JP4168697B2 - Sintered plate and tool manufacturing method using the sintered plate - Google Patents

Sintered plate and tool manufacturing method using the sintered plate Download PDF

Info

Publication number
JP4168697B2
JP4168697B2 JP2002236404A JP2002236404A JP4168697B2 JP 4168697 B2 JP4168697 B2 JP 4168697B2 JP 2002236404 A JP2002236404 A JP 2002236404A JP 2002236404 A JP2002236404 A JP 2002236404A JP 4168697 B2 JP4168697 B2 JP 4168697B2
Authority
JP
Japan
Prior art keywords
cemented carbide
sintered plate
compact
tool
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002236404A
Other languages
Japanese (ja)
Other versions
JP2004083925A (en
Inventor
義一 岡田
知良 坂本
俊充 古木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002236404A priority Critical patent/JP4168697B2/en
Publication of JP2004083925A publication Critical patent/JP2004083925A/en
Application granted granted Critical
Publication of JP4168697B2 publication Critical patent/JP4168697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、超硬合金圧粉体を焼結する時に用いられる焼結板および焼結板を用いた工具の製造方法に関する。
【0002】
【従来の技術】
従来、超硬合金製の工具は、超硬合金の原料粉末を型に押し込めて超硬合金圧粉体を形成し、超硬合金圧粉体を焼結した後、刃部となる箇所などに後加工が施されて製作される。超硬合金圧粉体の焼結工程は、焼結板の上に超硬合金圧粉体が載置された状態で、約1400℃の焼結炉の中で行われる。また、細長い略棒状で側面に突出部を有した形状の中ぐり加工に用いられる工具であるボーリングバーは、焼結工程において焼結板に寝た状態で載置されており、焼結板に対し突出部が横方向または上方向に向けられている。
【0003】
【発明が解決しようとする課題】
ところで、上述したように超硬合金圧粉体を焼結した場合、焼結板と超硬合金圧粉体との間に化学反応が起こってしまい、得られる工具に反りが生じるという問題があった。特に、ボーリングバーのような細長い工具は、焼結板に接している面と他の面とで長さ方向に対する縮みが異なってしまうので、反りが生じやすい。
【0004】
さらに、ボーリングバーの突出部が横方向または上方向に向けられ、焼結板に接した状態で焼結される場合、突出部の自重によっても反りが生じてしまうという問題があった。また、このように反りの生じた工具を研磨加工などの後加工により、正規の形状とすることも可能ではあるが、後加工を施すことにより製作コストが高くなるという問題があった。
【0005】
本発明は、このような背景の下になされたものであって、超硬合金圧粉体の焼結時に反りが生じることを抑制できる焼結板および低コストで工具を製作することのできる焼結板を用いた工具の製造方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記課題を解決するために、この発明は以下の手段を提案している。
本発明の焼結板は、超硬合金圧粉体を焼結して得られる長さが最少の幅より5倍以上の細長い略棒状とされた超硬合金製の工具の焼結工程の際に、前記超硬合金圧粉体の下に敷設されて用いられる焼結板であって、前記工具と同様に細長い略棒状の前記超硬合金圧粉体の側面に設けられている突出部の干渉を回避するための凹部、貫通部、または段部が設けられていることを特徴とする。
【0007】
この発明に係る焼結板は、焼結板に設けられた凹部、貫通部、または段部によって超硬合金圧粉体の側面に設けられている突出部と焼結板との干渉を回避して、焼結板の上に超硬合金圧粉体が載置される。すなわち、焼結板に凹部または貫通部が形成されている場合には、この凹部や貫通部に突出部を下向きに収容して超硬合金圧粉体を載置して干渉を回避することができる。また、焼結板に段部が形成されている場合には、段部から突出部がはみ出して下向きとなるように超硬合金圧粉体を載置して干渉を回避することができる。このように、突出部を下方向に向けた状態で焼結板に載置して焼結することができるので、従来より工具に生じる反りを少なくすることができる。これにより、焼結時において工具に反りを生じさせにくい焼結板を得ることができる。なお、本発明における超硬合金とはサーメットも含むものである。
【0008】
また、本発明の焼結板は、黒鉛により形成されていると共に、前記超硬合金圧粉体と接触する部分に離型剤が配設されていることを特徴とする。
この発明に係る焼結板は、黒鉛を加工して形成されているので、高温状態においても安定している。また、離型剤が配設された上に超硬合金圧粉体が載置させられるので、超硬合金圧粉体と焼結板との化学反応がさらに抑制される。これにより、化学反応によって工具に反りを生じさせにくい焼結板を得ることができる。
【0012】
本発明の工具の製造方法は、超硬合金圧粉体を焼結板上に載置して焼結することにより、長さが最少の幅より5倍以上の細長い略棒状とされた超硬合金製の工具を製造する超硬合金製の工具の製造方法であって、前記工具と同様に細長い略棒状の前記超硬合金圧粉体の側面には突出部が設けられていると共に、前記焼結板には凹部、貫通部、または段部が設けられており、前記凹部、貫通部、または段部によって前記突出部と前記焼結板との干渉を回避するように該焼結板に前記超硬合金圧粉体が載置されて焼結される、焼結工程を有することを特徴とする。
【0013】
この発明に係る工具の製造方法では、焼結板の凹部、貫通部、または段部によって、超硬合金圧粉体の側面に設けられた突出部と焼結板との干渉が回避された状態で超硬合金圧粉体が焼結板に載置されて焼結される、焼結工程を有するので、突出部による反りが抑制される。これにより、反りの少ない超硬合金製の工具を製造することができる。このように、正規の形状で工具が焼結されるので、研磨加工などの後加工による反りの手直しが不要となり、低コストで工具を製造することができる。
【0014】
本発明の工具の製造方法は、上記製造方法において、前記突出部が設けられた側面に凸部が設けられており、該凸部が前記焼結板に当接された状態で焼結される、焼結工程を有することを特徴とする。
【0015】
この発明に係る工具の製造方法では、突出部と焼結板との干渉が回避され、焼結板に超硬合金圧粉体の凸部が当接された状態で焼結される、焼結工程を有するので、超硬合金圧粉体と焼結板との接触面積が減少し、化学反応による反りが抑制される。これにより、さらに反りの少ない超硬合金製の工具を製造することができる。
【0016】
【発明の実施の形態】
以下、図面を参照し、この発明の実施の形態について説明する。
図1は、超硬合金製の工具であるボーリングバーの製造工程における焼結工程時の状態の説明図である。ボーリングバーは、細長い略棒状の先端部の側面に設けられた突出部の先端に切刃が設けられている工具で、突出部と同じ側面には凸部が設けられ、この凸部より突出部が突出した形状とされている。また、ボーリングバーの長さは、その最小の幅より5倍以上の細長い形状とされている。
【0017】
このような工具に焼結成形される超硬合金圧粉体3は、タングステンカーバイトなど硬質の原料粉末とコバルトのバインダーとをプレス成形で圧縮成形され、焼結後にボーリングバーの規定の形状となるように形成されている。したがって、超硬合金圧粉体3も前記工具と同様に細長い略棒状の先端部の側面に突出部4が設けられ、突出部4と同じ側面に設けられた凸部6より突出部4が突出した形状とされている。
【0018】
焼結板1は、その上下面が平坦な平板状で、超硬合金圧粉体3の突出部4の突出高さよりも厚く形成されている。焼結板1に設けられた凹部2は超硬合金圧粉体3の突出部4を収容可能な形状とされており、一枚の焼結板1に複数の凹部2が設けられている。焼結板1は、高温下でも安定な黒鉛で形成されており、その上面には、例えばカーボンの粉を有機溶剤で溶かした離型剤が塗布または溶射されて配設されている。離型剤は、焼結板1と超硬合金圧粉体3との間の化学反応を抑制するために用いられている。
【0019】
また、図2に示されている、貫通部7が設けられた実施形態である焼結板5においても、貫通部7に超硬合金圧粉体3の突出部4を収容可能である。また、図3に示されている、段部11が設けられた実施形態である焼結板10においても、段部11から突出部4がはみ出して下向きになるように超硬合金圧粉体3を段部11の上に載置することによって突出部4と焼結板10との干渉が回避される。以下の説明においては、図1に示されている焼結板1を用いるが、焼結板5および焼結板10においても同様の作用、効果を得ることができる構成とされている。
【0020】
凹部2は、突出部4より若干大きな寸法で、例えば断面形状が円形に形成され、1つの超硬合金圧粉体3に対して、1ヶ所の凹部2が設けられている。また、凹部2は溝状に形成されてもよく、一枚の焼結板1の凹部2に対し複数の超硬合金圧粉体3の突出部4を収容可能な形状としてもよい。
【0021】
超硬合金圧粉体3に設けられた凸部6は、図4(a)に示すように略半球形の形状とされており、この形状以外に、図4(b)に示すような先端部が平坦面とされた略半球形状の凸部6bや、図4(c)に示すような先端部が曲面とされた略円錐形の凸部6cや、図4(d)に示すような先端部が平坦面とされた略円錐形の凸部6dが用いられる。
【0022】
また、凸部6は3個以上設けられ、図1では側面視して4個の凸部6が設けられており、このような凸部6の少なくとも3個が前記側面に対向する方向から見て三角形の頂点の配置とされることにより、安定して焼結板1の上に載置される。また、凸部6はボーリングバーが加工に用いられ、ホルダーにクランプされる時に、クランプに支障のない位置に設けられている。さらに、クランプに支障がある場合は、研削などの後加工により凸部6は除去される。
【0023】
上述したような焼結板1が用いられたボーリングバーの製造工程における焼結工程について説明する。
超硬合金の原料粉末を型に押し込めてプレス成形することでボーリングバーの形状の超硬合金圧粉体3を形成し、超硬合金圧粉体3は離型剤の配設された焼結板1の上面に載置させられる。このとき、超硬合金圧粉体3の突出部4が焼結板1に設けられた凹部2に下向きに収容され、凸部6が焼結板1に当接する状態とされる。このとき、凹部2の内周面や底面と突出部4との間には間隔があけられる。一枚の焼結板1に複数個の超硬合金圧粉体3が載置させられて、焼結炉に入れられる。
【0024】
焼結炉内にN,Arなどの不活性ガスが供給された状態で、約1400〜1500℃で超硬合金圧粉体3は焼結される。このとき、焼結板1と超硬合金圧粉体3との接触面は凸部6の先端面だけなので、焼結板1と超硬合金圧粉体3との間に生じる化学反応は少なく、突出部4を含めた超硬合金圧粉体3のほぼ全面が不活性ガスに曝される。なお、不活性ガスを用いずに、真空状態で焼結してもよい。
焼結された超硬合金圧粉体3の突出部4に刃部が形成されてボーリングバーとされる。
【0025】
上述したように焼結板1を用いて超硬合金圧粉体3を焼結してボーリングバーを製造する製造方法は、離型剤の配設された黒鉛製の焼結板1が用いられると共に、超硬合金圧粉体3の凸部6によって焼結板1と超硬合金圧粉体3との接触面積が少ない状態で焼結工程が行われるので、焼結板1と超硬合金圧粉体3との間の化学反応を抑制することができ、製造されたボーリングバーに生じる反りを少なくすることができる。
【0026】
また、焼結板1の凹部2に超硬合金圧粉体3の突出部4が収容され、突出部4が下方を向いた状態で焼結されるので、さらに反りの少ないボーリングバーを製造することができる。
【0027】
また、このような工具においては、その超硬合金圧粉体3’が図5に示すように焼結板9と対向する面に段部が設けられて片持ち部8を有し、片持ち部8の先端に上向きに突出部4’が形成されている場合、片持ち部8に設けられる凸部6’の高さを段部の凸部6より高く形成するようにしてもよい。このような構成とすることにより、超硬合金圧粉体3’において、片持ち部8の荷重を凸部6’が支持することができるので、安定して焼結板9に載置することができ、片持ち部8の自重の撓みによる反りが生じないボーリングバーを製造することができる。なお、この場合には焼結板9に凹部や貫通部は形成されていなくてもよい。また、図6に示すように、凸部6を設けずに段部の段高さと同じ高さとなるように凸部6’を形成し、凸部6’が片持ち部8の荷重を支持する構成としてもよい。このように形成することによっても、片持ち部8の反りを防止することができる。
【0028】
なお、本実施の形態においては、超硬合金製の工具としてボーリングバーを用いて説明を行ったが、ボーリングバー以外の超硬合金製の工具に本発明を用いてもよい。また、凸部6を筋状に形成することにより、超硬合金圧粉体3の側面に凸部6に囲まれた凹部が形成され、その面を焼結板1と当接する面としてもよい。また、焼結工程後の加工工程において、凸部6の一部または全部を除去してもよい。
【0029】
【発明の効果】
以上説明したように、本発明の焼結板によれば、凹部、貫通部、または段部によって超硬合金圧粉体の側面に設けられた突出部と焼結板との干渉を回避することができるので、焼結工程において工具に生じる反りを抑制することができる。また、焼結板は黒鉛を加工して形成されていると共に離型剤が配設されており、焼結工程において焼結板と超硬合金圧粉体とが化学反応を起こしにくく、さらに工具に生じる反りを抑制することができる。
【0031】
本発明の工具の製造方法によれば、焼結板の凹部、貫通部、または段部によって超硬合金圧粉体の側面に設けられた突出部と焼結板との干渉を回避して突出部を下方に向けた状態で焼結される焼結工程を有するので、反りの生じにくい工具を製造することができる。また、超硬合金圧粉体の側面に設けられた凸部が焼結板に当接した状態で焼結されることによって、さらに反りの生じにくい工具を製造することができる。これにより、焼結工程後において形状を修正するための研磨加工などの後加工が不要となるので、低コストで超硬合金製の工具を製作することができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態における焼結板に超硬合金圧粉体が載置させられた状態での概略断面図である。
【図2】 本発明の他の実施形態における焼結板に超硬合金圧粉体が載置させられた状態での概略断面図である。
【図3】 本発明の他の実施形態における焼結板に超硬合金圧粉体が載置させられた状態での概略断面図である。
【図4】 本発明の一実施形態における工具に設けられた凸部および他の形状の凸部の側面図である。
【図5】 本発明の他の実施形態における工具の超硬合金圧粉体が焼結板に載置させられた状態での概略断面図である。
【図6】 本発明の他の実施形態における工具の超硬合金圧粉体が焼結板に載置させられた状態での概略断面図である。
【符号の説明】
1,5,10 焼結板
2 凹部
3 超硬合金圧粉体
4 突出部
5 凸部
6 貫通部
11 段部
[0001]
BACKGROUND OF THE INVENTION
The present invention, sintered plate used cemented carbide green compact when sintering, and the sintered plate method of manufacturing a tool used.
[0002]
[Prior art]
Conventionally, a cemented carbide tool is formed by pressing a cemented carbide raw material powder into a mold to form a cemented carbide compact, and then sintering the cemented carbide compact to a location that becomes a blade. Produced after post-processing. The sintering process of the cemented carbide compact is performed in a sintering furnace at about 1400 ° C. in a state where the cemented carbide compact is placed on a sintered plate. In addition, the boring bar, which is a tool used for boring of a shape having an elongated, substantially rod-like shape and having a protruding portion on the side surface, is placed in a state of lying on the sintered plate in the sintering process. On the other hand, the projecting portion is directed in the lateral direction or the upward direction.
[0003]
[Problems to be solved by the invention]
By the way, when the cemented carbide compact is sintered as described above, there is a problem that a chemical reaction occurs between the sintered plate and the cemented carbide compact, resulting in warping of the obtained tool. It was. In particular, an elongated tool such as a boring bar tends to warp because the shrinkage in the length direction differs between the surface in contact with the sintered plate and the other surface.
[0004]
Furthermore, when the projecting portion of the boring bar is directed in the lateral direction or the upward direction and is sintered in contact with the sintered plate, there is a problem that warpage occurs due to the weight of the projecting portion. Although it is possible to make the warped tool into a regular shape by post-processing such as polishing, there is a problem that the post-processing increases the manufacturing cost.
[0005]
The present invention has been made under such a background , and can produce a sintered plate that can suppress warping during sintering of a cemented carbide compact and a tool at low cost. It aims at providing the manufacturing method of the tool using a sintered plate.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention proposes the following means.
The sintered plate of the present invention is used in the sintering process of a cemented carbide tool made of a cemented carbide alloy compact, which is obtained by sintering a cemented carbide compact and is 5 or more times longer than the minimum width. Further, a sintered plate laid and used under the cemented carbide compact, and a protrusion provided on the side surface of the cemented carbide compact which is substantially elongated in the same manner as the tool . A concave portion, a penetrating portion, or a step portion for avoiding interference is provided.
[0007]
The sintered plate according to the present invention avoids interference between the projecting portion provided on the side surface of the cemented carbide compact and the sintered plate by the concave portion, the through portion, or the step portion provided in the sintered plate. Then, the cemented carbide compact is placed on the sintered plate. That is, when a recessed part or a penetration part is formed in the sintered plate, it is possible to avoid the interference by accommodating the protruding part downward in this depression or penetration part and placing the cemented carbide compact. it can. Further, when a step portion is formed on the sintered plate, the cemented carbide compact can be placed so that the protruding portion protrudes from the step portion and faces downward, thereby avoiding interference. Thus, since it can mount and sinter to a sintered board in the state which orient | assigned the protrusion part to the downward direction, the curvature which a tool produces conventionally can be decreased. Thereby, it is possible to obtain a sintered plate that hardly causes warping of the tool during sintering. The cemented carbide in the present invention includes cermet.
[0008]
In addition, the sintered plate of the present invention is formed of graphite, and a mold release agent is disposed in a portion in contact with the cemented carbide compact.
Since the sintered plate according to the present invention is formed by processing graphite, it is stable even at a high temperature. In addition, since the cemented carbide compact is placed on the mold release agent, the chemical reaction between the cemented carbide compact and the sintered plate is further suppressed. Thereby, it is possible to obtain a sintered plate that hardly causes warping of the tool due to a chemical reaction.
[0012]
The method of manufacturing a tool according to the present invention includes a cemented carbide alloy powder compact placed on a sintered plate and sintered, so that the cemented carbide is formed into an elongated substantially rod shape having a length of 5 times or more than the minimum width. A method of manufacturing a cemented carbide tool for manufacturing an alloy tool, wherein a protruding portion is provided on a side surface of the cemented carbide compact in the form of a substantially elongated rod similar to the tool, and The sintered plate is provided with a concave portion, a through portion, or a step portion, and the sintered plate is provided so as to avoid interference between the protruding portion and the sintered plate by the concave portion, the through portion, or the step portion. It has a sintering process in which the cemented carbide alloy compact is placed and sintered.
[0013]
In the method for manufacturing a tool according to the present invention, interference between the protruding portion provided on the side surface of the cemented carbide compact and the sintered plate is avoided by the recessed portion, the penetrating portion, or the stepped portion of the sintered plate. Since the cemented carbide alloy compact has a sintering step in which it is placed on the sintered plate and sintered, warping due to the protruding portion is suppressed. Thereby, the tool made from a cemented carbide with little curvature can be manufactured. Thus, since the tool is sintered in a regular shape, it is not necessary to correct the warp by post-processing such as polishing, and the tool can be manufactured at low cost.
[0014]
In the manufacturing method of the tool according to the present invention, in the above manufacturing method, a convex portion is provided on a side surface provided with the protruding portion, and the convex portion is sintered in a state of being in contact with the sintered plate. And a sintering step.
[0015]
In the manufacturing method of the tool according to the present invention, the interference between the protruding portion and the sintered plate is avoided, and sintering is performed in a state where the convex portion of the cemented carbide alloy compact is in contact with the sintered plate. Since it has a process, the contact area of a cemented carbide compact and a sintered plate decreases, and the curvature by a chemical reaction is suppressed. This makes it possible to manufacture a cemented carbide tool with less warpage.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is an explanatory view of a state during a sintering process in a manufacturing process of a boring bar which is a tool made of cemented carbide. A boring bar is a tool in which a cutting edge is provided at the tip of a protrusion provided on the side surface of an elongated, substantially rod-shaped tip, and a protrusion is provided on the same side as the protrusion. Has a protruding shape. The length of the boring bar is an elongated shape that is five times or more than the minimum width.
[0017]
The cemented carbide powder compact 3 to be sintered and molded into such a tool is compression-molded by press molding a hard raw material powder such as tungsten carbide and a cobalt binder, and has a prescribed shape of the boring bar after sintering. It is formed to become. Accordingly, the cemented carbide powder compact 3 is also provided with a protruding portion 4 on the side surface of the elongated, substantially rod-shaped tip portion like the tool, and the protruding portion 4 protrudes from the protruding portion 6 provided on the same side surface as the protruding portion 4. The shape is made.
[0018]
The sintered plate 1 has a flat plate shape whose upper and lower surfaces are flat, and is formed thicker than the protruding height of the protruding portion 4 of the cemented carbide powder compact 3. The recessed portion 2 provided in the sintered plate 1 has a shape capable of accommodating the protruding portion 4 of the cemented carbide compact 3, and a plurality of recessed portions 2 are provided in one sintered plate 1. The sintered plate 1 is formed of graphite that is stable even at high temperatures, and on its upper surface, for example, a release agent obtained by dissolving carbon powder in an organic solvent is applied or sprayed. The mold release agent is used to suppress a chemical reaction between the sintered plate 1 and the cemented carbide compact 3.
[0019]
In addition, in the sintered plate 5 which is an embodiment provided with the penetrating portion 7 shown in FIG. 2, the protruding portion 4 of the cemented carbide compact 3 can be accommodated in the penetrating portion 7. Also in the sintered plate 10 according to the embodiment provided with the step portion 11 shown in FIG. 3, the cemented carbide powder compact 3 so that the protruding portion 4 protrudes from the step portion 11 and faces downward. Is placed on the stepped portion 11 to avoid interference between the protruding portion 4 and the sintered plate 10. In the following description, the sintered plate 1 shown in FIG. 1 is used, but the sintered plate 5 and the sintered plate 10 are configured to obtain the same operation and effect.
[0020]
The recess 2 is slightly larger than the protrusion 4 and has a circular cross-sectional shape, for example, and one recess 2 is provided for one cemented carbide compact 3. Moreover, the recessed part 2 may be formed in groove shape, and it is good also as a shape which can accommodate the protrusion part 4 of the some cemented carbide alloy compact 3 with respect to the recessed part 2 of the sintered sheet 1 of 1 sheet.
[0021]
The convex portion 6 provided on the cemented carbide compact 3 has a substantially hemispherical shape as shown in FIG. 4 (a). In addition to this shape, the tip as shown in FIG. 4 (b). As shown in FIG. 4 (d), a substantially hemispherical convex portion 6b having a flat surface, a substantially conical convex portion 6c having a curved tip as shown in FIG. 4 (c). A substantially conical convex portion 6d having a flat tip end is used.
[0022]
Further, three or more convex portions 6 are provided, and in FIG. 1, four convex portions 6 are provided in a side view, and at least three of the convex portions 6 are viewed from a direction facing the side surface. By arranging the triangular apexes, it is stably placed on the sintered plate 1. Moreover, the convex part 6 is provided in the position which does not have a trouble in a clamp, when a boring bar is used for a process and it clamps with a holder. Furthermore, when there is a hindrance to the clamp, the convex portion 6 is removed by post-processing such as grinding.
[0023]
The sintering process in the manufacturing process of the boring bar using the sintered plate 1 as described above will be described.
A cemented carbide powder compact 3 in the shape of a boring bar is formed by pressing a cemented carbide raw material powder into a mold and press-molding. The cemented carbide compact 3 is sintered with a mold release agent disposed therein. It is placed on the upper surface of the plate 1. At this time, the protruding portion 4 of the cemented carbide powder compact 3 is accommodated downward in the concave portion 2 provided on the sintered plate 1, and the convex portion 6 is brought into contact with the sintered plate 1. At this time, a space is provided between the inner peripheral surface or bottom surface of the recess 2 and the protrusion 4. A plurality of cemented carbide compacts 3 are placed on one sintered plate 1 and placed in a sintering furnace.
[0024]
The cemented carbide compact 3 is sintered at about 1400 to 1500 ° C. in a state where an inert gas such as N 2 or Ar is supplied into the sintering furnace. At this time, since the contact surface between the sintered plate 1 and the cemented carbide powder compact 3 is only the tip surface of the convex portion 6, there is little chemical reaction occurring between the sintered plate 1 and the cemented carbide compact 3. The almost entire surface of the cemented carbide powder compact 3 including the protrusion 4 is exposed to an inert gas. In addition, you may sinter in a vacuum state, without using an inert gas.
A blade portion is formed on the protruding portion 4 of the sintered cemented carbide compact 3 to form a boring bar.
[0025]
As described above, the method of manufacturing a boring bar by sintering the cemented carbide green compact 3 using the sintered plate 1 uses the graphite sintered plate 1 provided with a release agent. At the same time, the sintering process is performed with a small contact area between the sintered plate 1 and the cemented carbide powder compact 3 by the convex portion 6 of the cemented carbide compact 3, so the sintered plate 1 and the cemented carbide The chemical reaction with the green compact 3 can be suppressed, and the warp generated in the manufactured boring bar can be reduced.
[0026]
Further, since the protruding portion 4 of the cemented carbide alloy compact 3 is accommodated in the concave portion 2 of the sintered plate 1 and sintered with the protruding portion 4 facing downward, a boring bar with less warpage is manufactured. be able to.
[0027]
Further, in such a tool, the cemented carbide powder compact 3 ′ has a cantilever 8 provided with a step on the surface facing the sintered plate 9 as shown in FIG. When the protruding portion 4 ′ is formed upward at the tip of the portion 8, the height of the convex portion 6 ′ provided in the cantilever portion 8 may be formed higher than the convex portion 6 of the stepped portion. By adopting such a configuration, in the cemented carbide compact 3 ′, the load of the cantilevered portion 8 can be supported by the convex portion 6 ′, so that it can be stably placed on the sintered plate 9. Thus, a boring bar that does not warp due to deflection of its own weight of the cantilever 8 can be manufactured. In this case, the sintered plate 9 does not have to be formed with a recess or a penetration. Further, as shown in FIG. 6, the convex portion 6 ′ is formed so as to have the same height as the step height without providing the convex portion 6, and the convex portion 6 ′ supports the load of the cantilever portion 8. It is good also as a structure. The warp of the cantilever part 8 can also be prevented by forming in this way.
[0028]
In the present embodiment, description has been made using a boring bar as a cemented carbide tool, but the present invention may be used for a cemented carbide tool other than a boring bar. Further, by forming the convex portion 6 in a streak shape, a concave portion surrounded by the convex portion 6 is formed on the side surface of the cemented carbide compact 3, and the surface may be a surface in contact with the sintered plate 1. . Moreover, you may remove a part or all of the convex part 6 in the process process after a sintering process.
[0029]
【The invention's effect】
As described above, according to the sintered plate of the present invention, it is possible to avoid the interference between the protruding portion provided on the side surface of the cemented carbide compact and the sintered plate by the concave portion, the through portion, or the step portion. Therefore, the warp generated in the tool in the sintering process can be suppressed. In addition, the sintered plate is formed by processing graphite and is provided with a release agent. In the sintering process, the sintered plate and the cemented carbide compact are less likely to cause a chemical reaction. The warp that occurs can be suppressed.
[0031]
According to the method of manufacturing a tool of the present invention, the protrusions provided on the side surfaces of the cemented carbide alloy compact and the sintered plate are avoided by the recesses, through portions, or stepped portions of the sintered plate. Since it has the sintering process sintered by the state which orient | assigned the part to the downward direction, the tool which cannot produce a curvature easily can be manufactured. Moreover, the tool which is hard to produce curvature can be manufactured by sintering in the state which the convex part provided in the side surface of the cemented carbide alloy powder contacted the sintered board. This eliminates the need for post-processing such as polishing for correcting the shape after the sintering step, and thus makes it possible to manufacture a cemented carbide tool at low cost.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view in a state in which a cemented carbide compact is placed on a sintered plate according to an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view in a state in which a cemented carbide compact is placed on a sintered plate according to another embodiment of the present invention.
FIG. 3 is a schematic cross-sectional view in a state in which a cemented carbide compact is placed on a sintered plate according to another embodiment of the present invention.
FIG. 4 is a side view of a protrusion provided on the tool and a protrusion having another shape according to an embodiment of the present invention.
FIG. 5 is a schematic cross-sectional view of a tool according to another embodiment of the present invention in a state where a cemented carbide compact is placed on a sintered plate.
FIG. 6 is a schematic cross-sectional view of a tool according to another embodiment of the present invention in a state where a cemented carbide compact is placed on a sintered plate.
[Explanation of symbols]
1, 5, 10 Sintered plate 2 Concave part 3 Cemented carbide compact 4 Protruding part 5 Convex part 6 Through part 11 Step part

Claims (4)

超硬合金圧粉体を焼結して得られる長さが最少の幅より5倍以上の細長い略棒状とされた超硬合金製の工具の焼結工程の際に、前記超硬合金圧粉体の下に敷設されて用いられる焼結板であって、
前記工具と同様に細長い略棒状の前記超硬合金圧粉体の側面に設けられている突出部の干渉を回避するための凹部、貫通部、または段部が設けられていることを特徴とする焼結板。
During the sintering process of a cemented carbide tool made of a cemented carbide alloy having a length of 5 times or more than the minimum width obtained by sintering cemented carbide powder compact, A sintered plate that is used under the body,
As in the case of the tool, a concave portion, a penetrating portion, or a step portion for avoiding interference of a protruding portion provided on a side surface of the cemented carbide compact, which is substantially elongated in a rod shape, is provided. Sintered plate.
請求項1に記載の焼結板であって、
黒鉛により形成されていると共に、前記超硬合金圧粉体と接触する部分に離型剤が配設されていることを特徴とする焼結板。
The sintered plate according to claim 1,
A sintered plate characterized by being formed of graphite and having a release agent disposed at a portion in contact with the cemented carbide compact.
超硬合金圧粉体を焼結板上に載置して焼結することにより、長さが最少の幅より5倍以上の細長い略棒状とされた超硬合金製の工具を製造する超硬合金製の工具の製造方法であって、
前記工具と同様に細長い略棒状の前記超硬合金圧粉体の側面には突出部が設けられていると共に、前記焼結板には凹部、貫通部、または段部が設けられており、
前記凹部、貫通部、または段部によって前記突出部と前記焼結板との干渉を回避するように該焼結板に前記超硬合金圧粉体が載置されて焼結される、焼結工程を有することを特徴とする工具の製造方法。
Carbide for manufacturing a tool made of cemented carbide made of a cemented carbide alloy compact, which is made into a long and slender, almost rod-like shape that is at least 5 times longer than the smallest width by placing the sintered compact on a sintered plate and sintering it. A method of manufacturing an alloy tool,
Similar to the tool, a side surface of the cemented carbide alloy compact, which is substantially elongated, is provided with a protrusion, and the sintered plate is provided with a recess, a penetration, or a step,
Sintering in which the cemented carbide compact is placed on the sintered plate and sintered so as to avoid interference between the projecting portion and the sintered plate by the recessed portion, through portion, or stepped portion. A method for manufacturing a tool, comprising a step.
請求項3に記載の工具の製造方法であって、
前記突出部が設けられた側面に凸部が設けられており、該凸部が前記焼結板に当接された状態で焼結される、焼結工程を有することを特徴とする工具の製造方法。
It is a manufacturing method of the tool according to claim 3 ,
Protrusion is provided on the side surface provided with the protrusion, and the sintering includes a sintering process in which the protrusion is sintered in contact with the sintered plate. Method.
JP2002236404A 2002-07-04 2002-08-14 Sintered plate and tool manufacturing method using the sintered plate Expired - Fee Related JP4168697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002236404A JP4168697B2 (en) 2002-07-04 2002-08-14 Sintered plate and tool manufacturing method using the sintered plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002195770 2002-07-04
JP2002236404A JP4168697B2 (en) 2002-07-04 2002-08-14 Sintered plate and tool manufacturing method using the sintered plate

Publications (2)

Publication Number Publication Date
JP2004083925A JP2004083925A (en) 2004-03-18
JP4168697B2 true JP4168697B2 (en) 2008-10-22

Family

ID=32071984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002236404A Expired - Fee Related JP4168697B2 (en) 2002-07-04 2002-08-14 Sintered plate and tool manufacturing method using the sintered plate

Country Status (1)

Country Link
JP (1) JP4168697B2 (en)

Also Published As

Publication number Publication date
JP2004083925A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP4531004B2 (en) Heating device
US8008602B2 (en) Electrostatic chuck heater
WO2010140508A1 (en) Method for carburizing tantalum member, and tantalum member
JP3742831B2 (en) Cutting tool coating method using chemical vapor deposition
KR101708969B1 (en) Method for carburizing tantalum container
KR102132251B1 (en) Method of manufacturing a cylinder or a ring type boron carbaide sintered body and method of manufacturing a edge ring for plasma device using thereof
KR102368742B1 (en) Holding device and manufacturing method of holding device
CA2339649A1 (en) Silicon carbide sinter and process for producing the same
JP4168697B2 (en) Sintered plate and tool manufacturing method using the sintered plate
KR20010030314A (en) A set of molding dies, molding structure, and molding process for fuel-cell separator
JP5897028B2 (en) Full surface finishing press processing / full surface finishing sintered cutting insert and method of manufacturing the cutting insert
US7633738B2 (en) Electrostatic chuck and manufacturing method thereof
JP5286471B2 (en) Transfer mold manufacturing method
JP5483157B2 (en) Method of carburizing tantalum member and tantalum member
KR100883155B1 (en) Electrostatic chuck heater
JP4545896B2 (en) Heater unit and manufacturing method thereof
KR102249470B1 (en) Method for manufacturing high density boron carbide ceramic with suppressed particle growth ceramic
JP4124113B2 (en) Insert molding method
JPH0810993A (en) Tile molding die
JP4124107B2 (en) Insert molding method
KR950006088B1 (en) Sinking pallet of sinking form cathode structure and method of manufacturing the same
JPH0688832B2 (en) Polycrystalline ceramic product and manufacturing method thereof
JP2005235906A (en) Wafer holding jig and vapor phase growing apparatus
JP2001098302A (en) Metal powder injection molding method and medical treatment implement composed of metallic sintered body
JP2973790B2 (en) Method for producing reaction sintered silicon carbide product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees