JP4162865B2 - Constant strain steel used for CVJ and other machine structural products - Google Patents

Constant strain steel used for CVJ and other machine structural products Download PDF

Info

Publication number
JP4162865B2
JP4162865B2 JP2001109540A JP2001109540A JP4162865B2 JP 4162865 B2 JP4162865 B2 JP 4162865B2 JP 2001109540 A JP2001109540 A JP 2001109540A JP 2001109540 A JP2001109540 A JP 2001109540A JP 4162865 B2 JP4162865 B2 JP 4162865B2
Authority
JP
Japan
Prior art keywords
cvj
steel
core
constant strain
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001109540A
Other languages
Japanese (ja)
Other versions
JP2002307143A (en
Inventor
一郎 高須
貴之 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2001109540A priority Critical patent/JP4162865B2/en
Publication of JP2002307143A publication Critical patent/JP2002307143A/en
Application granted granted Critical
Publication of JP4162865B2 publication Critical patent/JP4162865B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
自動車部品のCVJなど、精密冷間鍛造により仕上げし、その後研磨を行わない部品の製造に使用するための定ひずみ鋼に関する。
【0002】
【従来の技術】
自動車部品のCVJなどは、省工程化によるコストの削減のため、精密冷間鍛造により仕上げることで、その後の研磨を行わなくしている。このために冷鍛加工に供する鋼の矩形断面を有するインゴットあるいは連鋳片においては、それらの鋳鋼材のマクロパターンの内部と外部とで初期凝固組織が異なるため、熱処理後の製品ひずみに、例えば内外で0.02%異なるというばらつきが発生する大きな問題となる。このパターン内外のひずみ差が冷鍛後仕上げ研磨または切削を行わない部品には大きな問題がある。これに対して、連鋳片の断面形状を中径の丸形連鋳片としたり正方形連鋳片とすることも考えられるが、設備を新設あるいは改造することによるコストアップをもたらす。さらに、鋳込み時の形状による中心偏析悪化の問題がある。すなわち、最終凝固位置付近の正偏析及び負偏析が矩形断面の鋳片に比して、丸形の方が大きいという知見がある。中径の丸形鋳片あるいは正方形鋳片からでは圧鍛比が低くなり組織の微細化および均一化が不十分となる問題があった。
【0003】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、矩形断面形状の鋳片をそのまま採用することで、最終凝固位置付近の正偏析及び負偏析が小さいという中心偏析抑制効果を最大限に利用して、製品のマクロパターンの内外のひずみ差を小さくすることで品質向上を図り得るという、矩形断面の鋳片の利点を活かしつつ、かつ、形状差に伴う熱処理後の製品ひずみを抑制することの可能な定ひずみ鋼材を提供することである。
【0004】
【課題を解決するための手段】
上記の課題を解決するための本発明の手段は、請求項1の発明では、連続鋳造またはインゴット鋳造による短辺が320mm以上の矩形の大断面のブルームから分塊圧延または鍛造してなる棒鋼において、該棒鋼の断面における負偏析部であるコア部の面積率が25%以下であることを特徴とするCVJその他の機械構造用製品に用いる定ひずみ鋼である。
【0005】
上記手段の作用を説明する。例えば、φ36mmのサンプル鋼から冷鍛により製造の自動車部品であるCVJインナーレースにおいて、図1に示すように、一部切断して示す溝面1および突起面2について、図2に示すP法による熱処理ひずみ、すなわち、図中の各溝におけるボールとボールとの間の距離の各溝間での偏差、例えば、図2の(b)に示す、ボール3とボール6、ボール4とボール7、ボール5とボール8の距離の偏差を各断面a、b、c、d、eで評価する方法で評価し、その評価結果を図3に示す。図2において、(a)は図1に示すCVJインナーレースの冷鍛品の溝面1および突起面2の縦方向の5ポイントのa、b、c、d、e点の測定位置を示すパターン図で、(b)は図1に示すCVJインナーレースの冷鍛品の平面図における測定位置を示すパターン図である。図3に見られるようにスペック:σ=30μmに対して、P法変化量のσ/μmの値が、サンプル鋼のA鋼材の製品マクロのコア面積率:10〜24%のものでは4.4μm、サンプル鋼のB鋼材の製品マクロの縦横比1.02〜1.16でコア面積率23.2〜23.27%のものでは5.5μm、サンプル鋼のC鋼材の製品のマクロの縦横比1.40〜1.58でコア面積率19.5〜28.4%のものでは4.9μmであり、比較例の丸連鋳材で製品マクロの10.69×9.63mm(縦横比1.09)の楕円コアのものでは4.7μmであった。上記のサンプル鋼のA鋼材とC鋼材は6σでもスペックをクリアしており、比較例の丸連鋳材と同等の評価結果である。
【0006】
次に、図4に示すように、CVJインナーレース鍛造解析結果であるメタルフロー調査では、サンプル鋼の10.25mm×7.07mmの矩形コアの分塊圧延鋼材と、10.46mm×9.63mmの楕円コアの丸連鋳材と、10.25mm角の大きな正方形コアの分塊圧延材と、7.07mm角の小さな正方形コアの分塊圧延材では、図1におけるCVJインナーレースの冷鍛材の溝面1と突起面2におけるメタルフローは、サンプル鋼の10.25mm×7.07mmの矩形コアの分塊圧延鋼材では溝面1の分布幅が8.02mmで突起面2の分布幅が9.84mmであり、丸連鋳材では溝面1の分布幅が1.27mmで突起面2の分布幅が1.96mmであり、大きな正方形コアの分塊圧延材では溝面1の分布幅が8.84mmで突起面2の分布幅が10.55mmであり、小さな正方形コアの分塊圧延材では溝面1の分布幅が3.53mmで突起面2の分布幅が4.49mmである。
【0007】
このことから、コア部の大きな正方形のものよりも、小さな矩形のものの方が良好であることがわかる。すなわちコア部の角の部分である図4の黒丸で示す部分はコア部の大きな正方形のものよりも、小さな矩形のものの方が溝面1および突起面2への入り込みが小さいことが分かり、矩形断面コアが熱処理ひずみのばらつき低減に効果的であることがわかる。そして、図3から、サンプル鋼のA鋼材のものは、コア面積率が24%以下であり、P法変化量が4.4μmであり、このものはCVJインナーレースに冷鍛したときに全てP法変化量において合格であり、このことから図3の面積率25%を示す点線以下の矢印の部分が本発明の領域で、コア部の面積率25.0%以下とするとき、優れた定ひずみの鋼材が得られることがわかる。すなわち、分塊圧延後の棒鋼の断面におけるC%の低い負偏析部であるコア部の面積率が25%以下であるので、このコア部の面積率が25%以下である鋼材を用いて、例えばCVJインナーレースに冷鍛する時、コア部のC%の低い部分を容易にポンカス部として集めて取り除くことで、製品内への負偏析部の入り込みが低減でき、製品の熱処理時に生じるひずみ差を小さくする、すなわち定ひずみとすることができる。
【0008】
【発明の実施の形態】
本発明の実施の形態を以下の実施例を通じて示す。連続鋳造による冷鍛用鋼の縦横比1.2以上の矩形ブルーム、例えば形状490mm×380mm、縦横比1.29を、短辺側から1パス当たり圧下率15%以上の強圧下パスを含むパススケジュールで圧下して分塊圧延する。その後特殊なパススケジュールを用いることなく、得られた鋳片あるいは鋼片は、さらに、圧延あるいは鍛造することなく、例えば3ロール・プラネタリー・ミル(以下、「PSW」という。)により、例えばφ170、に圧延する。その後冷鍛用の丸棒、例えばφ40に仕上げ圧延する。この丸棒のマクロパターンのコア部面積率は25%以下のものが得られ、この丸棒から冷間鍛造により自動車部品のCVJ等の製品にするとき、熱処理後の熱処理ひずみが均一な定ひずみの冷鍛製品が得られる。
【0009】
【実施例】
連続鋳造により、スーパーヒート(SH)29℃で冷鍛用鋼SCR420Hの形状490mm×380mm、縦横比1.29の矩形ブルームを作成し、加熱炉で加熱し、短辺側から1パス当たりの圧下率15%以上の強圧下パスを含むパススケジュールで分塊圧延を行う。その後再加熱し、φ40に圧延し、棒鋼成品とした。この方法にてコア部の面積率25%以下の冷鍛用の定ひずみ鋼材が得られた。この鋼材を用いてCVJインナーレース等の製品にするとき、コア部の角部の一部が冷鍛成品に入り込んでも、極めて少量のメタルフローであるので、製品に仕上げる場合にコア部が多少入り込んでも、ポンカス部として除去することができ、製品は各部で定ひずみのものが得られた。
【0010】
【発明の効果】
以上説明したように、冷鍛によりCVJ等の冷鍛製品とし、その後研磨を行うことなく、CVJ部品に仕上げるために使用する定ひずみ鋼として、本発明は、大矩形断面の連鋳材あるいはインゴット材を分塊圧延あるいは鍛造により棒鋼材とし、この棒鋼材の断面の負偏析部であるコア部の面積率を25%以下としているので、CVJ等の冷鍛製品の熱処理後の製品の熱処理ひずみが均一な定ひずみ鋼が得られている。したがって、熱処理後の製品形状のばらつきを抑えることができる。そこで連続鋳造設備を新設したり、改変したりする必要がなく、既設の矩形鋳片の連続鋳造設備をそのまま使用することができ、従って、コストを格別増大することなく丸連鋳材に劣ることのない定ひずみ鋼を得ることによりにより、CVJ等の冷鍛製品が実施でき、かつ、矩形鋳片の特徴である最終凝固位置付近の正偏析及び負偏析の小さな優れた点を維持することができるなど、本発明は自動車部品のCVJなど、精密冷間鍛造により仕上げし、その後研磨を行わない部品の製造に使用するための定ひずみ鋼を提供することができ、本発明は従来にない優れた効果を奏するものである。
【図面の簡単な説明】
【図1】冷鍛によるCVJインナーレース製品の一部切断して示す斜視図である。
【図2】図1に示すCVJインナーレース製品のP法による熱処理ひずみを評価するためのパターンを示す図であり、(a)はその溝面1と突起面2の立面図の5箇所の冷鍛後の熱処理前と熱処理後の変化量の測定位置を示すパターンを示し、(b)はそのCVJインナーレース製品の平面図における熱処理前と熱処理後の測定位置を示すパターンの模式図である。
【図3】図2のパターンにより評価したP法評価結果を示すグラフである。
【図4】矩形または正方形の連鋳材あるいはインゴットの分塊圧延あるいは鍛造後の冷鍛用の棒鋼材の負偏析部であるコア部の形状あるいは丸連鋳材の分塊圧延後の冷鍛用鋼材における各コア部が図1で示すCVJインナーレース製品の溝面1あるいは突起面2への入り込みを示すメタルフローの模式図である。
【符号の説明】
1 溝面
2 突起面
3 ボール
4 ボール
5 ボール
6 ボール
7 ボール
8 ボール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a constant strain steel for use in the manufacture of parts such as CVJ for automobile parts which are finished by precision cold forging and are not polished thereafter.
[0002]
[Prior art]
The CVJ of automobile parts is finished by precision cold forging so as to reduce costs by reducing the number of processes, so that subsequent polishing is not performed. For this reason, in ingots or continuous cast pieces having a rectangular cross section of steel to be subjected to cold forging, the initial solidification structure is different between the inside and outside of the macro pattern of the cast steel material. This is a major problem that causes a variation of 0.02% difference between the inside and outside. This difference in strain between the inside and outside of the pattern poses a serious problem for parts that are not subjected to finish polishing or cutting after cold forging. On the other hand, it is conceivable that the cross-sectional shape of the continuous cast piece is a medium-diameter round continuous cast piece or a square continuous cast piece. However, this increases the cost by newly installing or remodeling the equipment. Furthermore, there is a problem of deterioration of center segregation due to the shape during casting. That is, there is a knowledge that the round shape is larger in the positive segregation and negative segregation near the final solidification position than in the slab having a rectangular cross section. The medium-diameter round slab or square slab has a problem that the forging ratio is low, and the structure is not sufficiently refined and homogenized.
[0003]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to adopt a slab having a rectangular cross-sectional shape as it is, and to maximize the center segregation suppressing effect that the positive segregation and the negative segregation near the final solidification position are small. Constant strain capable of suppressing the product strain after heat treatment due to the shape difference while taking advantage of the rectangular cross-section slab, which can improve the quality by reducing the strain difference inside and outside the macro pattern It is to provide steel.
[0004]
[Means for Solving the Problems]
The means of the present invention for solving the above-mentioned problems is that, in the invention of claim 1, in a steel bar formed by rolling or forging from a large cross-sectional bloom having a short side of 320 mm or more by continuous casting or ingot casting. The constant strain steel used for CVJ and other products for mechanical structures, wherein the area ratio of the core portion which is a negative segregation portion in the cross section of the steel bar is 25% or less.
[0005]
The operation of the above means will be described. For example, in a CVJ inner race, which is an automobile part manufactured by cold forging from φ36 mm sample steel, as shown in FIG. Heat treatment strain, that is, the deviation between the balls in each groove in the drawing, for example, the ball 3 and the ball 6, the ball 4 and the ball 7, shown in FIG. The deviation of the distance between the ball 5 and the ball 8 is evaluated by a method of evaluating the cross sections a, b, c, d, and e, and the evaluation results are shown in FIG. 2, (a) is a pattern showing the measurement positions of the five points a, b, c, d, and e in the longitudinal direction of the groove surface 1 and the projection surface 2 of the cold forged product of the CVJ inner race shown in FIG. (B) is a pattern diagram which shows the measurement position in the top view of the cold forged goods of the CVJ inner race shown in FIG. As shown in FIG. 3, when the value of σ / μm of the amount of change in the P method is σ = 30 μm with respect to the spec: σ = 30 μm, 4μm, sample steel B product macro aspect ratio 1.02-1.16 and core area ratio 23.2-23.27% 5.5μm, sample steel C steel product macro aspect It is 4.9 μm when the ratio is 1.40 to 1.58 and the core area ratio is 19.5 to 28.4%, and the round continuous cast material of the comparative example is 10.69 × 9.63 mm (aspect ratio). In the case of the elliptical core of 1.09), it was 4.7 μm. The A steel material and the C steel material of the sample steel clear the specifications even at 6σ, which is the same evaluation result as the round continuous cast material of the comparative example.
[0006]
Next, as shown in FIG. 4, in the metal flow investigation which is the CVJ inner race forging analysis result, the sample steel has a 100.25 mm × 7.07 mm rectangular core block rolled steel material and 10.46 mm × 9.63 mm. CVJ inner race cold-forged material in FIG. 1 for a round cast material with an elliptical core of 10 mm, a rolled material with a large square core of 10.25 mm square, and a rolled material with a small square core of 7.07 mm square The metal flow on the groove surface 1 and the projecting surface 2 of the sample steel is 10.25 mm × 7.07 mm, and the distribution width of the projecting surface 2 is 8.02 mm. 9.84 mm, the distribution width of the groove surface 1 is 1.27 mm in the round cast material, and the distribution width of the projection surface 2 is 1.96 mm, and the distribution width of the groove surface 1 is in the large square core block rolled material. Is a protrusion at 8.84mm 2 distribution width is 10.55Mm, distribution width of the projection surface 2 distribution width of Mizomen 1 in slabbing material small square core with 3.53mm is 4.49mm.
[0007]
From this, it can be seen that a small rectangular shape is better than a large square core. That is, it can be seen that the portion indicated by the black circle in FIG. 4 which is the corner portion of the core portion is smaller in the small rectangular shape than in the large square shape in the core portion, so that the entry into the groove surface 1 and the projection surface 2 is smaller. It can be seen that the cross-sectional core is effective in reducing variation in heat treatment strain. From FIG. 3, the sample steel A has a core area ratio of 24% or less and a P method variation of 4.4 μm. This is all when cold forged into a CVJ inner race. When the amount of change in the law is acceptable and the portion of the arrow below the dotted line indicating the area ratio of 25% in FIG. 3 is the region of the present invention and the area ratio of the core portion is 25.0% or less, an excellent It can be seen that a strained steel material is obtained. That is, since the area ratio of the core portion which is a negative segregation portion having a low C% in the cross section of the bar steel after the block rolling is 25% or less, the steel material having an area ratio of this core portion of 25% or less is used. For example, when cold forging into a CVJ inner race, it is possible to reduce the entry of negative segregation parts into the product by easily collecting and removing the low C% part of the core part as a poncas part. Can be reduced, that is, constant strain can be obtained.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be shown through the following examples. A rectangular bloom of cold forging steel by continuous casting with an aspect ratio of 1.2 or more, for example, a shape including 490 mm × 380 mm and an aspect ratio of 1.29 including a strong reduction pass with a reduction rate of 15% or more per pass from the short side. Roll down by rolling on a schedule. Thereafter, without using a special pass schedule, the obtained slab or steel slab is further subjected to, for example, φ170 without rolling or forging, for example, by a three-roll planetary mill (hereinafter referred to as “PSW”). , Rolled into. Then, it is finish-rolled to a round bar for cold forging, for example, φ40. The core area ratio of the macro pattern of this round bar is 25% or less, and when this round bar is made into a product such as CVJ for automobile parts by cold forging, constant strain with uniform heat treatment strain after heat treatment Cold forged products.
[0009]
【Example】
By continuous casting, a rectangular bloom of 490mm x 380mm shape and 1.29 aspect ratio of cold forging steel SCR420H at superheat (SH) 29 ° C was created, heated in a heating furnace, and reduced per pass from the short side. Split rolling is performed with a pass schedule including a pass under high pressure at a rate of 15% or more. Thereafter, it was reheated and rolled to φ40 to obtain a steel bar product. By this method, a constant strain steel material for cold forging having an area ratio of 25% or less of the core portion was obtained. When this steel material is used to make products such as CVJ inner races, even if some of the corners of the core part enter into the cold forged product, the core part enters slightly when finishing the product because it is a very small amount of metal flow. However, it could be removed as a poncus part, and a product with a constant strain was obtained in each part.
[0010]
【The invention's effect】
As described above, a cold-forged product such as CVJ is obtained by cold forging, and as a constant strain steel used for finishing CVJ parts without polishing thereafter, the present invention is a continuous cast material or ingot having a large rectangular cross section. The material is made into a bar steel by ingot rolling or forging, and the area ratio of the core part, which is the negative segregation part of the cross section of this bar steel, is 25% or less. A uniform strain steel is obtained. Therefore, variation in product shape after heat treatment can be suppressed. Therefore, there is no need to newly install or modify the continuous casting equipment, and the existing continuous casting equipment for rectangular slabs can be used as it is, and therefore it is inferior to the round continuous cast material without particularly increasing the cost. It is possible to carry out cold-forged products such as CVJ by maintaining constant strain steel without any defects, and to maintain the excellent positive and negative segregation near the final solidification position, which is a feature of rectangular cast pieces. The present invention can provide a constant strain steel for use in the manufacture of parts that are finished by precision cold forging and thereafter not polished, such as CVJ for automobile parts, and the present invention is superior in the past. It is effective.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a CVJ inner race product partially cut by cold forging.
2 is a diagram showing a pattern for evaluating heat treatment strain by the P method of the CVJ inner race product shown in FIG. 1, (a) is an elevation view of the groove surface 1 and the projection surface 2 at five locations; The pattern which shows the measurement position of the amount of change after heat treatment after cold forging and after heat treatment is shown, (b) is a mimetic diagram of the pattern which shows the measurement position before heat treatment in the top view of the CVJ inner race product, and after heat treatment. .
FIG. 3 is a graph showing a P method evaluation result evaluated according to the pattern of FIG. 2;
FIG. 4 shows the shape of the core, which is a negative segregation part of a steel bar for cold forging after the rolling or forging of a rectangular or square continuous casting or ingot, or cold forging after the rolling of a round continuous casting. It is a schematic diagram of the metal flow in which each core part in the steel material for use shows entry into the groove surface 1 or the projection surface 2 of the CVJ inner race product shown in FIG.
[Explanation of symbols]
1 Groove surface 2 Projection surface 3 Ball 4 Ball 5 Ball 6 Ball 7 Ball 8 Ball

Claims (1)

連続鋳造またはインゴット鋳造による短辺が320mm以上である矩形の大断面のブルームから分塊圧延または鍛造してなる棒鋼において、該棒鋼の断面における負偏析部であるコア部の面積率が25%以下であることを特徴とするCVJその他の機械構造用製品に用いる定ひずみ鋼。In a steel bar obtained by performing continuous rolling or forging from a rectangular large cross-section bloom having a short side of 320 mm or more by continuous casting or ingot casting, the area ratio of the core part which is a negative segregation part in the cross section of the steel bar is 25% or less A constant strain steel used for CVJ and other mechanical structural products.
JP2001109540A 2001-04-09 2001-04-09 Constant strain steel used for CVJ and other machine structural products Expired - Fee Related JP4162865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001109540A JP4162865B2 (en) 2001-04-09 2001-04-09 Constant strain steel used for CVJ and other machine structural products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001109540A JP4162865B2 (en) 2001-04-09 2001-04-09 Constant strain steel used for CVJ and other machine structural products

Publications (2)

Publication Number Publication Date
JP2002307143A JP2002307143A (en) 2002-10-22
JP4162865B2 true JP4162865B2 (en) 2008-10-08

Family

ID=18961463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001109540A Expired - Fee Related JP4162865B2 (en) 2001-04-09 2001-04-09 Constant strain steel used for CVJ and other machine structural products

Country Status (1)

Country Link
JP (1) JP4162865B2 (en)

Also Published As

Publication number Publication date
JP2002307143A (en) 2002-10-22

Similar Documents

Publication Publication Date Title
TWI381894B (en) Method and casting-rolling plant for the manufacture of hot-rolled metal strip-more preferably steel material strip with high surface quality
EP2818259B1 (en) Pre-control method of head and tail shapes of continuous casting slab for reducing the removed amount from the head and tail of hot-rolled intermediate slab
US9833823B2 (en) Method for producing a metal strip
CN109772898B (en) Method for eliminating edge warping defect of hot continuous rolling strip steel and strip steel produced by method
DE102007022931A1 (en) Production of a metal strip used in a continuous casting process comprises using rolling and milling operations directly with casting of a slab in a casting machine
CN112296098B (en) Method for improving surface quality of hot-rolled thin strip steel
JP4162865B2 (en) Constant strain steel used for CVJ and other machine structural products
JP2983152B2 (en) Continuous casting method and continuous casting equipment
JP4230123B2 (en) Constant strain steel used for CVJ and other machine structural products
JP2854811B2 (en) In-line steel material production equipment
JP4312928B2 (en) Metal rolling method
JP2010005638A (en) Method of manufacturing steel for cold forging
JP4424224B2 (en) A slab that is a material of a hot-rolled steel sheet, a method for producing the slab, a method for producing the hot-rolled steel sheet, and a method for reducing the rate of occurrence of surface flaws occurring in the hot-rolled steel sheet
JPS5837042B2 (en) Manufacturing method of shaped steel
KR101220700B1 (en) Method for Reducing Edge Crack of Thick Rolled Medium Carbon Steel Plate of at Hot Rolling
Smirnov et al. Investigation of contact conditions in box pass at sectional rolling of CCB possessing rhomboidity defect
JP4301389B2 (en) Method for producing slab of carburizing steel with small variation in heat treatment strain and slab
JP7460894B2 (en) HOT-ROLLED STEEL SHEET MANUFACTURING METHOD AND HOT-ROLLED STEEL SHEET MANUFACTURING APPARATUS
JPH11156512A (en) Unsolidified press down manufacturing method of blank beam
KR101522106B1 (en) Method for manufacturing casting strip with execellent quality of off-corner and method for manufacturing hot rolled steel strip with it
JP4274344B2 (en) Split rolling method for producing constant strain steel
JP3091792B2 (en) Method of manufacturing a stepped shaft
KR101518629B1 (en) Hot rolling method for preventing sticking
JP2001198601A (en) Method for producing ferritic stainless steel sheet
JP3606249B2 (en) Rolling method of shape steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140801

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees