer containing the green light emission fluorescent substance of this invention on the sealing material of a bullet-type light emitting diode. 本発明の光学装置の一例を示す図であり、チップ型の発光ダイオードの封止材上に本発明の緑色発光蛍光体を含む蛍光層を設けた発光装置を示す断面図である。It is a figure which shows an example of the optical apparatus of this invention, and is sectional drawing which shows the light-emitting device which provided the fluorescent layer containing the green light emission fluorescent substance of this invention on the sealing material of a chip-type light emitting diode. 本発明の光学装置の一例を示す図であり、蛍光層を発光ダイオードから離間する位置に設けると共に、この蛍光層から発光した光を反射させる発光装置を示す断面図である。It is a figure which shows an example of the optical apparatus of this invention, and is sectional drawing which shows the light-emitting device which reflects the light emitted from this fluorescent layer while providing a fluorescent layer in the position spaced apart from a light emitting diode. 実施例1,2及び比較例1〜3の緑色発光蛍光体の励起スペクトルである。It is an excitation spectrum of the green light emission fluorescent substance of Examples 1, 2 and Comparative Examples 1-3. 実施例1,3〜7の緑色発光蛍光体の350nm、370nm、380nm及び490nmの励起光による発光強度をDyの置換率に対してプロットしたグラフである。It is the graph which plotted the emitted light intensity by the excitation light of 350 nm, 370 nm, 380 nm, and 490 nm of the green light emission fluorescent substance of Example 1, 3-7 with respect to the substitution rate of Dy. 実施例5の緑色発光蛍光体及び市販品(ZnS:Cu,Au,Al)の励起スペクトルである。It is the excitation spectrum of the green light emission fluorescent substance of Example 5, and a commercial item (ZnS: Cu, Au, Al). 実施例5の緑色発光蛍光体及び市販品(ZnS:Cu,Au,Al)の380nmの励起光による発光スペクトルである。It is the emission spectrum by the excitation light of 380 nm of the green light emission fluorescent substance of Example 5, and a commercial item (ZnS: Cu, Au, Al). 実施例1,13〜20の緑色発光蛍光体の380nmの励起光による発光強度をNaの置換率に対してプロットしたグラフである。It is the graph which plotted the emitted light intensity by the excitation light of 380 nm of the green light emission fluorescent substance of Example 1, 13-20 with respect to the substitution rate of Na. 実施例26〜29の緑色発光蛍光体の粒子径に対する波長545nmの緑色発光ピーク強度をプロットしたグラフである。It is the graph which plotted the green light emission peak intensity of wavelength 545nm with respect to the particle diameter of the green light emission fluorescent substance of Examples 26-29.

符号の説明Explanation of symbols

1,2 リード
3 半導体発光素子
4 リード細線
5 封止材
6 発光体収容部材
7 蛍光層
8 発光ダイオード
9 反射板
DESCRIPTION OF SYMBOLS 1, 2 Lead 3 Semiconductor light-emitting device 4 Lead thin wire 5 Sealing material 6 Light-emitting body accommodating member 7 Fluorescent layer 8 Light-emitting diode 9 Reflecting plate

Claims (9)

波長が350〜500nmの光により励起されて発光する緑色発光蛍光体であって、下記組成式(1)
ATbxLn(1-x)28…(1)
(式中、AはLiとNaとを共に含むもの、LnはYを含む希土類元素(Tbを除く)から選ばれる少なくとも1種、MはMo及びWから選ばれる少なくとも1種、xは0.4≦x≦1を満たす正数である。)
で表わされるものであることを特徴とする緑色発光蛍光体。
A green-emitting phosphor that emits light when excited by light having a wavelength of 350 to 500 nm, and has the following composition formula (1)
ATb x Ln (1-x) M 2 O 8 (1)
(In the formula, A includes both Li and Na, Ln is at least one selected from rare earth elements including Y (excluding Tb), M is at least one selected from Mo and W, and x is 0.8. (It is a positive number satisfying 4 ≦ x ≦ 1.)
A green-emitting phosphor characterized by being represented by
上記組成式(1)中のLnがY、Dy、La、Gd又はLuであることを特徴とする請求項1記載の緑色発光蛍光体。 The green light-emitting phosphor according to claim 1 , wherein Ln in the composition formula (1) is Y, Dy, La, Gd, or Lu. 平均粒子径が10〜200μmの粒子であることを特徴とする請求項1又は2記載の緑色発光蛍光体。 The green light-emitting phosphor according to claim 1 or 2 , wherein the average particle diameter is 10 to 200 µm. 発光ダイオード用の蛍光体であることを特徴とする請求項1乃至3のいずれか1項記載の緑色発光蛍光体。 4. The green light-emitting phosphor according to claim 1 , wherein the green light-emitting phosphor is a light-emitting diode phosphor. 上記組成式(1)中のAにおいて、LiとNaとの比率が、Liが85%≧Li≧40%,かつNaが15%≦Na≦60%(但し、Li+Na=100%)である請求項1乃至4のいずれか1項記載の緑色発光蛍光体。In A in the composition formula (1), the ratio of Li and Na is such that Li is 85% ≧ Li ≧ 40% and Na is 15% ≦ Na ≦ 60% (where Li + Na = 100%). Item 5. The green-emitting phosphor according to any one of Items 1 to 4. 波長が350〜500nmの光を発光する半導体発光素子が封止材内に封止されてなる発光装置であって、上記封止材に請求項1乃至5のいずれか1項記載の緑色発光蛍光体を分散させたことを特徴とする発光装置。 6. A light emitting device in which a semiconductor light emitting element that emits light having a wavelength of 350 to 500 nm is sealed in a sealing material, and the green light emitting fluorescence according to claim 1, wherein the sealing material is a light emitting device. A light-emitting device in which a body is dispersed. 波長が350〜500nmの光を発光する半導体発光素子が封止材内に封止されてなる発光装置であって、上記半導体発光素子から発光する光の光路上に請求項1乃至5のいずれか1項記載の緑色発光蛍光体を含む蛍光層を設けたことを特徴とする発光装置。 The semiconductor light-emitting device having a wavelength to emit light of 350~500nm is a light-emitting device in which sealed in the sealing material, any one of claims 1 to 5 on the optical path of light emitted from the semiconductor light emitting element A light-emitting device comprising a fluorescent layer containing the green-emitting phosphor according to item 1. 上記半導体発光素子上又は封止材上に上記蛍光層を設けたことを特徴とする請求項7記載の発光装置。 The light-emitting device according to claim 7, wherein the fluorescent layer is provided on the semiconductor light-emitting element or the sealing material. 上記蛍光層が上記緑色発光蛍光体を樹脂、ゴム、エラストマー又はガラスに分散してなるものであることを特徴とする請求項8記載の発光装置。 9. The light emitting device according to claim 8, wherein the fluorescent layer is formed by dispersing the green light emitting phosphor in resin, rubber, elastomer or glass.
JP2004218445A 2003-08-04 2004-07-27 Green light emitting phosphor and light emitting device Expired - Fee Related JP4525907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004218445A JP4525907B2 (en) 2003-08-04 2004-07-27 Green light emitting phosphor and light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003285668 2003-08-04
JP2004218445A JP4525907B2 (en) 2003-08-04 2004-07-27 Green light emitting phosphor and light emitting device

Publications (2)

Publication Number Publication Date
JP2005068412A JP2005068412A (en) 2005-03-17
JP4525907B2 true JP4525907B2 (en) 2010-08-18

Family

ID=34425134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004218445A Expired - Fee Related JP4525907B2 (en) 2003-08-04 2004-07-27 Green light emitting phosphor and light emitting device

Country Status (1)

Country Link
JP (1) JP4525907B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008105527A1 (en) * 2007-03-01 2010-06-03 Necライティング株式会社 LED device and lighting device
JP2014216445A (en) * 2013-04-25 2014-11-17 株式会社小糸製作所 Light-emitting device
CN110615613A (en) * 2019-07-01 2019-12-27 上海大学 Red light compensation fluorescent glass ceramic, preparation method thereof and application thereof in white light LED device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3177157A (en) * 1965-04-06 Optical maser crystals
US3177154A (en) * 1961-08-07 1965-04-06 Bell Telephone Labor Inc Optical maser crystals
US3177155A (en) * 1965-04-06 Logarithm of europium concentration
US3177156A (en) * 1965-04-06 Logarithm of europium concentration by
US3186950A (en) * 1962-04-30 1965-06-01 Du Pont Rare earth tungstate and molybdate luminophors
JPH04104099A (en) * 1990-08-23 1992-04-06 Seiko Instr Inc Fluorescent screen for x-rays
JP2001267632A (en) * 2000-03-14 2001-09-28 Asahi Rubber:Kk Light emitting diode
JP2003041252A (en) * 2001-07-31 2003-02-13 Fine Rubber Kenkyusho:Kk Red color-emitting phosphor and light-emitting device using the same
WO2003018713A1 (en) * 2001-08-22 2003-03-06 Oxonica Limited Near uv excited phosphors

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3177157A (en) * 1965-04-06 Optical maser crystals
US3177155A (en) * 1965-04-06 Logarithm of europium concentration
US3177156A (en) * 1965-04-06 Logarithm of europium concentration by
US3177154A (en) * 1961-08-07 1965-04-06 Bell Telephone Labor Inc Optical maser crystals
US3186950A (en) * 1962-04-30 1965-06-01 Du Pont Rare earth tungstate and molybdate luminophors
JPH04104099A (en) * 1990-08-23 1992-04-06 Seiko Instr Inc Fluorescent screen for x-rays
JP2001267632A (en) * 2000-03-14 2001-09-28 Asahi Rubber:Kk Light emitting diode
JP2003041252A (en) * 2001-07-31 2003-02-13 Fine Rubber Kenkyusho:Kk Red color-emitting phosphor and light-emitting device using the same
WO2003018713A1 (en) * 2001-08-22 2003-03-06 Oxonica Limited Near uv excited phosphors

Also Published As

Publication number Publication date
JP2005068412A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
EP1447853B1 (en) Semiconductor light emitting element and light emitting device using this
KR100798054B1 (en) Light emitting devices having silicate fluorescent phosphors
KR100807209B1 (en) Phosphor, production method thereof and light-emitting device using the phosphor
US20100164365A1 (en) Phosphor, method for producing same, phosphor-containing composition, light-emitting device, image display, and illuminating device
US6982523B2 (en) Red light emitting phosphor, its production and light emitting device
EP2056364A1 (en) Illuminating apparatus
JP5330263B2 (en) Phosphor and LED light emitting device using the same
JP4223879B2 (en) Sm-activated red light emitting phosphor and light emitting device using the same
JP2001267632A (en) Light emitting diode
JP2008007644A (en) Red light-emitting phosphor and light-emitting device
TWI405359B (en) White light emitting diodes and the use of its backlight and liquid crystal display device
JP4238980B2 (en) Red light emitting phosphor and light emitting device
KR101528413B1 (en) Fluorescent body for light-emitting device, method for producing same, and light-emitting device using same
JP5390390B2 (en) Phosphor and LED lamp using the same
TW202136476A (en) Green-emitting phosphors and devices thereof
JP2006348262A (en) Light emitting device and red-emitting phosphor particle
CN107636113B (en) Phosphor, method for producing same, and LED lamp
JP4535236B2 (en) Fluorescent member, fluorescent member manufacturing method, and semiconductor light emitting device
JP2008266410A (en) Fluorescent substance, fluorescent substance-containing composition, manufacturing method of fluorescent substance, light emitting apparatus, image display device, and illuminating device
JP4171890B2 (en) Red light emitting phosphor and light emitting device
KR100793463B1 (en) Silicate-based phosphor, preparation method, and light emitting device incorporating the same
US7238304B2 (en) Green light emitting phosphor and light emitting device
JP4525907B2 (en) Green light emitting phosphor and light emitting device
JP2009073914A (en) Green light emitting phosphor and light emitting module using the same
JP2002188084A (en) Red light-emitting phosphor and light-emitting apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4525907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100525

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees