JP5286471B2 - Transfer mold manufacturing method - Google Patents

Transfer mold manufacturing method Download PDF

Info

Publication number
JP5286471B2
JP5286471B2 JP2007160392A JP2007160392A JP5286471B2 JP 5286471 B2 JP5286471 B2 JP 5286471B2 JP 2007160392 A JP2007160392 A JP 2007160392A JP 2007160392 A JP2007160392 A JP 2007160392A JP 5286471 B2 JP5286471 B2 JP 5286471B2
Authority
JP
Japan
Prior art keywords
mold
block
master
transfer
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007160392A
Other languages
Japanese (ja)
Other versions
JP2008307856A (en
Inventor
義博 谷川
憲和 中村
裕章 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuoka Prefectural Government
Original Assignee
Fukuoka Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuoka Prefectural Government filed Critical Fukuoka Prefectural Government
Priority to JP2007160392A priority Critical patent/JP5286471B2/en
Publication of JP2008307856A publication Critical patent/JP2008307856A/en
Application granted granted Critical
Publication of JP5286471B2 publication Critical patent/JP5286471B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、小型樹脂レンズ、小型ガラスレンズ等の小物成形や半導体封止に使用する金型を製造する転写金型製造方法に関する。 The present invention relates to a transfer mold manufacturing method for manufacturing a mold used for molding small articles such as a small resin lens and a small glass lens and for semiconductor encapsulation.

現在、携帯電話に代表されるように多くの電子機器やデジタル家電では、開発の方向性が高機能化、高精度化、及び小型化に向いている。そして、これらの製品が高精度化、小型化すれば、これらを構成している構成部品も高精度化、小型化、及び微細化する必要がある。一方、量産部品の製造には、一般に金型が使用されており、部品が高精度化、小型化、微細化すれば、金型も高精度化、小型化、微細化することが要求され、金型の製造においては品質の安定化、低価格化、納期短縮化を満足した上で、高精度化、小型化、微細化に対応することが要求される。 Currently, in many electronic devices and digital home appliances as represented by mobile phones, the direction of development is suitable for high functionality, high accuracy, and miniaturization. And if these products are highly accurate and miniaturized, it is necessary to increase the precision, miniaturization, and miniaturization of the components constituting them. On the other hand, in the production of mass-produced parts, molds are generally used, and if the parts are highly accurate, downsized, and miniaturized, the molds are also required to be highly accurate, downsized, and miniaturized. In the manufacture of molds, it is required to meet the demands for high precision, miniaturization, and miniaturization while satisfying stabilization of quality, price reduction, and shortening of delivery time.

ここで、小型化、微細化した部品を量産する場合、同時に数十〜数百個の部品が製造できる複数個取り金型が使用される。このため、複数個取り金型を製造する場合、金型素材で構成された1つのブロック内に部品の反転形状を工作機械(例えば、マシニングセンタ)を用いて複数個形成した後、熟練工が手磨きによる仕上げ加工を行なっている。このため、部品の反転形状が小型化、微細化すれば、工具形状の制約から反転形状の形状精度が低下し、更に仕上げ加工においては形状誤差、形状のばらつきという問題が生じる。そして、形状誤差、形状のばらつきが発生すると、金型品質の安定化、納期短縮化にも対応できないという問題が生じる。そこで、製造しようとする部品形状を有する原型を1つ正確に作製し、この原型を超塑性金属からなるブロックで上下から挟んで加圧して原型の形状をブロックに転写することで、金型品質が安定した(形状誤差、形状のばらつきのない)金型を短納期で製造する方法が開示されている(例えば、特許文献1、2参照)。 Here, when mass producing miniaturized and miniaturized parts, a plurality of molds capable of producing several tens to several hundreds of parts simultaneously are used. For this reason, in the case of manufacturing a plurality of molds, a skilled worker manually polishes a plurality of inverted parts using a machine tool (for example, a machining center) in one block made of mold material. Finishing processing is performed. For this reason, if the reversal shape of the part is miniaturized and miniaturized, the shape accuracy of the reversal shape is lowered due to restrictions on the tool shape, and further, there arises a problem of shape error and variation in shape in finishing. When a shape error or shape variation occurs, there arises a problem that the mold quality cannot be stabilized and the delivery time cannot be shortened. Therefore, by accurately producing one prototype with the part shape to be manufactured, pressing this prototype from above and below with a block made of superplastic metal, and transferring the shape of the prototype to the block, mold quality Discloses a method of manufacturing a stable mold (with no shape error and shape variation) with a short delivery time (see, for example, Patent Documents 1 and 2).

特開昭52−7326号公報JP 52-7326 A 実開昭49−101023号公報Japanese Utility Model Publication No. 49-101023

しかしながら、特許文献1、2に記載された発明では、超塑性金属素材で構成されたブロックで原型を両側から挟み込んで反転形状が転写された分割金型を作製するため、製品上における分割位置の位置決めが非常に難しく、形状誤差及び形状ばらつきを防止して品質が安定した複数個取り金型を製造することが困難となる。また、ブロックを高温で加熱するためブロック表面が酸化し、金型の表面性状にばらつきが生じるという問題がある。更に、超塑性金属を使用するので、金型の特性が超塑性金属の特性の影響を受けて、従来の金型と比較して使用方法に制約を受け、寿命も変動する可能性が高いという問題もある。 However, in the inventions described in Patent Documents 1 and 2, in order to produce a split mold in which the inverted shape is transferred by sandwiching the original mold from both sides with a block made of a superplastic metal material, Positioning is very difficult, and it becomes difficult to manufacture a plurality of molds with stable quality by preventing shape error and shape variation. In addition, since the block is heated at a high temperature, the block surface is oxidized, and there is a problem that the surface properties of the mold vary. Furthermore, since superplastic metal is used, the characteristics of the mold are affected by the characteristics of the superplastic metal, and the usage is limited compared to conventional molds, and the life is likely to fluctuate. There is also a problem.

本発明はかかる事情に鑑みてなされたもので、製品が高精度、小型化、微細化しても形状誤差及び形状ばらつきを防止して品質が安定した複数個取り転写金型を低価格かつ短納期で製造できる転写金型製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and a plurality of transfer molds having a stable quality by preventing a shape error and a shape variation even when a product is highly accurate, miniaturized, and miniaturized can be manufactured at low cost and with a short delivery time. An object of the present invention is to provide a method for producing a transfer mold that can be produced by the above method.

前記目的に沿う第1の発明に係る転写金型製造方法は、1200℃を超える高温で高強度、高硬度、かつ難変形性を示す素材を用いて、離型性を有する製品と同一形状の原型が平板上に形成されたマスター型を作製する第1工程と、
高温で軟化性を示す金型素材で構成された所定形状のブロックを前記マスター型に対向させて加熱炉内に配置し、真空中又は不活性ガス雰囲気中で前記金属素材を900℃以上1200℃以下の温度域まで加熱して前記マスター型及び前記ブロック同士を押圧し該ブロックに該マスター型の反転形状を転写する第2工程と、
前記マスター型の反転形状が転写された前記ブロックを冷却して前記マスター型から離型し、前記ブロックに形成された前記マスター型の前記平板の反転形状部分の基準高さ位置がモールドベースの表面の高さ位置に一致するように前記ブロックを前記モールドベースに固定して転写金型を形成する第3工程とを有する。
The transfer mold manufacturing method according to the first invention that meets the above object has the same shape as a product having releasability using a material that exhibits high strength, high hardness, and hardly deformability at a high temperature exceeding 1200 ° C. A first step of producing a master mold having a prototype formed on a flat plate;
A block having a predetermined shape made of a mold material exhibiting softening properties at high temperature is placed in a heating furnace so as to face the master mold, and the metal material is placed in a vacuum or in an inert gas atmosphere at 900 ° C. or more and 1200 ° C. A second step of heating to the following temperature range and pressing the master mold and the blocks to transfer the inverted shape of the master mold to the block;
The block to which the inverted shape of the master mold is transferred is cooled and released from the master mold, and the reference height position of the inverted shape portion of the flat plate of the master mold formed on the block is the surface of the mold base. And a third step of forming a transfer mold by fixing the block to the mold base so as to coincide with the height position of the mold.

第1の発明に係る転写金型製造方法において、前記モールドベースに複数の取付け部を形成し、該各取付け部に前記マスター型の反転形状が転写された前記ブロックをそれぞれ固定することができる。 In the transfer mold manufacturing method according to the first invention, a plurality of attachment portions can be formed on the mold base, and the blocks on which the inverted shape of the master mold is transferred can be fixed to the attachment portions.

第1の発明に係る転写金型製造方法において、前記ブロックは、高温で高強度、高硬度、かつ難変形性を示す高温用素材で構成された保持部材に形成された凹部に挿入され、前記マスター型に対向する面のみが該保持部材から露出していることが好ましい。
ここで、前記保持部材には、前記ブロックに前記マスター型の反転形状を転写する際に排除される前記金型素材の収容が可能な空間部が前記凹部に連通して形成されていることが好ましい。
In the transfer mold manufacturing method according to the first invention, the block is inserted into a recess formed in a holding member made of a high temperature material exhibiting high strength, high hardness, and hardly deformability at high temperature, It is preferable that only the surface facing the master mold is exposed from the holding member.
Here, the holding member is formed with a space communicating with the concave portion that can accommodate the mold material that is excluded when the inverted shape of the master mold is transferred to the block. preferable.

第1の発明に係る転写金型製造方法において、前記ブロックで前記マスター型に対向する側には、前記マスター型の反転形状より小さい概略反転形状が予め形成されていることが好ましい。 In the transfer mold manufacturing method according to the first aspect of the present invention, it is preferable that a rough reversal shape smaller than the reversal shape of the master mold is formed in advance on the side of the block facing the master mold.

第1の発明に係る転写金型製造方法において、不活性ガスを前記加熱炉内に供給して前記マスター型の反転形状が転写された前記ブロックの冷却速度を調整し該ブロックの熱処理を行なうことが好ましい。 In the transfer mold manufacturing method according to the first aspect of the present invention, an inert gas is supplied into the heating furnace to adjust the cooling rate of the block on which the inverted shape of the master mold is transferred and to heat-treat the block. Is preferred.

前記目的に沿う第2の発明に係る転写金型は、第1の発明に係る転写金型製造方法で製造される。 The transfer mold according to the second invention that meets the above object is manufactured by the transfer mold manufacturing method according to the first invention.

請求項1〜記載の転写金型製造方法においては、製品と同一形状の原型が平板上に形成されたマスター型を用いるので、ブロックにはマスター型の平板と原型の反転形状が同時に形成され、平板の反転形状部分を基準としてブロックをモールドベースに固定することでブロックの位置決めを正確に行なうことができ、精度の高い転写金型を低価格かつ短納期で製造することができる。
また、加熱を真空中又は不活性ガス雰囲気中で行うので、ブロックの酸化を防止して、表面性状が優れた転写金型を製造できる。
In the transfer mold manufacturing method according to any one of claims 1 to 6, since the master mold in which the original mold having the same shape as the product is formed on the flat plate is used, the master flat plate and the inverted shape of the original mold are simultaneously formed on the block. By fixing the block to the mold base with the inverted shape portion of the flat plate as a reference, the block can be accurately positioned, and a highly accurate transfer mold can be manufactured at a low cost and with a short delivery time.
Further, since the heating is performed in a vacuum or in an inert gas atmosphere, it is possible to prevent the block from being oxidized and to manufacture a transfer mold having excellent surface properties.

特に、請求項2記載の転写金型製造方法においては、複数のブロックをモールドベースに固定する際に各ブロックの位置決めを正確かつ容易に行なうことができ、形状誤差及び形状ばらつきがなく、同一の表面性状を備えた製品が成形できる複数個取り転写金型を低価格かつ短納期で製造することができる。 In particular, in the transfer mold manufacturing method according to claim 2, when fixing a plurality of blocks to the mold base, each block can be positioned accurately and easily, and there is no shape error and shape variation, and the same. It is possible to manufacture a multi-cavity transfer mold that can form a product with surface properties at a low cost and with a short delivery time.

請求項3記載の転写金型製造方法においては、マスター型及びブロック同士を押圧しても保持部材の外形は変化しないので、保持部材を介することでブロックをモールドベースに容易に固定することができる。
請求項4記載の転写金型製造方法においては、マスター型の反転形状がブロックに転写される際、ブロックは保持部材の凹部に挿入され露出面はマスター型に押圧されて密閉状態となるが、保持部材にはブロックにマスター型の反転形状が転写される際に排除される金型素材の体積に相当する体積を有する空間部が凹部に連通して形成されているので、マスター型の反転形状をブロックに転写する際に排除される金型素材は空間部に進入することができ、マスター型の反転形状をブロックに確実に転写することができる。
請求項5記載の転写金型製造方法においては、ブロックにマスター型の概略反転形状が予め形成されているので、マスター型の反転形状をブロックに迅速に転写することができる。
In the transfer mold manufacturing method according to claim 3, since the outer shape of the holding member does not change even when the master die and the block are pressed, the block can be easily fixed to the mold base via the holding member. .
In the transfer mold manufacturing method according to claim 4, when the inverted shape of the master mold is transferred to the block, the block is inserted into the concave portion of the holding member and the exposed surface is pressed by the master mold to be in a sealed state. Since the holding member is formed with a space portion having a volume corresponding to the volume of the mold material to be removed when the inverted shape of the master mold is transferred to the block, the inverted shape of the master mold is formed. The mold material that is excluded when transferring to the block can enter the space, and the inverted shape of the master mold can be reliably transferred to the block.
In the transfer mold manufacturing method according to the fifth aspect, since the master mold is roughly inverted in shape in advance in the block, the master mold inversion can be quickly transferred to the block.

請求項記載の転写金型製造方法においては、不活性ガスを加熱炉内に供給することで、マスター型の反転形状が転写されたブロックの熱処理(焼き入れ)を行なうことができ、転写金型表面の硬度を高くして、転写金型寿命を長くできる。 In the transfer mold manufacturing method according to claim 6 , by supplying an inert gas into the heating furnace, a heat transfer (quenching) of the block on which the inverted shape of the master mold is transferred can be performed. The mold surface hardness can be increased to extend the life of the transfer mold.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1(A)、(B)、(C)は本発明の第1の実施の形態に係る転写金型製造方法の説明図、図2は同転写金型製造方法でブロックにマスター型の反転形状を転写する際の説明図、図3は変形例に係るブロックの説明図、図4は本発明の第2の実施の形態に係る転写金型製造方法で用いるブロックの説明図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIGS. 1A, 1B, and 1C are explanatory diagrams of a transfer mold manufacturing method according to the first embodiment of the present invention, and FIG. 2 is a block master in the transfer mold manufacturing method. FIG. 3 is an explanatory diagram of a block according to a modification, and FIG. 4 is an explanatory diagram of a block used in a transfer mold manufacturing method according to the second embodiment of the present invention. is there.

図1(A)、(B)、(C)に示すように、本発明の第1の実施の形態に係る転写金型製造方法は、1200℃を超える高温で高強度、高硬度、かつ難変形性を示す素材を用いて、離型性を有する製品と同一形状の原型10が、例えば、平面視して円形の平板11の上に形成されたマスター型12を作製する第1工程と、金型素材で構成された所定形状、例えば、平面視して平板11と同一径の円柱状のブロック13をマスター型12に対向させて加熱炉内に配置し、金型素材が軟化性を示す900℃以上1200℃以下の温度域まで加熱してマスター型12及びブロック13同士を押圧し、ブロック13にマスター型12の反転形状を転写する第2工程と、マスター型12の反転形状が転写されたブロック13を冷却してマスター型12から離型し、モールドベース14に固定して転写金型15を形成する第3工程とを有している。なお、マスター型12では、その側部に凹みが存在しない。以下、詳細に説明する。 As shown in FIGS. 1 (A), (B), and (C), the transfer mold manufacturing method according to the first embodiment of the present invention has high strength, high hardness, and difficulty at a high temperature exceeding 1200 ° C. A first step of producing a master mold 12 in which a prototype 10 having the same shape as a product having releasability is formed on a circular flat plate 11 in plan view, using a deformable material, A predetermined shape made of a mold material, for example, a cylindrical block 13 having the same diameter as the flat plate 11 in plan view is disposed in the heating furnace so as to face the master mold 12, and the mold material exhibits softening properties. Heating to a temperature range of 900 ° C. or more and 1200 ° C. or less, pressing the master mold 12 and the block 13 together to transfer the inverted shape of the master mold 12 to the block 13, and the inverted shape of the master mold 12 are transferred. The master block 12 is cooled Demolded, and a third step of forming a transfer mold 15 is fixed to the mold base 14. In addition, in the master mold | type 12, a dent does not exist in the side part. Details will be described below.

マスター型12の製造に使用する1200℃を超える高温で高強度、高硬度、かつ難変形性を示す素材として、例えば、1000℃における抗折強度が300MPa以上、ビッカース硬度が1300以上であるジルコニア(セラミックスの一例)であれば使用できる。そして、マスター型12の製造は、ジルコニアのブロックを工作機械の一例であるマシニングセンタ16にダイヤモンド工具17を取付けて湿式加工することにより行なわれる。なお、マスター型12を製造する際に使用する素材としては、ジルコニアの他に、アルミナ、窒化珪素、炭化珪素等の高温構造用セラミックス、タングステンやモリブデン等の高融点金属、又はサーメット等を使用できる。 As a material that exhibits high strength, high hardness, and hardly deformability at a high temperature exceeding 1200 ° C. used for manufacturing the master mold 12, for example, zirconia having a bending strength at 1000 ° C. of 300 MPa or more and a Vickers hardness of 1300 or more ( An example of ceramic) can be used. The master mold 12 is manufactured by attaching a diamond tool 17 to a machining center 16 which is an example of a machine tool and wet processing a zirconia block. In addition to zirconia, high-temperature structural ceramics such as alumina, silicon nitride, and silicon carbide, refractory metals such as tungsten and molybdenum, cermet, and the like can be used as materials used when manufacturing the master mold 12. .

所定形状のブロック13を構成する素材としては、高温で軟化性を示す金型素材、例えば、マルテンサイト系ステンレス鋼が利用できる。そして、図2に示すように、ブロック13は、一面側をマスター型12に対向させて加熱炉内に配置され、加熱炉内を真空にして加熱する。ここで、マスター型12は、高温で高強度、高硬度、かつ難変形性を示す素材、例えば、セラミックスの一例であるアルミナで構成された支持台18を介して、加熱炉の炉床部材19上に載置されている。また、ブロック13の他面側には、高温で高強度、高硬度、かつ難変形性を示す素材、例えば、セラミックスの一例であるアルミナで構成された円柱状の加圧部材20が配置されている。そして、マスター型12、ブロック13、及び加圧部材20の先側は、高温で高強度、高硬度、かつ難変形性を示す素材、例えば、アルミナ、窒化珪素、炭化珪素等の高温構造用セラミックスで構成され平板11の直径と同一長さの内径を有し、支持台18上に載置された円筒状の収納部材21内に収納されている。なお、加圧部材20は図示しない荷重伝達部材を介して加熱炉の外部に設けられた加圧装置のピストンに連結し、炉床部材19は図示しない荷重支持部材を介して加圧装置のフレームで支持されている。 As a material constituting the block 13 having a predetermined shape, a mold material that exhibits softening properties at a high temperature, such as martensitic stainless steel, can be used. And as shown in FIG. 2, the block 13 is arrange | positioned in a heating furnace with the one surface side facing the master type | mold 12, and the inside of a heating furnace is evacuated and heated. Here, the master die 12 is a hearth member 19 of a heating furnace via a support base 18 made of a material exhibiting high strength, high hardness, and hardly deformability at high temperatures, for example, alumina which is an example of ceramics. It is placed on top. On the other side of the block 13, a cylindrical pressure member 20 made of a material exhibiting high strength, high hardness, and hardly deformability at high temperatures, for example, alumina, which is an example of ceramics, is disposed. Yes. The master mold 12, the block 13, and the front side of the pressure member 20 are made of a material that exhibits high strength, high hardness, and hardly deformability at high temperatures, for example, high temperature structural ceramics such as alumina, silicon nitride, silicon carbide, etc. The inner diameter of the flat plate 11 is the same as the diameter of the flat plate 11 and is housed in a cylindrical housing member 21 placed on the support base 18. The pressure member 20 is connected to a piston of a pressure device provided outside the heating furnace via a load transmission member (not shown), and the hearth member 19 is a frame of the pressure device via a load support member (not shown). It is supported by.

以上のような構成とすることにより、マスター型12及びブロック13を、ブロック13が顕著な軟化性を示す900℃以上で1200℃以下の軟化温度域に加熱し、加圧部材20を支持台18に向けて移動すると、マスター型12及びブロック13同士が押圧される。このとき、マスター型12、加圧部材20、及び収納部材21は変形せず、ブロック13のみが変形する。そして、ブロック13は、マスター型12、加圧部材20、及び収納部材21で囲まれた状態で加圧されて変形するので、ブロック13の一面側がマスター型12の表面に密着するように変形し、ブロック13の一面側にマスター型12の反転形状が転写される。ここで、マスター型12及びブロック13同士の押圧は、マスター型12とブロック13間に、例えば80〜180kgの荷重を負荷しマスター型12の反転形状をブロック13に転写する。 With the above-described configuration, the master mold 12 and the block 13 are heated to a softening temperature range of 900 ° C. or higher and 1200 ° C. or lower where the block 13 exhibits remarkable softening properties, and the pressure member 20 is supported on the support base 18. When moving toward, the master mold 12 and the blocks 13 are pressed. At this time, the master mold 12, the pressure member 20, and the storage member 21 are not deformed, and only the block 13 is deformed. Since the block 13 is pressurized and deformed in a state surrounded by the master mold 12, the pressure member 20, and the storage member 21, the block 13 is deformed so that one surface side of the block 13 is in close contact with the surface of the master mold 12. The inverted shape of the master mold 12 is transferred to one surface side of the block 13. Here, the pressing between the master mold 12 and the block 13 applies a load of, for example, 80 to 180 kg between the master mold 12 and the block 13 and transfers the inverted shape of the master mold 12 to the block 13.

マスター型12の反転形状をブロック13表面に転写後、ブロック13の冷却を開始する。ブロック13の冷却は、例えば、加熱炉の加熱を停止し、温度の低い不活性ガス、例えば、室温の窒素ガスを加熱炉内に供給しながら排出することにより行なう。これにより、マスター型12の反転形状が転写されたブロック13の急冷による熱処理(焼き入れ)を行なうことができ、ブロック13の硬度を向上できる。なお、窒素ガスの加熱炉内への供給においては、平均降温速度が、例えば10〜30℃/秒となるように窒素ガス供給量及び排出量を調整する。そして、ブロック13の冷却が終了すると、加熱炉から取り出したマスター型12からブロック13を離型し、ブロック13に形成されたマスター型12の平板11の反転形状部分(平坦面)の基準高さ位置がモールドベース14の表面の高さ位置に一致するように、モールドベース14内に形成した取付け部22にブロック13をそれぞれ固定する。 After transferring the inverted shape of the master mold 12 to the surface of the block 13, the cooling of the block 13 is started. The cooling of the block 13 is performed by, for example, stopping heating of the heating furnace and discharging while supplying an inert gas having a low temperature, for example, nitrogen gas at room temperature, into the heating furnace. Thereby, the heat treatment (quenching) by rapid cooling of the block 13 to which the inverted shape of the master mold 12 is transferred can be performed, and the hardness of the block 13 can be improved. In the supply of nitrogen gas into the heating furnace, the nitrogen gas supply amount and the discharge amount are adjusted so that the average temperature drop rate is, for example, 10 to 30 ° C./second. When the cooling of the block 13 is completed, the block 13 is released from the master mold 12 taken out from the heating furnace, and the reference height of the inverted shape portion (flat surface) of the flat plate 11 of the master mold 12 formed in the block 13 is released. The blocks 13 are respectively fixed to the mounting portions 22 formed in the mold base 14 so that the positions coincide with the height positions of the surface of the mold base 14.

ブロック13にはマスター型12の平板11と原型10の反転形状が形成されるので、ブロック13の平坦面を基準としてブロック13をモールドベース14に固定するようにすると、モールドベース14の表面の高さ位置にブロック13に形成された平板11の反転形状部分の高さ位置が一致して、ブロック13の位置決めを正確に行なうことができる。このため、原型10の形状、寸法、及び表面性状が同一の反転形状が転写された複数のブロック13を、その高さ位置が同一になるように位置決めを行ないながらモールドベース14に固定すると、形状誤差、形状ばらつき、及び表面性状のばらつきがない高品質の複数個取り転写金型15を容易に製造することができる。 Since the inverted shape of the flat plate 11 of the master mold 12 and the original mold 10 is formed in the block 13, if the block 13 is fixed to the mold base 14 with the flat surface of the block 13 as a reference, the height of the surface of the mold base 14 is increased. The height position of the inverted shape portion of the flat plate 11 formed on the block 13 coincides with the vertical position so that the block 13 can be positioned accurately. For this reason, when the plurality of blocks 13 to which the inverted shapes having the same shape, dimensions, and surface properties of the prototype 10 are transferred are fixed to the mold base 14 while being positioned so that their height positions are the same, It is possible to easily manufacture a high-quality multi-piece transfer mold 15 that is free from errors, variations in shape, and variations in surface properties.

図3に示すように、マスター型12に対向して加熱炉内に配置されたブロック23においては、マスター型12に対向するブロック23の一面側にマスター型12の概略反転形状23aが予め形成されている。概略反転形状23aを形成することで、マスター型12の反転形状が形成される際のブロック23における軟化変形量を少なくすることができ、マスター型12の反転形状をブロック23に迅速に転写することができる。更に、マスター型12の反転形状が形成されたブロック23をモールドベース14内に取付ける際に必要なブロック23周囲の加工量も少なくできる。 As shown in FIG. 3, in the block 23 arranged in the heating furnace so as to face the master mold 12, a roughly inverted shape 23 a of the master mold 12 is previously formed on one surface side of the block 23 facing the master mold 12. ing. By forming the generally inverted shape 23a, the amount of softening deformation in the block 23 when the inverted shape of the master die 12 is formed can be reduced, and the inverted shape of the master die 12 can be quickly transferred to the block 23. Can do. Furthermore, the amount of processing around the block 23 required when the block 23 formed with the inverted shape of the master mold 12 is mounted in the mold base 14 can be reduced.

図4に示すように、本発明の第2の実施の形態に係る転写金型製造方法は、本発明の第1の実施の形態に係る転写金型製造方法と比較して、マスター型12の反転形状が形成されるブロック24が、マスター型12に対向する面のみを露出させて、高温で高強度、高硬度、かつ難変形性を示す高温用素材で構成された保持部材25に形成された凹部26に挿入されていることが特徴となっており、第2の実施の形態に係る転写金型製造方法における各工程の内容は第1の実施の形態に係る転写金型製造方法における各工程の内容と同一である。このため、保持部材25の凹部26に挿入されたブロック24に関してのみ説明する。 As shown in FIG. 4, the transfer mold manufacturing method according to the second embodiment of the present invention is different from the transfer mold manufacturing method according to the first embodiment of the present invention. A block 24 in which an inverted shape is formed is formed on a holding member 25 made of a high-temperature material that exhibits high strength, high hardness, and hardly deformability at high temperatures, exposing only the surface facing the master mold 12. The contents of each step in the transfer mold manufacturing method according to the second embodiment are the same as those of the transfer mold manufacturing method according to the first embodiment. The content of the process is the same. Therefore, only the block 24 inserted into the recess 26 of the holding member 25 will be described.

ブロック24を構成する素材としては、高温で軟化性を示す金型素材、例えば、マルテンサイト系ステンレス合金が利用できる。また、保持部材25を構成する高温で高強度、高硬度、かつ難変形性を示す高温用素材として、例えば、1000℃における引っ張り強度が150MPa以上、ビッカース硬度が100以上であるタングステン、モリブデン等が使用できる。更に、保持部材25には、ブロック24にマスター型12の反転形状を転写する際に、ブロック24内に圧入されるマスター型12の原型10部分が排除した金型素材の収容が可能な空間部26aが凹部26に連通して形成されている。
このため、マスター型12の反転形状がブロック24に転写される際、ブロック24は保持部材25の凹部26に挿入され露出面はマスター型12に押圧されて密閉状態となるが、マスター型12の反転形状がブロック24に転写される際に排除される金型素材は空間部26aに進入することができ、マスター型12の反転形状をブロック24に確実に転写することができる。
As a material constituting the block 24, a mold material showing softening properties at a high temperature, for example, a martensitic stainless alloy can be used. Further, as a high-temperature material that exhibits high strength, high hardness, and hardly deformability at a high temperature constituting the holding member 25, for example, tungsten, molybdenum, etc. having a tensile strength at 1000 ° C. of 150 MPa or more and a Vickers hardness of 100 or more. Can be used. Furthermore, the holding member 25 is a space that can accommodate the mold material that is excluded from the master 10 portion of the master die 12 that is press-fitted into the block 24 when the inverted shape of the master die 12 is transferred to the block 24. 26 a is formed in communication with the recess 26.
For this reason, when the inverted shape of the master mold 12 is transferred to the block 24, the block 24 is inserted into the recess 26 of the holding member 25 and the exposed surface is pressed against the master mold 12 to be in a sealed state. The mold material that is removed when the inverted shape is transferred to the block 24 can enter the space 26 a, and the inverted shape of the master die 12 can be reliably transferred to the block 24.

ブロック24が変形しても保持部材25は変形しないので、保持部材25の外形及び寸法をモールドベース14内に形成した取付け部22に嵌入可能な形状及び寸法に形成しておくと、マスター型12の反転形状が形成されたブロック24と一体化した保持部材25をモールドベース14の取付け部22に容易に固定することができる。ここで、ブロック24にはマスター型12の平板11と原型10の反転形状が形成されているので、ブロック24に形成された平板11の反転形状部分を基準として、保持部材25と一体化したブロック24を取付け部22に固定することで、モールドベース14に対するブロック24の高さ位置の位置決めを正確に行なうことができる。その結果、複数のブロック24をモールドベース14に固定する際にも各ブロック24の高さ位置の位置決めを正確かつ容易に行なうことができ、形状誤差及び形状ばらつきがない複数個取り転写金型を形成できる。 Even if the block 24 is deformed, the holding member 25 is not deformed. Therefore, if the outer shape and size of the holding member 25 are formed into a shape and size that can be fitted into the mounting portion 22 formed in the mold base 14, the master die 12. The holding member 25 integrated with the block 24 having the inverted shape can be easily fixed to the mounting portion 22 of the mold base 14. Here, since the inverted shape of the flat plate 11 of the master mold 12 and the original mold 10 is formed in the block 24, the block integrated with the holding member 25 on the basis of the inverted shape portion of the flat plate 11 formed in the block 24. By fixing 24 to the attachment portion 22, the height position of the block 24 with respect to the mold base 14 can be accurately positioned. As a result, even when the plurality of blocks 24 are fixed to the mold base 14, the height position of each block 24 can be accurately and easily determined, and a plurality of transfer molds free from shape error and shape variation can be obtained. Can be formed.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載した構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
例えば、ブロックとマスター型の加熱を真空中で行なったが、不活性ガス雰囲気中、例えば、窒素ガス雰囲気中又はアルゴンガス雰囲気中で行なうこともできる。また、加熱炉でマスター型の反転形状が転写されたブロックの冷却速度を調整し熱処理(急冷)を行なう場合、アルゴンガスを加熱炉内に供給することにより行なうこともできる。
更に、第2の実施の形態で、ブロックのマスター型に対向する側にマスター型の概略反転形状を予め形成しておいてもよい。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above-described embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included.
For example, the block and the master mold are heated in a vacuum, but can be performed in an inert gas atmosphere, for example, in a nitrogen gas atmosphere or an argon gas atmosphere. In addition, when heat treatment (rapid cooling) is performed by adjusting the cooling rate of the block on which the master-type inverted shape is transferred in the heating furnace, it can also be performed by supplying argon gas into the heating furnace.
Furthermore, in the second embodiment, an approximately inverted shape of the master mold may be formed in advance on the side of the block facing the master mold.

(A)、(B)、(C)は本発明の第1の実施の形態に係る転写金型製造方法の説明図である。(A), (B), (C) is explanatory drawing of the transfer metal mold | die manufacturing method which concerns on the 1st Embodiment of this invention. 同転写金型製造方法でブロックにマスター型の反転形状を転写する際の説明図である。It is explanatory drawing at the time of transferring the reverse shape of a master type | mold to a block with the transfer mold manufacturing method. 変形例に係るブロックの説明図である。It is explanatory drawing of the block which concerns on a modification. 本発明の第2の実施の形態に係る転写金型製造方法で用いるブロックの説明図である。It is explanatory drawing of the block used with the transfer die manufacturing method which concerns on the 2nd Embodiment of this invention.

10:原型、11:平板、12:マスター型、13:ブロック、14:モールドベース、15:転写金型、16:マシニングセンタ、17:ダイヤモンド工具、18:支持台、19:炉床部材、20:加圧部材、21:収納部材、22:取付け部、23、ブロック、23a:概略反転形状、24:ブロック、25:保持部材、26:凹部、26a:空間部 10: prototype, 11: flat plate, 12: master mold, 13: block, 14: mold base, 15: transfer mold, 16: machining center, 17: diamond tool, 18: support base, 19: hearth member, 20: Pressurizing member, 21: storage member, 22: mounting portion, 23, block, 23a: roughly inverted shape, 24: block, 25: holding member, 26: recessed portion, 26a: space portion

Claims (6)

1200℃を超える高温で高強度、高硬度、かつ難変形性を示す素材を用いて、離型性を有する製品と同一形状の原型が平板上に形成されたマスター型を作製する第1工程と、
高温で軟化性を示す金型素材で構成された所定形状のブロックを前記マスター型に対向させて加熱炉内に配置し、真空中又は不活性ガス雰囲気中で前記金属素材を900℃以上1200℃以下の温度域まで加熱して前記マスター型及び前記ブロック同士を押圧し該ブロックに該マスター型の反転形状を転写する第2工程と、
前記マスター型の反転形状が転写された前記ブロックを冷却して前記マスター型から離型し、前記ブロックに形成された前記マスター型の前記平板の反転形状部分の基準高さ位置がモールドベースの表面の高さ位置に一致するように前記ブロックを前記モールドベースに固定して転写金型を形成する第3工程とを有することを特徴とする転写金型製造方法。
A first step of producing a master mold in which an original mold having the same shape as a product having releasability is formed on a flat plate using a material exhibiting high strength, high hardness and hardly deformability at a high temperature exceeding 1200 ° C .; ,
A block having a predetermined shape made of a mold material exhibiting softening properties at high temperature is placed in a heating furnace so as to face the master mold, and the metal material is placed in a vacuum or in an inert gas atmosphere at 900 ° C. or more and 1200 ° C. A second step of heating to the following temperature range and pressing the master mold and the blocks to transfer the inverted shape of the master mold to the block;
The block to which the inverted shape of the master mold is transferred is cooled and released from the master mold, and the reference height position of the inverted shape portion of the flat plate of the master mold formed on the block is the surface of the mold base. And a third step of forming the transfer mold by fixing the block to the mold base so as to coincide with the height position of the transfer mold.
請求項1記載の転写金型製造方法において、前記モールドベースに複数の取付け部を形成し、該各取付け部に前記マスター型の反転形状が転写された前記ブロックをそれぞれ固定することを特徴とする転写金型製造方法。 The transfer mold manufacturing method according to claim 1, wherein a plurality of attachment portions are formed on the mold base, and the blocks on which the inverted shape of the master mold is transferred are fixed to the attachment portions, respectively. Transfer mold manufacturing method. 請求項1又は2記載の転写金型製造方法において、前記ブロックは、高温で高強度、高硬度、かつ難変形性を示す高温用素材で構成された保持部材に形成された凹部に挿入され、前記マスター型に対向する面のみが該保持部材から露出していることを特徴とする転写金型製造方法。 In the transfer mold manufacturing method according to claim 1 or 2, the block is inserted into a recess formed in a holding member made of a high temperature material exhibiting high strength, high hardness, and hardly deformability at high temperature, Only the surface facing the master mold is exposed from the holding member. 請求項3記載の転写金型製造方法において、前記保持部材には、前記ブロックに前記マスター型の反転形状を転写する際に排除される前記金型素材の収容が可能な空間部が前記凹部に連通して形成されていることを特徴とする転写金型製造方法。 4. The transfer mold manufacturing method according to claim 3, wherein the holding member has a space in the recess that can accommodate the mold material that is excluded when the inverted shape of the master mold is transferred to the block. A transfer mold manufacturing method characterized by being formed in communication. 請求項1〜4のいずれか1項に記載の転写金型製造方法において、前記ブロックで前記マスター型に対向する側には、前記マスター型の反転形状より小さい概略反転形状が予め形成されていることを特徴とする転写金型製造方法。 5. The transfer mold manufacturing method according to claim 1, wherein a rough reversal shape smaller than the reversal shape of the master die is formed in advance on the side of the block facing the master die. A transfer mold manufacturing method characterized by the above. 請求項1〜のいずれか1項に記載の転写金型製造方法において、不活性ガスを前記加熱炉内に供給して前記マスター型の反転形状が転写された前記ブロックの冷却速度を調整し該ブロックの熱処理を行なうことを特徴とする転写金型製造方法。 The transfer mold manufacturing method according to any one of claims 1 to 5 , wherein an inert gas is supplied into the heating furnace to adjust a cooling rate of the block on which the inverted shape of the master mold is transferred. A method for producing a transfer mold, wherein the block is heat-treated.
JP2007160392A 2007-06-18 2007-06-18 Transfer mold manufacturing method Active JP5286471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007160392A JP5286471B2 (en) 2007-06-18 2007-06-18 Transfer mold manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007160392A JP5286471B2 (en) 2007-06-18 2007-06-18 Transfer mold manufacturing method

Publications (2)

Publication Number Publication Date
JP2008307856A JP2008307856A (en) 2008-12-25
JP5286471B2 true JP5286471B2 (en) 2013-09-11

Family

ID=40235885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007160392A Active JP5286471B2 (en) 2007-06-18 2007-06-18 Transfer mold manufacturing method

Country Status (1)

Country Link
JP (1) JP5286471B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8939115B2 (en) 2009-11-18 2015-01-27 Harley-Davidson Motor Company Group, LLC Cylinder head cooling system
JP5732157B1 (en) * 2014-03-07 2015-06-10 株式会社環境フォトニクス Light irradiation device
CN105599181A (en) * 2016-02-14 2016-05-25 余启佳 Simulated water chestnut mold making method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5441050B2 (en) * 2009-03-13 2014-03-12 福岡県 Method for manufacturing transfer mold nest, transfer mold nest, and transfer mold nest used therein
JP6924006B2 (en) * 2016-05-09 2021-08-25 デクセリアルズ株式会社 A method for manufacturing a replica master and a method for manufacturing an object to be formed.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259519A (en) * 1991-02-13 1992-09-16 Seiko Electronic Components Ltd Injection mold
JPH11151759A (en) * 1997-11-21 1999-06-08 Matsushita Electric Ind Co Ltd Optical element, its production, mold used therein, production of molding material, and mold for molding material
JP4688075B2 (en) * 2001-07-13 2011-05-25 豊 三原 Micropart mold and manufacturing method thereof
JP2004001535A (en) * 2003-06-23 2004-01-08 Fujitsu Ltd Method for manufacturing mold

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8939115B2 (en) 2009-11-18 2015-01-27 Harley-Davidson Motor Company Group, LLC Cylinder head cooling system
JP5732157B1 (en) * 2014-03-07 2015-06-10 株式会社環境フォトニクス Light irradiation device
CN105599181A (en) * 2016-02-14 2016-05-25 余启佳 Simulated water chestnut mold making method

Also Published As

Publication number Publication date
JP2008307856A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP5286471B2 (en) Transfer mold manufacturing method
CN103974915B (en) The forming device of glass framework and manufacturing process
CN104137253A (en) Semiconductor device and method for manufaturing same
JP5441050B2 (en) Method for manufacturing transfer mold nest, transfer mold nest, and transfer mold nest used therein
JP2011105559A (en) Mold for optical device and method for molding the optical device
JP5883317B2 (en) Mold press molding apparatus and optical element manufacturing method
JP2012116697A (en) Molding die for optical element and method of molding optical element
CN114590989A (en) Forming mold, method for preparing glass shell and electronic device
JP5121610B2 (en) Optical element molding method and optical element molding material
CN207842135U (en) The pressue device of air hermetic continuous hot-press molding machine
JP5038018B2 (en) Method for manufacturing a reflective optical element
JP3759533B2 (en) Optical element manufacturing apparatus and manufacturing method
JP7043036B2 (en) Manufacturing method of nesting for new transfer molds
US20030046958A1 (en) Optical element molding die
WO2023032414A1 (en) Mold for glass molding and method for molding glass molded article
JP2016128380A (en) Mold pressing apparatus, and manufacturing method of optical element
JP2009215140A (en) Manufacturing method of optical element and die assembly for manufacturing the same
JP2001354435A (en) Formed die and formed method for optical element
KR100355701B1 (en) Producing method for golf ball mold
JP2017071534A (en) Glass molding apparatus, and glass molding method
JP5430092B2 (en) Optical element molding method
JP2012158490A (en) Apparatus and method for manufacturing optical element
JP4030799B2 (en) Optical element molding method
JP5312968B2 (en) Optical component and method of manufacturing optical component
KR950002227B1 (en) Device and method for shaping of glass lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Ref document number: 5286471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250