JP4165010B2 - 光学式変位測定装置及びその投光光量補正方法 - Google Patents

光学式変位測定装置及びその投光光量補正方法 Download PDF

Info

Publication number
JP4165010B2
JP4165010B2 JP2000393884A JP2000393884A JP4165010B2 JP 4165010 B2 JP4165010 B2 JP 4165010B2 JP 2000393884 A JP2000393884 A JP 2000393884A JP 2000393884 A JP2000393884 A JP 2000393884A JP 4165010 B2 JP4165010 B2 JP 4165010B2
Authority
JP
Japan
Prior art keywords
light
output
photoelectric conversion
amount
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000393884A
Other languages
English (en)
Other versions
JP2002195807A (ja
Inventor
隆康 伊藤
真生雄 浅井
敦 紙谷
浩昭 大友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2000393884A priority Critical patent/JP4165010B2/ja
Publication of JP2002195807A publication Critical patent/JP2002195807A/ja
Application granted granted Critical
Publication of JP4165010B2 publication Critical patent/JP4165010B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、被測定物体までの距離やその変位を測定する光学式変位測定装置及びその投光光量補正方法に関するものである。
【0002】
【従来の技術】
従来より、図4に示すように、半導体レーザのような発光素子1から放射された光を投光レンズ2を通すことにより得たビーム光を被測定物体Bに照射し、被測定物体Bの表面で反射された拡散反射光の一部を受光光学系である受光レンズ3を通してPSDのような光位置検出素子4’で受光することにより、三角測量法の原理を用いて被測定物体Bまでの距離(あるいは基準位置からの変位)を求めるようにした光学式変位測定装置Aが知られている。この変位測定装置では、被測定物体Bで反射された拡散反射光の一部が受光レンズ3により集光されて光位置検出素子4’の受光面に結像し、スポット光を形成する。そして、発光素子1から被測定物体Bまでの距離が変化するとスポット光の形成される位置が変化することを利用して、被測定物体Bまでの距離を検出している(例えば特開平9−318322号公報参照)。
【0003】
ここで、発光素子1から被測定物体Bまでの距離がRcの時のスポット光の位置をP1、反射角をθ、距離が(Rc+Δr)の時のスポット光の位置をP2とし、受光レンズ3から光位置検出素子4’までの距離をfとすると、被測定物体Bの変位Δrと、スポット光の位置の変化分ΔX(=P2−P1)との間には次式のような関係が成り立つ。
【0004】
ΔX=a×Δr/(b+Δr) …(1)
但し、a=f×tanθ、b=Rc/cos2θとする。
【0005】
従って、光位置検出素子4’の受光面におけるスポット光の位置を検出すれば、そのスポット光の位置から被測定物体Bまでの距離(Rc+Δr)、すなわち基準位置からの変位Δrを検出することができる。
【0006】
ところで、光位置検出素子4’としてMOSイメージセンサを用いた光学式変位測定装置も従来より知られている。MOSイメージセンサは、複数の画素配列と、画素配列の信号電荷を順次読み出すMOSトランジスタのスイッチ回路からなるイメージセンサであり、図5(a)に示すように、MOSイメージセンサ4の受光面12には例えばpn接合フォトダイオードからなる複数の画素(以下では、受光セルと言う。)C1、C2…Cnが、被測定物体Bの変位によりスポット光Dの位置が変化する方向に沿って一定のピッチで配列されている。
【0007】
図5(b)は、MOSイメージセンサ4の受光面12にスポット光Dが照射された時の各受光セルC1、C2…Cnの出力を示しており、各受光セルC1、C2…Cnは入射した光エネルギーに相当する大きさの出力を発生するので、その出力はスポット光Dの中心位置に近いほど大きくなる。したがって、受光セルC1、C2…Cnの内出力が最大の受光セルの位置を求めたり、受光量分布の中心位置を演算により求めるなどしてスポット光Dの中心位置を検出し、スポット光Dの中心位置から三角測量法の原理を用いて発光素子1と被測定物体Bとの間の距離を求めている。
【0008】
ところで、MOSイメージセンサ4を用いる光学式変位測定装置では、各受光セルC1、C2…Cnの出力を、一方の端に位置する受光セルから順番に読み取っているので、一方の端に位置する受光セルC1から出力を読み取るタイミングと、他方の端に位置する受光セルCnから出力を読み取るタイミングとの間に時間的なずれが発生する。
【0009】
図6に示すように、各受光セルC1、C2…Cnの出力の読み取り開始と同時(時刻t11)に発光素子1を点灯させて、全ての受光セルC1〜Cnに一定の光を照射させ、その出力を2回サンプリングした時点(時刻t13)で発光素子1を消灯させた場合、点灯開始後の1回目のサンプリング(時刻t11〜t12)では、一番最初に読み取られる受光セルC1は照射時間が短いためにその出力は殆ど零になる。そして、読み取りの順番が遅い受光セルほど照射時間が長くなるので、その出力は増加し、最後に読み取られる受光セルCnでは出力が最大となる。
【0010】
各受光セルC1…では出力を読み出されると同時に、電荷の蓄積を開始しており、2回目のサンプリング(時刻t12〜t13)では、何れの受光セルC1〜Cnも、前回出力を読み出してからサンプリング周期T1の間、発光素子1の光を受光しているので、全ての受光セルC1〜Cnでその出力が最大となる。
【0011】
次に3回目のサンプリング(時刻t13〜t14)では、発光素子1は消灯しているが、最初に読み取られる受光セルC1では、前回のサンプリング時からサンプリング周期T1の間、発光素子1の光を受光しているので、その出力は最大出力に略等しい出力となる。そして、読み取りの順番が遅い受光セルC2…ほど、前回のサンプリング時から発光素子1が消灯するまでの時間(照射時間)が短くなるため、その出力は徐々に低下し、最後に読み取られる受光セルCnでは出力が略零になる。
【0012】
このように、MOSイメージセンサ4では、複数の受光セルC1〜Cnの出力を順番に読み出しており、各受光セルC1〜Cnの出力を読み出すタイミングが異なっているので、最適な出力を得るためには発光素子1を点灯させるタイミングを考慮する必要がある。尚、上述の説明では各受光セルC1〜Cnの出力を読み出すサンプリング周期毎に発光素子1の点灯状態と消灯状態とを切り換えているだけであるが、受光セルC1〜Cnの受光量を精度良く制御するためには、発光素子1の点灯時間や光出力を変化させることによって受光量を制御すれば良い。
【0013】
ところで、MOSイメージセンサ4の受光面に入射するスポット光の光量は、発光素子1の発光量や、被測定物体Bの反射率によって決定されるため、被測定物体Bの反射面に鏡面加工が施されている場合は、スポット光の光量が非常に大きくなり、受光セルC1…の出力が飽和してしまう虞がある。また、上述とは逆に、被測定物体Bの反射面が黒色であって、その反射率が低い場合は、スポット光の光量が小さくなり、受光セルC1…の出力が非常に小さい値になってしまう。
【0014】
ここで、MOSイメージセンサ4を用いる光学式変位測定装置では、各受光セルC1…の出力信号をその配列順に並べた出力波形を解析して、スポット光の中心位置を求めているので、被測定物体Bから入射する反射光の変化によって、受光セルC1…の出力が過大になって飽和したり、出力が過小になって読み取りが不能にならないように、MOSイメージセンサ4に入射するスポット光の光量を制御する必要があり、被測定物体Bによる反射光量に応じて発光素子1の投光光量を制御する必要がある(光量フィードバック)。すなわち、受光セルC1…の出力をその配列順に並べた出力波形が適切な波形となるように(出力波形が飽和したり、微少な出力波形とならないように)、発光素子1の投光光量を制御する。例えば、図7(a)に示すように出力波形のピーク値が飽和している場合は、発光素子1の投光光量を低下させ、図7(b)に示すように、出力波形のピーク値が飽和出力値P1よりも小さくなるように発光素子1の投光光量を制御する。ここで、発光素子1の投光光量を制御する場合、従来の光学式変位測定装置では発光素子1の点灯時間を変化させることによって投光光量を制御している。つまり発光素子1の点灯時間が長いほど、投光光量が大きくなるので、前回の受光セルC1…の出力に応じて発光素子1の点灯時間を変化させ、投光光量を調整している。
【0015】
【発明が解決しようとする課題】
上述の光学式変位測定装置では、前回の受光セルC1〜Cnの出力に応じて発光素子1の点灯時間を変化させ、投光光量を制御しているのであるが、各受光セルC1〜Cnの出力は逐次読み出されており、発光素子1の発光光量を変化させたとしても、投光光量の変化に応じて受光セルC1〜Cnの出力が変化するまでの間に時間遅れがあり、次回の出力に投光光量を変化させたことによる変化が現れない場合があるため、受光光量を最適な光量に制御できない虞がある。
【0016】
ここで、複数の受光セルC1〜Cnの内、ただ1つの受光セルのみにスポット光が照射されている場合を例に、図8を参照して説明を行う。この光学式変位測定装置では、時刻t21から時間T31の間だけ発光素子1を点灯させるとともに、1回目の読み出し動作を開始しており、受光セルC1…の出力を検出する。1回目の読み出し動作が終了した時点では、受光セルの出力が最適な値となっているので、受光セルC1…の出力を解析する信号処理部は、次回読み出し動作を行う際の発光素子1の投光光量を前回と略同じ投光光量とし、発光素子1の点灯時間をT31のままとする。
【0017】
次に1回目の読み出し動作が終了した時点(時刻t22)で、被測定物体Bが反射係数の高い白物体から、反射係数の低い黒物体に切り換わると、被測定物体Bによる反射光が急激に減少して、受光セルの出力が大幅に低下するので、信号処理部ではこの時の出力信号から発光素子1の最適な発光光量を演算により求め、発光素子1の点灯時間をT32(>T31)に設定する。
【0018】
ここで、発光素子1を時間T32だけ点灯させれば、受光光量が十分大きくなり、最適な出力を得ることができるが、発光素子1の点灯時間T32が経過するまでの間に、スポット光が照射されている受光セルの出力が読み出されてしまうので、受光セルの受光光量を十分大きくすることができず、したがって3回目の読み出し動作で得られるセル出力が、予め予想した出力よりも低くなる。そのため、信号処理部では3回目の読み出し動作で得られたセル出力から発光素子1の発光光量が不足していると判断し、信号処理部が発光素子1の点灯時間をさらに長い時間T33(>T32)に設定してしまい、発光素子1の投光光量を最適な値に補正できないという問題があった。
【0019】
本発明は上記問題点に鑑みて為されたものであり、その目的とするところは、受光部の受光光量に応じて投光部の投光光量を正確に補正することのできる光学式変位測定装置及びその投光光量補正方法を提供するにある。
【0020】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明では、被測定物体に光ビームを照射する投光部と、被測定物体の表面での光ビームによる反射光がスポット光として照射される受光面に、受光量に応じた大きさの出力信号をそれぞれ発生する複数の光電変換素子が、被測定物体の変位によりスポット光の位置が変化する方向に沿って配列された受光部と、各光電変換素子の出力信号をその配列順に読み込み、その出力信号からスポット光の中心位置を検出し、中心位置の変位より被測定物体の基準位置からの変位を求める動作を所定のサンプリング周期で繰り返し行う変位検出部と、投光部の投光光量を制御する光量制御部とを備え、前記投光部は、前記サンプリング周期が経過する毎に、変位検出部がサンプリング動作を開始した時点から所定の点灯時間だけ光ビームを照射し、前記光量制御部は、変位検出部が光電変換素子の出力信号を2回サンプリングする毎に、2回目にサンプリングした際の各光電変換素子の出力信号の大きさに応じて、出力信号が光電変換素子の出力飽和値内に収まるように次の2回のサンプリング時の点灯時間を変化させることを特徴とし、変位検出部は複数の光電変換素子の出力をその配列順に読み込んでおり、最初に読み込まれる光電変換素子では、サンプリングを開始してから出力を読み込むまでの時間が短く、投光光量を変化させたことによる出力変化がすぐには現れないため、変位検出部が光電変換素子の出力を1回サンプリングする毎に前回の出力に応じて投光光量を変化させた場合は、投光光量を正確に補正することができない虞があるが、光量制御部は、変位検出部が光電変換素子の出力信号を2回サンプリングする毎に、2回目にサンプリングした際の各光電変換素子の出力信号の大きさに応じて投光部の投光光量を制御しており、1回目のサンプリング時に投光光量を変化させたことによる出力の変化が2回目のサンプリング時には確実に現れるので、2回目のサンプリング結果に応じて投光光量を制御することにより、投光光量を正確に補正することのできる光学式変位測定装置を実現できる。
【0021】
請求項2の発明では、請求項1の発明において、光量制御部は、複数の光電変換素子の内、出力が最大となる光電変換素子の出力信号が、光電変換素子の出力飽和値の略半分の値となるように、投光部の投光光量を制御することを特徴とし、光電変換素子の出力が小さすぎると、ノイズの影響が大きくなり、逆に大きすぎると、被測定物体の反射率の変化などによって受光光量が変化した際に、光電変換素子の出力が飽和してしまうが、光量制御部は、出力が最大となる光電変換素子の出力信号が、光電変換素子の出力飽和値の略半分の値となるように、投光部の投光光量を制御しているので、光電変換素子の出力が小さすぎたり、大きすぎたりすることはなく、受光部に発生するスポット光の位置を正確に検出できる光学式変位測定装置を実現できる。
【0022】
請求項3の発明では、投光部が被測定物体に光ビームを照射し、被測定物体の表面での光ビームによる反射光をスポット光として受光部に照射させ、受光部の受光面に配列された複数の光電変換素子が受光量に応じた大きさの出力信号をそれぞれ発生し、変位検出部が各光電変換素子の出力信号をその配列順に読み込み、その出力信号からスポット光の中心位置を検出し、中心位置の変位より被測定物体の基準位置からの変位を求める動作を所定のサンプリング周期で繰り返し行っており、投光部は、前記サンプリング周期が経過する毎に、変位検出部がサンプリング動作を開始した時点から所定の点灯時間だけ光ビームを照射し、光量制御部は、変位検出部が光電変換素子の出力信号を2回サンプリングする毎に、2回目にサンプリングした際の各光電変換素子の出力信号の大きさに応じて、出力信号が光電変換素子の出力飽和値内に収まるように次の2回のサンプリング時の点灯時間を変化させることを特徴とし、変位検出部は複数の光電変換素子の出力をその配列順に読み込んでおり、最初に読み込まれる光電変換素子では、サンプリングを開始してから出力を読み込むまでの時間が短く、投光光量を変化させたことによる出力変化がすぐには現れないため、変位検出部が光電変換素子の出力を1回サンプリングする毎に前回の出力に応じて投光光量を変化させた場合は、投光光量を正確に補正することができない虞があるが、光量制御部は、変位検出部が光電変換素子の出力信号を2回サンプリングする毎に、2回目にサンプリングした際の各光電変換素子の出力信号の大きさに応じて投光部の投光光量を制御しており、1回目のサンプリング時に投光光量を変化させたことによる出力の変化が2回目のサンプリング時には確実に現れるので、2回目のサンプリング結果に応じて投光光量を制御することにより、投光光量を正確に補正することができる。
【0023】
請求項4の発明では、請求項3の発明において、光量制御部は、複数の光電変換素子の内、出力が最大となる光電変換素子の出力信号が、光電変換素子の出力飽和値の略半分の値となるように、投光部の投光光量を制御することを特徴とし、光電変換素子の出力が小さすぎると、ノイズの影響が大きくなり、逆に大きすぎると、被測定物体の反射率の変化などによって受光光量が変化した際に、光電変換素子の出力が飽和してしまうが、光量制御部は、出力が最大となる光電変換素子の出力信号が、光電変換素子の出力飽和値の略半分の値となるように、投光部の投光光量を制御しているので、光電変換素子の出力が小さすぎたり、大きすぎたりすることはなく、受光部に発生するスポット光の位置を正確に検出できる。
【0024】
【発明の実施の形態】
以下に本実施形態の光学式変位測定装置を図1乃至図3を参照して説明する。この光学式変位測定装置では、レーザダイオードのような発光素子(投光部)1から放射された光を投光レンズ2を通すことにより得たビーム光を被測定物体Bに照射している。そして、被測定物体Bの表面で反射された拡散反射光の一部は受光光学系である受光レンズ3により集光され、受光部たるMOSイメージセンサ4の受光面に受光スポットを形成する。
【0025】
MOS制御回路6は、CPU5から入力される制御信号に応じて、MOSイメージセンサ4の動作を制御しており、MOSイメージセンサ4の受光セルC1、C2…Cnの出力をその配列順に読み出して、逐次MOS信号処理回路7に出力させており、各受光セルC1、C2…Cnの出力信号はMOS信号処理回路7で増幅などの処理を施された後、A/D変換回路8によりデジタル信号に変換されてCPU5に取り込まれる。
【0026】
ところで、図5(a)に示すように、MOSイメージセンサ4の受光面12には、被測定物体Bの変位に応じてスポット光Dの位置が変化する方向に沿って、pn接合フォトダイオードよりなる複数の受光セル(光電変換素子)C1、C2…Cnが一定のピッチで配列されている。各受光セルC1、C2…Cnは入射した光エネルギーに相当する大きさの出力を発生し、その出力はスポット光Dの中心位置に近いほど大きくなるので、各受光セルC1、C2…Cnの出力をその配列順に並べた出力波形(図5(b)参照)からMOSイメージセンサ4の受光面12に入射したスポット光の形状や中心位置を検出することができる。
【0027】
ここで、変位検出部としてのCPU5は、例えば受光セルC1〜Cnの出力をその配列順に並べた出力波形を生成し、隣接する受光セルの出力の相対的な差から、出力波形の中心位置を検出する。すなわち、図3(a)に示すように、出力が最大の受光セルに対して、両側に位置する受光セルの出力が略同じであれば、出力が最大の受光セルの中心位置が出力波形の中心であるとCPU5は判定する。また、図3(b)に示すように、出力が最大の受光セルに対して、図中右側の受光セルの出力が、図中左側の受光セルの出力よりも大きい場合は、出力が最大の受光セルの中心位置から、左右の受光セルの出力比に応じた距離だけ図中右側に偏心した位置が出力波形の中心位置であるとCPU5は判定する。そして、CPU5は、スポット光の中心位置から三角測量法の原理を用いて発光素子1と被測定物体Bとの間の距離や被測定物体Bの変位を求めており、被測定物体Bまでの距離或いは被測定物体Bの変位に相当する信号をD/A変換回路9に出力し、D/A変換回路9がアナログ信号に変換して外部に出力する。
【0028】
また、CPU5では被測定物体Bまでの距離を演算すると同時に、各受光セルC1〜Cnの出力が所定の出力範囲内に収まるように発光素子1の投光光量を決定しており、発光素子1の光量を制御するための制御信号S1を光量制御回路10に出力し、この制御信号S1に応じて光量制御回路10が発光素子1の点灯時間を変化させ、その投光光量を変化させている。ここで、CPU5では、各受光セルC1〜Cnの出力をその配列順に読み取る動作(サンプリング動作)を2回行う毎に発光素子1の投光光量を変化させており、1回目に読み込んだ各受光セルC1〜Cnの出力は無視し、2回目に読み込んだ各受光セルC1〜Cnの出力が所望の大きさになるように、発光素子1の発光光量を変化させている。ここに、CPU5及び光量制御回路10から発光素子1の投光光量を制御する光量制御部が構成される。
【0029】
以下にCPU5が発光素子1の投光光量を制御する動作について図2を参照して簡単に説明する。ここでは、説明を簡単にするために複数の受光セルC1〜Cnの内、ただ1つの受光セルにスポット光が照射されるものとし、1回目のサンプリング動作が終了した時点(時刻t2)で被測定物体Bが反射係数の高い白物体から反射係数の低い黒物体に変化した時の受光セルC1〜Cnの出力変化を図2(b)に示す。
【0030】
ここで、時刻t1から時間t31の間、発光素子1を点灯させるとともに、1回目のサンプリング動作を開始し、各受光セルC1〜Cnの出力をその配列順に読み出す。なお、1回目のサンプリング動作を行う際には、受光セルの出力が最適な値になっているものとする。また、MOS信号処理回路7では受光セルC1〜Cnの出力をその配列順に読み出しており、スキャン動作を開始してから特定の受光セルの出力を読み出すまでの時間は略一定となる。
【0031】
次に1回目のサンプリング動作が終了した時点(時刻t2)で、対象物が白物体から黒物体に切り換わると、対象物による反射光が急激に減少して、受光セルの出力が大幅に低下するので、2回目のサンプリング動作が終了した時点で、CPU5は受光セルの出力が大幅に低下したと判断し、この時のセル出力から発光素子1の最適な発光光量を演算により求め、発光素子1の点灯時間をt32(>t31)に設定する。
【0032】
その後、時刻t3において、発光素子1を時間t32だけ点灯させるとともに、3回目のサンプリング動作を開始した場合、発光素子1を時間t32だけ点灯させれば、受光光量が十分大きくなって最適なセル出力を得ることができるが、スポット光の当たっている受光セルは、3回目のサンプリング動作を開始してから点灯時間t3が経過するまでの間に出力が読み出されてしまうので、この受光セルから十分な大きさの出力が得られなくなる。ここで、CPU5はサンプリング動作を2回行う毎に発光素子1の投光光量を変化させているので、3回目のサンプリング動作が終了した時点では発光素子1の発光光量を変化させることはなく、発光素子1の点灯時間を前回の時間t32のままとして、4回目のサンプリング動作を行う。
【0033】
ところで、3回目のサンプリング動作を行う間の時刻t4において、スポット光の照射された受光セルの出力を読み出した後も発光素子1は点灯しているので、この受光セルでは、出力を読み出された後、直ぐに光量の蓄積動作を行っている。つまり、この受光セルでは、その出力が読み出されてから発光素子1が消灯するまでの間(すなわち、図2の期間Ta)、発光素子1の発光による反射光の光量を蓄積し、受光光量に応じた出力を発生する。ここで、サンプリング動作を開始してから、スポット光の照射された受光セルの出力を読み取るまでの時間をtx(=t4−t3)とすると、期間Ta=t32−txとなる。
【0034】
次に、時刻t5において、発光素子1を時間t32だけ点灯させるとともに、4回目のサンプリング動作を開始すると、この場合もスポット光の照射された受光セルは発光素子1の点灯途中に出力を読み出されてしまい、この受光セルには発光素子1が点灯してから、その出力が読み出されるまでの間だけ(すなわち図2の期間Tb)、発光素子1の発光による反射光の光量を蓄積し、受光光量に応じた出力を発生する。ここで、期間Tb=txとなる。
【0035】
したがって、4回目のサンプリング動作時において、スポット光の照射された受光セルから読み出される出力は、期間Ta(=t31−tx)に受光した受光光量と、期間Tb(=tx)に受光した受光光量との和に比例した値になり、結局期間(Ta+Tb)=t31の間に受光した受光光量に比例した値となるので、スポット光の照射される受光セルの出力は、CPU5が補正しようとした値に略等しい値となり、発光素子1の投光光量を正確に補正することができる。なお、3回目のサンプリング動作時に得られた各受光セルC1〜Cnの出力は無視し、この出力は測距用のデータとしては使用しない。また、上述の説明では、説明を簡単にするために、1つの受光セルのみにスポット光が照射される場合について説明を行ったが、実際には複数の受光セルC1、C2…Cnにまたがってスポット光が照射されることになる。
【0036】
なお、CPU5では、各受光セルC1〜Cnの内、出力が最大となる受光セルの出力信号が出力範囲の略中央の値(すなわち出力飽和値の約40〜60%の値)となるように発光素子1の投光光量を決定している。ここで、対象物の反射率が小さかったり、発光素子1の発光光量が小さいなどの理由で、出力波形のピーク値が低い場合(図3(c)参照)、出力が最大の受光セルに対して、図中左側の受光セルの出力と、図中右側の受光セルの出力との比率を正確に求めることができず、また各受光セルC1…の出力がノイズに埋もれてしまう虞がある。逆にピーク値が大きいと被測定物体Bの反射率が急激に変化して、受光セルC1…の出力が飽和してしまう虞がある。したがって、CPU5では、出力波形のピーク値が各受光セルC1…の出力範囲の中心付近の値となるように発光素子1の発光光量を制御しており、出力波形の中心位置を安定的に検出することができる。
【0037】
ところで、本実施形態では複数の光電変換素子が配列された受光部としてMOSイメージセンサを例に説明を行ったが、受光部をMOSイメージセンサに限定する趣旨のものではなく、受光セルがアレイ状に配列されていれば、フォトダイオードをアレイ状に配列したセンサや、CCD素子をアレイ状に配列したCCDイメージセンサなどを用いても良いことは言うまでもない。
【0038】
【発明の効果】
上述のように、請求項1の発明は、被測定物体に光ビームを照射する投光部と、被測定物体の表面での光ビームによる反射光がスポット光として照射される受光面に、受光量に応じた大きさの出力信号をそれぞれ発生する複数の光電変換素子が、被測定物体の変位によりスポット光の位置が変化する方向に沿って配列された受光部と、各光電変換素子の出力信号をその配列順に読み込み、その出力信号からスポット光の中心位置を検出し、中心位置の変位より被測定物体の基準位置からの変位を求める動作を所定のサンプリング周期で繰り返し行う変位検出部と、投光部の投光光量を制御する光量制御部とを備え、前記投光部は、前記サンプリング周期が経過する毎に、変位検出部がサンプリング動作を開始した時点から所定の点灯時間だけ光ビームを照射し、前記光量制御部は、変位検出部が光電変換素子の出力信号を2回サンプリングする毎に、2回目にサンプリングした際の各光電変換素子の出力信号の大きさに応じて、出力信号が光電変換素子の出力飽和値内に収まるように次の2回のサンプリング時の点灯時間を変化させることを特徴とし、変位検出部は複数の光電変換素子の出力をその配列順に読み込んでおり、最初に読み込まれる光電変換素子では、サンプリングを開始してから出力を読み込むまでの時間が短く、投光光量を変化させたことによる出力変化がすぐには現れないため、変位検出部が光電変換素子の出力を1回サンプリングする毎に前回の出力に応じて投光光量を変化させた場合は、投光光量を正確に補正することができない虞があるが、光量制御部は、変位検出部が光電変換素子の出力信号を2回サンプリングする毎に、2回目にサンプリングした際の各光電変換素子の出力信号の大きさに応じて投光部の投光光量を制御しており、1回目のサンプリング時に投光光量を変化させたことによる出力の変化が2回目のサンプリング時には確実に現れるので、2回目のサンプリング結果に応じて投光光量を制御することにより、投光光量を正確に補正することのできる光学式変位測定装置を実現できるという効果がある。
【0039】
請求項2の発明は、請求項1の発明において、光量制御部は、複数の光電変換素子の内、出力が最大となる光電変換素子の出力信号が、光電変換素子の出力飽和値の略半分の値となるように、投光部の投光光量を制御することを特徴とし、光電変換素子の出力が小さすぎると、ノイズの影響が大きくなり、逆に大きすぎると、被測定物体の反射率の変化などによって受光光量が変化した際に、光電変換素子の出力が飽和してしまうが、光量制御部は、出力が最大となる光電変換素子の出力信号が、光電変換素子の出力飽和値の略半分の値となるように、投光部の投光光量を制御しているので、光電変換素子の出力が小さすぎたり、大きすぎたりすることはなく、受光部に発生するスポット光の位置を正確に検出できる光学式変位測定装置を実現できるという効果がある。
【0040】
請求項3の発明は、投光部が被測定物体に光ビームを照射し、被測定物体の表面での光ビームによる反射光をスポット光として受光部に照射させ、受光部の受光面に配列された複数の光電変換素子が受光量に応じた大きさの出力信号をそれぞれ発生し、変位検出部が各光電変換素子の出力信号をその配列順に読み込み、その出力信号からスポット光の中心位置を検出し、中心位置の変位より被測定物体の基準位置からの変位を求める動作を所定のサンプリング周期で繰り返し行っており、投光部は、前記サンプリング周期が経過する毎に、変位検出部がサンプリング動作を開始した時点から所定の点灯時間だけ光ビームを照射し、光量制御部は、変位検出部が光電変換素子の出力信号を2回サンプリングする毎に、2回目にサンプリングした際の各光電変換素子の出力信号の大きさに応じて、出力信号が光電変換素子の出力飽和値内に収まるように次の2回のサンプリング時の点灯時間を変化させることを特徴とし、変位検出部は複数の光電変換素子の出力をその配列順に読み込んでおり、最初に読み込まれる光電変換素子では、サンプリングを開始してから出力を読み込むまでの時間が短く、投光光量を変化させたことによる出力変化がすぐには現れないため、変位検出部が光電変換素子の出力を1回サンプリングする毎に前回の出力に応じて投光光量を変化させた場合は、投光光量を正確に補正することができない虞があるが、光量制御部は、変位検出部が光電変換素子の出力信号を2回サンプリングする毎に、2回目にサンプリングした際の各光電変換素子の出力信号の大きさに応じて投光部の投光光量を制御しており、1回目のサンプリング時に投光光量を変化させたことによる出力の変化が2回目のサンプリング時には確実に現れるので、2回目のサンプリング結果に応じて投光光量を制御することにより、投光光量を正確に補正することができるという効果がある。
【0041】
請求項4の発明は、請求項3の発明において、光量制御部は、複数の光電変換素子の内、出力が最大となる光電変換素子の出力信号が、光電変換素子の出力飽和値の略半分の値となるように、投光部の投光光量を制御することを特徴とし、光電変換素子の出力が小さすぎると、ノイズの影響が大きくなり、逆に大きすぎると、被測定物体の反射率の変化などによって受光光量が変化した際に、光電変換素子の出力が飽和してしまうが、光量制御部は、出力が最大となる光電変換素子の出力信号が、光電変換素子の出力飽和値の略半分の値となるように、投光部の投光光量を制御しているので、光電変換素子の出力が小さすぎたり、大きすぎたりすることはなく、受光部に発生するスポット光の位置を正確に検出できるという効果がある。
【図面の簡単な説明】
【図1】本実施形態の光学式変位測定装置の概略構成図である。
【図2】(a)〜(d)は同上の動作を説明する説明図である。
【図3】(a)〜(c)は同上に用いるMOSイメージセンサの出力波形を示す波形図である。
【図4】従来の光学式変位測定装置の概略構成図である。
【図5】(a)は同上に用いるMOSイメージセンサの受光面にスポット光が入射した状態を示す正面図、(b)はスポット光による各受光セルの出力波形である。
【図6】(a)(b)は同上の動作を説明する説明図である。
【図7】同上に用いるMOSイメージセンサの出力波形を示す波形図であり、(a)は発光素子の発光光量を補正する前の波形図、(b)は補正後の波形図である。
【図8】(a)〜(d)は同上の動作を説明する説明図である。
【符号の説明】
A 光学式変位測定装置
B 被測定物体
1 発光素子
4 MOSイメージセンサ
5 CPU
10 光量制御回路

Claims (4)

  1. 被測定物体に光ビームを照射する投光部と、被測定物体の表面での光ビームによる反射光がスポット光として照射される受光面に、受光量に応じた大きさの出力信号をそれぞれ発生する複数の光電変換素子が、被測定物体の変位によりスポット光の位置が変化する方向に沿って配列された受光部と、各光電変換素子の出力信号をその配列順に読み込み、その出力信号からスポット光の中心位置を検出し、中心位置の変位より被測定物体の基準位置からの変位を求める動作を所定のサンプリング周期で繰り返し行う変位検出部と、投光部の投光光量を制御する光量制御部とを備え、前記投光部は、前記サンプリング周期が経過する毎に、変位検出部がサンプリング動作を開始した時点から所定の点灯時間だけ光ビームを照射し、前記光量制御部は、変位検出部が光電変換素子の出力信号を2回サンプリングする毎に、2回目にサンプリングした際の各光電変換素子の出力信号の大きさに応じて、出力信号が光電変換素子の出力飽和値内に収まるように次の2回のサンプリング時の点灯時間を変化させることを特徴とする光学式変位測定装置。
  2. 光量制御部は、複数の光電変換素子の内、出力が最大となる光電変換素子の出力信号が、光電変換素子の出力飽和値の略半分の値となるように、投光部の投光光量を制御することを特徴とする請求項1記載の光学式変位測定装置。
  3. 投光部が被測定物体に光ビームを照射し、被測定物体の表面での光ビームによる反射光をスポット光として受光部に照射させ、受光部の受光面に配列された複数の光電変換素子が受光量に応じた大きさの出力信号をそれぞれ発生し、変位検出部が各光電変換素子の出力信号をその配列順に読み込み、その出力信号からスポット光の中心位置を検出し、中心位置の変位より被測定物体の基準位置からの変位を求める動作を所定のサンプリング周期で繰り返し行っており、投光部は、前記サンプリング周期が経過する毎に、変位検出部がサンプリング動作を開始した時点から所定の点灯時間だけ光ビームを照射し、光量制御部は、変位検出部が光電変換素子の出力信号を2回サンプリングする毎に、2回目にサンプリングした際の各光電変換素子の出力信号の大きさに応じて、出力信号が光電変換素子の出力飽和値内に収まるように次の2回のサンプリング時の点灯時間を変化させることを特徴とする光学式変位測定装置の投光光量補正方法。
  4. 光量制御部は、複数の光電変換素子の内、出力が最大となる光電変換素子の出力信号が、光電変換素子の出力飽和値の略半分の値となるように、投光部の投光光量を制御することを特徴とする請求項3記載の光学式変位測定装置の投光光量補正方法。
JP2000393884A 2000-12-25 2000-12-25 光学式変位測定装置及びその投光光量補正方法 Expired - Fee Related JP4165010B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000393884A JP4165010B2 (ja) 2000-12-25 2000-12-25 光学式変位測定装置及びその投光光量補正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000393884A JP4165010B2 (ja) 2000-12-25 2000-12-25 光学式変位測定装置及びその投光光量補正方法

Publications (2)

Publication Number Publication Date
JP2002195807A JP2002195807A (ja) 2002-07-10
JP4165010B2 true JP4165010B2 (ja) 2008-10-15

Family

ID=18859602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000393884A Expired - Fee Related JP4165010B2 (ja) 2000-12-25 2000-12-25 光学式変位測定装置及びその投光光量補正方法

Country Status (1)

Country Link
JP (1) JP4165010B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045926A (ja) * 2006-08-11 2008-02-28 Omron Corp 光学式変位センサおよびその制御方法
JP5665159B2 (ja) * 2007-02-23 2015-02-04 パナソニックIpマネジメント株式会社 距離画像センサ
JP5178393B2 (ja) 2008-08-20 2013-04-10 シャープ株式会社 光学式測距センサおよび電子機器
JP5283516B2 (ja) * 2009-01-09 2013-09-04 シャープ株式会社 光学デバイス、この光学デバイスを用いた物体検出方法及び電子機器
JP5608984B2 (ja) * 2009-02-19 2014-10-22 Jfeスチール株式会社 開先部最深位置検出装置および開先部最深位置検出方法
JP4837757B2 (ja) 2009-03-16 2011-12-14 シャープ株式会社 光学式測距センサおよび電子機器
JP5079826B2 (ja) 2010-02-09 2012-11-21 シャープ株式会社 光学式測距センサおよび電子機器
JP5760938B2 (ja) * 2011-10-14 2015-08-12 オムロン株式会社 光学式センサ
KR101450156B1 (ko) * 2013-04-10 2014-10-13 주식회사 루멘스 동작 감지 센서의 광량 보정 장치 및 방법
JP6301214B2 (ja) * 2014-07-29 2018-03-28 東京エレクトロン株式会社 光学式温度センサ及び光学式温度センサの制御方法
JP7024285B2 (ja) 2017-09-26 2022-02-24 オムロン株式会社 変位計測装置、システム、および変位計測方法

Also Published As

Publication number Publication date
JP2002195807A (ja) 2002-07-10

Similar Documents

Publication Publication Date Title
JP6899005B2 (ja) 光検出測距センサ
US8797552B2 (en) Apparatus for generating three-dimensional image of object
JP5617159B2 (ja) 画像取得装置及び方法
US7834985B2 (en) Surface profile measurement
US6741082B2 (en) Distance information obtaining apparatus and distance information obtaining method
JP4488170B2 (ja) 三次元距離画像を記録するための方法及び装置
KR102451010B1 (ko) 물체까지의 거리를 결정하기 위한 시스템
JP6020547B2 (ja) 画像取得装置及び方法
JP3185031B2 (ja) 光沢検出器
JP4165010B2 (ja) 光学式変位測定装置及びその投光光量補正方法
JP2008070270A (ja) 測距装置
CN111025318A (zh) 一种深度测量装置及测量方法
US7869007B2 (en) Ranging apparatus and ranging method
JP3906859B2 (ja) 距離画像センサ
JP2004007625A (ja) 自動速度最適化機能を有するtdiイメージャ
KR20060043034A (ko) 인쇄땜납 검사장치
JP3767201B2 (ja) 光式センサ
JP2013137324A (ja) 画像取得装置及び方法
US20210074743A1 (en) Light detection apparatus and electronic device
JP4000760B2 (ja) 光学式変位測定装置
JP2005326340A (ja) イメージセンサー利用機器、光学式変位計及び光学情報読取装置
JP4930742B2 (ja) 位置検出装置
JPH10332335A (ja) 光学式変位計
JPH08178647A (ja) 光電センサ
JP2006030094A (ja) 光学式変位計

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees