JP4164185B2 - Method for producing Cu-containing stainless steel slab - Google Patents

Method for producing Cu-containing stainless steel slab Download PDF

Info

Publication number
JP4164185B2
JP4164185B2 JP02814199A JP2814199A JP4164185B2 JP 4164185 B2 JP4164185 B2 JP 4164185B2 JP 02814199 A JP02814199 A JP 02814199A JP 2814199 A JP2814199 A JP 2814199A JP 4164185 B2 JP4164185 B2 JP 4164185B2
Authority
JP
Japan
Prior art keywords
slab
alloy phase
stainless steel
hot
cracks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02814199A
Other languages
Japanese (ja)
Other versions
JP2000225441A (en
Inventor
崇史 川越
隆 山内
修久 蛭浜
勇 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP02814199A priority Critical patent/JP4164185B2/en
Publication of JP2000225441A publication Critical patent/JP2000225441A/en
Application granted granted Critical
Publication of JP4164185B2 publication Critical patent/JP4164185B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、加工性,耐食性の改善に有効なCuを添加したステンレス鋼スラブの製造方法に関する。
【0002】
【従来技術及び問題点】
Cuは、ステンレス鋼の加工性,耐食性を改善する合金成分であり、SUS304J1,SUS304J2,SUS304J3,SUS316J1,SUS316J1L,SUS317J5L,SUSXM7,SUS630等がCu含有ステンレス鋼として使用されている。
Cuは、加工性,耐食性の改善には有効であるものの、鋼の熱間加工性に悪影響を及ぼす代表的な成分である。たとえば、Cu含有鋼では、0.3質量%未満のCuを含む場合でも軽微な表面疵が発生し易い。熱間加工性に及ぼすCuの悪影響はCu含有量の増加に伴って顕著になり、0.3質量%以上で小さな割れ、0.8質量%で割れ疵が著しく大きく成長する傾向にある。実際、特に1質量%以上とCuを多量に含む鋼種にあっては、熱延時に割れや二枚割れ(鰐口割れ)等のトラブルが発生し易く製造性が阻害されている現状である。
【0003】
【課題を解決するための手段】
本発明は、このような問題を解消すべく案出されたものであり、クレータエンド部の冷却を強化することにより、Cu合金相の粗大化を抑制し、熱延時に割れ,鰐口割れ等の発生がない連鋳スラブを得ることを目的とする。
本発明の製造方法は、その目的を達成するため、1〜5質量%のCuを含むオーステナイト系ステンレス鋼を連続鋳造する際、スラブ中心部におけるCu合金相の粒径が50μm以下となるようにクレータエンド部に0.2〜0.5リットル/kg−鋼の比水量で冷却水を吹き付けることを特徴とする。
【0004】
【作用】
Cu含有ステンレス鋼の熱延時に発生する割れ,鰐口割れ等について種々調査・研究した。割れ発生部分を調査したところ、割れの起点となった部分の結晶粒界にCuが存在し、且つ割れに沿ってCuが分布していることを見出した。
そこで、熱延割れが発生したスラブに内在する要因を解明するため、熱延割れが発生したチャージのスラブ及び良好な熱延結果を示したチャージのスラブを調査した。通常、スラブの中心部にはC,P,S等の溶質元素が中心偏析するが、Cuも同様に中心偏析する元素である。すなわち、スラブ中心部では、凝固による収縮が始まるとCuを濃縮した溶鋼が吸引されるため、Cu濃度が高くなり、Cu等の溶質元素が濃縮した低融点の析出相(Cu合金相)が存在する。
【0005】
熱延割れが発生したチャージのスラブを調査した結果、スラブ中心部に粗大なCu合金相の粒界析出が検出された。他方、熱延割れが発生しなかったチャージのスラブでは、小さなサイズのCu合金相が粒内に析出していた。粗大なCu合金相が粒界析出したときに熱延割れが発生したことは、熱延時の加熱によりCu合金相が粒界で液膜化し、熱延時の応力で割れを発生させたことを意味する。
そこで、Cu合金相の形態に差が生じる原因を調査し、Cu合金相を微細化する製造法を検討した。熱延割れが発生したチャージのスラブは、良好な熱延結果を示したチャージのスラブと比較すると、クレータエンド部の冷却が弱い条件下で製造されたスラブである。なお、クレータエンド部とは、凝固収縮により溶質濃化鋼の吸引が生じ易い範囲、すなわちスラブ中心部の固相率が0.1〜1.0の範囲をいう。
【0006】
冷却条件が弱いと、クレータエンド部の凝固シェル温度が高いので強度が低く、連鋳時のロール間でバルジングが発生し易くなる。バルジングは、凝固収縮に加え、Cuを濃化した溶鋼の吸引を更に促進させる。その結果、Cuの中心偏析が助長され、スラブ中心部に粗大なCu合金相が析出する。
粗大なCu合金相が熱間割れの原因であることから、クレータエンド部の冷却条件を適正化してバルジングを防止するとき、Cuの中心偏析が軽減され、Cu合金相の粗大化が防止されることが予想される。通常の連続鋳造条件下で凝固収縮による溶質濃化溶鋼の吸引が起こり得る範囲は、クレータエンド部、すなわちスラブ中心部の固相率0.4〜1.0の範囲にある。そこで、この範囲においてCu合金相の粒径と冷却条件との関係を調査した結果、スラブ中心部のCu合金相が粒径50μm以下となるように冷却条件を強化するとき、熱延時に割れが発生しないことを解明した。
【0007】
本発明が対象とするステンレス鋼は、1〜5質量%と多量のCuを含んでいるため、スラブ中心部にCu合金相が析出し易い鋼種である。顕微鏡観察によるCu合金相の占有面積率は、Cu含有量の増加に伴って大きくなる。Cu添加による加工性及び耐食性の改善効果は1質量%以上で顕著になるが、5質量%を超える多量のCu添加では熱間加工性が著しく低下し、工業的には製造不可能になる。本発明が対象とするステンレス鋼は、1〜5質量%のCuを含オーステナイト系ステンレス鋼である。他の任意成分として、Mo,Nb,Ti,Zr,V,B,希土類金属(REM),Y,Ca,Mg,W,N等を含む鋼種も対象とされる。
【0008】
熱延割れを発生させないためのCu合金相の最大粒径50μmは、本発明者等による調査・研究の結果から見出された値である。Cu合金相の最大粒径は、スラブ断面の厚み方向中心部を光学顕微鏡で観察し、100個以上のCu合金相について粒径を測定し、最大測定値として得られる。
クレータエンド部の冷却を強化し、バルジングの発生を抑制した場合、Cu合金相の粒径が50μm以下になって粒界にほとんど析出しなくなる。粒界に析出している場合でも、Cu合金相の粒径が小さいため熱延時の加熱によってマトリックスに再固溶し易い。そのため、粒界で液膜化し難くなり、熱延割れが抑えられる。これに対し、バルジングが発生した場合ではCu合金相が最大粒径60〜100μmと粗大でしかも粒界に析出しているため、熱延時の加熱でCuが粒界で液膜化し、熱延割れが発生し易くなる。
【0009】
Cu合金相の粒径は、スプレー冷却,ミスト冷却等でスラブを冷却する際、クレータエンド部の冷却条件により制御される。冷却条件の制御には、スラブのクレータエンド部に吹き付けられる冷却水の流量を調整する方法が採用される。しかし、Cu合金相を粒径50μm以下にするためのクレータエンド部における冷却水量は、スラブの断面積,鋳造速度及び鋼中にCu濃度に応じ異なるため一義的に決められるものではないが、おおよその目安として0.2〜0.5リットル/kg−鋼の比水量で冷却水を吹き付けるときCu合金相の粒径が50μm以下に抑えられる。
【0010】
【実施例1】
SUS XM7(Cu含有量3質量%)を基本組成とするオーステナイト系ステンレス鋼(70トン/チャージ)を電気炉,転炉,VOD工程を経て溶製し、厚み200mm,幅1000mmのスラブに連続鋳造した。連続鋳造時の鋳造速度及びクレータエンド部の比水量を表1に示す。
スラブの中心部からサンプルを切り出し、Cu合金相の粒径を測定した。また、スラブ中心部から熱延評価用のサンプルを切り出し、実験室での熱延により板厚3mmに熱延した。熱延板を観察して熱延割れの有無を判定し、熱延割れのないものを○,細かな割れが発生したものを△,大きな割れが発生したものを×として評価した。
表1の調査結果にみられるように、冷却条件の制御によりCu合金相を50μm以下の粒径に調整するとき、熱延割れが発生することなく所定板厚の熱延板に製造された。これに対し、冷却条件が弱い比較例では、50μmを超える大きなCu合金相が析出しており、熱延時に割れが発生した。
【0011】
【実施例2】
SUS316J1(Cu含有量2質量%)を基本組成とするオーステナイト系ステンレス鋼(70トン/チャージ)を実施例1と同様に溶製,連続鋳造した。そして、実施例1と同様に、得られたスラブの中心部におけるCu合金相の粒径を測定すると共に、実験室での熱延により板厚3mmに熱延した。
この場合にも、Cu合金相を50μm以下の粒径に調整するとき、熱延割れが発生することなく所定板厚の熱延板に製造された。他方、冷却条件が弱い比較例では、50μmを超える大きなCu合金相が析出しており、熱延時に割れが発生した。
【0012】

Figure 0004164185
【0013】
【発明の効果】
以上に説明したように、本発明においては、Cu含有ステンレス鋼を連続鋳造する際、二次冷却時にクレータエンド部の冷却を強化し、スラブ中心部に析出するCu合金相の粒径を50μm以下に抑えている。粒径制御されたCu合金相は、熱延時に結晶粒界で液膜化することがないので、熱延割れ,鰐口割れ等の原因にならない。このようにして、本発明によるとき、従来熱延困難な材料であったCu含有ステンレス鋼スラブを操業上のトラブルなく熱延でき、Cu添加による加工性,耐食性が改善された素材が製造される。[0001]
[Industrial application fields]
The present invention relates to a method for producing a stainless steel slab containing Cu, which is effective for improving workability and corrosion resistance.
[0002]
[Prior art and problems]
Cu is an alloy component that improves the workability and corrosion resistance of stainless steel, and SUS304J1, SUS304J2, SUS304J3, SUS316J1, SUS316J1L, SUS317J5L, SUSXM7, SUS630, and the like are used as the Cu-containing stainless steel.
Although Cu is effective in improving workability and corrosion resistance, it is a typical component that adversely affects the hot workability of steel. For example, in the case of Cu-containing steel, slight surface defects are likely to occur even when Cu is contained in an amount of less than 0.3% by mass . The adverse effect of Cu on hot workability becomes prominent with an increase in Cu content, and there is a tendency for small cracks to grow at 0.3% by mass or more, and cracks to grow significantly at 0.8% by mass . In fact, especially in the case of steel types containing 1% by mass or more and a large amount of Cu, troubles such as cracks and double cracks (hole cracks) are likely to occur during hot rolling, and the manufacturability is hindered.
[0003]
[Means for Solving the Problems]
The present invention has been devised to solve such a problem, and by strengthening the cooling of the crater end portion, the coarsening of the Cu alloy phase is suppressed, and cracking at the time of hot rolling, cracking at the neck, etc. It aims at obtaining the continuous cast slab which does not generate | occur | produce.
In order to achieve the object of the manufacturing method of the present invention, when continuously casting an austenitic stainless steel containing 1 to 5% by mass of Cu, the grain size of the Cu alloy phase in the center of the slab is 50 μm or less. Cooling water is sprayed on the crater end portion at a specific water amount of 0.2 to 0.5 liter / kg-steel .
[0004]
[Action]
Various investigations and researches were conducted on cracks and spout cracks that occurred during hot rolling of Cu-containing stainless steel. As a result of investigating the crack generation part, it was found that Cu exists in the crystal grain boundary of the part where the crack started and Cu is distributed along the crack.
Therefore, in order to elucidate the factors inherent in the slab where the hot-rolled crack occurred, the slab of the charge where the hot-rolled crack occurred and the slab of the charge showing good hot-rolled results were investigated. Normally, solute elements such as C, P, and S are centrally segregated at the center of the slab, but Cu is also an element that is centrally segregated. That is, at the center of the slab, when the contraction due to solidification begins, the molten steel enriched with Cu is sucked, so the Cu concentration increases, and there exists a low melting point precipitation phase (Cu alloy phase) enriched with solute elements such as Cu. To do.
[0005]
As a result of investigating the charge slab in which hot rolling cracks occurred, coarse grain boundary precipitation of the Cu alloy phase was detected in the center of the slab. On the other hand, in a charge slab in which hot rolling cracks did not occur, a small-sized Cu alloy phase was precipitated in the grains. The occurrence of hot rolling cracks when coarse Cu alloy phases precipitated at the grain boundaries means that the Cu alloy phases became liquid films at the grain boundaries due to heating during hot rolling, and cracking occurred due to stress during hot rolling. To do.
Therefore, the cause of the difference in the form of the Cu alloy phase was investigated, and a production method for refining the Cu alloy phase was studied. The slab of a charge in which hot-rolling cracking has occurred is a slab manufactured under conditions where the cooling of the crater end portion is weak compared to a slab of a charge that has shown good hot-rolling results. The crater end portion refers to a range in which solute concentrated steel is likely to be sucked by solidification shrinkage, that is, a range in which the solid phase ratio in the center portion of the slab is 0.1 to 1.0.
[0006]
If the cooling conditions are weak, the solidified shell temperature at the crater end portion is high, so the strength is low, and bulging is likely to occur between rolls during continuous casting. Bulging further promotes suction of molten steel enriched with Cu in addition to solidification shrinkage. As a result, center segregation of Cu is promoted, and a coarse Cu alloy phase is precipitated at the center of the slab.
Since the coarse Cu alloy phase is a cause of hot cracking, Cu segregation of Cu is reduced and coarsening of the Cu alloy phase is prevented when bulging is prevented by optimizing the cooling conditions of the crater end portion. It is expected that. The range in which solute-concentrated molten steel can be attracted by solidification shrinkage under normal continuous casting conditions is in the range of a solid fraction of 0.4 to 1.0 at the crater end, that is, the slab center. Therefore, as a result of investigating the relationship between the particle size of the Cu alloy phase and the cooling condition in this range, when the cooling condition is strengthened so that the Cu alloy phase at the center of the slab has a particle size of 50 μm or less, cracks occur during hot rolling. Clarified that it does not occur.
[0007]
The stainless steel targeted by the present invention contains 1 to 5 mass % and a large amount of Cu, and is therefore a steel type in which a Cu alloy phase is likely to precipitate at the center of the slab. The occupied area ratio of the Cu alloy phase by microscopic observation increases as the Cu content increases. The effect of improving the workability and corrosion resistance due to the addition of Cu becomes significant when the content is 1% by mass or more. However, when a large amount of Cu is added exceeding 5% by mass , the hot workability is remarkably lowered and it is impossible to manufacture industrially. Stainless steel to which the present invention is directed, a 1 to 5 mass% of Cu is including austenitic stainless steels. As other optional components, steel types including Mo, Nb, Ti, Zr, V, B, rare earth metals (REM), Y, Ca, Mg, W, N and the like are also targeted.
[0008]
The maximum particle size of 50 μm of the Cu alloy phase for preventing hot rolling cracks is a value found from the results of investigations and studies by the present inventors. The maximum particle size of the Cu alloy phase is obtained as a maximum measured value by observing the central portion in the thickness direction of the slab cross section with an optical microscope and measuring the particle size of 100 or more Cu alloy phases.
When the cooling of the crater end portion is strengthened and the occurrence of bulging is suppressed, the grain size of the Cu alloy phase becomes 50 μm or less and hardly precipitates at the grain boundaries. Even when precipitated at the grain boundary, the Cu alloy phase has a small particle size, so that it is easily re-dissolved in the matrix by heating during hot rolling. Therefore, it becomes difficult to form a liquid film at the grain boundary, and hot rolling cracks are suppressed. On the other hand, when bulging occurs, the Cu alloy phase is coarse with a maximum particle size of 60 to 100 μm and is precipitated at the grain boundary. Is likely to occur.
[0009]
The particle size of the Cu alloy phase is controlled by the cooling conditions of the crater end portion when the slab is cooled by spray cooling, mist cooling or the like. For controlling the cooling conditions, a method of adjusting the flow rate of the cooling water sprayed on the crater end portion of the slab is adopted. However, the amount of cooling water at the crater end for making the Cu alloy phase 50 μm or less is not uniquely determined because it varies depending on the cross-sectional area of the slab, the casting speed and the Cu concentration in the steel. As a guide, when the cooling water is sprayed at a specific water amount of 0.2 to 0.5 liter / kg-steel, the particle size of the Cu alloy phase is suppressed to 50 μm or less.
[0010]
[Example 1]
Austenitic stainless steel (70 tons / charge) based on SUS XM7 (Cu content 3% by mass ) is melted through an electric furnace, converter, and VOD process, and continuously cast into a slab with a thickness of 200mm and a width of 1000mm. did. Table 1 shows the casting speed during continuous casting and the specific water amount at the crater end.
A sample was cut out from the center of the slab, and the particle size of the Cu alloy phase was measured. Further, a sample for hot rolling evaluation was cut out from the center of the slab, and hot rolled to a plate thickness of 3 mm by hot rolling in a laboratory. The presence or absence of hot-rolled cracks was determined by observing the hot-rolled sheet, and evaluations were given as ◯ for those without hot-rolled cracks, Δ for those with fine cracks, and X for those with large cracks.
As can be seen from the investigation results in Table 1, when the Cu alloy phase was adjusted to a particle size of 50 μm or less by controlling the cooling conditions, it was manufactured into a hot-rolled sheet having a predetermined thickness without causing hot-rolling cracks. On the other hand, in the comparative example with weak cooling conditions, a large Cu alloy phase exceeding 50 μm was precipitated, and cracking occurred during hot rolling.
[0011]
[Example 2]
Austenitic stainless steel (70 tons / charge) having a basic composition of SUS316J1 (Cu content 2 mass %) was melted and continuously cast in the same manner as in Example 1. And like Example 1, while measuring the particle size of Cu alloy phase in the center part of the obtained slab, it hot-rolled to plate | board thickness 3mm by the hot rolling in the laboratory.
Also in this case, when the Cu alloy phase was adjusted to a particle size of 50 μm or less, it was produced into a hot-rolled sheet having a predetermined thickness without causing hot-rolling cracks. On the other hand, in the comparative example with weak cooling conditions, a large Cu alloy phase exceeding 50 μm was precipitated, and cracking occurred during hot rolling.
[0012]
Figure 0004164185
[0013]
【The invention's effect】
As described above, in the present invention, when Cu-containing stainless steel is continuously cast, the cooling of the crater end portion is strengthened at the time of secondary cooling, and the particle size of the Cu alloy phase precipitated in the center portion of the slab is 50 μm or less. It is suppressed to. Since the Cu alloy phase whose grain size is controlled does not form a liquid film at the grain boundary during hot rolling, it does not cause hot rolling cracks, throat cracks, and the like. Thus, according to the present invention, a Cu-containing stainless steel slab, which has been difficult to hot-roll conventionally, can be hot-rolled without any trouble in operation, and a material with improved workability and corrosion resistance due to addition of Cu is produced. .

Claims (1)

1〜5質量%のCuを含むオーステナイト系ステンレス鋼を連続鋳造する際、スラブ中心部におけるCu合金相の粒径が50μm以下となるようにクレータエンド部に0.2〜0.5リットル/kg−鋼の比水量で冷却水を吹き付けることを特徴とするCu含有ステンレス鋼スラブの製造方法。When continuously casting austenitic stainless steel containing 1 to 5% by mass of Cu , 0.2 to 0.5 liter / kg at the crater end so that the grain size of the Cu alloy phase at the center of the slab is 50 μm or less. -Manufacturing method of Cu containing stainless steel slab characterized by spraying cooling water with specific water amount of steel.
JP02814199A 1999-02-05 1999-02-05 Method for producing Cu-containing stainless steel slab Expired - Lifetime JP4164185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02814199A JP4164185B2 (en) 1999-02-05 1999-02-05 Method for producing Cu-containing stainless steel slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02814199A JP4164185B2 (en) 1999-02-05 1999-02-05 Method for producing Cu-containing stainless steel slab

Publications (2)

Publication Number Publication Date
JP2000225441A JP2000225441A (en) 2000-08-15
JP4164185B2 true JP4164185B2 (en) 2008-10-08

Family

ID=12240501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02814199A Expired - Lifetime JP4164185B2 (en) 1999-02-05 1999-02-05 Method for producing Cu-containing stainless steel slab

Country Status (1)

Country Link
JP (1) JP4164185B2 (en)

Also Published As

Publication number Publication date
JP2000225441A (en) 2000-08-15

Similar Documents

Publication Publication Date Title
JP5126846B2 (en) Hot-rolled steel sheet and manufacturing method thereof
KR102217049B1 (en) Material for metal mask and its manufacturing method
JP5208556B2 (en) Titanium copper suitable for precision press working and method for producing the titanium copper
JP3624804B2 (en) Method for producing ridging resistant ferritic stainless steel
JP4164185B2 (en) Method for producing Cu-containing stainless steel slab
JP3685973B2 (en) Al-Mg-based Al alloy plate with excellent formability
JP6809243B2 (en) Continuously cast steel slabs and their manufacturing methods
JP2017131933A (en) Production method for low-carbon steel thin-walled cast slab, the thin-walled cast slab, and production method for low-carbon thin-walled steel sheet
JP4303578B2 (en) Method for reducing center defects in continuous cast slabs of steel
JP3925697B2 (en) Ti-containing Fe-Cr-Ni steel excellent in surface properties and casting method thereof
KR101220791B1 (en) Method for making stainless steel comprising fine carbonitrides and product obtained by said method
JP4289205B2 (en) Continuous casting method and continuous cast slab
JP5883257B2 (en) Steel material excellent in toughness of base metal and weld heat-affected zone, and manufacturing method thereof
US4494998A (en) Process for producing austenitic stainless steels less susceptible to rolling defects
JPS63123556A (en) Production of cr-ni stainless steel being hard to crack at casting and hot rolling process
JP3215573B2 (en) Continuous casting method of nickel-containing steel
JP3450777B2 (en) Manufacturing method of stainless steel containing rare earth element
JP3458831B2 (en) Method for producing Cr-based stainless steel
JPH0617505B2 (en) Hot working method for Mo-containing, N-austenitic stainless steel
JP3873832B2 (en) Continuous casting method of high Cr and high Al content steel
JP3953626B2 (en) Ferritic stainless steel excellent in drawing workability and manufacturing method thereof
JP4285869B2 (en) Method for producing Cr-containing thin steel sheet
JP2518618B2 (en) Mold for continuous casting of steel
JP3098109B2 (en) Method for producing thin Cr-Ni stainless steel sheet with excellent elongation properties
JPS6238425B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060425

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070409

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term