JP4161192B2 - 筒状炭素分子の製造方法および記録装置の製造方法 - Google Patents

筒状炭素分子の製造方法および記録装置の製造方法 Download PDF

Info

Publication number
JP4161192B2
JP4161192B2 JP2003003774A JP2003003774A JP4161192B2 JP 4161192 B2 JP4161192 B2 JP 4161192B2 JP 2003003774 A JP2003003774 A JP 2003003774A JP 2003003774 A JP2003003774 A JP 2003003774A JP 4161192 B2 JP4161192 B2 JP 4161192B2
Authority
JP
Japan
Prior art keywords
substrate
protrusion
transfer
heat distribution
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003003774A
Other languages
English (en)
Other versions
JP2004262666A (ja
Inventor
パル ゴサイン ダラム
尚志 梶浦
竜一郎 丸山
誠司 白石
厚金 黄
宏治 角野
滋明 和智
誠文 阿多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003003774A priority Critical patent/JP4161192B2/ja
Application filed by Sony Corp filed Critical Sony Corp
Priority to CN200480001829.8A priority patent/CN1723171B/zh
Priority to KR1020057011770A priority patent/KR20050093796A/ko
Priority to US10/541,936 priority patent/US7828620B2/en
Priority to PCT/JP2004/000080 priority patent/WO2004063091A1/ja
Priority to EP04700779A priority patent/EP1582501A4/en
Publication of JP2004262666A publication Critical patent/JP2004262666A/ja
Application granted granted Critical
Publication of JP4161192B2 publication Critical patent/JP4161192B2/ja
Priority to US12/353,610 priority patent/US7892063B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、カーボンナノチューブ等の筒状炭素分子を微細なパターンで配列形成可能な筒状炭素分子の製造方法に関する。また、本発明は、この筒状炭素分子の製造方法を用いた記録装置の製造方法に関する。
【0002】
【従来の技術】
近年のナノテクノロジーの進歩は著しく,なかでもカーボンナノチューブ等の分子構造体は、熱伝導性,電気伝導性,機械的強度などで優れた特性を持つ安定した材料であることから、トランジスタ,メモリ,電界電子放出素子など幅広い用途への応用が期待されている。
【0003】
例えば、カーボンナノチューブの用途の1つとして、冷陰極電界電子放出(以下、「電界電子放出」という)を実現するのに好適であることが知られている(例えば、非特許文献1参照。)。電界電子放出とは、真空中に置かれた金属または半導体に所定のしきい値以上の大きさの電界を与えると、金属または半導体の表面近傍のエネルギー障壁を電子が量子トンネル効果により通過し、常温においても真空中に電子が放出されるようになる現象である。
【0004】
このような応用分野においては、カーボンナノチューブは、単独ではなく、複数のカーボンナノチューブを含むカーボンナノチューブ構造体として利用される。例えば、カーボンナノチューブを所定の配列で形成したカーボンナノチューブ構造体を、FED(Field Emission Display)に利用した例が報告されている(例えば、特許文献1ないし7、および非特許文献1ないし4参照。)。この場合、カーボンナノチューブ構造体の製造方法として、フォトリソグラフィあるいはCVD(Chemical Vapor Deposition ;化学気相成長)などの従来の半導体技術が用いられている。また、カーボンナノチューブに異物質を内包させる技術についても開示されている(例えば、非特許文献5ないし7参照。)。
【0005】
また、本発明に関連する他の技術として、磁気記録素子および磁気記録装置がある。これらの原理は、磁気材料に着磁して、その保磁力により着磁方向を1あるいは0、または着磁における磁化の度合いを記録する信号のアナログ量に対応させるものである。ここで、着磁は記録面に水平方向の面内着磁と、記録面に垂直な垂直着磁のいずれもが実用に供されている。近年では、記録密度の更なる向上が要求されているが、従来では、着磁の長さをより小さくすることにより対応してきた。このような磁気記録技術においてカーボンナノチューブを応用する試みは、本発明者の知り得るところでは開示されていない。
【0006】
【特許文献1】
特開2002−203473号公報
【特許文献2】
特開2002−197965号公報
【特許文献3】
特開2002−150922号公報
【特許文献4】
特開2001−23506号公報
【特許文献5】
特開2000−285795号公報
【特許文献6】
特開2000−123713号公報
【特許文献7】
特開2000−67736号公報
【非特許文献1】
斎藤弥八,表面化学,1998年,第19巻,第10号,p.680−686
【非特許文献2】
C.A.スピント(C. A. Spindt)、外3名,ジャーナル・オブ・アプライド・フィジクス(Journal of Applied Physics),(米国),1976年,第47巻,p5248−5263
【非特許文献3】
第49回応用物理学関係連合講演会,講演予稿集,29p−K−7
【非特許文献4】
日刊工業新聞,平成14年4月11日付記事,「CNTのフィールドエミッター4ボルト低電圧で電子放出」
【非特許文献5】
阿多誠文(M. Ata)、外3名,ジャパニーズ・ジャーナル・オブ・アプライド・フィジクス(Jpn. J. Appl.Phys.),1995年,第34巻,p4207−4212
【非特許文献6】
阿多誠文(M. Ata)、外4名,ジャパニーズ・ジャーナル・オブ・アプライド・フィジクス(Jpn. J. Appl.Phys.),1994年,第33巻,p4032−4038
【非特許文献7】
阿多誠文(M. Ata)、外2名,アドバンスト・マテリアルズ(Advanced Materials),(独国),1995年,第7巻,p286−289)
【0007】
【発明が解決しようとする課題】
カーボンナノチューブ構造体を用いたFED等を実現するには、遷移金属等からなる触媒の微細なパターンを形成し、それを用いてカーボンナノチューブを微細な間隔で規則正しく整列させる技術が必須とされる。しかしながら、従来では、ある程度の量産性を達成できる技術としてはフォトリソグラフィしかなかった。フォトリソグラフィは、本質的に二次元構造の形成に適した技術であり、カーボンナノチューブ構造体のような三次元構造を形成するには不向きである。
【0008】
更に、フォトリソグラフィにより金属触媒の微細なパターンを形成するには、エネルギービームの波長を短くするしか方法がなく、現在の技術ではこれ以上の短波長化は困難である。そのため、フォトリソグラフィにより遷移金属等のパターンを形成する場合には、遷移金属パターンの寸法およびその間隔は、エネルギービームの波長で定まり、現在の技術では0.05μm(50nm)以下にすることができず、また、パターンの間隔(ピッチ)は100nm以下にすることができない。すなわち、従来の手法では、金属触媒等のより微細なパターンを形成するには限界があるという問題があった。
【0009】
本発明はかかる問題点に鑑みてなされたもので、その第1の目的は、筒状炭素分子をより微細な間隔で規則正しく配列させることのできる筒状炭素分子の製造方法を提供することにある。
【0011】
本発明の第の目的は、より微細な間隔で規則正しく配列された筒状炭素分子を用いて記録密度を更に向上させることのできる記録装置の製造方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明による第1の筒状炭素分子の製造方法は、変調された熱分布による溶融を利用して、筒状炭素分子の触媒機能を有する金属を配置する触媒配置工程と、筒状炭素分子を成長させる成長工程とを含み、触媒配置工程は、素材基板の表面に対して所望のパターンに応じて変調された熱分布を与え、素材基板の表面を溶融させる溶融工程と、素材基板の表面を放熱させることにより、素材基板の熱分布に応じた位置に少なくとも先端部が転写物質からなる突起を形成して、表面に突起のパターンを有する転写用原盤を作製する原盤作製工程と、転写用原盤のパターンを被転写基板に転写させて基板を作製する転写工程とを含み、基板上に前記筒状炭素分子を成長させるものである。
本発明による第2の筒状炭素分子の製造方法は、変調された熱分布による溶融を利用して、筒状炭素分子の触媒機能を有する金属を配置する触媒配置工程と、筒状炭素分子を成長させる成長工程とを含み、触媒配置工程は、素材基板の表面に対して所望のパターンに応じて変調された熱分布を与え、素材基板の表面を溶融させる溶融工程と、素材基板の表面を放熱させることにより、熱分布に応じた位置に突起のパターンを形成する突起形成工程と、突起に筒状炭素分子の触媒機能を有する金属よりなる金属基板を押し当てることにより、突起の先端部に触媒金属を付着させる付着工程とを含むものである。
本発明による第3の筒状炭素分子の製造方法は、変調された熱分布による溶融を利用して、筒状炭素分子の触媒機能を有する金属を配置する触媒配置工程と、筒状炭素分子を成長させる成長工程とを含み、触媒配置工程は、素材基板の表面に対して所望のパターンに応じて変調された熱分布を与え、素材基板の表面を溶融させる溶融工程と、素材基板の表面を放熱させることにより、熱分布に応じた位置に突起のパターンを形成する突起形成工程と、突起の上面を平坦化する平坦化工程と、突起の平坦化された上面を被転写基板に転写する上面転写工程とを含むものである。
【0015】
本発明による第1の記録装置の製造方法は、変調された熱分布による溶融を利用して、筒状炭素分子の触媒機能を有する金属を配置する触媒配置工程と、筒状炭素分子を成長させる成長工程と、筒状炭素分子の先端を所定の平面内に形成すると共に先端を開放端とする高さ均一化工程と、開放端から筒状炭素分子の少なくとも先端部に磁気材料を挿入する挿入工程とを含み、触媒配置工程は、素材基板の表面に対して所望のパターンに応じて変調された熱分布を与え、素材基板の表面を溶融させる溶融工程と、素材基板の表面を放熱させることにより、素材基板の熱分布に応じた位置に少なくとも先端部が転写物質からなる突起を形成して、表面に突起のパターンを有する転写用原盤を作製する原盤作製工程と、転写用原盤のパターンを被転写基板に転写させて基板を作製する転写工程とを含み、基板上に筒状炭素分子を成長させるようにしたものである。
本発明による第2の記録装置の製造方法は、変調された熱分布による溶融を利用して、筒状炭素分子の触媒機能を有する金属を配置する触媒配置工程と、筒状炭素分子を成長させる成長工程と、筒状炭素分子の先端を所定の平面内に形成すると共に先端を開放端とする高さ均一化工程と、開放端から筒状炭素分子の少なくとも先端部に磁気材料を挿入する挿入工程とを含み、触媒配置工程は、素材基板の表面に対して所望のパターンに応じて変調された熱分布を与え、素材基板の表面を溶融させる溶融工程と、素材基板の表面を放熱させることにより、熱分布に応じた位置に突起のパターンを形成する突起形成工程と、突起に筒状炭素分子の触媒機能を有する金属よりなる金属基板を押し当てることにより、突起の先端部に触媒金属を付着させる付着工程とを含むものである。
本発明による第3の記録装置の製造方法は、変調された熱分布による溶融を利用して、筒状炭素分子の触媒機能を有する金属を配置する触媒配置工程と、筒状炭素分子を成長させる成長工程と、筒状炭素分子の先端を所定の平面内に形成すると共に先端を開放端とする高さ均一化工程と、開放端から筒状炭素分子の少なくとも先端部に磁気材料を挿入する挿入工程とを含み、触媒配置工程は、素材基板の表面に対して所望のパターンに応じて変調された熱分布を与え、素材基板の表面を溶融させる溶融工程と、素材基板の表面を放熱させることにより、熱分布に応じた位置に突起のパターンを形成する突起形成工程と、突起の上面を平坦化する平坦化工程と、突起の平坦化された上面を被転写基板に転写する上面転写工程とを含むものである。
【0017】
本発明による第1ないし第3の筒状炭素分子の製造方法では、変調された熱分布による溶融を利用して、筒状炭素分子を形成するための触媒機能を有する金属よりなるパターンが形成される。そののち、形成されたパターンを用いて筒状炭素分子が形成される。
その際、第1の製造方法では、触媒は、素材基板の表面に対して所望のパターンに応じて変調された熱分布を与え、素材基板の表面を溶融させたのち、素材基板の表面を放熱させることにより、素材基板の熱分布に応じた位置に少なくとも先端部が転写物質からなる突起を形成して、表面に突起のパターンを有する転写用原盤を作製し、この転写用原盤のパターンを被転写基板に転写させて基板を作製することにより配置され、この基板上に筒状炭素分子が成長する。
第2の製造方法では、触媒は、素材基板の表面に対して所望のパターンに応じて変調された熱分布を与え、素材基板の表面を溶融させたのち、素材基板の表面を放熱させることにより、熱分布に応じた位置に突起のパターンを形成し、突起に筒状炭素分子の触媒機能を有する金属よりなる金属基板を押し当てることにより、突起の先端部に触媒金属を付着させることにより配置される。
第3の製造方法では、触媒は、素材基板の表面に対して所望のパターンに応じて変調された熱分布を与え、素材基板の表面を溶融させたのち、素材基板の表面を放熱させることにより、熱分布に応じた位置に突起のパターンを形成し、突起の上面を平坦化し、突起の平坦化された上面を被転写基板に転写することにより配置される。
【0019】
本発明による記録装置の製造方法では、変調された熱分布による溶融を利用して、筒状炭素分子を形成するための触媒機能を有する金属が所望のパターンで配置される。そののち、この触媒機能を有する金属を利用して筒状炭素分子が成長し、更に、筒状炭素分子の先端が所定の平面に形成されると共に先端が開放端となる。次いで、開放端から筒状炭素分子の先端部に磁気材料が挿入され磁性層となる。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
【0022】
《筒状炭素分子の製造方法》
〔第1の実施の形態〕
まず、図1ないし図3を参照して、本発明の第1の実施の形態に係る筒状炭素分子の製造方法について説明する。本実施の形態の方法は、一方向に配向された複数のカーボンナノチューブを含むカーボンナノチューブ構造体を形成するものであり、変調された熱分布による溶融を利用して、カーボンナノチューブの触媒機能を有する金属を配置する「触媒配置工程」と、触媒機能を有する金属を利用してカーボンナノチューブを成長させる「成長工程」とを含むものである。得られたカーボンナノチューブ構造体は、例えばFEDのカソードあるいは記録装置として利用される。
【0023】
ここで、カーボンナノチューブ構造体には、例えば、複数のカーボンナノチューブを微細なパターンで配列形成したもの、カーボンナノチューブに異物質を内包させたもの、あるいは複数のカーボンナノチューブを微細なパターンで配列形成すると共に異物質を内包させたものなど、種々の形態のものが含まれる。本実施の形態では、複数のカーボンナノチューブを微細なパターンで配列形成したカーボンナノチューブ構造体について扱う。
【0024】
更に、本実施の形態では、触媒配置工程は、素材基板10の表面に変調された熱分布11を与え、素材基板10の表面を溶融させる「溶融工程」と、素材基板10の表面を放熱させることにより、熱分布11に応じた位置に、すなわち所望のパターンで第2の物質を析出させる「析出工程」とを含んでいる。
【0025】
(溶融工程)
まず、図1を参照して溶融工程を説明する。ここで、素材基板10は第1の物質により構成され、この第1の物質中に析出材料として第2の物質が添加されたものである。なお、第2の物質は、偏析係数が正のもの、すなわち、第1の物質中に添加されることにより第1の物質の融点を低下させるもので、加熱により溶融されたのち冷却過程において凝固する際に溶融領域に残る性質を有するものである。本実施の形態では、第1の物質からなる素材基板10はシリコン(Si)基板であり、第2の物質として金属触媒としての鉄(Fe)を用いるものとする。
【0026】
素材基板10は、厚さが例えば40nmであり、例えばシリコンにより構成された支持体10Aにより保持されている。なお、素材基板10が十分な厚さを有している場合には、支持体10Aは不要である。
【0027】
第1の物質としては、上述のシリコンに限らず、その他の半導体材料、例えばゲルマニウム(Ge)などが挙げられるが、その他、金属材料でもよく、例えば、タンタル(Ta),タングステン(W)または白金(Pt)などの高融点金属や、それらの合金を用いてもよい。
【0028】
第2の物質は、カーボンナノチューブを形成するための金属触媒としては、上述の鉄(Fe)の他、バナジウム(V),マンガン(Mn),コバルト(Co),ニッケル(Ni),モリブデン(Mo),タンタル(Ta),タングステン(W)または白金(Pt)が挙げられる。また、イットリウム(Y),ルテチウム(Lu),ホウ素(B),銅(Cu),リチウム(Li),シリコン(Si),クロム(Cr),亜鉛(Zn),パラジウム(Pd),銀(Ag),ルテニウム(Ru),チタン(Ti),ランタン(La),セリウム(Ce),プラセオジム(Pr),ネオジム(Nd),テルビウム(Tb),ジスプロシウム(Dy),ホルミウム(Ho)またはエルビウム(Er)を用いてもよい。なお、以上の物質は2種以上同時に使用してもよく、また、これら物質の2種以上からなる化合物を用いてもよい。また、金属フタロシアン化合物,メタセロン、金属塩を用いることも可能である。更に、酸化物あるいはシリサイドであってもよい。
【0029】
加えて、用途によっては、第2の物質は、アルミニウム(Al),シリコン(Si),タンタル(Ta),チタン(Ti),ジルコニウム(Zr),ニオブ(Nb),マグネシウム(Mg),ホウ素(B),亜鉛(Zn),鉛(Pb),カルシウム(Ca),ランタン(La),ゲルマニウム(Ge)などの金属および半金属などの元素の、窒化物,酸化物,炭化物,フッ化物,硫化物,窒酸化物,窒炭化物,または酸炭化物などからなる誘電体材料を用いることが可能である。具体的には、AlN,Al2 3 ,Si3 4 ,SiO2 ,MgO,Y2 3 ,MgAl2 4 ,TiO2 ,BaTiO3 ,SrTiO3 ,Ta2 5 ,SiC,ZnS,PbS,Ge−N,Ge−N−O,Si−N−O,CaF2 ,LaF,MgF2 ,NaF,TiF4 などである。更にまた、これらの材料を主成分とする材料や、これらの材料の混合物、例えばAlN−SiO2 を用いることも可能である。加えてまた、鉄(Fe),コバルト(Co),ニッケル(Ni),ガドリニウム(Gd)等の磁性体材料を用いることもできる。
【0030】
熱分布11は、素材基板10の表面温度がエネルギービーム12の照射により空間的に変調されて、高温領域11Hと低温領域11Lとが周期的に形成されたものである。エネルギービーム12は、波長および位相の揃った平行光であり、本実施の形態では、高出力を得るため、例えばXeClエキシマレーザを用いる。
【0031】
本実施の形態では、熱分布11は、エネルギービーム12を回折格子13で回折させることにより与えられる。回折格子13は、エネルギービーム12を回折させてエネルギー量を空間的に変調するものであり、例えば、光学ガラス板に、直線状の平行な溝13Aが一定の周期間隔Pで一次元方向に配列されたものである。本実施の形態では、例えば、石英材料よりなる板に直線状の平行な溝13Aが例えば1μmの周期間隔Pで一次元方向に配列され、エネルギービーム12のエネルギー量を、溝13Aが配列されている方向に沿って一次元方向に変調するようになっている。なお、回折格子13は必ずしも溝などの凹凸を形成したものに限られず、例えば、エネルギービーム12の透過部分と非透過部分とが印刷により形成されたものであってもよい。
【0032】
このような回折格子13を用いることにより、高温領域11Hは、溝13Aの延長方向に沿った直線状に形成されると共に、溝13Aの配列されている方向に沿って一次元方向に配列される。熱分布11の空間的周期T、すなわち高温領域11Hの間隔(ピッチ)は、回折格子13の周期間隔Pおよびエネルギービーム12の波長λに応じて定まる。波長λを小さくするほど、または、周期間隔Pを微細にするほど熱分布11の空間的周期Tを微細化することができる。
【0033】
エネルギービーム12のエネルギー量は、低温領域11Lにおいて素材基板10の表面が溶融する温度となるように設定される。これにより、素材基板10の表面の全体を溶融させることができる。このとき、エネルギービーム12としてエキシマレーザを用いると、パルス発光の照射回数によりエネルギー量の制御を行うことができる。本実施の形態では、例えば、エネルギービーム12のエネルギー量を350mJ/cm2 、パルス照射回数を10回とする。
【0034】
(析出工程)
次に、図2を参照して析出工程を説明する。すなわち、溶融工程において素材基板10の表面を溶融させたのち、エネルギービーム12の照射を止めると、素材基板10の表面の温度は徐々に低下して凝固するが、このとき、第2の物質(Fe)は、高温領域11Hに移動し、更に高温領域11Hの中で最後に凝固する部分に析出する。こうして、高温領域11Hに対応する位置に第2の物質が析出し、ほぼ平面状の析出領域14が形成される。以上により、析出領域14のパターンを有する基板15が得られる。
【0035】
ここで、「平面状」とは、その基板15の表面からの高さが、表面のラフネス程度、例えば1nm未満であり実質的に平坦な場合をいう。
【0036】
析出領域14は、高温領域11Hが溝13Aに対応して一次元方向に配列された直線状であるので、これに対応して、一次元方向に配列された直線状のパターンとして形成される。析出領域14の幅(線幅)W、すなわち熱分布11の変調方向における析出領域14の寸法は、素材基板10における第2の物質(鉄)の含有量により定まり、第2の物質の含有量が多いほど、析出領域14の幅Wは大きくなる。析出領域14の幅Wは、原理的には第2の物質の原子の大きさより大きい任意の値をとり得るものであり、素材基板10における第2の物質の含有量を制御することにより従来のフォトリソグラフィ技術では不可能であった50nm未満を実現することができる。
【0037】
析出領域14の幅Wの具体的な値は、第2の物質の材料および析出領域14の用途によって定められるが、例えば後述する図3に示したように析出領域14に析出した鉄を触媒として、複数のカーボンナノチューブ16が直線状に配列されたカーボンナノチューブ構造体17を形成する場合には、析出領域14の幅Wは、0.4nm以上50nm未満であることが好ましい。その理由は、カーボンナノチューブ16の直径が、最小で0.4nmであるからである。
【0038】
析出領域14の幅Wは、0.4nm以上30nm以下であればより好ましい。カーボンナノチューブ16は、直径が0.4nm以上30nm以下の範囲にあるものが多いからである。
【0039】
更に、析出領域14の幅Wは、0.4nm以上10nm以下であれば更に好ましい。なぜなら、析出領域14の幅方向に多数のカーボンナノチューブ16が接近して屹立する可能性が小さくなるので、カーボンナノチューブ構造体17を例えば電界電子放出素子(エミッタ)として使用する場合に、カーボンナノチューブ16の各々の表面における電界強度の低下を防止し、電界放出に必要な印加電圧を小さくすることができるからである。また、例えばカーボンナノチューブ構造体17を記録装置(メモリ)として利用する場合には、一本の析出領域14には幅方向に1本のみのカーボンナノチューブ16を形成することが必要となる場合があるので、カーボンナノチューブ16の直径と析出領域14の幅Wとを一致させることが好ましいからである。
【0040】
また、析出領域14の間隔L、すなわち熱分布11の変調方向における析出領域14の間隔(ピッチ)は、熱分布11の空間的周期Tに応じて、すなわち回折格子13の周期間隔Pおよびエネルギービーム12の波長λに応じて定まる。波長λを小さくするほど、または、周期間隔Pを微細にするほど析出領域14の間隔Lを微細化することができ、従来のフォトリソグラフィでは不可能な微細な間隔Lで析出領域14を形成することが可能である。
【0041】
析出領域14の間隔Lは、例えば100nm以下であることが好ましい。従来のフォトリソグラフィでは解像限界が50nmであるため、従来のフォトリソグラフィで形成可能な最小のパターンは、例えば山50nm、谷50nm、および山50nmで、その間隔は解像限界の2倍すなわち100nmとなるからである。更に、析出領域14の間隔Lは、50nm以下とすればより好ましい。従来の電子ビームリソグラフィの解像限界が25nm程度であるため、従来の電子ビームリソグラフィで形成可能な最小のパターンの間隔は、同様に解像限界の2倍すなわち50nmとなるからである。
【0042】
以上により、触媒配置工程が完了し、素材基板10に析出領域14を有する基板15が形成される。
【0043】
(成長工程)
続いて、図3を参照して成長工程を説明する。基板15の上に、CVD(Chemical Vapor Deposition ;化学気相成長)法によりカーボンナノチューブ16を成長させる。成長条件としては、例えば、カーボンナノチューブ16の原料となる炭素化合物としてメタン(CH4 )を用い、析出領域14に析出した鉄を触媒として、900℃、15分とすることができる。カーボンナノチューブ16は析出領域14にのみ成長するので、基板15の上に析出領域14のパターン通りに複数のカーボンナノチューブ16が直線状に配列されたカーボンナノチューブ構造体17が形成される。カーボンナノチューブ16の直径は、原料となる炭素化合物の種類と、成長条件の設定により定めることが可能である。
【0044】
このように本実施の形態では、カーボンナノチューブ16を形成するための触媒機能を有する鉄よりなる析出領域14のパターンを、変調された熱分布11による溶融を利用して配置形成し、この析出領域14のパターンを用いてカーボンナノチューブ16を成長させるようにしたので、熱分布11を制御することにより、従来のフォトリソグラフィでは不可能であった微細な幅Wおよび間隔Lを有する析出領域14のパターンを形成し、基板15の上に析出領域14のパターン通りにカーボンナノチューブ16が規則正しく配列されたカーボンナノチューブ構造体17を得ることができる。
【0045】
また、析出領域14のパターンを有する基板15をドライプロセスにより形成することができるので、従来のフォトリソグラフィを利用したプロセスに比べて生産が容易であり、再現性が良く、低コスト化が可能である等の利点を得ることができる。
【0046】
更に、本実施の形態では、添加材として鉄を含むシリコンからなる素材基板10の表面に対して熱分布11を与え、素材基板10の表面を溶融させたのち、素材基板10の表面を放熱させるようにしたので、熱分布11に応じた位置に選択的に鉄を析出させ、ほぼ平面状の析出領域14からなるパターンを形成することができる。
【0047】
加えて、本実施の形態では、エネルギービーム12を回折させることにより熱分布11を与えるようにしたので、回折格子13の周期間隔Pを微細化することにより熱分布11の空間的周期Tを容易に制御し、析出領域14の間隔Lを精度よく微細化することができる。
【0048】
〔第2の実施の形態〕
次に、本発明の第2の実施の形態について説明する。本実施の形態は、上記第1の実施の形態によってカーボンナノチューブ構造体17を形成した後、カーボンナノチューブ16の先端を所定の平面内に形成すると共にその先端を開放端(オープンエンド)とする高さ均一化工程を更に含むようにしたものである。
【0049】
なお、ここで、「高さ」とは、カーボンナノチューブ16の先端の位置、すなわち素材基板10の表面とカーボンナノチューブ16の先端との距離をいう。よって、カーボンナノチューブ16の高さは、カーボンナノチューブ16の長さすなわち延長方向における実際の寸法とは異なる場合もありうる。
【0050】
(高さ均一化工程)
以下、図4を参照して、高さ均一化工程を説明する。まず、図4(A)に示したように、カーボンナノチューブ16の周囲に固定層18を充填し、カーボンナノチューブ16を固定層18により固定する。固定層18の材料としては、例えば、二酸化ケイ素(SiO2 ),窒化ケイ素(SiN),ポリイミド,ポリメチルメタクリレート(Poly Methyl Methacrylate;PMMA),金属酸化膜などの絶縁体材料、あるいはシリコン,ゲルマニウムなどの半導体材料などが用いられる。固定層18の形成方法としては、例えば、プラズマ増速CVD(Plasma Enhanced CVD;PECVD)法、PVD(Physical Vapor Deposition )法、SOG(Spin On Glass )などが挙げられる。固定層18の厚さは、特に限定されない。
【0051】
次に、図4(B)に示したように、例えばCMP(Chemical Mechanical Polishing ;化学機械研磨)により、固定層18と共にカーボンナノチューブ16を研磨する。これにより、カーボンナノチューブ16の先端が所定の同一平面PL内に揃えられると共に、研磨により先端が開放されて開放端16Aとなる。よって、カーボンナノチューブ構造体17のカーボンナノチューブ16の高さを均一化することができる。
【0052】
この場合、素材基板10の表面に対して傾いた角度で成長したカーボンナノチューブ16があっても、すべてのカーボンナノチューブ16の先端が同一平面PL内に揃うので、すべてのカーボンナノチューブ16からの電界放射を行うことが可能となる。
【0053】
このように本実施の形態では、カーボンナノチューブ16の高さが均一化されるので、例えばFEDとして用いる際に均一な放射特性が得られる。また、先端は開放端16Aとなっているので電界放出特性が良好となり、低い電圧で電界放射を行うことができる。
【0054】
なお、本実施の形態においては、固定層18を、図4(B)に示した研磨の際の平坦化層として用いた場合について説明したが、研磨せずに図4(A)に示した状態で、例えばFEDなどに利用することも可能である。この場合には、固定層18によってカーボンナノチューブ16が固定されるのでカーボンナノチューブ16を堅牢化することができると共に、カーボンナノチューブ構造体17の取扱いを容易にすることができる。
【0055】
〔第3の実施の形態〕
次に、本発明の第3の実施の形態に係るカーボンナノチューブの製造方法について説明する。本実施の形態の方法は、上記第1の実施の形態の成長工程において、カーボンナノチューブ16の先端部に所望の物質を内包させるようにしたものである。得られたカーボンナノチューブ構造体17は、例えば内包させた物質に応じて種々の用途に用いることができ、例えば本実施の形態では磁気材料,例えば鉄を内包させることにより記録装置として利用することができる。
【0056】
カーボンナノチューブ16を成長させる際に所望の物質を内包させる方法としては、CVD法の一種であるVLS(Vapor-Liquid-Solid)法を用いることができる。VLS法は、カーボンを含むガスを分解してカーボンと触媒機能を有する金属との合金滴を形成し、この合金滴の上でカーボンナノチューブ16の成長が一方向に生じることを利用したものである。VLS法では、カーボンナノチューブ16が成長するに従い、触媒である鉄がカーボンナノチューブ16の先端に移動するので、カーボンナノチューブ16の先端に鉄を内包させることができる。よって、先端に鉄を内包したカーボンナノチューブ16が所望のパターンで整列されたカーボンナノチューブ構造体17を得ることができる。なお、カーボンナノチューブ16の先端に鉄が内包される現象については前述の非特許文献5に記載されている。
【0057】
本実施の形態では、例えば析出領域14に鉄を析出させ、この鉄を触媒としてカーボンナノチューブ16を成長させながらその先端に鉄を内包させるようにしている。したがって、析出領域14に析出させる物質を変えることにより、カーボンナノチューブ16の先端に所望の物質を内包させることができる。よって、カーボンナノチューブ16に内包させる所望の物質としては、カーボンナノチューブを形成するための金属触媒としての機能を有するものであればよく、その具体例は、上記第1の実施の形態において第2の物質として例示したものと同様である。
【0058】
更に、用途によっては、カーボンナノチューブ16に内包させる所望の物質としては、第1の実施の形態において第2の物質として例示したような誘電体材料、あるいは導電体材料を用いても良い。
【0059】
このように本実施の形態では、カーボンナノチューブ16を成長させる際に、カーボンナノチューブ16の先端に鉄を内包させるようにしたので、先端に鉄を内包したカーボンナノチューブ16が所望のパターンで整列されたカーボンナノチューブ構造体17を得ることができる。
【0060】
《記録装置の製造方法》
〔第4の実施の形態〕
次に、本発明の第4の実施の形態に係る記録装置の製造方法について説明する。本実施の形態の方法は、上記第2の実施の形態で得られた高さが均一なカーボンナノチューブ16の開放端16Aからカーボンナノチューブ16の先端部に磁気材料を挿入する挿入工程を更に含むものである。得られたカーボンナノチューブ構造体17は、例えば記録装置に利用される。
【0061】
(挿入工程)
以下、図5を参照して挿入工程を説明する。まず、図5(A)に示したように、例えばスピンコート法、蒸着法またはPVD法などにより、固定層18の上に、開放端16Aを塞ぐように例えば鉄などの磁気材料よりなる薄膜19を形成する。このとき、薄膜19は開放端16Aからカーボンナノチューブ16の内部に入り込む。
【0062】
続いて、図5(B)に示したように、例えばCMPにより、固定層18が露出するまで薄膜19を研磨し、カーボンナノチューブ16の内部に入り込んだ部分を除いて薄膜19を除去する。これにより、カーボンナノチューブ16の先端付近に鉄よりなる磁性層19Aが挿入される。各々のカーボンナノチューブ16に挿入された磁性層19Aは、隣接する他のカーボンナノチューブ16内の磁性層19Aとは隔離されているため、各磁性層19Aに対する情報の書き込みまたは読み出しを確実に行うことができる。
【0063】
このようにして本実施の形態の記録装置20が形成される。この記録装置20は、カーボンナノチューブ16が所望の微細なパターンで配列されたカーボンナノチューブ構造体17を備え、各カーボンナノチューブ16内に鉄よりなる磁性層19Aが挿入されているので、着磁の長さを従来のフォトリソグラフィでは不可能な小さな寸法とすることができ、極めて記録密度が高くなる。
【0064】
図6は、この記録装置20における記録状態の一例を表すものである。この記録装置20では、図6の矢印で示したように磁性層19Aの磁化方向を制御することにより信号の記録(書き込み)および再生(読み出し)を行うことができる。信号の書き込みおよび読み出しは、例えば図示しない微細なコイルにより所定の方向の磁束を発生させて書き込み、GMRヘッドで信号を読み出すようにしてもよく、あるいはいわゆる光磁気方式により行っても良い。
【0065】
以下、例えば光磁気方式による記録装置20への書き込みおよび読み出しについて説明する。記録装置20への書き込みは、例えば次のように行われる。鉄よりなる磁性層19Aの温度をキュリー温度まで上昇させて、バイアス磁界により磁性層19Aの磁化方向を一定方向にする(消去モード)。そののち、バイアス磁界を消去モードとは逆方向の磁化方向としておいて、図示しない光学レンズによりスポット径を小さくしたレーザビームにより特定のカーボンナノチューブ16の磁性層19Aのみの温度を上昇させ、レーザビームの照射を停止することにより磁性層19Aの磁化方向を消去時とは逆方向にする。また、記録装置20からの読み出しは、例えば次のように行われる。カーボンナノチューブ16内の磁性層19Aに対してレーザビームを照射し、レーザビームの反射光のカー回転角を検出することにより各々の磁性層19Aの磁化方向を再生信号として得ることができる。このとき、本実施の形態では、磁性層19Aがカーボンナノチューブ16により隔離されているので、隣り合うカーボンナノチューブ16内の磁性層19Aの影響を受けることなく、所定の磁化方向が長期間安定して保持される。
【0066】
このように本実施の形態では、カーボンナノチューブ16が所望の微細なパターンで配列されたカーボンナノチューブ構造体17を備え、各カーボンナノチューブ16内に鉄よりなる磁性層19Aを挿入するようにしたので、極めて記録密度の高い記録装置20を実現することができる。また、磁性層19Aはカーボンナノチューブ16により隔離されているので、隣り合うカーボンナノチューブ16内の磁性層19Aの影響を受けることなく、所定の磁化方向を長期間安定して保持することができる。よって、記録装置20の信頼性を向上させることができる。
【0067】
以下、上記第1の実施の形態に係るカーボンナノチューブの製造方法の変形例(1〜11)について説明する。
【0068】
〔変形例1〕
まず、図7ないし図13を参照して変形例1について説明する。本変形例は、溶融工程において、エネルギービームのエネルギー量を、二次元方向すなわちX方向およびY方向に変調させ、素材基板10の表面に対して、X方向熱分布31XおよびY方向熱分布31Yを与えるようにしたものである。
【0069】
(溶融工程)
まず、図7を参照して溶融工程を説明する。X方向熱分布31Xは、素材基板10の表面温度がX方向に変調されて、X方向高温領域31XHとX方向低温領域31XLとが周期的に形成されたものである。また、Y方向温度分布31Yは、素材基板10の表面温度がY方向に変調されて、Y方向高温領域31YHとY方向低温領域31YLとが周期的に形成されたものである。
【0070】
X方向熱分布31XおよびY方向熱分布31Yは、例えば、エネルギービーム12を、非透過部分32Aおよび透過部分32Bが二次元方向に配列された回折格子32で回折させることにより与えられる。回折格子32としては、例えば、非透過部分32Aにエネルギービーム12を透過させないマスクが印刷されたものなどを用いることができる。
【0071】
図8は、素材基板10の表面においてX方向温度分布31XとY方向温度分布31Yとが重畳されることにより、熱分布33が形成された状態を表している。図8に示したように、素材基板10の表面には、X方向高温領域31XHとY方向高温領域31YHとの重複する位置に高温領域33Hを有し、X方向低温領域31XLとY方向低温領域31YLとの重複する位置に低温領域33Lを有するような熱分布33が形成される。これにより、高温領域33Hは、非透過部分32Aおよび透過部分32Bの配列されている方向に沿って二次元方向に配列される。
【0072】
熱分布33のX方向における空間的周期TX、すなわち高温領域33HのX方向における間隔(ピッチ)は、回折格子32のX方向における周期間隔PXおよびエネルギービーム12の波長λに応じて定まる。また、熱分布33のY方向における空間的周期TY、すなわち高温領域33HのY方向における間隔(ピッチ)は、回折格子32のY方向における周期間隔PYおよびエネルギービーム12の波長λに応じて定まる。波長λを小さくするほど、または周期間隔PX,PYを微細にするほど熱分布33の空間的周期TX,TYを微細化することができる。ここで、本実施の形態では、回折格子32のX方向における周期間隔PXとは、一つの非透過部分32AのX方向における寸法と一つの透過部分32BのX方向における寸法との和をいい、回折格子32のY方向における周期間隔PYとは、一つの非透過部分32AのY方向における寸法と一つの透過部分32BのY方向における寸法との和をいう。
【0073】
回折格子32のX方向における周期間隔PXとY方向における周期間隔PYとは、互いに独立に設定することができる。したがって、図9に示したように、熱分布33のX方向における空間的周期TXとY方向における空間的周期TYとを、互いに独立に設定することも可能である。
【0074】
なお、回折格子32としては、マスク印刷により非透過部分32Aおよび透過部分32Bが形成されたものではなく、凹部または凸部が形成されたものを用いることも可能である。凹凸が形成された回折格子32の場合には、回折格子32のX方向における周期間隔PXとは、凹部(または凸部)のX方向における間隔(ピッチ)をいい、回折格子31のY方向における周期間隔PYとは、凹部(または凸部)のY方向における間隔(ピッチ)をいう。
【0075】
エネルギービーム12のエネルギー量は、低温領域33Lにおいて素材基板10の表面が溶融する温度となるように設定される。これにより、素材基板10の表面の全体を溶融させることができる。このとき、エネルギービーム12としてエキシマレーザを用いると、パルス発光の照射回数によりエネルギー量の制御を行うことができる。
【0076】
(析出工程)
次に、図10および図11を参照して、析出工程を説明する。溶融工程において素材基板10の表面の全体を溶融させたのち、エネルギービーム12の照射を止めて素材基板10の表面を放熱させ、熱分布33に応じた位置すなわち高温領域33Hに対応する位置に第2の物質を析出させ、ほぼ平面状の析出領域34を形成する。これにより、析出領域34のパターンを有する基板35が得られる。
【0077】
析出領域34は、高温領域33Hが素材基板10の表面に二次元方向に配列されているので、これに対応して、素材基板10の表面に二次元方向に配列された点状のパターンとして形成される。析出領域34のX方向における寸法(直径)DXおよびY方向における寸法(直径)DYは、素材基板10における第2の物質の含有量により定まり、第2の物質の含有量が大きいほど、析出領域34の寸法DX,DYは大きくなる。析出領域34の寸法DX,DYは、原理的には第2の物質の原子の大きさより大きい任意の値をとり得るものであり、素材基板10における第2の物質の含有量を制御することにより従来のフォトリソグラフィ技術では不可能であった50nm未満を実現することができる。
【0078】
析出領域34の寸法DX,DYの具体的な値は、第2の物質の材料および析出領域34の用途によって定められるが、例えば図12に示したように析出領域34に析出した鉄を触媒として、複数のカーボンナノチューブ36が二次元に配列されたカーボンナノチューブ構造体37を形成する場合には、析出領域34の寸法DX,DYはそれぞれ、0.4nm以上50nm未満であることが好ましい。カーボンナノチューブ36の直径が、最小で0.4nmであるからである。
【0079】
析出領域34の寸法DX,DYはそれぞれ、0.4nm以上30nm以下であればより好ましい。カーボンナノチューブ36は、直径が0.4nm以上30nm以下の範囲にあるものが多いからである。
【0080】
更に、析出領域34の寸法DX,DYは、0.4nm以上10nm以下であれば更に好ましい。析出領域34のX方向またはY方向に多数のカーボンナノチューブ36が接近して屹立する可能性が小さくなるので、カーボンナノチューブ構造体37を例えば電界電子放出素子として使用する場合に、カーボンナノチューブ36の各々の表面における電界強度の低下を防止し、電界放出に必要な印加電圧を小さくすることができるからである。また、例えばカーボンナノチューブ構造体37を記録装置(メモリ)として利用する場合には、一箇所の析出領域34にはX方向およびY方向に1本のみのカーボンナノチューブ36を形成することが必要となる場合があるので、カーボンナノチューブ36の直径と析出領域34の寸法DX,DYとを一致させることが好ましいからである。
【0081】
また、析出領域34のX方向における間隔LX、およびY方向における間隔LYは、熱分布33の空間的周期TX,TYに応じて、すなわち回折格子32の周期間隔PX,PYおよびエネルギービーム12の波長λに応じて定まる。波長λを小さくするほど、または、回折格子32の周期間隔PX,PYを微細にするほど析出領域34の間隔LX,LYを微細化することができ、従来のフォトリソグラフィでは不可能な微細な間隔LX,LYで析出領域34を形成することも可能である。
【0082】
析出領域34の間隔LX,LYは、例えば100nm以下であることが好ましい。前述のように、従来のフォトリソグラフィでは解像限界が50nmであるため、従来のフォトリソグラフィで形成可能な最小のパターンは、例えば山50nm、谷50nm、および山50nmで、その間隔は解像限界の2倍すなわち100nmとなるからである。更に、析出領域34の間隔LX,LYは、50nm以下であればより好ましい。従来の電子ビームリソグラフィの解像限界が25nm程度であるため、従来の電子ビームリソグラフィで形成可能な最小のパターンの間隔は、同様に解像限界の2倍すなわち50nmとなるからである。
【0083】
以上により、触媒配置工程が完了し、素材基板10に析出領域34を有する基板35が形成される。
【0084】
なお、図9に示したように熱分布33のX方向における空間的周期TXとY方向における空間的周期TYとを、互いに独立に設定した場合には、これに対応して、図13に示したように析出領域34が楕円形に形成される。
【0085】
(成長工程)
続いて、図12を参照して成長工程を説明する。基板35の上に、CVD法により複数のカーボンナノチューブ36を成長させる。成長条件としては、例えば、第1の実施の形態と同様とすることができる。カーボンナノチューブ36は析出領域34にのみ成長するので、基板35の上に析出領域34のパターン通りにカーボンナノチューブ36が二次元方向に配列されたカーボンナノチューブ構造体37が形成される。
【0086】
このように本変形例では、エネルギービーム12のエネルギー量を二次元方向に変調させることにより熱分布33を形成するようにしたので、素材基板10の表面に二次元方向に配列された析出領域34のパターンを形成することが可能となる。
【0087】
また、回折格子32を用いてエネルギービーム12を回折させることにより熱分布33を形成するようにしたので、回折格子32の周期間隔PX,PYを微細化することにより熱分布33の空間的周期TX,TYを容易に制御し、析出領域34の間隔LX,LYを微細化することができる。
【0088】
〔変形例2〕
次に、図14ないし図17を参照して変形例2を説明する。本変形例では、素材基板10の表面を放熱させることにより素材基板10の表面に突起を形成し、第2の物質を突起の先端部に析出させるようにしたものである。
【0089】
(溶融工程)
まず、例えば、上記第1の実施の形態における図1と同様にして溶融工程を行うが、そのときに、エネルギービーム12のエネルギー量を一定値を超えるように制御する。例えば、エネルギービーム12として、前述の第1の実施の形態と同様にエキシマレーザを用いる場合には、パルス発光の照射回数によりエネルギー量の制御を行うことができるが、本変形例では、例えばパルス照射回数を100回とする。
【0090】
(析出工程)
溶融工程において素材基板10の表面を溶融させたのち、エネルギービーム12の照射を止めると、溶融工程において照射されたエネルギービーム12のエネルギー量が一定値を超えている場合には、図14に示したように、高温領域11Hに対応する素材基板10の表面が隆起して、突起41が形成される。
【0091】
突起41は、高温領域11Hが溝13Aに対応して一次元方向に配列された直線状であるので、これに対応して、一次元方向に配列された直線状のリブ(突条)のパターンとして形成される。この突起41は、素材基板10の表面に近い部分から凝固していくので、最後に凝固する先端付近に第2の物質(鉄)が析出して、析出領域42が形成される。したがって、析出領域42は、突起41の先端部に形成される。ここで、先端部とは、突起41を素材基板10の表面に平行な水平面H(図15および図16参照)で切断した場合に、突起41の先端を含む部分をいう。例えば、析出領域42は、図14に示したように突起41の先端にのみ形成されていてもよいし、図15に示したように突起41全体が析出領域42となっていてもよい。あるいは図16に示したように突起41の先端および中腹にかけての部分に形成されていてもよい。
【0092】
これにより、少なくとも先端部に鉄よりなる析出領域42が形成された突起41のパターンを有する基板43が得られる。
【0093】
ここで、「突起」とは、基板43の表面から隆起し、その高さが第1の実施の形態における平面状の析出領域14の場合より高い1nm以上の場合をいう。
【0094】
析出領域42の幅(線幅)W、すなわち熱分布11の変調方向における析出領域42の寸法は、第1の実施の形態と同様に、素材基板10における第2の物質(鉄)の含有量により定まり、第2の物質(鉄)の含有量が大きいほど、析出領域42の幅Wは大きくなる。析出領域42の幅Wは、原理的には第2の物質の原子の大きさより大きい任意の値をとり得るものであり、素材基板10における第2の物質の含有量を制御することにより従来のフォトリソグラフィ技術では不可能であった50nm未満を実現することができる。
【0095】
本変形例では、第1の実施の形態と異なり、析出領域42が突起41であり、先端になるに従って断面積が小さくなっているので、析出領域42の幅の微細化が容易である。
【0096】
析出領域42の幅Wの具体的な値については、第1の実施の形態において析出領域14の幅Wについて説明したのと同様に、第2の物質の材料および析出領域42の用途によって定められるが、例えば図17に示したように析出領域42に析出した鉄を触媒として、複数のカーボンナノチューブ44が直線状に配列されたカーボンナノチューブ構造体45を形成する場合には、析出領域42の幅Wは、0.4nm以上50nm未満であることが好ましく、0.4nm以上30nm以下であればより好ましく、0.4nm以上10nm以下であれば更に好ましい。理由は第1の実施の形態において説明したのと同様である。
【0097】
また、突起41の間隔L、すなわち熱分布11の変調方向における析出領域42の間隔(ピッチ)は、熱分布11の空間的周期Tに応じて、すなわち回折格子13の周期間隔Pおよびエネルギービーム12の波長λに応じて定まる。波長λを小さくするほど、または、周期間隔Pを微細にするほど突起41の間隔Lを微細化することができ、従来のフォトリソグラフィでは不可能な微細な間隔Lで突起41および析出領域42を形成することが可能である。突起41の間隔Lは、例えば100nm以下であることが好ましく、更に、50nm以下とすればより好ましい。理由は第1の実施の形態において説明したのと同様である。
【0098】
以上により、触媒配置工程が完了し、素材基板10に形成された突起41の先端部に析出領域42を有する基板43が形成される。
【0099】
(成長工程)
続いて、図17に示したように、基板43の上に、CVD法により複数のカーボンナノチューブ44を成長させる。成長条件としては、例えば、第1の実施の形態と同様とすることができる。カーボンナノチューブ44は析出領域42にのみ成長するので、複数のカーボンナノチューブ44が基板43の突起41の最先端部分に直線状に配列したカーボンナノチューブ構造体45が形成される。
【0100】
このように本変形例では、素材基板10の所定の位置に、少なくとも先端部が第2の物質(鉄)により構成された突起41を形成するようにしたので、パターンを平面状にする場合に比べて析出領域42の幅をより微細にすることができ、第1の実施の形態および変形例1に比べてより微細なパターンを形成することができる。
【0101】
〔変形例3〕
次に、図18ないし図20を参照して変形例3を説明する。本変形例は、素材基板10の表面に二次元方向に配置された突起を形成し、この突起の先端部に第2の物質を析出させるようにしたものである。
【0102】
(溶融工程)
まず、例えば、変形例1の図7および図8と同様にして溶融工程を行うが、そのときに、変形例2と同様に、エネルギービーム12のエネルギー量を一定値を超えるように制御する。
【0103】
(析出工程)
溶融工程において素材基板10の表面を溶融させたのち、エネルギービーム12の照射を止めると、溶融工程において照射されたエネルギービーム12のエネルギー量が一定値を超えている場合には、図18および図19に示したように、高温領域33Hに対応する素材基板10の表面が隆起して、突起51が形成される。
【0104】
突起51は、高温領域33Hが素材基板10の表面に二次元方向に配列されているので、これに対応して、素材基板10の表面に二次元方向に配列された錘体のパターンとして形成される。突起51は、素材基板10の表面に近い部分から凝固していくので、最後に凝固する先端付近に第2の物質が析出して、析出領域52が形成される。したがって、析出領域52は、突起51の先端部に形成される。ここで、先端部の意味およびその具体例については、変形例2において図15および図16を参照して説明したのと同様である。
【0105】
これにより、少なくとも先端部に鉄よりなる析出領域52が形成された突起51のパターンを有する基板53が得られる。
【0106】
析出領域52のX方向における寸法(直径)DXおよびY方向における寸法(直径)DYは、素材基板10における第2の物質(鉄)の含有量により定まり、第2の物質(鉄)の含有量が大きいほど、析出領域52の寸法DX,DYは大きくなる。析出領域52の寸法DX,DYは、原理的には第2の物質の原子の大きさより大きい任意の値をとり得るものであり、素材基板10における第2の物質の含有量を制御することにより従来のフォトリソグラフィ技術では不可能であった50nm未満を実現することができる。
【0107】
析出領域52の寸法DX,DYの具体的な値については、変形例2において析出領域34の寸法DX,DYについて説明したのと同様に、第2の物質の材料および析出領域52の用途によって定められるが、例えば図20に示したように析出領域52に析出した鉄を触媒として、複数のカーボンナノチューブ54が二次元方向に配列されたカーボンナノチューブ構造体55を形成する場合には、析出領域52の寸法DX,DYはそれぞれ、0.4nm以上50nm未満であることが好ましく、0.4nm以上30nm以下であればより好ましく、0.4nm以上10nm以下であれば更に好ましい。理由は、変形例2において説明したのと同様である。
【0108】
また、突起51および析出領域52のX方向における間隔LX、およびY方向における間隔LYは、熱分布33の空間的周期TX,TYに応じて、すなわち回折格子32の周期間隔PX,PYおよびエネルギービーム12の波長λに応じて定まる。波長λを小さくするほど、または、回折格子32の周期間隔PX,PYを微細にするほど突起51および析出領域52の間隔LX,LYを微細化することができ、従来のフォトリソグラフィでは不可能な微細な間隔LX,LYで突起51および析出領域52を形成することも可能である。突起51および析出領域52の間隔LX,LYは、100nm以下であることが好ましく、更に、50nm以下であればより好ましい。理由は、変形例2において説明したのと同様である。
【0109】
以上により、触媒配置工程が完了し、突起51の先端部に析出領域52を有する基板53が形成される。
【0110】
(成長工程)
続いて、図20に示したように、基板53の上に、CVD法により複数のカーボンナノチューブ54を成長させる。成長条件としては、例えば、第1の実施の形態と同様とすることができる。カーボンナノチューブ54は析出領域53にのみ成長するので、カーボンナノチューブ54が基板53の突起51の最先端部分に二次元方向に配列されたカーボンナノチューブ構造体55が形成される。
【0111】
このように本変形例では、素材基板10の所定の位置に、少なくとも先端部が第2の物質により構成された突起51のパターンを二次元方向に配列するようにしたので、第1の実施の形態および変形例1の平面状の析出領域に比べてより微細な寸法の析出領域52を形成することができる。
【0112】
〔変形例4〕
次に、図21ないし図25を参照して変形例4を説明する。本変形例は、転写物質(ここでは、触媒金属)からなる素材基板10の表面に、転写物質の突起のパターンを形成し、これを転写用原盤として、この転写用原盤のパターンを被転写基板に転写させて基板を得、この基板にカーボンナノチューブを成長させるものである。
【0113】
具体的には、本変形例は、触媒配置工程として、素材基板10の表面に所望のパターンに応じて変調された熱分布11を与え、素材基板10の表面を溶融させる「溶融工程」と、素材基板10の表面を放熱させることにより、熱分布11に応じた位置に、すなわち、所望のパターンで突起を形成する「突起形成工程」と、転写用原盤のパターンを被転写基板に転写させて基板を作製する「転写工程」とを含むものである。
【0114】
(溶融工程)
まず、変形例2と同様にして溶融工程を行う。このとき、素材基板10は、本実施の形態では金属触媒としての鉄により構成されている。
【0115】
素材基板10の材料は、例えばカーボンナノチューブを形成するための金属触媒としての機能を有するものであればよく、その具体例は、上記第1の実施の形態において第2の物質として例示したものと同様である。
【0116】
(突起形成工程,原盤作製工程)
次に、図21を参照して突起形成工程を説明する。すなわち、溶融工程において素材基板10の表面を溶融させたのち、エネルギービーム12の照射を止めると、素材基板10の表面の温度は徐々に低下して凝固するが、このとき、溶融工程において照射されたエネルギービーム12のエネルギー量が一定値を超えている場合には、高温領域11Hに対応する位置に、素材基板10の表面から隆起した突起64が形成され、素材基板10の表面に突起64を有する転写用原盤(以下,原盤という)65が形成される。
【0117】
突起64は、高温領域11Hが溝13Aに対応して一次元方向に配列された直線状であるので、これに対応して、一次元方向に配列された直線状のリブ(突条)のパターンとして形成される。突起64の幅(線幅)W、すなわち熱分布11の変調方向における突起64の下端部の寸法は、溶融温度および冷却速度により定まる。溶融温度は、エネルギービーム12のエネルギー量、すなわちエキシマレーザの場合にはパルス照射回数によって制御することができ、溶融温度が高いほど、突起64の幅Wは大きくなる。冷却速度は、素材基板10または素材基板10のホルダーを真空中またはガス雰囲気中に配置する方法、ガスフローによる方法、水または液体窒素中で冷却する方法、あるいは加熱しながらゆっくり冷却する方法などによって制御することができ、冷却速度が速いほど突起64の幅Wは大きくなる。突起64の幅Wは、原理的には素材基板10の構成物質の原子の大きさより大きい任意の値をとり得るものであり、溶融温度および冷却速度を制御することにより従来のフォトリソグラフィ技術では不可能であった50nm未満を実現することができる。
【0118】
突起64の幅Wの具体的な値は、後述する基板の用途によって定められるが、例えばカーボンナノチューブ構造体を形成する場合には、突起64の幅Wは、0.4nm以上50nm未満であることが好ましく、0.4nm以上30nm以下であればより好ましく、0.4nm以上10nm以下であれば更に好ましい。理由は第1の実施の形態において説明したのと同様である。
【0119】
また、突起64の間隔L、すなわち熱分布11の変調方向における突起64の間隔(ピッチ)は、熱分布11の空間的周期Tに応じて、すなわち回折格子13の周期間隔Pおよびエネルギービーム12の波長λに応じて定まる。波長λを小さくするほど、または、周期間隔Pを微細にするほど突起64の間隔Lを微細化することができ、従来のフォトリソグラフィでは不可能な微細な間隔Lで突起64を形成することが可能である。突起64の間隔Lは、例えば100nm以下であることが好ましく、更に、50nm以下とすればより好ましい。理由は第1の実施の形態において説明したのと同様である。
【0120】
(転写工程)
次に、図22を参照して転写工程を説明する。まず、図22(A)に示したように、例えば、導電性膜72の配線パターンが予め形成された被転写基板71を用意する。
【0121】
続いて、図22(B)に示したように、原盤65の突起64と被転写基板71の導電性膜72とを対向させて密接させる。このとき、転写特性向上のため、必要に応じて加圧することが好ましい。更に、加熱処理を行うようにすれば、転写特性をいっそう良好にすることができるので、より好ましい。
【0122】
そののち、原盤65を被転写基板71から引き離すと、図22(C)に示したように、突起64の先端部が、被転写基板71に転写される。こうして、被転写基板71の上に、触媒金属(鉄)よりなる転写パターン73が形成された基板74が形成される。よって、一枚の原盤65から多数の被転写基板71に突起64のパターンを転写して基板74を大量に製造することができる。なお、転写を繰り返すことにより突起64が磨耗した場合には、再び溶融工程および突起形成工程を繰り返して突起64の形状を回復させることなどが可能である。
【0123】
ここで、「突起64の先端部」とは、突起64を素材基板10の表面に平行な水平面H(図23および図24参照)で切断した場合に、突起64の先端を含む部分をいう。したがって、例えば、図22(C)に示したように突起64の先端のみを被転写基板71に転写してもよいし、図23に示したように突起64全体を被転写基板71に転写するようにしてもよい。あるいは図24に示したように突起64の先端および中腹にかけての部分を被転写基板71に転写するようにしてもよい。
【0124】
以上により、触媒配置工程が完了する。
【0125】
(成長工程)
被転写基板71に転写パターン73を形成して基板74を作製したのち、例えば、図25に示したように、この転写パターン73を触媒として基板74上にカーボンナノチューブ75を成長させ、複数のカーボンナノチューブ75が直線状に配列されたカーボンナノチューブ構造体76を形成することができる。このように導電性膜72上に形成されたカーボンナノチューブ構造体76は、電界電子放出素子として利用することができる。
【0126】
このように本変形例では、触媒金属からなる素材基板10の表面に対して熱分布11を与え、素材基板10の表面を溶融させたのち、素材基板10の表面を放熱させるようにしたので、所望の位置に触媒金属からなる微細な突起64のパターンを有する原盤65を作製することができる。突起64の幅Wは、溶融温度および冷却速度を制御することによって従来のフォトリソグラフィ技術では不可能であった50nm未満とすることが可能である。また、熱分布11の空間的周期Tを制御することにより突起64を従来のフォトリソグラフィ技術では不可能であった微細な間隔Lで形成することが可能になる。
【0127】
また、突起64のパターンを有する原盤65をドライプロセスにより形成することができるので、従来のフォトリソグラフィを利用したプロセスに比べて生産が容易であり、再現性が良く、低コスト化が可能である等の利点を得ることができる。
【0128】
また、エネルギービーム12を回折させることにより熱分布11を与えるようにしたので、回折格子13の周期間隔Pを微細化することにより熱分布11の空間的周期Tを容易に制御し、突起64の間隔Lを微細化することができる。
【0129】
更に、本変形例では、突起64の少なくとも先端部を被転写基板71に転写することにより、一枚の原盤65から多数の被転写基板71に突起64を転写して基板74を大量に作製することが可能になる。
【0130】
〔変形例5〕
次に、図26ないし図31を参照して変形例5を説明する。本変形例は、溶融工程において、エネルギービームのエネルギー量を二次元方向すなわちX方向およびY方向に変調させ、素材基板10の表面に対してX方向熱分布31XおよびY方向熱分布31Yを与えるようにしたことを除いては、変形例4と同様である。したがって、以下の説明を簡略化する。
【0131】
(溶融工程)
まず、変形例3と同様にして溶融工程を行う。ここで、素材基板10は、本変形例では金属触媒としての鉄(Fe)により構成されている。
【0132】
素材基板10の材料は、カーボンナノチューブを形成するための金属触媒としての機能を有するものであればよく、その具体例は、第1の実施の形態において第2の物質として例示したものと同様である。
【0133】
(突起形成工程,原盤作製工程)
次に、変形例4と同様にして突起形成工程および原盤作製工程を行う。これにより、図26に示したように、素材基板10の表面に二次元方向に配列された突起81のパターンを有する原盤82を形成する。
【0134】
(転写工程)
続いて、変形例4と同様にして転写工程を行い、図27に示したように、被転写基板71の上に、触媒金属(鉄)よりなる転写パターン83が二次元方向に配列された基板84を形成する。以上により、触媒配置工程が終了する。
【0135】
(成長工程)
次に、変形例4と同様にして成長工程を行い、図28に示したように、転写パターン83を触媒として、基板84上にカーボンナノチューブ85を成長させ、複数のカーボンナノチューブ85が二次元方向に配列されたカーボンナノチューブ構造体86を形成する。
【0136】
図29は、このようにして基板84上に形成されたカーボンナノチューブ構造体86を表す顕微鏡写真(37.5倍)であり、二次元方向に配列された点状の白い部分は、原盤82の突起81から転写された転写パターン83を触媒として、基板84上に成長したカーボンナノチューブ85に対応している。
【0137】
図30は、図29の白い部分の中央付近を拡大して表すSEM(Scanning Electron Microscope;走査型電子顕微鏡)写真(5万倍)である。図30から分かるように、白い部分にはカーボンナノチューブが成長していることが確認できる。また、図31は、図29において白く見える部分と周囲の黒く見える部分との境界付近を拡大して表すSEM写真(5万倍)である。図31から分かるように、白い部分にはカーボンナノチューブが成長していることが確認できるが、黒い部分にはカーボンナノチューブの存在は認められない。
【0138】
このように本変形例では、エネルギービーム12のエネルギー量を二次元方向に変調させることにより熱分布33を形成するようにしたので、二次元方向に配列された突起81のパターンを有する原盤82を作製することができる。
【0139】
更に、本変形例においても、突起81の先端部を被転写基板71に転写するようにすれば、一枚の原盤82から多数の被転写基板71に突起81を転写して基板84を大量に作製することが可能になる。
【0140】
〔変形例6〕
次に、図32ないし図34を参照して変形例6を説明する。本変形例は、任意の材質により構成された基板に対して変形例4と同様の方法で形成した突起の表面に、触媒金属等の転写物質からなる被膜を形成する被膜形成工程を更に含むようにしたものである。
【0141】
(溶融工程および突起形成工程)
まず、例えばシリコンよりなる素材基板90を用意し、上記変形例4と同様にして溶融工程および突起形成工程を行い、図32(A)に示したように、素材基板90の表面に突起91のパターンを有する原盤92を作製する。
【0142】
(被膜形成工程)
続いて、図32(B)に示したように、突起91の表面に被膜93を形成する。被膜93は、本変形例では金属触媒としての鉄(Fe)により形成され、突起91を含む素材基板90の表面全体に亘ってほぼ均一な厚さで形成されるが、必ずしも均一な厚さである必要はない。被膜93の厚さは、突起91の高さおよび寸法に応じて定めることができ、本実施の形態では例えば5nmである。被膜93は例えば真空蒸着により形成することができる。
【0143】
被膜93の材料である転写物質は、カーボンナノチューブを形成するための金属触媒としての機能を有するものであればよく、その具体例は、上記第1の実施の形態において第2の物質として例示したものと同様である。
【0144】
(転写工程)
次に、図33(A)に示したように、原盤92の突起91と被転写基板71の導電性膜72とを対向させて密接させる。このとき、転写特性向上のため、加圧あるいは加熱処理を行うことが好ましいことは、前述の変形例4と同様である。
【0145】
そののち、原盤92を被転写基板71から引き離すと、図33(B)に示したように、例えば突起91の先端部を覆う被膜93を構成する金属触媒としての鉄(Fe)が、被転写基板71に転写される。こうして、被膜93と同一の材料よりなる転写パターン94を有する基板95が形成される。よって、一枚の原盤92から多数の被転写基板71に被膜93を転写して基板95を大量に製造することができる。また、転写を繰り返すことにより被膜93が磨耗した場合には、再び被膜形成工程を繰り返して突起91の表面に新たな被膜を形成することなどが可能である。その際、残存する被膜93は、除去してから新たな被膜を形成してもよいし、残存する被膜93の上に新たな被膜を重ねて形成してもよい。
【0146】
ここで、「先端部」の意味およびその具体例については、変形例4において図23および図24を参照して説明したのと同様である。
【0147】
以上により、触媒配置工程が完了する。
【0148】
(成長工程)
被転写基板71に転写パターン94を形成したのち、例えば、図34に示したように、この転写パターン94を触媒として、基板95上にカーボンナノチューブ96を成長させ、複数のカーボンナノチューブ96が直線状に配列されたカーボンナノチューブ構造体97を形成することができる。
【0149】
このように本変形例では、突起91の表面に被膜93を形成するようにしたので、被膜93のみを金属触媒などの転写物質により構成すればよい。よって、素材基板90の材料は任意であり、用途に応じて選択の範囲を広げることができる。
【0150】
更に、本変形例でも、被膜93で覆われた突起91の先端部を被転写基板71に転写すれば、一枚の原盤92から多数の被転写基板91に被膜93を転写して基板95を大量に製造することができる。
【0151】
〔変形例7〕
続いて、図35を参照して変形例7を説明する。本変形例は、変形例4の「転写工程」において、原盤65と被転写基板71との相対的位置をずらして原盤65のパターンを被転写基板71に複数回転写させるようにしたものである。
【0152】
まず、図35(A)に示したように、変形例4において図22を参照して説明したようにして1回目の転写を行い、被転写基板71に第1の転写パターン101Aを形成する。
【0153】
次に、図35(B)に示したように、原盤65と被転写基板71との相対的位置を、例えば突起64の間隔Lの2分の1だけずらして、2回目の転写を行う。そののち、原盤65を被転写基板71から引き離すと、図35(C)に示したように、第1の転写パターン101Aの中間の位置に第2の転写パターン101Bが形成される。このようにして、第1の転写パターン101Aと第2の転写パターン101Bとからなる転写パターン101を有する基板102が得られる。
【0154】
本変形例では、原盤65と被転写基板71との相対的位置をずらして原盤65のパターンを被転写基板71に複数回転写させるようにしたので、第1の実施の形態よりも更に微細な転写パターン101を有する基板102を大量に製造することができる。
【0155】
なお、本変形例では、転写を2回行うようにしたが、転写回数は更に増やしてもよい。また、その場合には、原盤65と被転写基板71との相対的位置を、転写回数に応じて調整することが好ましい。
【0156】
また、本変形例では、原盤65と被転写基板71との相対的位置を、例えば突起64の間隔Lの2分の1だけずらして、2回目の転写を行い、第1の転写パターン101Aと第2の転写パターン101Bとが全体として等間隔に形成されるようにしたが、第1の転写パターン101Aと第2の転写パターン101Bとの間隔は必ずしも均等である必要はない。
【0157】
〔変形例8〕
次に、図36および図37を参照して変形例8を説明する。本変形例は、任意の材質により構成された素材基板に対して変形例4と同様の方法で形成した突起に、触媒金属等からなる金属基板を押し当てて、突起の先端に触媒金属を付着させるようにしたものである。
【0158】
(溶融工程および突起形成工程)
まず、例えばシリコンよりなる素材基板110を用意し、上記変形例4と同様にして溶融工程および突起形成工程を行い、図36(A)に示したように、素材基板110の表面に突起111のパターンを形成する。
【0159】
(付着工程)
続いて、図36(B)に示したように、素材基板110の突起111と、金属触媒としての鉄により形成された金属基板120とを対向させて密接させる。これにより、図36(C)に示したように、金属基板120を構成する鉄が、突起111の先端部に付着し、金属基板120と同一の材料よりなる付着パターン112を有する基板113が形成される。このとき、付着特性向上のため、加圧あるいは加熱処理を行うことが好ましいことは、前述の変形例4と同様である。
【0160】
金属基板120の材料は、カーボンナノチューブを形成するための金属触媒としての機能を有するものであればよく、その具体例は、上記第1の実施の形態において第2の物質として例示したものと同様である。
【0161】
以上により、触媒配置工程が完了する。
【0162】
(成長工程)
付着パターン112を有する基板113を形成したのち、例えば、図37に示したように、この付着パターン112を触媒として、基板113上にカーボンナノチューブ114を成長させ、複数のカーボンナノチューブ114が直線状に配列されたカーボンナノチューブ構造体115を形成することができる。
【0163】
このように本変形例では、突起111と金属基板120とを対向させて密接させ、突起111の先端部に金属基板120と同一の材料よりなる付着パターン112を形成するようにしたので、金属触媒からなる付着パターン112を容易に形成することができる。また、素材基板110の材料は任意であり、用途に応じて選択の範囲を広げることができる。
【0164】
更に、本変形例でも、付着パターン112が形成された基板113を原盤として、突起111の先端部に付着した付着パターン112を被転写基板71に転写することにより、一枚の原盤から多数の被転写基板71に付着パターン112を転写して基板を大量に製造することができる。
【0165】
〔変形例9〕
次に、図38ないし図40を参照して変形例9を説明する。本変形例は、触媒配置工程として、素材基板10の表面に所望のパターンに応じて変調された熱分布11を与え、素材基板10の表面を溶融させる「溶融工程」と、素材基板10の表面を放熱させることにより、熱分布11に応じた位置に、すなわち所望のパターンで突起を形成する「突起形成工程」と、突起の表面を平坦化する「平坦化工程」とを含むものである。そののち、平坦化された突起の上面にカーボンナノチューブを成長させる「成長工程」を行う。
【0166】
(溶融工程)
まず、上記変形例2と同様にして溶融工程を行う。ここで、素材基板10は、本変形例では金属触媒としての鉄(Fe)により構成されている。
【0167】
素材基板10の材料は、カーボンナノチューブを形成するための金属触媒としての機能を有するものであればよく、その具体例は、第1の実施の形態において第2の物質として例示したものと同様である。
【0168】
(突起形成工程)
溶融工程において素材基板10の表面を溶融させたのち、エネルギービーム12の照射を止めると、素材基板10の表面の温度は徐々に低下して凝固するが、このとき、溶融工程において照射されたエネルギービーム12のエネルギー量が一定値を超えている場合には、図38に示したように、高温領域11Hに対応する位置に、素材基板10の表面から隆起した突起134が形成される。
【0169】
突起134は、高温領域11Hが溝13Aに対応して一次元方向に配列された直線状であるので、これに対応して、一次元方向に配列された直線状のリブ(突条)のパターンとして形成される。突起134の幅(線幅)W、すなわち熱分布11の変調方向における突起134の下端部の寸法は、溶融温度および冷却速度により定まる。溶融温度は、エネルギービーム12のエネルギー量、すなわちエキシマレーザの場合にはパルス照射回数によって制御することができ、溶融温度が高いほど、突起134の幅Wは大きくなる。冷却速度は、前述のように、素材基板10または素材基板10のホルダーを真空中またはガス雰囲気中に配置する方法、ガスフローによる方法、水または液体窒素中で冷却する方法、あるいは加熱しながらゆっくり冷却する方法などによって制御することができ、冷却速度が速いほど突起134の幅Wは大きくなる。突起134の幅Wは、原理的には原理的には素材基板10の構成物質の原子の大きさより大きい任意の値をとり得るものであり、溶融温度および冷却速度を制御することにより従来のフォトリソグラフィ技術では不可能であった50nm未満を実現することができる。
【0170】
突起134の幅Wの具体的な値は、後述する基板の用途によって定められるが、例えばカーボンナノチューブを形成する場合には、突起134の幅Wは、0.4nm以上50nm未満であることが好ましく、0.4nm以上30nm以下であればより好ましく、0.4nm以上10nm以下であれば更に好ましい。理由は第1の実施の形態において説明したのと同様である。
【0171】
また、突起134の間隔L、すなわち熱分布11の変調方向における突起134の間隔(ピッチ)は、熱分布11の空間的周期Tに応じて、すなわち回折格子13の周期間隔Pおよびエネルギービーム12の波長λに応じて定まる。波長λを小さくするほど、または、周期間隔Pを微細にするほど突起134の間隔Lを微細化することができ、従来のフォトリソグラフィでは不可能な微細な間隔Lで突起134を形成することが可能である。突起134の間隔Lは、例えば100nm以下であることが好ましく、更に、50nm以下とすればより好ましい。理由は第1の実施の形態において説明したのと同様である。
【0172】
(平坦化工程)
次に、図39(A)に示したように、突起134の周囲の凹部135に、埋込み層136を形成する。この埋込み層136は、後述するようにCMPで突起134の上面を平坦化する際の平坦化層として用いられるものであり、例えば二酸化ケイ素を、SOGにより塗布することにより、またはCVD法などにより形成される。なお、埋込み層136の材料は、上述の二酸化ケイ素の他、窒化ケイ素,ポリイミド,PMMA,金属酸化膜などの絶縁体材料、あるいはシリコン,ゲルマニウムなどの半導体材料を用いてもよい。
【0173】
なお、埋込み層136の厚さは、突起134を覆い尽くすように形成してもよく、突起134の一部、例えば最先端部分が埋込み層136から突出するように形成してもよい。
【0174】
続いて、図39(B)に示したように、突起134および埋込み層136を例えばCMPにより研磨し、突起134の上面134Aおよび埋込み層136の上面136Aを平坦化する。これにより、平坦化された上面134Aを有する突起134と、突起134の側面を覆うと共に突起134の上面134Aを露出させる埋込み層136とを有する基板137が得られる。
【0175】
平坦化された上面134Aの幅Waは、突起134の幅Wのとりうる値の範囲内で、CMPによる研磨時間により制御することができる。すなわち、突起134は先端になるに従って断面積が小さくなっているので、CMPによる研磨時間を長くするほど上面134Aの幅Waは大きくなる。なお、突起134の間隔Lは、平坦化の前後を通じて同一である。
【0176】
したがって、突起134の上面134Aを平坦化することにより、上面134Aの幅Waを、突起134の幅Wと同様に、従来のフォトリソグラフィ技術では不可能であった50nm未満とすると共に、上面134Aの面積および形状のばらつきを少なくし、高さを均一にすることができる。
【0177】
以上により、触媒配置工程が完了する。
【0178】
(成長工程)
突起134の上面134Aを平坦化したのち、例えば、図40に示したように、この上面134Aに露出した鉄を触媒として基板137上にカーボンナノチューブ138を成長させ、複数のカーボンナノチューブ138が直線状に配列されたカーボンナノチューブ構造体139を形成することができる。
【0179】
このように本変形例では、素材基板10の表面に対して熱分布11を与え、素材基板10の表面を溶融させたのち、素材基板10の表面を放熱させることにより、熱分布11に応じた位置に突起134のパターンを形成し、そののち突起134の上面134Aを平坦化するようにしたので、溶融温度および冷却速度を制御することにより、突起134の幅Wおよび上面134Aの幅Waを、従来のフォトリソグラフィ技術では不可能であった50nm未満とすることが可能となる。また、熱分布11の空間的周期Tを制御することにより突起134を従来のフォトリソグラフィ技術では不可能であった微細な間隔Lで形成することができる。
【0180】
また、突起134のパターンを有する基板137をドライプロセスにより形成することができるので、従来のフォトリソグラフィを利用したプロセスに比べて生産が容易であり、再現性が良く、低コスト化が可能である等の利点を得ることができる。
【0181】
また、エネルギービーム12を回折させることにより熱分布11を与えるようにしたので、回折格子13の周期間隔Pを微細化することにより熱分布11の空間的周期Tを容易に制御し、突起134の間隔Lを微細化することができる。
【0182】
更に、本変形例では、突起134の上面134Aを平坦化するようにしたので、上面134Aの幅Waを、突起134の幅Wと同様に、従来のフォトリソグラフィ技術では不可能であった50nm未満とすると共に、上面134Aの面積および形状のばらつきを少なくし、高さを均一にすることができる。
【0183】
〔変形例10〕
次に、本発明の変形例10について説明する。本変形例は、上記変形例9で得られた基板137を原盤として、その突起のパターンを、別の被転写基板に転写する上面転写工程を更に含むようにしたものである。
【0184】
(溶融工程,突起形成工程および平坦化工程)
まず、図41に示したように、上面が平坦化された突起を有する転写用原盤(以下,原盤という)140を作製する。原盤140は、上記変形例9の基板137と同様に、溶融工程,突起形成工程および平坦化工程を行うことによって形成する。すなわち、素材基板10に突起134および埋込み層136を形成し、突起134の上面134Aおよび埋込み層136の上面136Aを平坦化する。
【0185】
(上面転写工程)
次に、図42(A)に示したように、変形例4と同様の被転写基板71を用意し、原盤140の突起134の上面134Aと被転写基板71の導電性膜72とを対向させて密接させる。このとき、転写特性向上のため、必要に応じて加圧することが好ましい。更に、加熱処理を行うようにすれば、転写特性をいっそう良好にすることができるので、より好ましい。
【0186】
そののち、原盤140を被転写基板71から引き離すと、図42(B)に示したように、突起134の上面134Aのパターンが、被転写基板71に転写される。こうして、被転写基板71の上に鉄よりなる転写パターン151を有する基板152が形成される。よって、一枚の原盤140から多数の被転写基板71に突起134の上面134Aを転写して基板152を大量に製造することができる。また、突起134Aの上面134Aは、平坦化工程により面積および形状のばらつきが少なく、高さが均一になっているので、転写パターン141の面積および形状のばらつきが少なくなる。よって、微細な転写パターン151を高精度に形成することができる。更に、転写を繰り返すことにより突起134が磨耗した場合には、再び平坦化工程の研磨を繰り返して突起134の上面134Aの形状を回復させることなどが可能である。
【0187】
以上により、触媒配置工程が完了する。
【0188】
(成長工程)
被転写基板71に転写パターン151を形成して基板152を形成したのち、例えば、図43に示したように、この転写パターン151を触媒として基板152上にカーボンナノチューブ153を成長させ、複数のカーボンナノチューブ153が直線状に配列されたカーボンナノチューブ構造体154を形成することができる。導電性膜72上に形成されたカーボンナノチューブ構造体154は、電界電子放出素子として利用することができる。
【0189】
このように本実施の形態では、突起134の上面134Aを被転写基板71に転写するようにしたので、一枚の原盤140から多数の被転写基板71に突起134の上面134Aを転写して基板152を大量に製造することができる。また、突起134Aの上面134Aは、平坦化工程により面積および形状のばらつきが少なく、高さが均一になっているので、転写パターン151を高精度に形成することができる。
【0190】
〔変形例11〕
次に、変形例10について説明する。本変形例は、上記変形例9と同様にして素材基板10の表面に突起のパターンを形成したのち、この突起の最先端部分以外の表面に、カーボンナノチューブの成長を抑制する抑制層を形成するようにしたものである。すなわち、本変形例は、触媒配置工程として、素材基板10の表面に所望のパターンに応じて変調された熱分布11を与え、素材基板10の表面を溶融させる「溶融工程」と、素材基板10の表面を放熱させることにより、熱分布11に応じた位置に、すなわち所望のパターンで突起を形成する「突起形成工程」と、突起の最先端部分以外の表面に、カーボンナノチューブの成長を抑制する抑制層を形成する「抑制層形成工程」とを含むものである。そののち、抑制層で覆われていない突起の最先端部分にカーボンナノチューブを成長させる「成長工程」を行う。
【0191】
(溶融工程および突起形成工程
まず、上記変形例9と同様にして溶融工程および突起形成工程を行い、図38に示したように、素材基板10の表面に突起134のパターンを形成する。
【0192】
(抑制層形成工程)
次に、図44に示したように、突起134の最先端部分134B以外の表面に、抑制層161を形成する。この抑制層161は、後述する成長工程において突起134の側面からカーボンナノチューブが成長することを抑制し、カーボンナノチューブの成長する領域を限定するものであり、例えば二酸化ケイ素を、SOGにより塗布することにより、またはCVD法などにより形成される。なお、抑制層161の材料としては、変形例9の埋込み層136と同様に、上述の二酸化ケイ素の他、窒化ケイ素,ポリイミド,PMMA,金属酸化膜などの絶縁体材料、あるいはシリコン,ゲルマニウムなどの半導体材料を用いてもよい。特に、抑制層161の材料として絶縁体材料を用いた場合には、突起134の最先端部分134Bの周辺が絶縁体材料よりなる抑制層161で満たされるので、カーボンナノチューブの周辺に絶縁物が存在しない場合に比べて、より高い電界をカーボンナノチューブに集中させることができる。
【0193】
以上により、触媒配置工程が完了し、突起134の最先端部分134B以外の表面に抑制層161が形成された基板162が形成される。
【0194】
(成長工程)
基板162を形成したのち、例えば、図45に示したように、突起134の最先端部分134Bに露出した鉄を触媒としてカーボンナノチューブ163を成長させ、複数のカーボンナノチューブ163が直線状に配列されたカーボンナノチューブ構造体164を形成することができる。
【0195】
このように本変形例では、突起134の最先端部分134B以外の表面に抑制層161を形成するようにしたので、突起134の最先端部分134Bのみにカーボンナノチューブ163を成長させることができる。
【0196】
以上、実施の形態および変形例を挙げて本発明を説明したが、本発明は上記実施の形態および変形例に限定されるものではなく、種々変形可能である。例えば、上記実施の形態では、パルスの照射回数によりエネルギービーム12のエネルギー量を調整するようにしたが、パルスの照射回数、照射強度およびパルス幅のそれぞれを調整することが可能である。
【0197】
また、上記実施の形態および変形例では、熱分布11,33を回折格子13,32を用いて形成するようにしたが、ビームスプリッタおよびミラーを用いて形成してもよい。
【0198】
更に、上記第4の実施の形態では、カーボンナノチューブ16の先端付近に鉄よりなる磁性層19Aを挿入するようにしたが、磁性層19Aは、カーボンナノチューブ16の少なくとも先端部に挿入されていればよい。よって、磁性層19Aが、例えばカーボンナノチューブ16の全長にわたって内蔵されていてもよい。
【0199】
加えて、上記第4の実施の形態では、カーボンナノチューブ16の開放端16Aを塞ぐように磁気材料よりなる薄膜19を形成し、この薄膜19を研磨することにより、カーボンナノチューブ16の先端に磁性層19Aを挿入するようにしたが、磁性層19Aの形成方法はこれに限られない。例えば、第3の実施の形態のようにカーボンナノチューブ16を成長させながらその先端に鉄を内包させ、得られたカーボンナノチューブ16に対して、第2の実施の形態で説明したような高さ均一化工程を行うことによって形成してもよい。あるいは、カーボンナノチューブの先端を開放端としたのちに鉄を含む雰囲気中に配置し、開放端からカーボンナノチューブ内部に磁気材料を取り込ませる方法なども可能である。
【0200】
更にまた、変形例9では、溶融工程を第1の実施の形態と同様に行い、リブ状の突起134を形成するようにしたが、溶融工程を変形例3と同様に行い、突起を2次元に分布するように形成することも可能である。
【0201】
加えてまた、上記実施の形態および変形例では、XeClエキシマレーザを用いてエネルギービーム12を照射するようにしたが、XeClエキシマレーザ以外のレーザを用いるようにしてもよく、更に、加熱手段として、変調により熱分布を形成できるものであれば、一般的な汎用の電気加熱炉(拡散炉)もしくはランプなどの他の方法により加熱するようにしてもよい。
【0202】
更にまた、上記各実施の形態および上記変形例では、析出工程または突起形成工程での放熱を溶融工程を終了したのちの常温による自然冷却としたが、常温未満の温度により強制的に冷却して析出工程または突起形成工程を短縮することも可能である。
【0203】
加えてまた、上記各実施の形態および上記変形例では、筒状炭素分子としてカーボンナノチューブを形成する場合について説明したが、本発明は、カーボンナノチューブに限らず、カーボンナノホーンあるいはカーボンナノファイバー等を形成する場合にも適用可能である。
【0204】
【発明の効果】
以上説明したように本発明の筒状炭素分子の製造方法によれば、変調された熱分布による溶融を利用して、筒状炭素分子を形成するための触媒機能を有する金属を配置し、筒状炭素分子を成長させるようにしたので、熱分布を制御することにより、従来のフォトリソグラフィでは不可能であった微細な幅および間隔のパターンを形成し、このパターン通りに筒状炭素分子が規則正しく配列された筒状炭素分子構造体を得ることができる。
【0206】
本発明の記録装置の製造方法によれば、所望の微細なパターンで配列された筒状炭素分子を備え、各筒状炭素分子内に磁気材料からなる磁性層が導入されているので、着磁の長さを従来のフォトリソグラフィでは不可能な小さな寸法とすることができる。よって、極めて記録密度を高くすることができる。また、磁性層は筒状炭素分子により隔離されているので、隣接する他の筒状炭素分子内の磁性層の影響を受けることなく、所定の磁化方向を長期間安定して保持することができ、記録装置の信頼性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係るカーボンナノチューブの製造方法における溶融工程を模式的に表す斜視図である。
【図2】図1に続く工程(析出工程)を模式的に表す斜視図である。
【図3】図2に続く工程(成長工程)を模式的に表す斜視図である。
【図4】本発明の第2の実施の形態に係るカーボンナノチューブの製造方法における高さ均一化工程を模式的に表す断面図である。
【図5】本発明の第4の実施の形態に係る記録装置の製造方法における挿入工程を模式的に表す断面図である。
【図6】図5に示した記録装置における記録状態の一例を模式的に表す斜視図である。
【図7】本発明の変形例1に係るカーボンナノチューブの製造方法における溶融工程を模式的に表す斜視図である。
【図8】図7に示した素材基板の表面に形成されている熱分布の一例を模式的に表す平面図である。
【図9】図7に示した熱分布の他の例を表す平面図である。
【図10】図7に続く工程(析出工程)を模式的に表す斜視図である。
【図11】図10に示した素材基板の表面の一部を拡大して表す平面図である。
【図12】図10に続く工程(成長工程)を模式的に表す斜視図である。
【図13】図9に示した熱分布を形成したのちに析出工程を行った場合における素材基板の表面の一部を拡大して表す平面図である。
【図14】本発明の変形例2に係るカーボンナノチューブの製造方法における析出工程を模式的に表す斜視図である。
【図15】図14に示した析出領域の変形例を表す断面図である。
【図16】図14に示した析出領域の他の変形例を表す断面図である。
【図17】図14に続く工程(成長工程)を模式的に表す斜視図である。
【図18】本発明の変形例3に係るカーボンナノチューブの製造方法における析出工程を模式的に表す斜視図である。
【図19】図18に示した素材基板の表面の一部を拡大して表す平面図である。
【図20】図18に続く工程(成長工程)を模式的に表す斜視図である。
【図21】本発明の変形例4に係るカーボンナノチューブの製造方法における突起形成工程を模式的に表す斜視図である。
【図22】図21に続く工程(転写工程)を模式的に表す断面図である。
【図23】図22に示した転写パターンの変形例を表す断面図である。
【図24】図22に示した転写パターンの他の変形例を表す断面図である。
【図25】図22に続く工程(成長工程)を模式的に表す断面図である。
【図26】本発明の変形例5に係るカーボンナノチューブの製造方法における突起形成工程を模式的に表す斜視図である。
【図27】図26に続く工程(転写工程)を模式的に表す斜視図である。
【図28】図27に続く工程(成長工程)を模式的に表す斜視図である。
【図29】図28に示したカーボンナノチューブ構造体の顕微鏡写真である。
【図30】図29に示した白い部分の中央付近を拡大して表すSEM写真である。
【図31】図29に示した白い部分と黒い部分との境界付近を拡大して表すSEM写真である。
【図32】本発明の変形例6に係るカーボンナノチューブの製造方法における被膜形成工程を模式的に表す断面図である。
【図33】図32に続く工程(転写工程)を模式的に表す断面図である。
【図34】図33に続く工程(成長工程)を模式的に表す断面図である。
【図35】本発明の変形例7に係るカーボンナノチューブの製造方法における転写工程を模式的に表す断面図である。
【図36】本発明の変形例8に係るカーボンナノチューブの製造方法における触媒配置工程を模式的に表す断面図である。
【図37】図36に続く工程(成長工程)を模式的に表す断面図である。
【図38】本発明の変形例9に係るカーボンナノチューブの製造方法における突起形成工程を模式的に表す斜視図である。
【図39】図38に続く工程(平坦化工程)を模式的に表す一部切り欠き斜視図である。
【図40】図39に続く工程(成長工程)を模式的に表す斜視図である。
【図41】本発明の変形例10に係るカーボンナノチューブの製造方法における原盤を模式的に表す断面図である。
【図42】図41に続く工程(上面転写工程)を模式的に表す断面図である。
【図43】図42に続く工程(成長工程)を模式的に表す断面図である。
【図44】本発明の変形例11に係るカーボンナノチューブの製造方法における抑制層形成工程を模式的に表す斜視図である。
【図45】図44に続く工程(成長工程)を模式的に表す斜視図である。
【符号の説明】
10,90,110…素材基板、11,33…熱分布、11H,33H…高温領域、11L,33L…低温領域、12…エネルギービーム、13,32…回折格子、13A…溝、14,34,42,52…析出領域、15,35,43,53,74,84,95,102,113,137,152,162…基板、16,36,44,54,75,85,96,114,138,154,163…カーボンナノチューブ、16A…開放端、17,37,45,55,76,86,97,115,139,154,164…カーボンナノチューブ構造体、18…固定層、19…薄膜、19A…磁性層、20…記録装置、31X…X方向熱分布、31XH…X方向高温領域、31XL…X方向低温領域、31Y…Y方向熱分布、31YH…Y方向高温領域、31YL…Y方向低温領域、32A…非透過部分、32B…透過部分、41,51,64,81,91,111,134…突起、65,82,92,140…原盤、71…被転写基板、72…導電性膜、73,83,94,101,151…転写パターン、93…被膜、112…付着パターン、120…金属基板、134A,136A…上面、134B…最先端部分、135…凹部、136…埋込み層、161…抑制層、H…水平面、L…間隔(ピッチ)、P,PX,PY…周期間隔、T…空間的周期、W…幅

Claims (10)

  1. 変調された熱分布による溶融を利用して、筒状炭素分子の触媒機能を有する金属を配置する触媒配置工程と、
    筒状炭素分子を成長させる成長工程と
    を含み、
    前記触媒配置工程は、
    素材基板の表面に対して所望のパターンに応じて変調された熱分布を与え、前記素材基板の表面を溶融させる溶融工程と、
    前記素材基板の表面を放熱させることにより、前記素材基板の前記熱分布に応じた位置に少なくとも先端部が転写物質からなる突起を形成して、表面に突起のパターンを有する転写用原盤を作製する原盤作製工程と、
    前記転写用原盤のパターンを被転写基板に転写させて基板を作製する転写工程とを含み、
    前記基板上に前記筒状炭素分子を成長させる
    ことを特徴とする筒状炭素分子の製造方法。
  2. 前記転写工程において、前記転写用原盤と前記被転写基板との相対位置をずらして、前記転写用原盤のパターンを前記被転写基板に複数回転写させる
    ことを特徴とする請求項記載の筒状炭素分子の製造方法。
  3. 前記転写工程において加熱処理を行う
    ことを特徴とする請求項1または2記載の筒状炭素分子の製造方法。
  4. 前記原盤作製工程において、前記素材基板の表面に突起を形成したのち、前記突起の表面に転写物質からなる被膜を形成し、
    前記転写工程において前記突起の先端の被膜を構成する転写物質を前記被転写基板に転写する
    ことを特徴とする請求項1ないし3のいずれか1項に記載の筒状炭素分子の製造方法。
  5. 変調された熱分布による溶融を利用して、筒状炭素分子の触媒機能を有する金属を配置する触媒配置工程と、
    筒状炭素分子を成長させる成長工程と
    を含み、
    前記触媒配置工程は、
    素材基板の表面に対して所望のパターンに応じて変調された熱分布を与え、前記素材基板の表面を溶融させる溶融工程と、
    前記素材基板の表面を放熱させることにより、前記熱分布に応じた位置に突起のパターンを形成する突起形成工程と、
    前記突起に筒状炭素分子の触媒機能を有する金属よりなる金属基板を押し当てることにより、前記突起の先端部に触媒金属を付着させる付着工程と
    を含むことを特徴とする筒状炭素分子の製造方法。
  6. 変調された熱分布による溶融を利用して、筒状炭素分子の触媒機能を有する金属を配置する触媒配置工程と、
    筒状炭素分子を成長させる成長工程と
    を含み、
    前記触媒配置工程は、
    素材基板の表面に対して所望のパターンに応じて変調された熱分布を与え、前記素材基板の表面を溶融させる溶融工程と、
    前記素材基板の表面を放熱させることにより、前記熱分布に応じた位置に突起のパターンを形成する突起形成工程と、
    前記突起の上面を平坦化する平坦化工程と、
    前記突起の平坦化された上面を被転写基板に接触させ、前記突起の上面のパターンを前記被転写基板に転写する上面転写工程と
    を含むことを特徴とする筒状炭素分子の製造方法。
  7. 前記触媒配置工程は、前記突起の最先端部分以外の表面に、筒状炭素分子の成長を抑制する抑制層を形成する抑制層形成工程を含む
    ことを特徴とする請求項記載の筒状炭素分子の製造方法。
  8. 変調された熱分布による溶融を利用して、筒状炭素分子の触媒機能を有する金属を配置する触媒配置工程と、
    筒状炭素分子を成長させる成長工程と、
    前記筒状炭素分子の先端を所定の平面内に形成すると共に前記先端を開放端とする高さ均一化工程と、
    前記開放端から前記筒状炭素分子の少なくとも先端部に磁気材料を挿入する挿入工程と
    を含み、
    前記触媒配置工程は、
    素材基板の表面に対して所望のパターンに応じて変調された熱分布を与え、前記素材基板の表面を溶融させる溶融工程と、
    前記素材基板の表面を放熱させることにより、前記素材基板の前記熱分布に応じた位置に少なくとも先端部が転写物質からなる突起を形成して、表面に突起のパターンを有する転写用原盤を作製する原盤作製工程と、
    前記転写用原盤のパターンを被転写基板に転写させて基板を作製する転写工程とを含み、
    前記基板上に前記筒状炭素分子を成長させる
    ことを特徴とする記録装置の製造方法。
  9. 変調された熱分布による溶融を利用して、筒状炭素分子の触媒機能を有する金属を配置する触媒配置工程と、
    筒状炭素分子を成長させる成長工程と、
    前記筒状炭素分子の先端を所定の平面内に形成すると共に前記先端を開放端とする高さ均一化工程と、
    前記開放端から前記筒状炭素分子の少なくとも先端部に磁気材料を挿入する挿入工程と
    を含み、
    前記触媒配置工程は、
    素材基板の表面に対して所望のパターンに応じて変調された熱分布を与え、前記素材基板の表面を溶融させる溶融工程と、
    前記素材基板の表面を放熱させることにより、前記熱分布に応じた位置に突起のパターンを形成する突起形成工程と、
    前記突起に筒状炭素分子の触媒機能を有する金属よりなる金属基板を押し当てることにより、前記突起の先端部に触媒金属を付着させる付着工程と
    を含むことを特徴とする記録装置の製造方法。
  10. 変調された熱分布による溶融を利用して、筒状炭素分子の触媒機能を有する金属を配置する触媒配置工程と、
    筒状炭素分子を成長させる成長工程と、
    前記筒状炭素分子の先端を所定の平面内に形成すると共に前記先端を開放端とする高さ均一化工程と、
    前記開放端から前記筒状炭素分子の少なくとも先端部に磁気材料を挿入する挿入工程と
    を含み、
    前記触媒配置工程は、
    素材基板の表面に対して所望のパターンに応じて変調された熱分布を与え、前記素材基板の表面を溶融させる溶融工程と、
    前記素材基板の表面を放熱させることにより、前記熱分布に応じた位置に突起のパターンを形成する突起形成工程と、
    前記突起の上面を平坦化する平坦化工程と、
    前記突起の平坦化された上面を被転写基板に転写する上面転写工程と
    を含むことを特徴とする記録装置の製造方法。
JP2003003774A 2003-01-09 2003-01-09 筒状炭素分子の製造方法および記録装置の製造方法 Expired - Fee Related JP4161192B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003003774A JP4161192B2 (ja) 2003-01-09 2003-01-09 筒状炭素分子の製造方法および記録装置の製造方法
KR1020057011770A KR20050093796A (ko) 2003-01-09 2004-01-08 통 형상 탄소 분자의 제조 방법 및 통 형상 탄소 분자,기록 장치의 제조 방법 및 기록 장치, 전계 전자방출소자의 제조 방법 및 전계 전자 방출소자와,표시장치의 제조 방법 및 표시장치
US10/541,936 US7828620B2 (en) 2003-01-09 2004-01-08 Method of manufacturing tubular carbon molecule and tubular carbon molecule, method of manufacturing field electron emission device and field electron emission device, and method of manufacturing display unit and display unit
PCT/JP2004/000080 WO2004063091A1 (ja) 2003-01-09 2004-01-08 筒状炭素分子の製造方法および筒状炭素分子、記録装置の製造方法および記録装置、電界電子放出素子の製造方法および電界電子放出素子、ならびに表示装置の製造方法および表示装置
CN200480001829.8A CN1723171B (zh) 2003-01-09 2004-01-08 制造管状碳分子的方法
EP04700779A EP1582501A4 (en) 2003-01-09 2004-01-08 PROCESS FOR TUBE-LIKE CARBON MOLECULAR AND TUBE SHAPED CARBON MOLECULE, METHOD FOR RECORDING DEVICE AND RECORDING DEVICE, METHOD FOR FIELD ELECTRON EMISSION ELEMENT AND FIELD ELECTRON EMISSION ELEMENT AND METHOD FOR DISPLAY UNIT AND DISPLAY UNIT
US12/353,610 US7892063B2 (en) 2003-01-09 2009-01-14 Method of manufacturing tubular carbon molecule and tubular carbon molecule, method of manufacturing recording apparatus and recording apparatus, method of manufacturing field electron emission device and field electron emission device, and method of manufacturing display unit and display unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003003774A JP4161192B2 (ja) 2003-01-09 2003-01-09 筒状炭素分子の製造方法および記録装置の製造方法

Publications (2)

Publication Number Publication Date
JP2004262666A JP2004262666A (ja) 2004-09-24
JP4161192B2 true JP4161192B2 (ja) 2008-10-08

Family

ID=33111905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003003774A Expired - Fee Related JP4161192B2 (ja) 2003-01-09 2003-01-09 筒状炭素分子の製造方法および記録装置の製造方法

Country Status (1)

Country Link
JP (1) JP4161192B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160592A (ja) * 2004-12-10 2006-06-22 Kansai Electric Power Co Inc:The カーボンナノチューブの製造方法、その製造方法により製造されるカーボンナノチューブ、及びカーボンナノチューブ製造用触媒
JP2007296445A (ja) * 2006-04-28 2007-11-15 Univ Nagoya カーボンナノチューブ生成用触媒の処理方法
JP2009109411A (ja) * 2007-10-31 2009-05-21 Hitachi Kenki Fine Tech Co Ltd プローブとその製造方法および走査型プローブ顕微鏡
WO2009107229A1 (ja) 2008-02-29 2009-09-03 富士通株式会社 シート状構造体、半導体装置及び炭素構造体の成長方法

Also Published As

Publication number Publication date
JP2004262666A (ja) 2004-09-24

Similar Documents

Publication Publication Date Title
US7892063B2 (en) Method of manufacturing tubular carbon molecule and tubular carbon molecule, method of manufacturing recording apparatus and recording apparatus, method of manufacturing field electron emission device and field electron emission device, and method of manufacturing display unit and display unit
US7820064B2 (en) Spinodally patterned nanostructures
EP1573729B1 (en) Optical information record medium
US20070036910A1 (en) Apparatus for patterning recording media
JP2005059167A (ja) 微細構造体の製造方法および微細構造体、ならびに記録装置の製造方法および記録装置
JP4432478B2 (ja) 筒状分子の製造方法および筒状分子構造、並びに表示装置および電子素子
JP4329014B2 (ja) 微細構造体の製造方法および微細構造体、表示装置、ならびに記録装置の製造方法および記録装置
CN1723171B (zh) 制造管状碳分子的方法
JP4161192B2 (ja) 筒状炭素分子の製造方法および記録装置の製造方法
JPH04305896A (ja) 原子スケールにおける固体表面の化学的ラベリングおよび原子範囲における情報ユニットの貯蔵方法
JP2004261875A (ja) 転写用原盤の製造方法および転写用原盤、ならびに基板の製造方法および基板
TWI545815B (zh) 製造高密度磁性介質之設備及方法(二)
US20120020199A1 (en) Information recording medium and method for manufacturing information recording medium
Bouet et al. Cation-deficient spinel ferrites: application for high-density write-once optical recording
Kalbitzer Novel concepts for mass storage of archival data
Denisyuk et al. Towards femtojoule nanoparticle phase-change memory
EP0860816A1 (en) Magnetic recording medium and system
JP2004262667A (ja) 基板の製造方法および基板
JP2004261876A (ja) 基板の製造方法および基板
JP2006276453A (ja) 情報記録媒体及び光記録方法
JP2000195034A (ja) 磁気記録媒体とその製造方法
KR20040093978A (ko) 양자점 형성방법, 그를 이용하여 제조된 자성체막 및반도체막
Wiesendanger Nanofabrication by scanning probe instruments: methods, potentail applications and key issues
JP2002251783A (ja) 光情報記録媒体及びその製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080625

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees