JP7043036B2 - Manufacturing method of nesting for new transfer molds - Google Patents

Manufacturing method of nesting for new transfer molds Download PDF

Info

Publication number
JP7043036B2
JP7043036B2 JP2017225877A JP2017225877A JP7043036B2 JP 7043036 B2 JP7043036 B2 JP 7043036B2 JP 2017225877 A JP2017225877 A JP 2017225877A JP 2017225877 A JP2017225877 A JP 2017225877A JP 7043036 B2 JP7043036 B2 JP 7043036B2
Authority
JP
Japan
Prior art keywords
mold
manufacturing
shape
transfer
nest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017225877A
Other languages
Japanese (ja)
Other versions
JP2019093651A (en
Inventor
義博 谷川
善九 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuoka Prefectural Government
Original Assignee
Fukuoka Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuoka Prefectural Government filed Critical Fukuoka Prefectural Government
Priority to JP2017225877A priority Critical patent/JP7043036B2/en
Publication of JP2019093651A publication Critical patent/JP2019093651A/en
Application granted granted Critical
Publication of JP7043036B2 publication Critical patent/JP7043036B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、微細な形状及び構造を有する製品の製造に用いられる転写金型用入れ子を、容易かつ低コストで製造可能であり、かつ微細構造の転写精度に優れた転写金型用入れ子の製造方法に関する。 INDUSTRIAL APPLICABILITY According to the present invention, a transfer mold nest used for manufacturing a product having a fine shape and structure can be manufactured easily and at low cost, and a transfer mold nest having excellent fine structure transfer accuracy can be manufactured. Regarding the method.

現在、携帯電話に代表されるように多くの電子機器やデジタル家電では、開発の方向性が高機能化、高精度化、及び小型化に向いている。そして、これらの製品が高精度化、小型化すれば、これらを構成している構成部品も高精度化、小型化、及び微細化する必要がある。一方、量産部品の製造には、一般に金型が使用されており、部品が高精度化、小型化、微細化すれば、金型も高精度化、小型化、微細化することが要求され、金型の製造においては品質の安定化、低価格化、納期短縮化を満足した上で、高精度化、小型化、微細化に対応することが要求される。 Currently, in many electronic devices and digital home appliances such as mobile phones, the direction of development is toward higher functionality, higher precision, and smaller size. If these products are made more accurate and smaller, the components constituting them also need to be made more accurate, smaller, and miniaturized. On the other hand, molds are generally used in the manufacture of mass-produced parts, and if parts are made highly accurate, miniaturized, and miniaturized, the molds are also required to be highly accurate, miniaturized, and miniaturized. In the manufacture of molds, it is required to respond to high precision, miniaturization, and miniaturization while satisfying the stability of quality, price reduction, and shortening of delivery time.

ここで、小型化、微細化した部品を量産する場合、同時に数十~数百個の部品が製造できる複数個取り金型が使用される。このため、複数個取り金型を製造する場合、金型素材で構成された1つのブロック内に部品の反転形状を、工作機械(例えば、マシニングセンタ)を用いて複数個形成した後、熟練工が手磨きによる仕上げ加工を行なっている。このため、部品の反転形状が小型化、微細化すれば、工具形状の制約から反転形状の形状精度が低下し、更に仕上げ加工においては形状誤差、形状のばらつきという問題が生じる。そして、形状誤差、形状のばらつきが発生すると、金型品質の安定化、納期短縮化にも対応できないという問題が生じる。そこで、製造しようとする部品形状を有する原型を1つ正確に作製し、この原型を超塑性金属からなるブロックで上下から挟んで加圧して原型の形状をブロックに転写することで、金型品質が安定した(形状誤差、形状のばらつきのない)金型を短納期で製造する方法が開示されている(例えば、特許文献1参照)。 Here, when mass-producing miniaturized and miniaturized parts, a plurality of cutting dies capable of manufacturing tens to hundreds of parts at the same time are used. For this reason, when manufacturing a plurality of molds, a skilled worker manually forms a plurality of inverted shapes of parts in one block made of a mold material by using a machine tool (for example, a machining center). Finishing is done by polishing. Therefore, if the inverted shape of the component is miniaturized and miniaturized, the shape accuracy of the inverted shape is lowered due to the restriction of the tool shape, and there are problems of shape error and shape variation in the finishing process. When shape error and shape variation occur, there arises a problem that the mold quality cannot be stabilized and the delivery time cannot be shortened. Therefore, by accurately producing one prototype with the shape of the part to be manufactured, sandwiching this prototype with a block made of superplastic metal from above and below, and pressing it to transfer the shape of the prototype to the block, the mold quality. Disclosed is a method for manufacturing a stable mold (without shape error and shape variation) in a short delivery time (see, for example, Patent Document 1).

しかしながら、特許文献1に記載の発明では、超塑性金属素材で構成されたブロックで原型を両側から挟み込んで反転形状が転写された分割金型を作製するため、製品上における分割位置の位置決めが非常に難しく、形状誤差及び形状ばらつきを防止して品質が安定した複数個取り金型を製造することが困難となる。 However, in the invention described in Patent Document 1, since the prototype is sandwiched between blocks made of a superplastic metal material from both sides to produce a split mold in which the inverted shape is transferred, the positioning of the split position on the product is very difficult. It is difficult to manufacture a plurality of die with stable quality by preventing shape error and shape variation.

特許文献2には、被成形品型に基づいたパーティング面形状を第1の転写型に転写する第1の工程と、上記第1の転写型に基づいてパーティング面形状を第2の転写型に転写する第2の工程と、上記第2の転写型のパーティング面形状に沿って配設される超塑性合金板を加熱下において第2の転写型に向かって加圧することにより塑性変形してパーティング面材を形成する第3の工程と、上記パーティング面材の背面に支持型を一体成形する第4の工程とから成ることを特徴とする成形用金型の製造方法が開示されている。 Patent Document 2 describes a first step of transferring a parting surface shape based on a molded product mold to a first transfer mold, and a second transfer of a parting surface shape based on the first transfer mold. The second step of transferring to the mold and the plastic deformation by pressurizing the superplastic alloy plate arranged along the parting surface shape of the second transfer mold toward the second transfer mold under heating. Disclosed is a method for manufacturing a molding die, which comprises a third step of forming a parting face material and a fourth step of integrally molding a support mold on the back surface of the parting face material. Has been done.

しかしながら、特許文献2に記載の発明は、工程が煩雑である上に、大型の金型を製造するための技術であり、微細構造を有する物品製造用の金型の製造には適していない。 However, the invention described in Patent Document 2 is a technique for manufacturing a large-sized mold in addition to the complicated process, and is not suitable for manufacturing a mold for manufacturing an article having a fine structure.

特許文献3には、製品が高精度、小型化、微細化しても形状の誤差及びばらつきを防止した複数個取り転写金型を低価格かつ短納期で製造できる転写金型用入れ子の製造方法として、1200℃を超える高温で高い強度、硬度及び耐変形性を有するセラミックス等の素材を用いて、製品と同一形状の原型が形成されたマスター型を作製する第1工程と、1200℃以下の温度で軟化性を示す金型素材で構成され、前記マスター型の形状が転写される転写面から所定の距離を隔てた内部に、前記マスター型の反転形状を転写する際に排除される前記金型素材の収容が可能な空間部が形成された柱状の入れ子部材を前記転写面側で前記マスター型に対向させて加熱炉内に配置し、前記金型素材が軟化性を示す温度域まで前記入れ子部材を加熱して前記マスター型及び前記入れ子部材同士を押圧し該入れ子部材の転写面側に該マスター型の反転形状を転写する第2工程と、前記マスター型の反転形状が転写された前記入れ子部材を冷却して前記マスター型から離型する第3工程とを有することを特徴とすることを特徴とする転写金型用入れ子の製造方法が開示されている。 Patent Document 3 describes as a method for manufacturing a nest for a transfer die, which can manufacture a plurality of transfer dies that prevent shape errors and variations even if the product is highly accurate, miniaturized, and miniaturized, at a low cost and in a short delivery time. The first step of producing a master mold in which a prototype having the same shape as the product is formed using a material such as ceramics having high strength, hardness and deformation resistance at a high temperature of over 1200 ° C, and a temperature of 1200 ° C or less. The mold is made of a mold material exhibiting softness, and is excluded when the inverted shape of the master mold is transferred to the inside at a predetermined distance from the transfer surface on which the shape of the master mold is transferred. A columnar nesting member having a space for accommodating the material is placed in the heating furnace facing the master mold on the transfer surface side, and the nesting is performed up to a temperature range in which the mold material exhibits softness. The second step of heating the member to press the master mold and the nested member against each other to transfer the inverted shape of the master mold to the transfer surface side of the nested member, and the nest to which the inverted shape of the master mold is transferred. Disclosed is a method for manufacturing a nest for a transfer die, which comprises a third step of cooling a member and removing the die from the master die.

特開昭52-7326号公報Japanese Unexamined Patent Publication No. 52-7326 特開平2-169207号公報Japanese Unexamined Patent Publication No. 2-169207 特開2010-214624号公報Japanese Unexamined Patent Publication No. 2010-214624

しかしながら、特許文献3に記載の発明においては、セラミックス等の高い強度を有するが脆い素材を用いて微細構造を有するマスター型を製造する際に、折損等が発生するおそれがあるという問題がある。また、マスター型の反転形状を金型素材に転写する際に、1200℃程度の高温に加熱する必要があるため、転写金型用入れ子の製造時におけるエネルギーコストが高くなるという問題がある。 However, the invention described in Patent Document 3 has a problem that breakage or the like may occur when a master mold having a fine structure is manufactured by using a high-strength but brittle material such as ceramics. Further, when the inverted shape of the master mold is transferred to the mold material, it is necessary to heat it to a high temperature of about 1200 ° C., so that there is a problem that the energy cost at the time of manufacturing the nest for the transfer mold is high.

本発明はかかる事情に鑑みてなされたもので、微細な形状及び構造を有する製品の製造に用いられる転写金型用入れ子を、容易かつ低コストで製造可能であり、かつ微細構造の転写精度に優れた転写金型用入れ子の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is possible to easily and inexpensively manufacture a nest for a transfer mold used for manufacturing a product having a fine shape and structure, and to improve the transfer accuracy of the fine structure. It is an object of the present invention to provide an excellent method for manufacturing a nesting for a transfer mold.

前記目的に沿う本発明は、分割面で開閉可能であり、閉じた状態で製品の表面形状の反転形状が転写されたキャビティを有する一対の転写金型用入れ子を製造する方法であって、第1の金属素材からなり、前記製品の表面形状の少なくとも一部と同一の表面形状を有する原型が形成されたマスター型を形成する第1の工程と、前記第1の金属素材よりも低温で軟化するアルミニウム合金からなる入れ子部材の少なくとも一部を、前記第1の金属素材は軟化せず、前記アルミニウム合金が軟化する240℃以上400℃以下の温度に加熱しながら前記マスター型に押圧し、前記原型の表面形状の反転形状を前記入れ子部材に転写後、前記原型の表面形状の反転形状が転写された前記入れ子部材の前記分割面の算術平均表面粗さが、0.1μm以上1μm以下となるように、前記マスター型を押圧した側の面を切削又は研削加工する第2の工程を有することを特徴とする転写金型用入れ子の製造方法を提供することにより上記課題を解決するものである。 The present invention according to the above object is a method for producing a pair of nests for a transfer mold, which can be opened and closed at a split surface and has a cavity in which an inverted shape of the surface shape of a product is transferred in a closed state. The first step of forming a master mold made of one metal material and having a prototype having the same surface shape as at least a part of the surface shape of the product, and softening at a lower temperature than the first metal material. At least a part of the nested member made of the aluminum alloy is pressed against the master die while being heated to a temperature of 240 ° C. or higher and 400 ° C. or lower at which the first metal material does not soften and the aluminum alloy softens. After transferring the inverted shape of the surface shape of the prototype to the nested member, the arithmetic average surface roughness of the divided surface of the nested member to which the inverted shape of the surface shape of the prototype is transferred becomes 0.1 μm or more and 1 μm or less. As described above, the above problem is solved by providing a method for manufacturing a nest for a transfer die, which comprises a second step of cutting or grinding the surface on the side where the master die is pressed. ..

本発明に係る転写金型用入れ子の製造方法において、前記第2の工程において、前記入れ子部材の、前記マスター型に押圧される面及びその近傍を加熱することが好ましい。 In the method for manufacturing a nest for a transfer die according to the present invention, it is preferable to heat the surface of the nesting member pressed by the master mold and its vicinity in the second step.

本発明に係る転写金型用入れ子の製造方法において、前記第1の金属素材が金型用鋼材であってもよい。 In the method for manufacturing a nest for a transfer mold according to the present invention, the first metal material may be a steel material for a mold.

本発明に係る転写金型用入れ子の製造方法において、前記アルミニウム合金がアルミニウム合金A7075であることが好ましい。 In the method for producing a nest for a transfer mold according to the present invention, it is preferable that the aluminum alloy is the aluminum alloy A7075.

本発明に係る転写金型用入れ子の製造方法は、樹脂材料の射出成形用金型用の入れ子の製造方法であってもよい。 The method for manufacturing a nest for a transfer die according to the present invention may be a method for manufacturing a nest for an injection molding die of a resin material.

本発明に係る転写金型用入れ子の製造方法では、マスター型の形成に金型用鋼材等の金属素材(第1の金属素材)を用いることにより、セラミックス等の素材を用いる場合に比べ、マスター型の形成の際にマスター型が破損するおそれを小さくすることができる。特に、微細な形状及び構造を有するマスター型が必要な場合、破損のリスクを低減しつつ高い寸法精度でマスター型を形成できる。また、入れ子部材の素材として、マスター型の製作に用いる第1の金属素材よりも低温で軟化する第2の金属素材を用い、入れ子部材へのマスター型の反転形状の転写を、第1の金属素材は軟化せず、前記第2の金属素材が軟化する温度に入れ子部材の少なくとも一部を加熱することにより行うため、従来の方法よりもエネルギーコストを低減させつつ、高い転写精度で入れ子部材を製造することができる。 In the method for manufacturing a nest for a transfer mold according to the present invention, by using a metal material (first metal material) such as a steel material for a mold for forming a master mold, a master is compared with a case where a material such as ceramics is used. The risk of damage to the master mold during mold formation can be reduced. In particular, when a master mold having a fine shape and structure is required, the master mold can be formed with high dimensional accuracy while reducing the risk of breakage. Further, as the material of the nesting member, a second metal material that softens at a lower temperature than the first metal material used for manufacturing the master mold is used, and the transfer of the inverted shape of the master mold to the nesting member is performed by the first metal. Since the material is not softened and at least a part of the nested member is heated to a temperature at which the second metal material is softened, the nested member can be made with high transfer accuracy while reducing the energy cost as compared with the conventional method. Can be manufactured.

第2の金属素材として、アルミニウム合金A7075等のアルミニウム合金を用いる場合、マスター型の入れ子部材への転写の際の入れ子部材の少なくとも一部の加熱温度を、240℃以上400℃以下という低温にすることができるため、転写金型用入れ子の製造コストを大幅に低減できる。更に、入れ子部材として金型用鋼材を用いる場合よりも、樹脂等の材料に対する離型性を向上できるため、例えば、直径又は幅が10μm以上100μm以下の微細形状を含む微細構造を有する樹脂製品の射出成形金型用の入れ子部材として、特に好適に用いることができる。 When an aluminum alloy such as aluminum alloy A7075 is used as the second metal material, the heating temperature of at least a part of the nested member at the time of transfer to the master type nested member is set to a low temperature of 240 ° C. or higher and 400 ° C. or lower. Therefore, the manufacturing cost of the nesting for the transfer mold can be significantly reduced. Further, since the mold releasability for a material such as a resin can be improved as compared with the case where a steel material for a mold is used as a nesting member, for example, a resin product having a fine structure including a fine shape having a diameter or width of 10 μm or more and 100 μm or less. It can be particularly preferably used as a nesting member for an injection molding die.

更に、原型の表面形状の反転形状が転写された入れ子部材の分割面の算術平均表面粗さが0.1μm以上1μm以下となるように加工することにより、キャビティの内部の空気や溶融樹脂から発生するガスを排出するためのガスベントの設置が不要になる。 Further, by processing the split surface of the nested member to which the inverted shape of the prototype surface shape is transferred so that the arithmetic average surface roughness is 0.1 μm or more and 1 μm or less, it is generated from the air inside the cavity or the molten resin. There is no need to install a gas vent to discharge the gas.

本発明の一実施の形態に係る転写金型用入れ子の製造方法により製造される一対の転写金型用入れ子の模式的な構造を示す概略断面図である。It is schematic cross-sectional view which shows the schematic structure of the pair of transfer mold nests manufactured by the manufacturing method of the transfer mold nest which concerns on one Embodiment of this invention. 同転写金型用入れ子の製造方法の第1の工程において製造されるマスター型の模式的な構造を示す概略断面図である。It is a schematic cross-sectional view which shows the schematic structure of the master mold manufactured in the 1st step of the manufacturing method of the nest for the transfer mold. 同転写金型用入れ子の製造方法の第2の工程を示す模式図である。It is a schematic diagram which shows the 2nd process of the manufacturing method of the nest for the transfer die. 同転写金型用入れ子の製造方法の第2の工程を示す模式図である。It is a schematic diagram which shows the 2nd process of the manufacturing method of the nest for the transfer die. 同転写金型用入れ子の製造方法において、マスター型の反転形状が転写された入れ子部材を切削して、転写金型用入れ子を製造する工程を示す模式図である。It is a schematic diagram which shows the process of manufacturing the nesting for a transfer die by cutting the nesting member which transferred the inverted shape of a master die in the manufacturing method of the nesting for a transfer die. マイクロニードルの射出成形用金型の製造に使用するマスター型の形状の一例を示す図である。It is a figure which shows an example of the shape of the master mold used for manufacturing the mold for injection molding of a microneedle.

本発明の一の実施の形態に係る転写金型用入れ子の製造方法(以下、「転写金型用入れ子の製造方法」と略称する場合がある。)は、図1から4に示すように、分割面11、11aで開閉可能であり、閉じた状態で製品の表面形状の反転形状が転写されたキャビティ14を有する一対の転写金型用入れ子(固定側入れ子12及び可動側入れ子13)を製造する方法であって、第1の金属素材からなり、製品の表面形状22の少なくとも一部と同一の表面形状を有する原型23、23aが形成されたマスター型21、21aを形成する第1の工程と、第1の金属素材よりも低温で軟化する第2の金属素材からなる入れ子部材31の少なくとも一部を、第1の金属素材は軟化せず、第2の金属素材が軟化する温度に加熱しながらマスター型21、21aに押圧し、原型23、23aの反転形状32、32aを入れ子部材31に転写する第2の工程を有している。 As shown in FIGS. 1 to 4, the method for manufacturing a transfer mold nest according to an embodiment of the present invention (hereinafter, may be abbreviated as “method for manufacturing a transfer mold nest”) is as shown in FIGS. Manufactures a pair of transfer mold nests (fixed side nest 12 and movable side nest 13) that can be opened and closed on the divided surfaces 11 and 11a and have a cavity 14 in which the inverted shape of the surface shape of the product is transferred in the closed state. The first step of forming the master molds 21 and 21a, which are made of the first metal material and have the same surface shape as at least a part of the surface shape 22 of the product. And, at least a part of the nesting member 31 made of the second metal material that softens at a lower temperature than the first metal material is heated to a temperature at which the first metal material does not soften and the second metal material softens. The second step is to press the master dies 21 and 21a while transferring the inverted shapes 32 and 32a of the prototypes 23 and 23a to the nesting member 31.

以下、各工程について、より詳細に説明する。 Hereinafter, each step will be described in more detail.

<第1の工程>
第1の工程では、第1の金属素材からなり、製品の表面形状22の少なくとも一部と同一の表面形状を有する原型23、23aが形成されたマスター型21、21aを形成する。マスター型21、21aを構成する第1の金属素材としては、切削加工等により、任意の寸法及び形状のマスター型を形成可能な任意の金属素材を用いることができるが、軟化温度が高く(例えば、400℃以上)、1mm以下、好ましくは数十μmの微細形状の加工に適用可能で、高い硬度を有する金属素材であることが好ましい。好ましい第1の金属素材の具体例としては、金型用鋼材が挙げられる。
<First step>
In the first step, the master molds 21 and 21a, which are made of the first metal material and have the same surface shape as at least a part of the surface shape 22 of the product, are formed. As the first metal material constituting the master molds 21 and 21a, any metal material capable of forming a master mold having an arbitrary size and shape by cutting or the like can be used, but the softening temperature is high (for example). , 400 ° C. or higher), preferably a metal material having a high hardness, which can be applied to the processing of fine shapes of 1 mm or less, preferably several tens of μm. Specific examples of the preferred first metal material include a steel material for a mold.

マスター型21、21aに形成される製品の表面形状22の少なくとも一部は、図2に示すような、製品の表面形状22を分割面Dで2分割した一方の形状であってもよいが、後述する第2の工程において、加熱により軟化させた入れ子部材31をマスター型21、21aに押圧した際に、エッジ部分にRが生じ、原型23、23aの転写精度が低下するのを避けるため、図2に示すように、製品の表面形状22を分割面Dで2分割した一方の形状に、所定の厚さの切削しろを付加した形状であってもよい。マスター型21、21aの形成は、フライス盤の任意の加工機械を用いた切削加工等の任意の方法及び装置により行うことができるが、1mm以下、好ましくは数十μmの微細形状の加工に適用可能な方法であることが好ましい。 At least a part of the surface shape 22 of the product formed on the master molds 21 and 21a may be one of the surface shapes 22 of the product divided into two by the dividing surface D as shown in FIG. In the second step described later, when the nesting member 31 softened by heating is pressed against the master molds 21 and 21a, R is generated at the edge portion to prevent the transfer accuracy of the prototypes 23 and 23a from being lowered. As shown in FIG. 2, the surface shape 22 of the product may be divided into two by the dividing surface D, and a cutting margin having a predetermined thickness may be added to the shape. The master molds 21 and 21a can be formed by any method and device such as cutting using an arbitrary processing machine of a milling machine, but can be applied to processing a fine shape of 1 mm or less, preferably several tens of μm. Method is preferable.

<第2の工程>
図3、4に示すように、第2の工程では、第1の金属素材よりも低温で軟化する第2の金属素材からなる入れ子部材31の少なくとも一部(図3中の網かけ部分)、好ましくは、マスター型21、21aに押圧される面及びその近傍を、第1の金属素材は軟化せず、第2の金属素材が軟化する温度に加熱しながらマスター型21、21aに押圧し、原型23、23aの反転形状32、32aを入れ子部材31に転写する。
<Second step>
As shown in FIGS. 3 and 4, in the second step, at least a part (shaded portion in FIG. 3) of the nested member 31 made of the second metal material that softens at a lower temperature than the first metal material. Preferably, the surface pressed by the master molds 21 and 21a and its vicinity are pressed against the master molds 21 and 21a while being heated to a temperature at which the first metal material does not soften and the second metal material softens. The inverted shapes 32, 32a of the prototypes 23, 23a are transferred to the nested member 31.

入れ子部材31を構成する第2の金属素材としては、マスター型21、21aを構成する第1の金属素材よりも低い温度で軟化し、金型の入れ子部材として使用可能な硬度を有する任意の金属を用いることができる。第2の金属素材の好ましい例としては、アルミニウム合金A7075等のアルミニウム合金が挙げられる。アルミニウム合金A7075は、表面エネルギーの関係から(金型用鋼材の水滴接触角が約76°であるのに対し、アルミニウム合金A7075の水滴接触角は約98°である。)、樹脂に対する離型性が高くなるため、樹脂材料の射出成形用金型、特に微細形状を有する樹脂製品用の金型として、特に好ましい。 As the second metal material constituting the nesting member 31, any metal having a hardness that can be used as a nesting member of the mold by softening at a lower temperature than the first metal material constituting the master molds 21 and 21a. Can be used. Preferred examples of the second metal material include an aluminum alloy such as the aluminum alloy A7075. Due to the surface energy of the aluminum alloy A7075 (the water drop contact angle of the steel material for the mold is about 76 °, the water drop contact angle of the aluminum alloy A7075 is about 98 °), the mold releasability with respect to the resin. This is particularly preferable as a mold for injection molding of a resin material, particularly a mold for a resin product having a fine shape.

反転形状の転写は、入れ子部材31をマスター型21、21aに押圧する面及びその近傍(図3、4の網かけ部分)を、第1の金属素材は軟化せず、第2の金属素材が軟化する温度に加熱しながらマスター型21、21aに押圧することにより行われる。このとき、マスター型21、21aの少なくとも一部が同時に加熱されてもよい。入れ子部材31の加熱温度は、例えば、第2の金属素材がアルミニウム合金A7075である場合、240℃以上400℃以下であることが好ましく、300℃付近であることが特に好ましい。加熱は、任意の手段を用いて行うことができるが、局所的に加熱が可能であり、加熱温度の調節も容易な高周波加熱により行うことが好ましい。転写に要する時間は、加熱温度300℃、第2の金属素材がアルミニウム合金A7075である場合、1分から3分程度である。 In the transfer of the inverted shape, the surface that presses the nested member 31 against the master molds 21 and 21a and its vicinity (the shaded portion in FIGS. 3 and 4) are not softened by the first metal material, and the second metal material is used. This is done by pressing the master molds 21 and 21a while heating to a softening temperature. At this time, at least a part of the master molds 21 and 21a may be heated at the same time. When the second metal material is aluminum alloy A7075, the heating temperature of the nesting member 31 is preferably 240 ° C. or higher and 400 ° C. or lower, and particularly preferably around 300 ° C. The heating can be performed by any means, but it is preferably performed by high frequency heating which can be locally heated and the heating temperature can be easily adjusted. The time required for transfer is about 1 to 3 minutes when the heating temperature is 300 ° C. and the second metal material is the aluminum alloy A7075.

第2の工程において、加熱により軟化させた入れ子部材31をマスター型21、21aに押圧した際に、エッジ部分にRが生じ、原型23、23aの転写精度が低下するのを避けるため、図2に示すように、製品の表面形状22を分割面Dで2分割した一方の形状に、所定の厚さの切削しろを付加した形状である場合、転写金型用入れ子(固定側入れ子12又は可動側入れ子13)を製造するためには、図5に示すように、原型の反転形状32、32aが転写された後の入れ子部材31、31aのマスター型21、21aに押圧した側の表面を分割面D(11、11a)まで、切削又は研削する必要がある。切削又は研削は、任意の手段を用いて行うことができる。 In the second step, when the nested member 31 softened by heating is pressed against the master dies 21 and 21a, R is generated at the edge portion and the transfer accuracy of the prototypes 23 and 23a is prevented from being lowered. As shown in the above, when the surface shape 22 of the product is divided into two by the split surface D and a cutting margin of a predetermined thickness is added to the shape, the nest for the transfer die (fixed side nest 12 or movable). In order to manufacture the side nesting 13), as shown in FIG. 5, the surface of the nesting member 31, 31a after the inverted shape 32, 32a of the prototype is transferred is divided into the surfaces pressed by the master molds 21, 21a. It is necessary to cut or grind to the surface D (11, 11a). Cutting or grinding can be performed by any means.

このようにして得られる一対の転写金型用入れ子である固定側入れ子12、可動側入れ子13は、例えば、樹脂製品の射出成形用金型の入れ子として用いることができる。1mm以下の微細構造を有する形状の転写が可能であるため、固定側入れ子12、可動側入れ子13は、直径100μm程度のマイクロニードル、LEDのパッケージ、スマートフォン用レンズ等の微細な構造を有する樹脂製品の射出成形用金型として好適に用いることができる。この場合において、分割面11又は11aの表面を鏡面仕上げせず、分割面11、11aで接合した固定側入れ子12及び可動側入れ子13の間に形成されるキャビティ14から、接合面11、11aの外周まで、樹脂は流入しないがガスが透過可能なガス流路が形成されるよう、接合面11、11aの算術平均表面粗さ(Ra)が、0.1μm以上1μm以下となるよう研削加工又は切削加工を行うか、キャビティ14から接合面11、11aの外周に至る溝(図示しない)を形成することにより、キャビティ14内部に存在する空気や、溶融した樹脂から発生したガスが排出されるため、従来の樹脂製品用射出成形金型のようにガスベントを形成する必要がなくなり、加工工程を簡略化できる。なお、算術平均表面粗さ(Ra)の測定は、任意の公知の方法及び装置用いて行うことができる。 The fixed side nest 12 and the movable side nest 13, which are a pair of nests for transfer dies thus obtained, can be used, for example, as nests for injection molding dies of resin products. Since it is possible to transfer a shape having a fine structure of 1 mm or less, the fixed side nest 12 and the movable side nest 13 are resin products having a fine structure such as microneedles having a diameter of about 100 μm, LED packages, and smartphone lenses. Can be suitably used as a mold for injection molding. In this case, the surface of the split surface 11 or 11a is not mirror-finished, and the joint surfaces 11 and 11a are formed from the cavity 14 formed between the fixed side nest 12 and the movable side nest 13 joined by the split surfaces 11 and 11a. Grinding or grinding so that the arithmetic average surface roughness (Ra) of the joint surfaces 11 and 11a is 0.1 μm or more and 1 μm or less so that a gas flow path through which the resin does not flow but can permeate is formed up to the outer periphery. By cutting or forming a groove (not shown) from the cavity 14 to the outer periphery of the joint surfaces 11 and 11a, the air existing inside the cavity 14 and the gas generated from the molten resin are discharged. It is no longer necessary to form a gas vent as in the case of conventional injection molding dies for resin products, and the processing process can be simplified. The arithmetic mean surface roughness (Ra) can be measured by any known method and apparatus.

本実施の形態では、固定側入れ子及び可動側入れ子の双方を、本実施の形態に係る転写金型用入れ子の製造方法を用いて製造した場合について説明したが、いずれか一方のみを本実施の形態に係る製造方法で製造してもよい。また、製品形状が分割面に対し対称である場合には、単一のマスター型を用いて固定側入れ子及び可動側入れ子の双方を製造してもよい。 In the present embodiment, the case where both the fixed side nest and the movable side nest are manufactured by using the method for manufacturing the transfer mold nest according to the present embodiment has been described, but only one of them is described in the present embodiment. It may be manufactured by the manufacturing method according to the form. Further, when the product shape is symmetrical with respect to the dividing surface, both fixed side nesting and movable side nesting may be manufactured using a single master mold.

次に、本発明の作用効果を確認するために行った実施例について説明する。
実施例1:転写金型用入れ子の製造
cBNラジアスエンドミルを用いた切削加工により、図6に示すような形状を有する直径100μm、長さ1.2mmのマイクロニードル用のマスター型を、金型用鋼材(ELMAX(登録商標))からなるブロック上に形成した。次いで、アルミニウム合金A7075からなる入れ子部材の押圧面及びその近傍を、高周波加熱で300℃に加熱しながら、マスター型に所定時間押圧し、マスター型の反転形状を転写した。その後、分割面が露出するまで押圧面側を切削し、マスター型の反転形状が転写された一対の転写金型用入れ子を製造した。
Next, an example carried out for confirming the action and effect of the present invention will be described.
Example 1: Manufacture of nesting for transfer dies By cutting with a cBN radius end mill, a master die for microneedles having a shape as shown in FIG. 6 and having a diameter of 100 μm and a length of 1.2 mm is used for the die. It was formed on a block made of a steel material (ELMAX (registered trademark)). Next, the pressed surface of the nested member made of aluminum alloy A7075 and its vicinity were pressed against the master mold for a predetermined time while being heated to 300 ° C. by high frequency heating, and the inverted shape of the master mold was transferred. Then, the pressing surface side was cut until the divided surface was exposed to manufacture a pair of nests for transfer dies to which the inverted shape of the master die was transferred.

実施例2:マイクロニードルの形成
実施例1において製造した転写金型用入れ子を射出成形用金型ブロックにセットし、マイクロニードルの中空部に当たる位置に、マイクロニードルの内径に相当する直径を有する円筒状の中子を挿入し(中子として、可動側入れ子の中空部に当たる位置に、かまぼこ状の凸形状を形成してもよい。)、生分解性樹脂であるポリ乳酸を用いて射出成形を行った。高精度で微細形状が転写されたマイクロニードルが、バリの発生や離型時の折損を殆ど伴うことなく製造できることを確認した。従来の微細加工を用いてマイクロニードルの製造を行う場合に比べ、製造コストを大幅に低減できることを確認した。
Example 2: Formation of Microneedle A cylinder having a diameter corresponding to the inner diameter of the microneedle is set at a position corresponding to the hollow portion of the microneedle by setting the transfer mold nest manufactured in Example 1 in the injection molding die block. Insert a shaped core (as a core, a concave convex shape may be formed at the position corresponding to the hollow part of the movable side nest), and injection molding is performed using polylactic acid, which is a biodegradable resin. went. It was confirmed that the microneedles to which the fine shape was transferred with high accuracy can be manufactured with almost no burrs or breakage at the time of mold release. It was confirmed that the manufacturing cost can be significantly reduced as compared with the case where the microneedles are manufactured using the conventional microfabrication.

10 転写金型用入れ子
11、11a 分割面
12 固定側入れ子
13 可動側入れ子
14 キャビティ
21、21a マスター型
22 製品の表面形状
23、23a 原型
31 入れ子部材
32、32a 原型の反転形状
D 分割面
10 Nesting for transfer mold 11, 11a Nesting surface 12 Fixed side nesting 13 Movable side nesting 14 Cavity 21, 21a Master mold 22 Product surface shape 23, 23a Prototype 31 Nesting member 32, 32a Prototype inverted shape D Dividing surface

Claims (5)

分割面で開閉可能であり、閉じた状態で製品の表面形状の反転形状が転写されたキャビティを有する一対の転写金型用入れ子を製造する方法であって、
第1の金属素材からなり、前記製品の表面形状の少なくとも一部と同一の表面形状を有する原型が形成されたマスター型を形成する第1の工程と、
前記第1の金属素材よりも低温で軟化するアルミニウム合金からなる入れ子部材の少なくとも一部を、前記第1の金属素材は軟化せず、前記アルミニウム合金が軟化する240℃以上400℃以下の温度に加熱しながら前記マスター型に押圧し、前記原型の表面形状の反転形状を前記入れ子部材に転写後、前記原型の表面形状の反転形状が転写された前記入れ子部材の前記分割面の算術平均表面粗さが、0.1μm以上1μm以下となるように、前記マスター型を押圧した側の面を切削又は研削加工する第2の工程を有することを特徴とする転写金型用入れ子の製造方法。
It is a method of manufacturing a pair of nests for transfer dies, which can be opened and closed at the divided surface and have a cavity to which the inverted shape of the surface shape of the product is transferred in the closed state.
A first step of forming a master mold, which is made of a first metal material and has a prototype having the same surface shape as at least a part of the surface shape of the product.
At least a part of the nested member made of an aluminum alloy that softens at a lower temperature than the first metal material is brought to a temperature of 240 ° C. or higher and 400 ° C. or lower at which the first metal material does not soften and the aluminum alloy softens. After pressing against the master mold while heating and transferring the inverted shape of the surface shape of the prototype to the nested member, the arithmetic average surface roughness of the divided surface of the nested member to which the inverted shape of the surface shape of the prototype is transferred is transferred. A method for manufacturing a nest for a transfer mold, which comprises a second step of cutting or grinding the surface on the side where the master mold is pressed so that the roughness is 0.1 μm or more and 1 μm or less.
前記第2の工程において、前記入れ子部材の、前記マスター型に押圧される面及びその近傍を加熱することを特徴とする請求項1に記載の転写金型用入れ子の製造方法。 The method for manufacturing a nest for a transfer die according to claim 1, wherein in the second step, the surface of the nesting member pressed by the master mold and its vicinity are heated. 前記第1の金属素材が金型用鋼材であることを特徴とする請求項1又は2に記載の転写金型用入れ子の製造方法。 The method for manufacturing a nest for a transfer mold according to claim 1 or 2, wherein the first metal material is a steel material for a mold. 前記アルミニウム合金がアルミニウム合金A7075であることを特徴とする請求項1から3のいずれか1項に記載の転写金型用入れ子の製造方法。 The method for manufacturing a nest for a transfer mold according to any one of claims 1 to 3, wherein the aluminum alloy is an aluminum alloy A7075. 樹脂材料の射出成形用金型用の入れ子の製造方法であることを特徴とする請求項1から4のいずれか1項に記載の転写金型用入れ子の製造方法。 The method for manufacturing a nest for a transfer mold according to any one of claims 1 to 4, wherein the method is for manufacturing a nest for an injection mold of a resin material.
JP2017225877A 2017-11-24 2017-11-24 Manufacturing method of nesting for new transfer molds Active JP7043036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017225877A JP7043036B2 (en) 2017-11-24 2017-11-24 Manufacturing method of nesting for new transfer molds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017225877A JP7043036B2 (en) 2017-11-24 2017-11-24 Manufacturing method of nesting for new transfer molds

Publications (2)

Publication Number Publication Date
JP2019093651A JP2019093651A (en) 2019-06-20
JP7043036B2 true JP7043036B2 (en) 2022-03-29

Family

ID=66972542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017225877A Active JP7043036B2 (en) 2017-11-24 2017-11-24 Manufacturing method of nesting for new transfer molds

Country Status (1)

Country Link
JP (1) JP7043036B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138264A (en) 2007-11-16 2009-06-25 Sanyo Special Steel Co Ltd Method for producing die by metal glass powder sintering, the die, and member thereby
JP2010214624A (en) 2009-03-13 2010-09-30 Fukuoka Prefecture Method for manufacturing cavity insert for transfer mold, cavity insert for transfer mold, and cavity insert member for transfer mold used for them
WO2012124449A1 (en) 2011-03-17 2012-09-20 コニカミノルタアドバンストレイヤー株式会社 Method for producing resin molding die, resin molding die, resin molding die set, method for producing microchip substrate, and method for producing microchip using said die
WO2015093256A1 (en) 2013-12-19 2015-06-25 東洋製罐グループホールディングス株式会社 Plastic molding method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527326A (en) * 1976-07-08 1977-01-20 Inoue Souichirou Method of making metal mold of superrplastic metal
JPH0665483B2 (en) * 1987-10-27 1994-08-24 キヤノン株式会社 Plastic injection mold
JPH02169207A (en) * 1988-12-23 1990-06-29 Fuji Xerox Co Ltd Molding die and its manufacture
JP2711923B2 (en) * 1990-01-22 1998-02-10 松下電工株式会社 Injection mold manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138264A (en) 2007-11-16 2009-06-25 Sanyo Special Steel Co Ltd Method for producing die by metal glass powder sintering, the die, and member thereby
JP2010214624A (en) 2009-03-13 2010-09-30 Fukuoka Prefecture Method for manufacturing cavity insert for transfer mold, cavity insert for transfer mold, and cavity insert member for transfer mold used for them
WO2012124449A1 (en) 2011-03-17 2012-09-20 コニカミノルタアドバンストレイヤー株式会社 Method for producing resin molding die, resin molding die, resin molding die set, method for producing microchip substrate, and method for producing microchip using said die
WO2015093256A1 (en) 2013-12-19 2015-06-25 東洋製罐グループホールディングス株式会社 Plastic molding method

Also Published As

Publication number Publication date
JP2019093651A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
TWI607974B (en) Glass shaped body manufacturing method and forming die
CN103214161B (en) A kind of non-isothermal mould pressing method for glass optical component
JP6374951B2 (en) Optical element molding die set and optical element manufacturing method
TW201943659A (en) Mold for glass-made optical component molding use, and method for manufacturing glass-made optical component using said mold
JP7043036B2 (en) Manufacturing method of nesting for new transfer molds
JP2011105559A (en) Mold for optical device and method for molding the optical device
US20060196229A1 (en) Method for fabricating injection mold core
JP2007230834A (en) Molding method of optical glass element
JP5161525B2 (en) Optical element molding method
CN110713389B (en) Method for forming non-spherical ceramic mold core
WO2023032414A1 (en) Mold for glass molding and method for molding glass molded article
JP2011246314A (en) Upper mold for droplet-molding, optical element and method for producing optical element
JP2012011646A (en) Method of manufacturing product made from tetrafluoroethylene
JP4952614B2 (en) Glass lens molding equipment
JP5198347B2 (en) A method for producing a precision press-molding preform and a method for producing a glass optical element.
JP2005162547A (en) Optical element shaping die, optical element manufacturing apparatus and method for manufacturing optical element
JP2006206394A (en) Optical device forming mold, method of manufacturing the same and method of manufacturing optical device using the same
JP2009173464A (en) Method for producing glass molded body
JP4951394B2 (en) Optical element molding method
JP2018172248A (en) Mold set for optical element manufacture
JP5867260B2 (en) Optical element molding die and optical element molding method
JP2009280454A (en) Producing method of optical device and its manufacturing apparatus
KR101731502B1 (en) Apparatus for hot forging of carrier and method of the same
JP2005305797A (en) Optical element molding mold, optical element molding method, and optical element
JP5312968B2 (en) Optical component and method of manufacturing optical component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220302

R150 Certificate of patent or registration of utility model

Ref document number: 7043036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150