JP4171371B2 - Double-sided groove processing method for thin plate - Google Patents

Double-sided groove processing method for thin plate Download PDF

Info

Publication number
JP4171371B2
JP4171371B2 JP2003279059A JP2003279059A JP4171371B2 JP 4171371 B2 JP4171371 B2 JP 4171371B2 JP 2003279059 A JP2003279059 A JP 2003279059A JP 2003279059 A JP2003279059 A JP 2003279059A JP 4171371 B2 JP4171371 B2 JP 4171371B2
Authority
JP
Japan
Prior art keywords
workpiece
groove
grooves
optical fiber
machining reference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003279059A
Other languages
Japanese (ja)
Other versions
JP2005043751A (en
Inventor
忠俊 野村
隆一 川上
佳宏 高尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP2003279059A priority Critical patent/JP4171371B2/en
Publication of JP2005043751A publication Critical patent/JP2005043751A/en
Application granted granted Critical
Publication of JP4171371B2 publication Critical patent/JP4171371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Description

本発明は光スイッチに使用される光ファイバアレイのV溝基板を含む、薄板材の両面溝加工方法に関する。   The present invention relates to a double-sided groove processing method for a thin plate material including a V-groove substrate of an optical fiber array used in an optical switch.

従来の光スイッチに使用される光ファイバアレイのV溝基板としては、例えば特許文献1の図2に開示する片面溝を有するようなものが多いが、図1に示すように両面溝を有する光ファイバアレイのV溝基板 1、2を重ねて使用し、両面溝 3a,3b間の空間5を各光ファイバ収容溝とするものがある。この場合両面V溝 3a,3b間の中心線4が重ねた基板 1、2で整合する必要がある。一般に従来のかかる両面溝を有する光ファイバアレイのV溝加工方法としては、例えば図4に示すように、まず(a)のワーク10の表面をその端面エッジ 11aを基準にして多数の表V溝3aを研削加工し、その後でワーク10を裏返しして(b)のワーク10の裏面をその端面エッジ 11bを基準にして多数の裏V溝3bを研削加工していた。光ファイバアレイのV溝基板ワーク10の形状は例えば30mm〜 150mm角で、厚みが 1mm程度で材質はシリコン又はガラスが多い。
特開2002−287052 図2
As a V-groove substrate of an optical fiber array used in a conventional optical switch, for example, there are many ones having a single-sided groove disclosed in FIG. 2 of Patent Document 1, for example, but light having a double-sided groove as shown in FIG. In some cases, the V-groove substrates 1 and 2 of the fiber array are used in an overlapping manner, and the space 5 between the double-sided grooves 3a and 3b is used as an optical fiber housing groove. In this case, it is necessary to align the center lines 4 between the double-sided V-grooves 3a and 3b with the overlapping substrates 1 and 2. In general, as a conventional V-groove processing method for an optical fiber array having such a double-sided groove, for example, as shown in FIG. 4, first, the surface of the workpiece 10 in FIG. 3a was ground, and then the workpiece 10 was turned over, and the back surface of the workpiece 10 in (b) was ground into a number of back V-grooves 3b with reference to the end face edge 11b. The shape of the V-groove substrate workpiece 10 of the optical fiber array is, for example, 30 mm to 150 mm square, the thickness is about 1 mm, and the material is mostly silicon or glass.
Japanese Patent Laid-Open No. 2002-287052

しかしながら従来の図4に示すような両面溝を有する光ファイバアレイのV溝加工方法では、ワーク10の表面と裏面を、表面端面エッジ 11aと裏面端面エッジ 11bを基準にして多数の表V溝3a、裏V溝3bを研削加工していたので、(b)のワーク10の裏面端面エッジ 11bに(c)で拡大図で示すような、エッジの欠け12があると(表面端面エッジ 11aにあっても同じ)、ワーク10の表面と裏面とで、ワーク端面から表V溝3a、裏V溝3bに対する所定の距離の加工位置 da,dbがずれ、画像処理装置のエッジの認識不良となる。   However, in the conventional V-groove processing method for an optical fiber array having double-sided grooves as shown in FIG. 4, the front and back surfaces of the workpiece 10 are made to have a number of front V-grooves 3a on the basis of the surface end face edge 11a and back face end face edge 11b. Since the back V-groove 3b has been ground, if there is an edge chip 12 as shown in the enlarged view of (c) on the back end edge 11b of the workpiece 10 in (b) (the top end edge 11a has However, the processing positions da and db at a predetermined distance with respect to the front V-groove 3a and the back V-groove 3b are shifted from the work end surface between the front surface and the back surface of the work 10, resulting in poor recognition of the edge of the image processing apparatus.

本発明の課題は、両面溝を有する光ファイバアレイのV溝加工方法において、ワークの表面と裏面とで、各表V溝、裏V溝に対するワーク加工基準位置を共通化して、ワーク加工基準位置から各表V溝、裏V溝までの両者の所定の距離の加工位置がずれることがなく、画像処理装置のエッジの認識不良が起きない、光ファイバアレイのV溝基板を含む薄板材の両面溝加工方法を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a workpiece machining reference position for a front V-groove and a back V-groove in common on the front and back surfaces of the workpiece in a method of machining an optical fiber array having a double-sided groove. Both sides of the thin plate material including the V-groove substrate of the optical fiber array, in which the processing positions of a predetermined distance from the front V-groove to the front V-groove are not shifted, and the edge recognition failure of the image processing apparatus does not occur. It is to provide a groove processing method.

このため本発明は、両面溝を有する光ファイバアレイのV溝加工方法において、垂直面に吸着チャック面を有するブロック治具で、垂直に直立状態で吸着した光ファイバアレイのV溝基板を含む薄板材のワークを、V溝加工研削砥石でワーク上面に垂直面に直交する2箇所のワーク加工基準位置用V溝を加工し、別の光ファイバアレイのV溝加工平面研削盤上にセットし、前記ワークの表面を前記2箇所のワーク加工基準位置用V溝の各下端位置をワーク加工基準位置として画像処理装置に認識させ、画像処理装置が認識した前記2箇所の下端位置をワーク加工基準位置として多数の表V溝を研削加工し、その後でワークを裏返しして、ワーク10裏面の同じ前記2箇所のワーク加工基準位置用V溝の下端位置をワーク加工基準位置として画像処理装置に認識させ、画像処理装置が認識した前記下端位置をワーク加工基準位置として多数の裏V溝を研削加工し、その後で、前記2箇所のワーク加工基準位置用V溝の下端位置までを切り捨てるようにしたことを特徴とする光ファイバアレイのV溝基板を含む薄板材の両面溝加工方法を提供することによって上記した従来方法の課題を解決した。   For this reason, the present invention provides a V-groove processing method for an optical fiber array having a double-sided groove, which is a block jig having a suction chuck surface on a vertical surface and includes a V-groove substrate of an optical fiber array sucked in a vertically upright state. A workpiece of a plate material is machined with two V-grooves for a workpiece machining reference position perpendicular to the vertical surface on the upper surface of the workpiece with a V-groove grinding wheel, and set on a V-grooving surface grinder of another optical fiber array, The image processing apparatus is made to recognize the lower end positions of the two workpiece machining reference position V-grooves as the workpiece machining reference positions on the surface of the workpiece, and the two lower end positions recognized by the image processing apparatus are set as the workpiece machining reference positions. After grinding a number of front V-grooves, the workpiece is turned upside down, and the lower end position of the same two workpiece machining reference position V-grooves on the back of the workpiece 10 is used as the workpiece machining reference position. A plurality of V-grooves are ground by using the lower end position recognized by the image processing apparatus as a workpiece processing reference position, and thereafter, to the lower end positions of the two workpiece processing reference position V-grooves. The problems of the conventional method described above have been solved by providing a method for processing a double-sided groove of a thin plate material including a V-groove substrate of an optical fiber array, which is characterized by being cut off.

かかる構成により、本発明の両面溝加工方法によると、垂直に直立状態で吸着した光ファイバアレイのV溝基板を含む薄板材のワークを、V溝加工研削砥石でワーク上面に垂直面に直交する2箇所のワーク加工基準位置用V溝を加工したので、V溝の欠けがなく、ワークの表面と裏面共に、加工した各ワーク加工基準位置用V溝の下端位置をワーク加工基準位置として画像処理装置に認識・アラインメントさせ、共通の前記下端位置のワーク加工基準位置から各表V溝、裏V溝までの両者の所定の距離の加工位置 da,dbがワークの表面と裏面とでずれることがなく、画像処理装置のエッジの認識不良が起きない、光ファイバアレイのV溝基板を含む薄板材の両面溝加工方法を提供するものとなった。
本発明の両面溝加工方法は、各ワーク加工基準位置用V溝の下端位置を薄板材の表面と裏面とで加工基準位置の相互差を小さくできる加工方法となった。垂直面に吸着チャック面を有するブロック治具のワーク吸着チャック面の直角度の影響による表面と裏面との加工基準位置の相互差は、ワーク厚さhとワーク幅Lとの比h/Lに低減されるため、殆ど0にすることができる。例えば、ワーク吸着チャック面の直角度が2μm、ワーク幅Lが50mm、ワーク厚さhが 2mmであれば、表面と裏面との加工基準位置の相互差は、0.08μmとなる(2μm×〔 2mm/50mm〕=0.08μm)。
With this configuration, according to the double-sided groove processing method of the present invention, a thin plate workpiece including a V-groove substrate of an optical fiber array adsorbed in a vertically upright state is perpendicular to the upper surface of the workpiece with a V-groove grinding wheel. Since the two V-grooves for workpiece machining reference position are machined, there is no chipping of the V-groove, and both the front and back surfaces of the workpiece are subjected to image processing with the lower end position of each machined workpiece machining reference position V-groove as the workpiece machining reference position. The machine recognizes and aligns the machining positions da and db at a predetermined distance from the common workpiece machining reference position at the lower end position to each front V-groove and back V-groove. Therefore, the present invention provides a double-sided groove processing method for a thin plate material including a V-groove substrate of an optical fiber array, in which an edge recognition failure of an image processing apparatus does not occur.
The double-sided groove processing method of the present invention has become a processing method in which the lower end position of each workpiece processing reference position V-groove can reduce the difference in processing reference position between the front and back surfaces of the thin plate material. The difference between the processing reference positions of the front and back surfaces due to the perpendicularity of the workpiece chucking chuck surface of the block jig having the chucking chuck surface on the vertical surface is the ratio h / L between the workpiece thickness h and the workpiece width L. Since it is reduced, it can be almost zero. For example, if the perpendicularity of the workpiece chucking chuck surface is 2 μm, the workpiece width L is 50 mm, and the workpiece thickness h is 2 mm, the difference in processing reference position between the front and back surfaces is 0.08 μm (2 μm × [2 mm / 50 mm] = 0.08 μm).

本発明を実施するための最良の形態の一例を図1〜図3を参照して説明する。図1は本発明の薄板材の両面溝加工方法により加工される完成製品例を示す一部拡大側面図で、両面溝を有する基板 1、2を重ねて使用し、両面溝 3a,3b間の空間5を各光ファイバ収容溝とするものである。図2(a)は本発明を実施するための最良の形態の一例である、図1に示すような、両面溝を有する基板 1、2を重ねて使用し、両面溝 3a,3b間の空間5を各光ファイバ収容溝とする光ファイバアレイのV溝加工方法示す概略側面ブロック図、(b)は(a)のB矢視左側面ブロック図で、加工後の2箇所のワーク加工基準位置用V溝8を図示する。図3(a)は図示しない真空吸着面を上面に設けた別の光ファイバアレイのV溝加工平面研削盤上に吸着支持された図2(b)の加工後の2箇所のワーク加工基準位置用V溝8を有するワーク10の表面を示し、(b)はその後でワークを裏返されてV溝加工平面研削盤上に吸着支持されたワーク10の裏面を示す。 An example of the best mode for carrying out the present invention will be described with reference to FIGS. FIG. 1 is a partially enlarged side view showing an example of a finished product processed by the double-sided groove processing method for a thin plate material according to the present invention. The substrate 1 and 2 having double-sided grooves are used in an overlapping manner, and between the double-sided grooves 3a and 3b. The space 5 is used as each optical fiber accommodation groove. FIG. 2A is an example of the best mode for carrying out the present invention . As shown in FIG. 1, substrates 1 and 2 having double-sided grooves are used in an overlapping manner, and a space between double-sided grooves 3a and 3b is used. 5 is a schematic side block diagram showing a V-groove processing method for an optical fiber array in which 5 is each optical fiber housing groove, and (b) is a left side block diagram as viewed from arrow B in (a), showing two workpiece processing reference positions after processing A V-groove 8 for use is illustrated. FIG. 3 (a) shows two workpiece machining reference positions after machining in FIG. 2 (b) supported by suction on a V-grooving surface grinder of another optical fiber array having a vacuum suction surface (not shown) on the upper surface . The surface of the workpiece | work 10 which has the V groove | channel 8 for an object is shown, (b) shows the back surface of the workpiece | work 10 by which the workpiece | work was turned over after that and it was adsorbed and supported on the V-groove surface grinding machine.

図2(a)に示すように、本発明を実施するための最良の形態の一例の両面溝を有する光ファイバアレイのV溝加工方法は、垂直面に吸着チャック面6を有するブロック治具7で、垂直に直立状態で吸着した光ファイバアレイのV溝基板を含む薄板材のワーク10を、V溝加工研削砥石13でワーク上面14に垂直面に直交する2箇所のワーク加工基準位置用V溝8を加工し、図2(b)に示すように、2箇所のワーク加工基準位置用V溝8の下端位置9をワーク加工基準位置とするものである。   As shown in FIG. 2 (a), a V-groove processing method for an optical fiber array having double-sided grooves, which is an example of the best mode for carrying out the present invention, is a block jig 7 having a suction chuck surface 6 on a vertical surface. Then, a workpiece 10 made of a thin plate including a V-groove substrate of an optical fiber array adsorbed in a vertically upright state is applied to two workpiece machining reference positions V perpendicular to the workpiece upper surface 14 by a V-groove grinding wheel 13. The groove 8 is machined, and as shown in FIG. 2 (b), the lower end positions 9 of the two workpiece machining reference position V-grooves 8 are used as workpiece machining reference positions.

図3(a)に示すように、図1に示すような、両面溝を有する基板 1、2を重ねて使用し、両面溝 3a,3b間の空間5を各光ファイバ収容溝とする薄板材を、図2(b)の2箇所のワーク加工基準位置用V溝8を加工した薄板材のワーク10の表面を、別の光ファイバアレイのV溝加工平面研削盤上にセットし、ワーク10のの表面の2箇所のワーク加工基準位置用V溝8の下端位置9をワーク加工基準位置として図示しない画像処理装置に認識させ、画像処理装置が認識した前記2箇所の下端位置9をワーク加工基準位置とし、2箇所の下端位置9から各表V溝までの所定の距離の加工位置daで、多数の表V溝3aを研削加工する。その後で図3(b)に示すように、ワーク10を裏返しして、ワーク10の裏面の同じ2箇所のワーク加工基準位置用V溝8の下端位置9をワーク加工基準位置として画像処理装置に認識させ、画像処理装置が認識した前記下端位置9をワーク加工基準位置として2箇所の下端位置9から各表V溝までの所定の距離の加工位置dbで、多数の裏V溝3bを研削加工する。その後で、2箇所のワーク加工基準位置用V溝8の下端位置9までを切り捨てるようにした。 As shown in FIG. 3 (a) , a thin plate material in which substrates 1 and 2 having double-sided grooves as shown in FIG. 1 are used in an overlapping manner, and the space 5 between the double-sided grooves 3a and 3b is used as an optical fiber housing groove. 2b is set on the V-groove surface grinder of another optical fiber array on the surface of the workpiece 10 made of a thin plate material in which the V-grooves 8 for workpiece machining reference positions in FIG. An image processing apparatus (not shown) recognizes the lower end positions 9 of the V groove 8 for workpiece machining reference positions at two positions on the surface of the workpiece as the workpiece machining reference position, and the lower end positions 9 at the two positions recognized by the image processing apparatus are machined. A number of front V grooves 3a are ground at a processing position da at a predetermined distance from the two lower end positions 9 to each front V groove as a reference position. Thereafter, as shown in FIG. 3B , the workpiece 10 is turned over, and the lower end positions 9 of the V machining groove 8 for the same two positions on the back surface of the workpiece 10 are used as the workpiece processing reference position in the image processing apparatus. A number of back V-grooves 3b are ground at a processing position db at a predetermined distance from the two lower end positions 9 to each front V-groove using the lower end position 9 recognized by the image processing apparatus as a workpiece processing reference position. To do. Thereafter, the lower end position 9 of the V-grooves 8 for the workpiece machining reference position was cut off.

以上述べたように、本発明の最良の実施形態の図1に示すような、両面溝を有する基板 1、2を重ねて使用し、両面溝 3a,3b間の空間5を各光ファイバ収容溝とする薄板材の両面溝加工方法によると、垂直に直立状態で吸着した光ファイバアレイのV溝基板を含む薄板材のワークを、V溝加工研削砥石でワーク上面に垂直面に直交する2箇所のワーク加工基準位置用V溝8を加工したので、V溝の欠けがなく、ワークの表面と裏面共に、加工した各ワーク加工基準位置用V溝8の下端位置9をワーク加工基準位置として画像処理装置に認識・アラインメントさせ、共通の前記下端位置9のワーク加工基準位置から各表V溝、裏V溝までの両者の所定の距離の加工位置 da,dbがワーク10の表面と裏面とでずれることがなく、画像処理装置のエッジの認識不良が起きない、光ファイバアレイのV溝基板を含む薄板材の両面溝加工方法を提供するものとなった。 As described above, as shown in Figure 1 of the best embodiment of the present invention, using superimposed substrates 1 and 2 having a two-sided groove, double-sided groove 3a, the optical fiber receiving groove space 5 between 3b According to the double-sided groove processing method of a thin plate material, a workpiece of a thin plate material including a V-groove substrate of an optical fiber array adsorbed in a vertically upright state is perpendicular to the vertical surface of the workpiece upper surface with a V-groove grinding wheel. Since the V-groove 8 for the workpiece machining reference position is machined, there is no chipping of the V-groove, and both the front and back surfaces of the workpiece are imaged with the lower end position 9 of each machined workpiece machining reference position V-groove 8 as the workpiece machining reference position. The processing position is recognized and aligned by the processing device, and the machining positions da and db at a predetermined distance from the workpiece machining reference position at the common lower end position 9 to each front V-groove and back V-groove are the front and back surfaces of the workpiece 10. There is no deviation and the edge of the image processing device is recognized. Failure does not occur, were intended to provide a double-sided groove processing method of a thin plate material including a V-groove substrate of the optical fiber array.

本発明の薄板材の両面溝加工方法により加工される完成製品例を示す一部拡大側面図で、両面溝を有する基板 1、2を重ねて使用し、両面溝 3a,3b間の空間5を各光ファイバ収容溝とするものである。FIG. 2 is a partially enlarged side view showing an example of a finished product processed by the double-sided groove processing method of the thin plate material of the present invention. Each optical fiber housing groove is used. (a)は本発明を実施するための最良の形態の一例である図1に示すような 、両面溝を有する基板 1、2を重ねて使用し、両面溝 3a,3b間の空間5を各光ファイバ収容溝とする光ファイバアレイのV溝加工方法示す概略側面ブロック図、(b)は(a)のB矢視左側面ブロック図で、加工後の2箇所のワーク加工基準位置用V溝8を図示する。(A) is an example of the best mode for carrying out the present invention . As shown in FIG. 1, substrates 1 and 2 having double-sided grooves are used in an overlapping manner, and spaces 5 between the double-sided grooves 3a and 3b are provided. Schematic side block diagram showing a V groove processing method of an optical fiber array used as an optical fiber housing groove , (b) is a left side block diagram as viewed from arrow B of (a), and two workpiece processing reference position V grooves after processing 8 is illustrated. (a)は図示しない真空吸着面を上面に設けた別の光ファイバアレイのV溝加工平面研削盤上に吸着支持されたワーク10の表面を示し、(b)はその後でワークを裏返されてV溝加工平面研削盤上に吸着支持されたワーク10の裏面を示す。(A) shows the surface of the workpiece 10 sucked and supported on a V-grooving surface grinder of another optical fiber array provided with a vacuum suction surface (not shown) on the upper surface, and (b) shows the workpiece turned upside down. The back surface of the workpiece | work 10 adsorbed and supported on the V-groove surface grinder is shown. 従来の両面溝を有する光ファイバアレイのV溝加工方法を示し、まず(a)の図示しないV溝加工平面研削盤上に吸着支持されたワーク10の表面をその端面エッジ 11aを基準にして多数の表V溝3aを研削加工し、その後でワーク10を裏返しして(b)のワーク10の裏面をその端面エッジ 11bを基準にして多数の裏V溝3bを研削加工していた。A conventional V-groove processing method for an optical fiber array having a double-sided groove will be described. First, a large number of workpieces 10 adsorbed and supported on a V-groove surface grinder (not shown) shown in FIG. The front V-groove 3a was ground, and then the workpiece 10 was turned over, and the back surface of the workpiece 10 in (b) was ground with respect to the end surface edge 11b.

符号の説明Explanation of symbols

1、2 完成製品例の両面溝を有する基板
3a 表V溝 3b裏V溝
6 吸着チャック面
7 垂直面に吸着チャック面を有するブロック治具
8 2箇所のワーク加工基準位置用V溝
9 2箇所のワーク加工基準位置用V溝の下端位置
10 ワーク
13 V溝加工研削砥石
14 ワーク上面
da ワーク加工基準位置から表V溝までの所定の距離の加工位置
db ワーク加工基準位置から裏V溝までの所定の距離の加工位置
1, 2 Substrate with double-sided grooves in finished product example
3a Front V-groove 3b Back V-groove 6 Suction chuck surface 7 Block jig with suction chuck surface on the vertical surface 8 Two workpiece machining reference position V-grooves 9 Two bottom workpiece machining reference position V-groove positions
10 work
13 V-grooving grinding wheel
14 Work surface
da Machining position at a predetermined distance from workpiece machining reference position to Table V groove
db Machining position at a predetermined distance from the workpiece machining reference position to the back V-groove

Claims (1)

両面溝を有する光ファイバアレイのV溝加工方法において、垂直面に吸着チャック面を有するブロック治具で、垂直に直立状態で吸着した光ファイバアレイのV溝基板を含む薄板材のワークを、V溝加工研削砥石でワーク上面に垂直面に直交する2箇所のワーク加工基準位置用V溝を加工し、別の光ファイバアレイのV溝加工平面研削盤上にセットし、前記ワークの表面を前記2箇所のワーク加工基準位置用V溝の各下端位置をワーク加工基準位置として画像処理装置に認識させ、画像処理装置が認識した前記2箇所の下端位置をワーク加工基準位置として多数の表V溝を研削加工し、その後でワークを裏返しして、ワーク10裏面の同じ前記2箇所のワーク加工基準位置用V溝の下端位置をワーク加工基準位置として画像処理装置に認識させ、画像処理装置が認識した前記下端位置をワーク加工基準位置として多数の裏V溝を研削加工し、その後で、前記2箇所のワーク加工基準位置用V溝の下端位置までを切り捨てるようにしたことを特徴とする光ファイバアレイのV溝基板を含む薄板材の両面溝加工方法。 In a V-groove processing method for an optical fiber array having a double-sided groove, a workpiece made of a thin plate material including a V-groove substrate of an optical fiber array sucked vertically upright by a block jig having a suction chuck surface on a vertical surface Two workpiece machining reference position V-grooves perpendicular to the vertical surface are machined on the workpiece upper surface with a grooving grinding wheel, set on a V-grooving surface grinder of another optical fiber array, and the surface of the workpiece is The image processing apparatus recognizes the lower end positions of the two V-grooves for workpiece machining reference positions as workpiece machining reference positions, and a plurality of table V-grooves using the two lower end positions recognized by the image processing apparatus as workpiece machining reference positions. After that, the workpiece is turned over, and the image processing apparatus recognizes the lower end positions of the two workpiece machining reference position V-grooves on the back surface of the workpiece 10 as the workpiece machining reference position. A number of back V-grooves were ground using the lower end position recognized by the image processing apparatus as a workpiece machining reference position, and then the lower end positions of the two workpiece machining reference position V-grooves were cut off. A double-sided groove processing method for a thin plate material including a V-groove substrate of an optical fiber array.
JP2003279059A 2003-07-24 2003-07-24 Double-sided groove processing method for thin plate Expired - Fee Related JP4171371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003279059A JP4171371B2 (en) 2003-07-24 2003-07-24 Double-sided groove processing method for thin plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003279059A JP4171371B2 (en) 2003-07-24 2003-07-24 Double-sided groove processing method for thin plate

Publications (2)

Publication Number Publication Date
JP2005043751A JP2005043751A (en) 2005-02-17
JP4171371B2 true JP4171371B2 (en) 2008-10-22

Family

ID=34265290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003279059A Expired - Fee Related JP4171371B2 (en) 2003-07-24 2003-07-24 Double-sided groove processing method for thin plate

Country Status (1)

Country Link
JP (1) JP4171371B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271767A (en) * 1995-03-29 1996-10-18 Sumitomo Electric Ind Ltd Two-dimensional array type optical connector and its production
JP2000180670A (en) * 1998-12-17 2000-06-30 Fujikura Ltd Laminated optical fiber array and manufacture of it
JP2003248142A (en) * 2001-07-12 2003-09-05 Ngk Insulators Ltd Two-dimensional optical member array and two- dimensional waveguide unit
JP2005040914A (en) * 2003-07-24 2005-02-17 Nachi Fujikoshi Corp Sheet material machining device

Also Published As

Publication number Publication date
JP2005043751A (en) 2005-02-17

Similar Documents

Publication Publication Date Title
US6066565A (en) Method of manufacturing a semiconductor wafer
US7488145B2 (en) Method for manufacturing a doughnut-shaped glass substrate
KR100706626B1 (en) Method and device for grinding double sides of thin disk work
JP4037386B2 (en) Work side processing method and apparatus
KR20070080535A (en) System for machining edges of material
JPH1126402A (en) Device and method for precise cutting
JPH06232255A (en) Method of dicing wafer
JP4170201B2 (en) Substrate processing equipment
JP4171371B2 (en) Double-sided groove processing method for thin plate
CN108453370B (en) Method for processing workpiece
US7252579B2 (en) Apparatus and process for cylindrically grinding workpieces
JP2006339373A (en) Groove forming method
CN111246971B (en) Method for manufacturing disk-shaped glass substrate, method for manufacturing thin plate glass substrate, method for manufacturing light guide plate, and disk-shaped glass substrate
JPH06275583A (en) Chamfered semiconductor chip and its chamfering method
JP4935230B2 (en) Method for manufacturing translucent substrate
JP7051421B2 (en) Wafer processing method and laminated wafer processing method
CN114393470A (en) Processing method of arc-shaped glass substrate
JP2009248203A (en) Machining apparatus and method of manufacturing display panel
JP4514014B2 (en) Substrate grinding method
CN218196151U (en) Clamping tool and clamping tool subassembly
KR100774388B1 (en) Machine for Cutting Wafers
JP2007090795A (en) Cutting and chamfering method of lamella work piece
JP6084144B2 (en) Cutting method
JP7555767B2 (en) Processing method of original wafer
CN113102998B (en) Method for processing object to be processed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees