JP4160947B2 - Magnetic head and magnetic recording apparatus - Google Patents

Magnetic head and magnetic recording apparatus Download PDF

Info

Publication number
JP4160947B2
JP4160947B2 JP2004325489A JP2004325489A JP4160947B2 JP 4160947 B2 JP4160947 B2 JP 4160947B2 JP 2004325489 A JP2004325489 A JP 2004325489A JP 2004325489 A JP2004325489 A JP 2004325489A JP 4160947 B2 JP4160947 B2 JP 4160947B2
Authority
JP
Japan
Prior art keywords
recording
magnetic field
magnetic
main
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004325489A
Other languages
Japanese (ja)
Other versions
JP2006134540A (en
Inventor
慎吾 高橋
清志 山川
一弘 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2004325489A priority Critical patent/JP4160947B2/en
Publication of JP2006134540A publication Critical patent/JP2006134540A/en
Application granted granted Critical
Publication of JP4160947B2 publication Critical patent/JP4160947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/10Structure or manufacture of housings or shields for heads
    • G11B5/11Shielding of head against electric or magnetic fields
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/3116Shaping of layers, poles or gaps for improving the form of the electrical signal transduced, e.g. for shielding, contour effect, equalizing, side flux fringing, cross talk reduction between heads or between heads and information tracks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3143Disposition of layers including additional layers for improving the electromagnetic transducing properties of the basic structure, e.g. for flux coupling, guiding or shielding
    • G11B5/3146Disposition of layers including additional layers for improving the electromagnetic transducing properties of the basic structure, e.g. for flux coupling, guiding or shielding magnetic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3143Disposition of layers including additional layers for improving the electromagnetic transducing properties of the basic structure, e.g. for flux coupling, guiding or shielding
    • G11B5/3146Disposition of layers including additional layers for improving the electromagnetic transducing properties of the basic structure, e.g. for flux coupling, guiding or shielding magnetic layers
    • G11B5/315Shield layers on both sides of the main pole, e.g. in perpendicular magnetic heads
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/743Patterned record carriers, wherein the magnetic recording layer is patterned into magnetic isolated data islands, e.g. discrete tracks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/82Disk carriers

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Heads (AREA)

Description

この発明は、垂直磁気記録方式により磁気記録媒体に情報を記録する磁気記録装置に関する。 This invention relates to magnetic recording apparatus that records information on a magnetic recording medium by perpendicular magnetic recording system.

近年、ハードディスクドライブ(HDD)などの磁気記録装置の分野において、小型・大容量化の要求が高まりつつあり、記録トラックの高密度化が進められている。特に、単磁極ヘッド(磁気ヘッド)と軟磁性裏打ち層を有する垂直磁気記録用の2層膜媒体とを組み合わせた垂直磁気記録方式の磁気記録装置は、“記録にじみ”や“熱安定性”の観点から高密度記録に有利とされ、研究・開発が盛んに進められている。   In recent years, in the field of magnetic recording devices such as hard disk drives (HDDs), there has been an increasing demand for miniaturization and large capacity, and recording tracks have been increased in density. In particular, a perpendicular magnetic recording type magnetic recording apparatus that combines a single-pole head (magnetic head) and a double-layer medium for perpendicular magnetic recording having a soft magnetic underlayer has a “recording blur” and “thermal stability”. From the point of view, it is advantageous for high-density recording, and research and development are actively underway.

図9には、単磁極ヘッドと2層膜媒体を組み合わせた従来の磁気記録装置の要部の構成例を簡略化して図示してある。図9に示すように、単磁極ヘッド4は、主磁極1、リターンヨーク(ここでは図示せず)、および励磁コイル3を有する。2層膜媒体6は、軟磁性裏打ち層15に重ねて記録層16を有する。単磁極ヘッド4は、2層膜媒体6の記録層16に対向して配置される。この磁気記録装置における磁気回路は、主磁極1、軟磁性裏打ち層15、および図示しないリターンヨークにより形成される。なお、2層膜媒体6の記録層16に磁気的に飽和記録される磁化信号(記録ビット)の幅(以下、記録幅と称する)MWWは、概ね主磁極1の先端の幅(以下、主磁極幅TWWと称する)で決まる。   FIG. 9 shows a simplified configuration example of a main part of a conventional magnetic recording apparatus in which a single magnetic pole head and a two-layer film medium are combined. As shown in FIG. 9, the single magnetic pole head 4 has a main magnetic pole 1, a return yoke (not shown here), and an exciting coil 3. The double-layer film medium 6 has a recording layer 16 overlaid on the soft magnetic backing layer 15. The single magnetic pole head 4 is disposed to face the recording layer 16 of the double-layer film medium 6. The magnetic circuit in this magnetic recording apparatus is formed by the main pole 1, the soft magnetic backing layer 15, and a return yoke (not shown). Note that the width (hereinafter referred to as the recording width) MWW of the magnetization signal (recording bit) magnetically saturated and recorded on the recording layer 16 of the double-layer film medium 6 is generally the width of the tip of the main pole 1 (hereinafter referred to as the main width). Determined by the magnetic pole width TWW).

この装置を用いて2層膜媒体6の記録層16に情報を記録する場合、励磁コイル3に電流を流して主磁極1の先端から記録磁界を形成するが、情報を記録するためには主磁極1の直下で2層膜媒体6の記録層16の飽和磁界(H)以上の記録磁界が必要である。また、主磁極1が対向した記録トラックに隣接するトラック(以下、隣接トラックと称する)に作用する漏れ磁界は、2層膜媒体6の反転磁区生成磁界(H)以下でなければならない。漏れ磁界がHを超えると、隣接トラックに記録した情報を消去してしまう。なお、2層膜媒体6のHやHは、記録磁界の時間変化に依存する。 When information is recorded on the recording layer 16 of the two-layer film medium 6 using this apparatus, a current is passed through the exciting coil 3 to form a recording magnetic field from the tip of the main magnetic pole 1. A recording magnetic field equal to or higher than the saturation magnetic field (H S ) of the recording layer 16 of the double-layer film medium 6 is required immediately below the magnetic pole 1. Further, the leakage magnetic field acting on the track adjacent to the recording track opposed to the main magnetic pole 1 (hereinafter referred to as the adjacent track) must be equal to or less than the inversion magnetic domain generation magnetic field (H N ) of the two-layer film medium 6. If a leakage magnetic field exceeds H N, it erases the information recorded on the adjacent tracks. Note that H 2 S and H 2 N of the two-layer film medium 6 depend on the time change of the recording magnetic field.

また、2層膜媒体6に着目すると、高密度記録になるほど1ビットに占める記録層16の体積が小さくなるので、熱磁気緩和を克服するために記録層16の保持力(H)を大きくしなければならず、必然的に記録層16のHは増加する。このため、この磁気記録装置で高密度記録を達成するためには、主磁極1の直下で急峻な磁界を形成するとともに、極めて高い記録磁界が必要となる。 Moreover, focusing on the two-layer film medium 6, the volume of the recording layer 16 occupying the higher 1 bit becomes a high-density recording becomes small, the holding force of the recording layer 16 in order to overcome the thermal magnetic relaxation of (H C) increased must, H S inevitably recording layer 16 is increased. For this reason, in order to achieve high-density recording with this magnetic recording apparatus, a steep magnetic field is formed immediately below the main magnetic pole 1 and an extremely high recording magnetic field is required.

図10には、2次元有限要素法を用いて計算した単磁極ヘッド4の磁界強度と励磁電流との関係をグラフにして示してある。ここでは、トラックの幅方向に沿った主磁極幅TWWが64[nm]、スロートハイトTHが100[nm]、テーパー部の傾斜角度θが45[°]の単磁極ヘッド4を想定した。そして、主磁極先端と2層膜媒体6の記録層16との間の磁気スペーシングMSを10[nm]、記録層16の厚さを14[nm]、軟磁性裏打ち層15の厚さを300[nm]とし、記録層16の厚さ方向の中心で垂直磁界成分を計算した。また、記録層16の透磁率は1、単磁極ヘッド4と軟磁性裏打ち層15の飽和磁束密度(B)および異方性磁界(H)はそれぞれ2.4[Tesla]と12[Oe]とした。そして、記録磁界は主磁極1の中心、漏れ磁界は主磁極1のエッジから27[nm]離れた位置で評価した。また、これらの磁界は垂直成分のみ考慮した。 FIG. 10 is a graph showing the relationship between the magnetic field strength of the single magnetic pole head 4 calculated using the two-dimensional finite element method and the excitation current. Here, it is assumed that the main pole width TWW along the track width direction is 64 [nm], the throat height TH is 100 [nm], and the taper portion tilt angle θ is 45 [°]. The magnetic spacing MS between the tip of the main pole and the recording layer 16 of the double-layer film medium 6 is 10 [nm], the thickness of the recording layer 16 is 14 [nm], and the thickness of the soft magnetic backing layer 15 is The perpendicular magnetic field component was calculated at the center in the thickness direction of the recording layer 16 with 300 [nm]. The magnetic permeability of the recording layer 16 is 1, and the saturation magnetic flux density (B S ) and anisotropic magnetic field (H K ) of the single pole head 4 and the soft magnetic underlayer 15 are 2.4 [Tesla] and 12 [Oe, respectively. ]. The recording magnetic field was evaluated at the center of the main magnetic pole 1, and the leakage magnetic field was evaluated at a position 27 [nm] away from the edge of the main magnetic pole 1. In addition, only the vertical component of these magnetic fields was considered.

これによると、記録磁界と漏れ磁界は200[mA]程度までは励磁電流に比例して増加するが、それ以上になるとヘッド材料の磁気的な飽和により両者とも増加が飽和の傾向を示しているのが分かる。また、記録磁界と漏れ磁界の磁界強度の差は、ヘッド材料が飽和するまでは励磁電流に比例して増加するが、それ以上励磁電流を大きくしてもほぼ一定値となる。なお、記録磁界と漏れ磁界の絶対値は励磁電流を変えれば変わってしまう。また、記録磁界と漏れ磁界の差はヘッド等の磁気回路の設計で決まってしまう。したがって、ヘッド磁界として記録磁界のピークと漏れ磁界の差が大きいことが、垂直磁気記録方式を採用した磁気記録装置を設計する上で重要となる。   According to this, the recording magnetic field and the leakage magnetic field increase in proportion to the excitation current up to about 200 [mA], but both increase tend to saturate due to the magnetic saturation of the head material. I understand. Further, the difference in magnetic field strength between the recording magnetic field and the leakage magnetic field increases in proportion to the excitation current until the head material is saturated, but it becomes a substantially constant value even if the excitation current is further increased. Note that the absolute values of the recording magnetic field and the leakage magnetic field change if the excitation current is changed. Further, the difference between the recording magnetic field and the leakage magnetic field is determined by the design of a magnetic circuit such as a head. Therefore, a large difference between the recording magnetic field peak and the leakage magnetic field as the head magnetic field is important in designing a magnetic recording apparatus adopting the perpendicular magnetic recording system.

2層膜媒体6においては、H以上の磁界では飽和記録され、H未満の磁界では熱磁気緩和の議論は別として記録層16の磁化状態には影響を及ぼさない。すなわち、H以上H未満の磁界では、未飽和記録となり、その磁界で記録された記録層16の領域はノイズ源となってしまう。したがって、オフトラック方向のヘッド磁界分布を考えた場合、HからHの間の距離が短い方が望ましい。一般的な表現をすれば、トラック幅方向の磁界勾配が大きいことがヘッド磁界として望ましい。 In two-layer film medium 6, the H S or more field saturated recorded, discussion of the thermal magnetic relaxation in a magnetic field of less than H N does not affect the magnetization state of the recording layer 16 as separate. That is, in a magnetic field of H N or more and less than H 2 S , unsaturated recording is performed, and the area of the recording layer 16 recorded with the magnetic field becomes a noise source. Therefore, when considering the head magnetic field distribution in the off-track direction, it is desirable that the distance between H S and H N is shorter. In general terms, a large magnetic field gradient in the track width direction is desirable as the head magnetic field.

以上、要点を整理すると、高密度記録を達成するための最適なヘッド磁界のトラック幅方向の分布を考えた場合、高密度記録に有利な特性は以下の3つの項目になる。   As described above, when the distribution in the track width direction of the optimum head magnetic field for achieving high-density recording is considered, the following three items are advantageous characteristics for high-density recording.

(1)主磁極直下の記録磁界強度が大きいこと。 (1) The recording magnetic field intensity directly under the main magnetic pole is large.

(2)その記録磁界のピークと隣接トラックでの漏れ磁界の差が大きいこと。 (2) The difference between the peak of the recording magnetic field and the leakage magnetic field between adjacent tracks is large.

(3)トラック幅方向の磁界勾配が大きいこと。 (3) The magnetic field gradient in the track width direction is large.

ところで、従来、隣接トラックでの漏れ磁界を低減する目的で、主磁極1のトラック幅方向両側にサイドシールドを設けた装置が知られている(例えば、非特許文献1参照。)。主磁極の両側にサイドシールドを設けることにより、漏れ磁界をシールドして隣接トラックのデータの誤消去を防止する効果が期待できる。   By the way, conventionally, there has been known an apparatus in which side shields are provided on both sides in the track width direction of the main pole 1 for the purpose of reducing a leakage magnetic field in an adjacent track (see, for example, Non-Patent Document 1). By providing side shields on both sides of the main magnetic pole, it is possible to expect the effect of shielding the leakage magnetic field and preventing erroneous erasure of data on adjacent tracks.

しかし、この文献では、上述した望ましい特性(1)、(2)、(3)についての総括的な議論はなく、少なくとも、サイドシールドを設けることにより、記録磁界を低下させていることは明らかである。また、この文献では、サイドシールドを備えた単磁極ヘッドの設計指針も明確化されていない。   However, in this document, there is no general discussion about the desirable characteristics (1), (2), and (3) described above, and it is clear that the recording magnetic field is lowered by providing at least a side shield. is there. Further, in this document, the design guideline for a single pole head having a side shield is not clarified.

図11には、サイドシールドを設けた単磁極ヘッドにおいて、主磁極1とサイドシールドの間の距離を種々変えた場合における磁界強度の変化をグラフにして示してある。ここでは、上述した単磁極ヘッド4に厚さ20[nm]のサイドシールドを設けた装置を用意し、2次元有限要素法を用いて磁界強度を計算した。なお、漏れ磁界は主磁極1の先端から27[nm]離れた位置で評価した。また、サイドシールドは単磁極ヘッド4と同じ磁気特性を持ち、励磁電流は400[mA]とした。   FIG. 11 is a graph showing changes in magnetic field strength when the distance between the main pole 1 and the side shield is variously changed in a single pole head provided with a side shield. Here, a device in which a side shield with a thickness of 20 [nm] was provided on the single magnetic pole head 4 described above was prepared, and the magnetic field strength was calculated using a two-dimensional finite element method. The leakage magnetic field was evaluated at a position away from the tip of the main magnetic pole 1 by 27 [nm]. The side shield had the same magnetic characteristics as the single-pole head 4, and the excitation current was 400 [mA].

これによると、サイドシールドを主磁極1に近づけるほど漏れ磁界が小さくなるが、同時に記録磁界も減少することが分かる。また、記録磁界と漏れ磁界の差は、主磁極・シールド間距離が35[nm]で最大となっているのが分かる。さらに、トラック幅方向の最大磁界勾配は、主磁極・シールド間距離が30[nm]の場合に最大となっている。   According to this, as the side shield is brought closer to the main magnetic pole 1, the leakage magnetic field becomes smaller, but at the same time, the recording magnetic field also decreases. Further, it can be seen that the difference between the recording magnetic field and the leakage magnetic field is maximum when the distance between the main magnetic pole and the shield is 35 [nm]. Furthermore, the maximum magnetic field gradient in the track width direction is maximum when the distance between the main magnetic pole and the shield is 30 [nm].

つまり、従来のように単にサイドシールドを設けただけの装置では、上述した望ましい特性(1)、(2)、(3)を同時且つ十分に満たすことはできない。例えば、上述した従来の文献には、主磁極・シールド間距離を如何に設計すべきかも明確に記載されておらず、この文献に記載の技術内容に基づいて上述した望ましい特性(1)、(2)、(3)を同時に満たすことはできない。
“One Terabit per Square Inch Perpendicular Recording Conceptual Design”, M. Mallary, A. Torabi, and M. Benakli, IEEE Trans. Magn., Vol. 38, 1719, 2002
In other words, the conventional device in which the side shield is simply provided cannot satisfy the above-mentioned desirable characteristics (1), (2), and (3) simultaneously and sufficiently. For example, the above-described conventional document does not clearly describe how to design the distance between the main magnetic pole and the shield, and the desirable characteristics (1) and (1) described above based on the technical contents described in this document ( 2) and (3) cannot be satisfied at the same time.
“One Terabit per Square Inch Perpendicular Recording Conceptual Design”, M. Mallary, A. Torabi, and M. Benakli, IEEE Trans. Magn., Vol. 38, 1719, 2002

この発明の目的は、記録密度を高くできる磁気記録装置を提供することにある。 The purpose of the invention is to provide a magnetic recording device that can increase the recording density.

上記目的を達成するため、本発明の磁気記録装置は、軟磁性裏打ち層に重ねて記録層を有する2層膜媒体と、上記記録層の記録トラックに対向する先端を有する主磁極、および上記記録トラックの幅方向に沿って上記先端から離間して設けられたサイドシールドを有する単磁極ヘッドと、を有し、上記先端とサイドシールドの距離が上記記録トラックのピッチと先端の幅との差に等しく、上記軟磁性裏打ち層が上記先端の幅より狭い幅のランドを有するランド・アンド・グルーブ構造を有することを特徴とする。 In order to achieve the above object, a magnetic recording apparatus of the present invention comprises a two-layer film medium having a recording layer superimposed on a soft magnetic underlayer, a main pole having a tip facing the recording track of the recording layer, and the recording A single-pole head having a side shield provided away from the tip along the width direction of the track, and the distance between the tip and the side shield is the difference between the pitch of the recording track and the width of the tip Equally, the soft magnetic backing layer has a land-and-groove structure having a land having a width narrower than the width of the tip.

また、本発明の磁気記録装置は、軟磁性裏打ち層に重ねて記録層を有する2層膜媒体と、上記記録層の記録トラックに対向する先端を有する主磁極、および上記記録トラックの幅方向に沿って上記先端から離間して設けられたサイドシールドを有する単磁極ヘッドと、を有し、上記サイドシールドの上記先端に対向するエッジは、上記先端が対向する記録トラックに隣接する隣接トラックのエッジと一致する位置に設けられており、上記軟磁性裏打ち層が上記先端の幅より狭い幅のランドを有するランド・アンド・グルーブ構造を有することを特徴とする。   The magnetic recording apparatus of the present invention includes a double-layer film medium having a recording layer superimposed on a soft magnetic backing layer, a main pole having a tip facing the recording track of the recording layer, and a width direction of the recording track. And a single pole head having a side shield provided at a distance from the tip, and an edge facing the tip of the side shield is an edge of an adjacent track adjacent to the recording track with the tip facing The soft magnetic underlayer has a land-and-groove structure having lands with a width smaller than the width of the tip.

上記発明によると、サイドシールドを単磁極ヘッドに設けるとともに、ランド・アンド・グルーブ構造の軟磁性裏打ち層を有する2層膜媒体と組み合わせることにより、記録磁界を高くでき、記録磁界と漏れ磁界の差を大きくでき、磁界勾配を大きくでき、記録密度を高めることができる。   According to the above invention, a side shield is provided on a single magnetic pole head and a recording magnetic field can be increased by combining with a two-layer film medium having a soft magnetic underlayer having a land-and-groove structure. Can be increased, the magnetic field gradient can be increased, and the recording density can be increased.

この発明の磁気記録装置は、上記のような構成および作用を有しているので、記録密度を高くできる。 Magnetic recording apparatus of the invention has a configuration and operation as described above, can increase the recording density.

より詳細には、トラックピッチが一定である場合におけるサイドシールド付単磁極ヘッドおよび2層膜媒体の設計指針を明確にでき、記録磁界を大きくでき、記録磁界と漏れ磁界の差を大きくでき、トラック幅方向の磁界勾配を大きくでき、記録密度を高くできる。   More specifically, the design guidelines for the single-pole head with side shield and the double-layer film medium when the track pitch is constant can be clarified, the recording magnetic field can be increased, and the difference between the recording magnetic field and the leakage magnetic field can be increased. The magnetic field gradient in the width direction can be increased, and the recording density can be increased.

以下、図面を参照しながらこの発明の実施の形態について詳細に説明する。
図1には、この発明の実施の形態に係る磁気記録装置の要部の構造を概略的に示してある。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 schematically shows the structure of the main part of a magnetic recording apparatus according to an embodiment of the present invention.

磁気記録装置は、サイドシールド2を備えた単磁極ヘッド4(磁気ヘッド)、および2層膜媒体6(磁気ディスク)を有する。単磁極ヘッド4は、サイドシールド2の他に、主磁極1、励磁コイル3、および図示しないリターンヨークを有する。   The magnetic recording apparatus has a single magnetic pole head 4 (magnetic head) having a side shield 2 and a double-layer film medium 6 (magnetic disk). In addition to the side shield 2, the single magnetic pole head 4 has a main magnetic pole 1, an exciting coil 3, and a return yoke (not shown).

主磁極1は、2層膜媒体6に対向する先端面11を有し、この先端面11のエッジから垂直に立ち上がった側面12を有する。そして、側面12の終縁から傾斜して延びた傾斜面13を有する。ここでは、先端面11のトラック幅方向(図中左右方向)に沿った幅(以下、この幅を主磁極幅と称する)をTWWとし、先端面11の両側から延びた側面12の高さをTH(スロートハイト)とし、傾斜面13の鉛直軸に対する傾斜角度をθとする。   The main magnetic pole 1 has a front end surface 11 facing the two-layer film medium 6, and has a side surface 12 rising vertically from the edge of the front end surface 11. And it has the inclined surface 13 inclined and extended from the end edge of the side surface 12. As shown in FIG. Here, the width along the track width direction (left and right direction in the figure) of the tip surface 11 (hereinafter, this width is referred to as the main magnetic pole width) is TWW, and the height of the side surface 12 extending from both sides of the tip surface 11 is the height. Let TH (throat height) be the inclination angle of the inclined surface 13 with respect to the vertical axis.

サイドシールド2は、一定の厚さを有する板状体により形成され、トラック幅方向に沿って主磁極1の先端面11を挟む位置に配置されている。サイドシールド2の主磁極1に対向したエッジは、主磁極1から一定距離離れた位置にそれぞれ設定されている。また、サイドシールド2は、2層膜媒体6と略平行な面で且つ主磁極1の先端面11と同一面に沿って延設されている。   The side shield 2 is formed of a plate-like body having a constant thickness, and is disposed at a position sandwiching the front end surface 11 of the main pole 1 along the track width direction. The edges of the side shield 2 facing the main pole 1 are set at positions away from the main pole 1 by a certain distance. The side shield 2 extends along a plane substantially parallel to the double-layer film medium 6 and the same surface as the tip surface 11 of the main pole 1.

一方、2層膜媒体6は、軟磁性裏打ち層15に記録層16を重ねて形成されている。記録層16は、トラック方向(図1で紙面方向)に延び且つトラック幅方向に互いに離間した複数本の記録トラック17を有する。軟磁性裏打ち層15は、図2に示すように、トラック幅方向に互いに離間し且つトラック方向に延びた複数本のランド18を有し、各ランド18の間に複数本のグルーブ19を有する。各ランド18は、記録層16に向けて突出し、記録トラック17に1対1で対応して設けられ、各グルーブ19は記録層16から離間する方向に凹んだ凹所を形成している。   On the other hand, the two-layer film medium 6 is formed by overlapping a recording layer 16 on a soft magnetic backing layer 15. The recording layer 16 has a plurality of recording tracks 17 extending in the track direction (paper surface direction in FIG. 1) and spaced apart from each other in the track width direction. As shown in FIG. 2, the soft magnetic backing layer 15 has a plurality of lands 18 that are separated from each other in the track width direction and extend in the track direction, and a plurality of grooves 19 are provided between the lands 18. Each land 18 protrudes toward the recording layer 16 and is provided in one-to-one correspondence with the recording track 17, and each groove 19 forms a recess recessed in a direction away from the recording layer 16.

なお、以下の説明では、主磁極1とサイドシールド2の間の距離をPSSとし、主磁極1の先端面11と2層膜媒体6の間の距離をMSとし、隣接する記録トラック17間の距離をTP(トラックピッチ)とし、記録トラック17に磁気的に飽和記録される磁化信号(記録ビット)の記録幅をMWWとする。また、説明を簡単にするため、主磁極幅TWWと記録幅MWWが等しいものとする。   In the following description, the distance between the main magnetic pole 1 and the side shield 2 is PSS, the distance between the tip surface 11 of the main magnetic pole 1 and the double-layer film medium 6 is MS, and the distance between adjacent recording tracks 17 is The distance is TP (track pitch), and the recording width of the magnetization signal (recording bit) magnetically recorded on the recording track 17 is MWW. For simplicity of explanation, it is assumed that the main magnetic pole width TWW and the recording width MWW are equal.

上記[背景技術]でも説明したように、単磁極ヘッド4にサイドシールド2を備えると、主磁極1の真下からトラック幅方向両側に漏洩する漏れ磁界を抑制でき、隣接トラック17aに対するデータの誤消去を効果的に防止できるが、反面、2層膜媒体6の記録層16に作用する記録磁界も低下することが知られている。   As described in the above [Background Art], if the single magnetic pole head 4 is provided with the side shield 2, the leakage magnetic field leaking from right below the main magnetic pole 1 to both sides in the track width direction can be suppressed, and erroneous erasure of data with respect to the adjacent track 17a. However, it is known that the recording magnetic field acting on the recording layer 16 of the two-layer film medium 6 also decreases.

図3には、サイドシールド2を設けない単磁極ヘッドの磁界強度Hとサイドシールド2を備えた単磁極ヘッドの磁界強度Hの計算結果を比較して示してある。ここでは、上述した[背景技術]のモデルを採用し、主磁極1の中心Cからトラック幅方向に離間した各位置で磁界強度を計算した。また、図3には、各地点における磁界強度H、Hの差(H−H)を示してある。 FIG. 3 shows a comparison of the calculation results of the magnetic field strength H 1 of the single pole head without the side shield 2 and the magnetic field strength H 2 of the single pole head with the side shield 2. Here, the above-mentioned [Background Art] model was adopted, and the magnetic field strength was calculated at each position separated from the center C of the main pole 1 in the track width direction. FIG. 3 shows the difference (H 1 −H 2 ) between the magnetic field strengths H 1 and H 2 at each point.

これによると、サイドシールド2を設けた場合、各地点において確かに磁界強度が低下しているのが分かる。また、磁界強度の差(H−H)を見ると、主磁極1の中心Cから離間したある地点でピークが見られる。さらに、このピークの位置は、サイドシールド2の主磁極1に近いエッジの位置と一致しているのが分かる。 According to this, it can be seen that when the side shield 2 is provided, the magnetic field strength is certainly reduced at each point. Further, when the difference in magnetic field intensity (H 1 −H 2 ) is observed, a peak is seen at a certain point away from the center C of the main magnetic pole 1. Further, it can be seen that the position of this peak coincides with the position of the edge close to the main magnetic pole 1 of the side shield 2.

図4には、サイドシールド2を備えていない単磁極ヘッドの磁界強度Hとサイドシールド2を備えた単磁極ヘッドの磁界強度Hとの差(H−H)、すなわちサイドシールド2を設けた場合の磁界の減少量をPSS(主磁極1に対するサイドシールド2のエッジの位置)をパラメータとして調べた結果を示してある。ここでも、図3で説明したように、主磁極1中心から離間したある地点でそれぞれピークが見られる。図5には、これらピークが見られる位置と主磁極1中心からサイドシールド2のエッジまでの距離との関係を示してある。これによると、両者は、略一致しているのが分かる。 FIG. 4 shows a difference (H 1 −H 2 ) between the magnetic field strength H 1 of the single-pole head without the side shield 2 and the magnetic field strength H 2 of the single-pole head with the side shield 2, that is, the side shield 2. 6 shows the result of examining the amount of decrease in the magnetic field when PSS (position of the edge of the side shield 2 with respect to the main pole 1) is used as a parameter. Here, as described with reference to FIG. 3, peaks are observed at certain points apart from the center of the main magnetic pole 1. FIG. 5 shows the relationship between the position where these peaks are seen and the distance from the center of the main pole 1 to the edge of the side shield 2. According to this, it turns out that both are substantially in agreement.

つまり、漏れ磁界の強度分布を考えた場合、隣接トラック17aの主磁極1に近いエッジに最大の漏れ磁界が作用するので、できるだけ主磁極直下の記録磁界を減少させずに効果的に隣接トラック17aに作用する漏れ磁界を減少させるためには、隣接トラック17aのエッジとサイドシールド2のエッジを一致させることが最も有効である。また、2層膜媒体6に記録されるビットの記録幅MWWは概ね主磁極幅TWWに等しいので、トラックピッチをTPとすると、以下の式を満たすようにサイドシールド2のエッジを位置決めすることにより、記録磁界のピークと漏れ磁界の差を最も大きくできる。   That is, when the intensity distribution of the leakage magnetic field is considered, the maximum leakage magnetic field acts on the edge of the adjacent track 17a close to the main magnetic pole 1, so that the adjacent track 17a can be effectively effectively reduced without reducing the recording magnetic field directly under the main magnetic pole as much as possible. It is most effective to make the edge of the adjacent track 17a coincide with the edge of the side shield 2 in order to reduce the leakage magnetic field acting on the side. Since the recording width MWW of the bit recorded on the double-layer film medium 6 is approximately equal to the main magnetic pole width TWW, when the track pitch is TP, the edge of the side shield 2 is positioned so as to satisfy the following formula: The difference between the peak of the recording magnetic field and the leakage magnetic field can be maximized.

PSS=TP−TWW
実際には、主磁極1の先端面11と2層膜媒体6との間のギャップMSがあるため、記録幅MWWは主磁極幅TWWより僅かに大きくなる。このため、厳密に言うと、上式は、下式のように書きかえられる。
PSS = TP-TWW
Actually, the recording width MWW is slightly larger than the main magnetic pole width TWW because of the gap MS between the front end face 11 of the main magnetic pole 1 and the double-layer film medium 6. Therefore, strictly speaking, the above expression can be rewritten as the following expression.

PSS=TP−MWW
次に、上述したサイドシールド2の位置を踏まえて、最適な主磁極幅TWWについて考察する。2層膜媒体6の記録層16に記録されるビットの記録幅MWWは、主磁極幅TWWが大きいほど大きくなる。また、主磁極幅TWWが大きくなると隣接トラック17aの幅も当然大きくなる。つまり、トラックピッチTPと主磁極幅TWWと主磁極〜サイドシールド間距離PSSとが上述した関係を満たす場合、主磁極幅TWWを大きくするとサイドシールド2を主磁極1に近づけなければならない。
PSS = TP-MWW
Next, the optimum main magnetic pole width TWW will be considered based on the position of the side shield 2 described above. The recording width MWW of bits recorded on the recording layer 16 of the double-layer film medium 6 increases as the main magnetic pole width TWW increases. Further, as the main magnetic pole width TWW increases, the width of the adjacent track 17a naturally increases. That is, when the track pitch TP, the main magnetic pole width TWW, and the main magnetic pole to side shield distance PSS satisfy the above-described relationship, the side shield 2 must be brought closer to the main magnetic pole 1 when the main magnetic pole width TWW is increased.

主磁極幅TWWが極端に大きいと、主磁極1の磁束の殆どがサイドシールド2に流れ込んでしまい、主磁極1の直下の記録磁界は減少する。一方、主磁極幅TWWが極端に狭いと主磁極1の飽和のため記録磁界は減少する。つまり、記録磁界を最大にする主磁極幅TWWは存在する。   When the main magnetic pole width TWW is extremely large, most of the magnetic flux of the main magnetic pole 1 flows into the side shield 2 and the recording magnetic field immediately below the main magnetic pole 1 decreases. On the other hand, if the main magnetic pole width TWW is extremely narrow, the recording magnetic field decreases due to saturation of the main magnetic pole 1. That is, there is a main magnetic pole width TWW that maximizes the recording magnetic field.

図6には、サイドシールド2のエッジと隣接トラック17aのエッジが一致した単磁極ヘッド4の磁界強度を主磁極幅TWWをパラメータとして計算した結果を示してある。ここでは、2層膜媒体6の軟磁性裏打ち層15のランド・アンド・グルーブ構造を採用せずに、主磁極幅TWWを変えた場合における記録磁界、漏れ磁界、磁界強度の差、および最大磁界勾配を調べた。また、このとき、トラックピッチTPを91[nm]とし、2層膜媒体6記録層16に記録されるビットの記録幅MWWを、説明簡単化のため主磁極幅TWWと同一とした。つまり、主磁極1とサイドシールド2との間の距離PSSは、上述したように91[nm]から主磁極幅TWWを引いた差となる。なお、ここでも、漏れ磁界は、隣接トラック17aの主磁極1に近いエッジで最大であるものとした。   FIG. 6 shows the result of calculating the magnetic field strength of the single magnetic pole head 4 in which the edge of the side shield 2 and the edge of the adjacent track 17a coincide with each other using the main magnetic pole width TWW as a parameter. Here, the land-and-groove structure of the soft magnetic underlayer 15 of the double-layer film medium 6 is not adopted, and the recording magnetic field, leakage magnetic field, magnetic field strength difference, and maximum magnetic field when the main magnetic pole width TWW is changed are used. The gradient was examined. At this time, the track pitch TP is set to 91 [nm], and the recording width MWW of the bits recorded on the two-layer film medium 6 recording layer 16 is made the same as the main magnetic pole width TWW for the sake of simplicity of explanation. That is, the distance PSS between the main magnetic pole 1 and the side shield 2 is a difference obtained by subtracting the main magnetic pole width TWW from 91 [nm] as described above. In this case as well, the leakage magnetic field is assumed to be maximum at the edge near the main magnetic pole 1 of the adjacent track 17a.

この結果、記録磁界、記録磁界と漏れ磁界の差、磁界勾配は、それぞれ、主磁極幅TWWが60[nm]、48[nm]、72[nm]のとき最大となった。例えば、単磁極ヘッド4の特性として最も重要と考えられる記録磁界と漏れ磁界の差を最大にするためには、主磁極幅TWWを48[nm]に設定すれば良く、主磁極幅TWWを概ねトラックピッチTPの40[%]〜60[%]に設定すれば良い。   As a result, the recording magnetic field, the difference between the recording magnetic field and the leakage magnetic field, and the magnetic field gradient were maximized when the main magnetic pole width TWW was 60 [nm], 48 [nm], and 72 [nm], respectively. For example, in order to maximize the difference between the recording magnetic field and the leakage magnetic field, which are considered to be the most important characteristics of the single magnetic pole head 4, the main magnetic pole width TWW may be set to 48 [nm]. What is necessary is just to set to 40 [%]-60 [%] of track pitch TP.

次に、上述した最適なサイドシールド2のエッジ位置、および最適な主磁極幅TWWを踏まえて、さらに、記録磁界および磁界勾配を最適化する方法について考察する。   Next, a method for further optimizing the recording magnetic field and the magnetic field gradient will be considered based on the optimum edge position of the side shield 2 and the optimum main magnetic pole width TWW.

図7には、軟磁性裏打ち層15のランド・アンド・グルーブ構造を採用した場合における、主磁極幅TWWとヘッド磁界の関係の計算結果を示してある。ここでは、主磁極幅TWWより10[nm]狭い幅のランド18を有する軟磁性裏打ち層15を用い、漏れ磁界は隣接トラック上の最大値とした。   FIG. 7 shows the calculation result of the relationship between the main magnetic pole width TWW and the head magnetic field when the land-and-groove structure of the soft magnetic underlayer 15 is adopted. Here, the soft magnetic backing layer 15 having the land 18 having a width 10 [nm] narrower than the main magnetic pole width TWW was used, and the leakage magnetic field was set to the maximum value on the adjacent track.

これによると、記録磁界、記録磁界と漏れ磁界の差、およびトラック幅方向の最大磁界勾配が主磁極幅48[nm]で最大となっているのが分かる。言い換えると、サイドシールド2のエッジを隣接トラック17aのエッジと一致させ、主磁極幅TWWをトラックピッチTPの40[%]〜60[%]に設定し、主磁極幅TWWより狭いランド18を有するランド・アンド・グルーブ構造の軟磁性裏打ち層15を用いることにより、記録磁界を大きくでき、記録磁界のピークと漏れ磁界との差を大きくでき、磁界勾配を大きくできる。つまり、高密度記録に有利な3つの特性を同時に満足することができる。   According to this, it can be seen that the recording magnetic field, the difference between the recording magnetic field and the leakage magnetic field, and the maximum magnetic field gradient in the track width direction are maximum at the main magnetic pole width of 48 [nm]. In other words, the edge of the side shield 2 is made to coincide with the edge of the adjacent track 17a, the main magnetic pole width TWW is set to 40 [%] to 60 [%] of the track pitch TP, and the land 18 is narrower than the main magnetic pole width TWW. By using the soft magnetic backing layer 15 having the land-and-groove structure, the recording magnetic field can be increased, the difference between the recording magnetic field peak and the leakage magnetic field can be increased, and the magnetic field gradient can be increased. That is, the three characteristics advantageous for high-density recording can be satisfied at the same time.

本実施の形態の単磁極ヘッド4の記録磁界が最大となる主磁極幅TWWは、主磁極1と軟磁性裏打ち層15および主磁極1とサイドシールド2のパーミアンス比で概ね決定される。軟磁性裏打ち層15にグルーブ19を設けることは、主磁極1と軟磁性裏打ち層15のパーミアンスを減少させる。したがって、記録磁界を最大にする主磁極幅TWWは、平坦な軟磁性裏打ち層を用いた場合と比較して、相対的に主磁極1とサイドシールド2のパーミアンスを減少させるよう減少しなければならない。ここで、主磁極1と軟磁性裏打ち層15のパーミアンスを積極的に減少させるためには、軟磁性裏打ち層15のランド18は主磁極幅TWWより狭くなければならない。一方、“Grooved Soft-underlayer for Perpendicular Recording Medium”, S. Takahashi, K. Yamakawa, and K. Ouchi, Digests of PMRC 2004, 75, 2004 に示すように、記録磁界と漏れ磁界の差は、軟磁性裏打ち層15にランド・アンド・グルーブ構造を設けても殆ど変わらない。したがって、記録磁界および記録磁界と漏れ磁界の差を最大にする主磁極幅TWWの値をほぼ一致させることができる。   The main magnetic pole width TWW at which the recording magnetic field of the single magnetic pole head 4 of the present embodiment is maximized is generally determined by the permeance ratio of the main magnetic pole 1 and the soft magnetic underlayer 15 and the main magnetic pole 1 and the side shield 2. Providing the groove 19 in the soft magnetic backing layer 15 reduces the permeance between the main pole 1 and the soft magnetic backing layer 15. Therefore, the main magnetic pole width TWW that maximizes the recording magnetic field must be reduced so as to relatively reduce the permeance between the main magnetic pole 1 and the side shield 2 as compared with the case where a flat soft magnetic underlayer is used. . Here, in order to actively reduce the permeance between the main magnetic pole 1 and the soft magnetic underlayer 15, the land 18 of the soft magnetic underlayer 15 must be narrower than the main magnetic pole width TWW. On the other hand, as shown in “Grooved Soft-underlayer for Perpendicular Recording Medium”, S. Takahashi, K. Yamakawa, and K. Ouchi, Digests of PMRC 2004, 75, 2004, the difference between the recording magnetic field and the leakage magnetic field is Even if a land-and-groove structure is provided on the backing layer 15, there is almost no change. Therefore, the value of the main magnetic pole width TWW that maximizes the difference between the recording magnetic field and the recording magnetic field and the leakage magnetic field can be substantially matched.

また、サイドシールド2のない単磁極ヘッドのトラック幅方向の磁界勾配は、単純に記録磁界が大きいほど大きくなる。サイドシールド2は、主磁極1とサイドシールド2の間の磁界の水平成分を増加させる分、垂直成分を減少させるので、垂直成分の磁界勾配を増加させる。図6に示すようにトラック幅方向の磁界勾配が最大となる主磁極幅TWWは、記録磁界が最大となる主磁極幅TWWよりも、さらにサイドシールド2が近づくより大きな値となる。軟磁性裏打ち層15のランド・アンド・グルーブ構造も、主磁極1から出た磁力線はグルーブ19に入らずできるだけランド18で吸収しようとするので磁界勾配が増加する。したがって、サイドシールド2とランド・アンド・グルーブ構造の軟磁性裏打ち層15の両者が存在する場合、お互いに効果を打ち消し合う。ここで、ランド・アンド・グルーブ構造の軟磁性裏打ち層15を用いた方が、大きな磁界勾配が得られる。したがって、トラック幅方向の磁界勾配を最大にする主磁極幅TWWは、平坦な軟磁性裏打ち層を用いた場合に比べ、サイドシールド2が主磁極1から離れるよう小さな値となる。したがって、磁界勾配を最大にする主磁極幅TWWをほぼ一致させることができる。   Further, the magnetic field gradient in the track width direction of the single-pole head without the side shield 2 simply increases as the recording magnetic field increases. The side shield 2 decreases the vertical component by an amount corresponding to the increase in the horizontal component of the magnetic field between the main magnetic pole 1 and the side shield 2, thereby increasing the magnetic field gradient of the vertical component. As shown in FIG. 6, the main magnetic pole width TWW at which the magnetic field gradient in the track width direction is maximum is larger than the main magnetic pole width TWW at which the recording magnetic field is maximum. The land-and-groove structure of the soft magnetic underlayer 15 also increases the magnetic field gradient because the lines of magnetic force emitted from the main magnetic pole 1 do not enter the groove 19 and try to absorb them as much as possible by the land 18. Therefore, when both the side shield 2 and the soft magnetic backing layer 15 having the land-and-groove structure are present, the effects cancel each other. Here, a larger magnetic field gradient is obtained when the soft magnetic underlayer 15 having the land-and-groove structure is used. Therefore, the main magnetic pole width TWW that maximizes the magnetic field gradient in the track width direction is a small value so that the side shield 2 is separated from the main magnetic pole 1 as compared with the case where a flat soft magnetic underlayer is used. Therefore, the main magnetic pole width TWW that maximizes the magnetic field gradient can be substantially matched.

これに対し、図8には、主磁極1と同じランド幅のランド・アンド・グルーブ構造の軟磁性裏打ち層15を用いた場合の計算結果を示してある。ランド幅以外は図7で計算したモデルと同じである。これによると、上述したように、ランド18の幅は主磁極1の幅より狭くなければ、磁界勾配を最大にする主磁極幅TWWを一致させることができないことが分かる。   On the other hand, FIG. 8 shows a calculation result when the soft magnetic backing layer 15 having the land and groove structure having the same land width as that of the main magnetic pole 1 is used. Except for the land width, the model is the same as that calculated in FIG. According to this, as described above, it can be understood that the main magnetic pole width TWW that maximizes the magnetic field gradient cannot be matched unless the width of the land 18 is narrower than the width of the main magnetic pole 1.

以上のように、この発明によると、サイドシールド2を備えた単磁極ヘッド4において、サイドシールド2の主磁極1に近い側のエッジを主磁極1の先端面11が対向する記録トラックに隣接する隣接トラック17aの記録ビットのエッジ位置と一致させたため、記録磁界をできるだけ大きくした上で漏れ磁界を効果的に抑制できた。これにより、十分な強度の記録磁界を生出でき且つ隣接トラック17aに作用する漏れ磁界を十分に小さくでき、記録トラックの高密度化を達成できる。   As described above, according to the present invention, in the single pole head 4 provided with the side shield 2, the edge of the side shield 2 on the side close to the main pole 1 is adjacent to the recording track on which the tip surface 11 of the main pole 1 faces. Since the edge position of the recording bit of the adjacent track 17a is matched, the leakage magnetic field can be effectively suppressed while making the recording magnetic field as large as possible. As a result, a sufficiently strong recording magnetic field can be generated, the leakage magnetic field acting on the adjacent track 17a can be made sufficiently small, and a high recording track density can be achieved.

また、この発明によると、上述した構造を踏まえて、主磁極1の幅TWWをトラックピッチTPの40[%]〜60[%]に設定したため、記録磁界のピークと漏れ磁界との差を十分に大きくすることができた。これにより、記録磁界を最大にできた。   Further, according to the present invention, since the width TWW of the main magnetic pole 1 is set to 40 [%] to 60 [%] of the track pitch TP based on the structure described above, the difference between the recording magnetic field peak and the leakage magnetic field is sufficiently large. Could be bigger. This maximized the recording magnetic field.

さらに、この発明によると、上述した構造に、主磁極幅TWWより狭い幅のランド18を有するランド・アンド・グルーブ構造の軟磁性裏打ち層15を組み合わせたため、記録磁界と漏れ磁界の差を最大にする主磁極幅TWWで、記録磁界および磁界勾配も最大にできた。つまり、サイドシールド2のエッジと隣接トラック17aのエッジを一致させ、主磁極幅TWWをトラックピッチTPの40[%]〜60[%]に設定し、且つ主磁極幅TWWより狭いランド幅を有するランド・アンド・グルーブ構造の軟磁性裏打ち層15を有する2層膜媒体6を組み合わせることにより、記録磁界、記録磁界と漏れ磁界の差、および磁界勾配をそれぞれ同時に最大化できた。   In addition, according to the present invention, the difference between the recording magnetic field and the leakage magnetic field is maximized because the above-described structure is combined with the soft magnetic backing layer 15 having the land-and-groove structure having the land 18 narrower than the main magnetic pole width TWW. With the main magnetic pole width TWW, the recording magnetic field and the magnetic field gradient can be maximized. That is, the edge of the side shield 2 and the edge of the adjacent track 17a are matched, the main magnetic pole width TWW is set to 40 [%] to 60 [%] of the track pitch TP, and the land width is narrower than the main magnetic pole width TWW. By combining the double-layer film medium 6 having the soft magnetic backing layer 15 having the land and groove structure, the recording magnetic field, the difference between the recording magnetic field and the leakage magnetic field, and the magnetic field gradient can be maximized simultaneously.

なお、この発明は、上述した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上述した実施の形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。例えば、上述した実施の形態に示される全構成要素から幾つかの構成要素を削除しても良い。更に、異なる実施の形態に亘る構成要素を適宜組み合わせても良い。   Note that the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments. For example, you may delete some components from all the components shown by embodiment mentioned above. Furthermore, you may combine the component covering different embodiment suitably.

この発明の実施の形態に係る磁気記録装置の要部の構造を示す概略図。1 is a schematic diagram showing the structure of a main part of a magnetic recording apparatus according to an embodiment of the present invention. 図1の主磁極と軟磁性裏打ち層のランド・アンド・グルーブ構造を示す概略斜視図。The schematic perspective view which shows the land and groove structure of the main pole of FIG. 1, and a soft-magnetic underlayer. サイドシールドを設けた場合における磁界強度の変化を説明するためのグラフ。The graph for demonstrating the change of the magnetic field intensity at the time of providing a side shield. 主磁極とサイドシールドの距離を変えた場合における磁界の減少量と主磁極中心からの距離との関係を示すグラフ。The graph which shows the relationship between the amount of magnetic field reduction | decrease and the distance from a main magnetic pole center when changing the distance of a main magnetic pole and a side shield. 磁界減少量のピークとサイドシールドのエッジ位置との関係を示すグラフ。The graph which shows the relationship between the peak of magnetic field reduction amount, and the edge position of a side shield. サイドシールドのエッジを隣接トラックのエッジに重ねた場合における主磁極の幅と磁界強度の関係を示すグラフ。The graph which shows the relationship between the width | variety of a main pole, and magnetic field intensity at the time of overlapping the edge of a side shield on the edge of an adjacent track. ランド・アンド・グルーブ構造の軟磁性裏打ち層を有する2層膜媒体を組み合わせた場合における主磁極幅と磁界強度の関係を示すグラフ。The graph which shows the relationship between the main pole width and magnetic field intensity at the time of combining the double-layer film medium which has a soft-magnetic underlayer of a land and groove structure. ランド幅と主磁極幅を等しくした場合における主磁極幅と磁界強度の関係を示すグラフ。The graph which shows the relationship between the main pole width and magnetic field intensity when making the land width and the main pole width equal. ランド・アンド・グルーブ構造を持たない軟磁性裏打ち層を有する2層膜媒体に従来の単磁極ヘッドを組み合わせた装置の要部の構造を示す概略図。FIG. 3 is a schematic diagram showing the structure of the main part of an apparatus in which a conventional single-pole head is combined with a two-layer film medium having a soft magnetic underlayer without a land-and-groove structure. 単磁極ヘッドの励磁電流と磁界強度の関係を示すグラフ。The graph which shows the relationship between the excitation current and magnetic field intensity of a single pole head. サイドシールドを設けた場合における主磁極とシールド間の距離と磁界強度の関係を示すグラフ。The graph which shows the relationship between the distance between a main magnetic pole and a shield at the time of providing a side shield, and magnetic field intensity.

符号の説明Explanation of symbols

1…主磁極、2…サードシールド、3…励磁コイル、4…単磁極ヘッド、6…2層膜媒体、11…先端面、12…側面、13…傾斜面、15…軟磁性裏打ち層、16…記録層、17…記録トラック、17a…隣接トラック、18…ランド、19…グルーブ、MS…磁気スペーシング、MWW…記録幅、PSS…主磁極−シールド間距離、TH…スロートハイト、TP…トラックピッチ、TWW…主磁極幅。   DESCRIPTION OF SYMBOLS 1 ... Main magnetic pole, 2 ... Third shield, 3 ... Excitation coil, 4 ... Single magnetic pole head, 6 ... Double-layer film medium, 11 ... Front end surface, 12 ... Side surface, 13 ... Inclined surface, 15 ... Soft magnetic backing layer, 16 ... Recording layer, 17 ... Recording track, 17a ... Adjacent track, 18 ... Land, 19 ... Groove, MS ... Magnetic spacing, MWW ... Recording width, PSS ... Main pole-shield distance, TH ... Throat height, TP ... Track Pitch, TWW ... Main magnetic pole width.

Claims (3)

軟磁性裏打ち層に重ねて記録層を有する2層膜媒体と、
上記記録層の記録トラックに対向する先端を有する主磁極、および上記記録トラックの幅方向に沿って上記先端から離間して設けられたサイドシールドを有する単磁極ヘッドと、を有し、
上記先端とサイドシールドの距離が上記記録トラックのピッチと先端の幅との差に等しく、
上記軟磁性裏打ち層が上記先端の幅より狭い幅のランドを有するランド・アンド・グルーブ構造を有することを特徴とする磁気記録装置。
A two-layer film medium having a recording layer superimposed on a soft magnetic backing layer;
A main pole having a tip facing the recording track of the recording layer, and a single pole head having a side shield provided away from the tip along the width direction of the recording track,
The distance between the tip and the side shield is equal to the difference between the pitch of the recording track and the width of the tip,
The magnetic recording apparatus according to claim 1, wherein the soft magnetic backing layer has a land-and-groove structure having a land having a width narrower than a width of the tip.
軟磁性裏打ち層に重ねて記録層を有する2層膜媒体と、
上記記録層の記録トラックに対向する先端を有する主磁極、および上記記録トラックの幅方向に沿って上記先端から離間して設けられたサイドシールドを有する単磁極ヘッドと、を有し、
上記サイドシールドの上記先端に対向するエッジは、上記先端が対向する記録トラックに隣接する隣接トラックのエッジと一致する位置に設けられており、
上記軟磁性裏打ち層が上記先端の幅より狭い幅のランドを有するランド・アンド・グルーブ構造を有することを特徴とする磁気記録装置。
A two-layer film medium having a recording layer superimposed on a soft magnetic backing layer;
A main pole having a tip facing the recording track of the recording layer, and a single pole head having a side shield provided away from the tip along the width direction of the recording track,
The edge facing the tip of the side shield is provided at a position that coincides with the edge of an adjacent track adjacent to the recording track that the tip faces.
The magnetic recording apparatus according to claim 1, wherein the soft magnetic backing layer has a land-and-groove structure having a land having a width narrower than a width of the tip.
上記主磁極の幅が上記記録トラックのピッチの40[%]〜60[%]であることを特徴とする請求項または請求項に記載の磁気記録装置。 The magnetic recording apparatus according to claim 1 or claim 2 the width of the main magnetic pole is characterized in that it is a 40% to 60%] of the pitch of the recording track.
JP2004325489A 2004-11-09 2004-11-09 Magnetic head and magnetic recording apparatus Expired - Fee Related JP4160947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004325489A JP4160947B2 (en) 2004-11-09 2004-11-09 Magnetic head and magnetic recording apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004325489A JP4160947B2 (en) 2004-11-09 2004-11-09 Magnetic head and magnetic recording apparatus

Publications (2)

Publication Number Publication Date
JP2006134540A JP2006134540A (en) 2006-05-25
JP4160947B2 true JP4160947B2 (en) 2008-10-08

Family

ID=36727914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004325489A Expired - Fee Related JP4160947B2 (en) 2004-11-09 2004-11-09 Magnetic head and magnetic recording apparatus

Country Status (1)

Country Link
JP (1) JP4160947B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008152850A (en) 2006-12-15 2008-07-03 Tdk Corp Magnetic head, and magnetic recording and reproducing device
JP5113388B2 (en) * 2007-01-09 2013-01-09 エイチジーエスティーネザーランドビーブイ Magnetic disk unit
JP2008176858A (en) 2007-01-18 2008-07-31 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium and hard disk drive using the same
JP2008282449A (en) 2007-05-08 2008-11-20 Tdk Corp Vertical magnetic recording head
US8339735B2 (en) * 2007-06-29 2012-12-25 Seagate Technology Llc Magnetic writer for patterned stack with increased write field
US9495996B2 (en) 2007-06-29 2016-11-15 Seagate Technology, Llc Writer with increased write field
US8994587B2 (en) 2010-05-14 2015-03-31 Qualcomm Incorporated Compressed sensing for navigation data
JP4358279B2 (en) 2007-08-22 2009-11-04 株式会社東芝 Magnetic recording head and magnetic recording apparatus
JP2009080875A (en) 2007-09-25 2009-04-16 Toshiba Corp Magnetic head and magnetic recording system
JP5377893B2 (en) 2008-06-19 2013-12-25 株式会社東芝 Magnetic head assembly and magnetic recording / reproducing apparatus
JP5361259B2 (en) 2008-06-19 2013-12-04 株式会社東芝 Spin torque oscillator, magnetic recording head, magnetic head assembly, and magnetic recording apparatus
JP2010040126A (en) * 2008-08-06 2010-02-18 Toshiba Corp Magnetic recording head, magnetic head assembly, and magnetic recording device
JP5558698B2 (en) 2008-11-28 2014-07-23 株式会社東芝 Magnetic recording head, magnetic head assembly, magnetic recording apparatus, and magnetic recording method
JP5606482B2 (en) 2012-03-26 2014-10-15 株式会社東芝 Magnetic head, magnetic head assembly, magnetic recording / reproducing apparatus, and magnetic head manufacturing method

Also Published As

Publication number Publication date
JP2006134540A (en) 2006-05-25

Similar Documents

Publication Publication Date Title
JP4763264B2 (en) Magnetic head for perpendicular recording
US7876531B2 (en) Virtual front shield writer
US20070253107A1 (en) Perpendicular recording magnetic head
JP5083421B2 (en) Magnetic recording apparatus, magnetic recording method, magnetic recording medium for single write method
JP4160947B2 (en) Magnetic head and magnetic recording apparatus
KR100866956B1 (en) Perpendicular magnetic recording head
US20110085266A1 (en) Perpendicular magnetic recording head
JP2005302281A (en) Method for increasing head magnetic field, magnetic recording head, and method for manufacturing thereof
JP2007035251A (en) Perpendicular magnetic recording head comprising gap shield
US20070285837A1 (en) Perpendicular magnetic recording head for high recording density
US8054580B2 (en) Perpendicular recording magnetic head
JP2004127480A (en) Recording head for high density perpendicular magnetic recording
JP2009283067A (en) Magnetic head for perpendicular recording and magnetic recording apparatus
JP2006260756A (en) Perpendicular magnetic recording head and recording medium for recording data using the same
JP2005243124A (en) Magnetic head, and magnetic recording/reproducing device mounting the same
JP2008234772A (en) Magnetic head with two main magnetic poles, magnetic disk unit, and magnetic head switching control circuit
KR100370404B1 (en) A magnetic head
JP2006309927A (en) Perpendicular magnetic recording head
JP4044922B2 (en) Magnetic recording head
JP2008234716A (en) Magnetic head
JP2009259365A (en) Perpendicular magnetic recording head
US7843667B2 (en) Thin film magnetic head, head gimbal assembly, head arm assembly and magnetic disk device
JP2004348928A (en) Perpendicular recording magnetic head
JP2007220230A (en) Perpendicular magnetic recording head
JP2004127421A (en) Thin film magnetic head, magnetic head device, and magnetic recording and reproducing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080403

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080718

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees