JP4160681B2 - Propulsion steel pipe joint structure - Google Patents

Propulsion steel pipe joint structure Download PDF

Info

Publication number
JP4160681B2
JP4160681B2 JP04765799A JP4765799A JP4160681B2 JP 4160681 B2 JP4160681 B2 JP 4160681B2 JP 04765799 A JP04765799 A JP 04765799A JP 4765799 A JP4765799 A JP 4765799A JP 4160681 B2 JP4160681 B2 JP 4160681B2
Authority
JP
Japan
Prior art keywords
steel
propulsion
steel pipe
excavator
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04765799A
Other languages
Japanese (ja)
Other versions
JP2000240391A (en
Inventor
稠 小林
清 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP04765799A priority Critical patent/JP4160681B2/en
Publication of JP2000240391A publication Critical patent/JP2000240391A/en
Application granted granted Critical
Publication of JP4160681B2 publication Critical patent/JP4160681B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、鉄道の直下等で行われるトンネル掘削の補助工法として用いられるパイプルーフ工法に関するもので、特に、平面線形が曲線であるトンネルに追随したルーフの形成を可能とする推進鋼管の継手構造に関する。
【0002】
【従来の技術】
従来のパイプルーフ工法としては、例えば、オーガースクリューにて掘削排土しながらトンネルの掘削領域外周に係る部位に直線鋼管を列状に挿入してルーフを形成する鋼管挿入工程と、当該オーガースクリューによる余掘り領域にセメントミルクを注入して鋼管及び地山を一体とするセメントミルク注入工程とを含むものが知られている。
【0003】
このパイプルーフ工法によれば、当該地山と一体とされた直線鋼管のルーフにて先受防護しながらトンネル掘削を行うことができ、よって、掘削領域上方で鉄道が現に供用されている等、地山の弛みや地表面の変形が許容されないケースや地山が崩壊性であるケースにおけるトンネル掘削に有効である。
【0004】
【発明が解決しようとする課題】
しかしながら、このパイプルーフ工法では、構築すべきトンネルが平面線形が曲線である場合においても、直線鋼管を用いてルーフを形成していたため、直線鋼管が、平面線形が曲線であるトンネルの起点・中間点・終点のいずれにおいてもトンネルの掘削断面を干渉しない部位に配置されることとなる結果、相当に余分な掘削や注入が必要となってしまう。また、このようなルーフの形成は支保の安定の面からみて好ましくない。
【0005】
そこで、本発明の目的は、平面線形が曲線であるトンネルに追随したルーフを形成することができ、よって、余分な掘削や注入を必要としない推進鋼管の継手構造を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、第1発明に係る推進鋼管の継手構造は、掘進機のケーシングの後端部において形成されるリング状の鋼製受口と、当該鋼製受口に対して挿嵌され、かつ、前記ケーシングに続く推進鋼管の前端部において形成されるリング状の鋼製押口とからなり、前記鋼製受口及び鋼製押口の少なくともいずれか一方は、当該推進鋼管に対して推進力が付与されている間において当該鋼製押口の前端部及び鋼製受口の後端部の少なくともいずれか一方を受けることにより、前記ケーシングと当該推進鋼管との折れ角を設定する折角設定手段を有し、前記鋼製受口と前記鋼製押口との間に、前記推進鋼管内への地下水の浸入を防止する止水パッキンが介設されていることを特徴としている。
【0007】
即ち、第1発明は、掘進機のケーシングとそれに続く推進鋼管の連結に係る端部に形成されるリング状の鋼製受口及びリング状の鋼製押口からなり、推進時に当該推進鋼管の折れ角が設定される折角設定手段を有する推進鋼管の継手構造を提供することにより、平面線形が曲線であるトンネルに追随したルーフを形成することができ、よって、余分な掘削や注入を不要とすることを可能にするものである。
【0012】
【発明の実施の形態】
以下、添付図面に示す実施の形態に基づいて本発明を詳細に説明する。
図1は、本発明の一実施の形態に係る曲線パイプルーフ工法の概略を示す平断面図、図2は、当該曲線パイプルーフ工法で用いられる推進鋼管の継手構造の概略を示す平断面図、である。
【0013】
これらの図において、符号1は、隔壁1aで密閉された前端領域1bへの送排泥管1cを用いた送排泥により切羽安定を図り、かつ、元押し装置(図示外)により推進力Aを得ながら、カッター1dを回転させて掘削を行う泥水加圧式の掘進機、である。本実施の形態では、掘進機1として、隔壁1a、カッター1d等を含む掘進機本体11と、推進鋼管2a、2b…と構造上同等であるケーシング12とから構成されるものを採用している。また、ケーシング12は、掘進機本体11に対して着脱自在となっている。
【0014】
また、符号2は、複数の推進鋼管2a、2b…を連結してなる曲線鋼管、である。本実施の形態では、図示しないが、曲線鋼管2を列状に配置することにより、平面線形が曲線であるトンネルに追随したルーフを形成する。尚、推進鋼管2a、2b…それ自体は直線鋼管である。
【0015】
更に、符号3は、先行する推進鋼管2aの後端部に固着されるリング状の鋼製受口、符号4は、当該鋼製受口3に対して挿嵌され、かつ、後行する推進鋼管2bの前端部に固着されるリング状の鋼製押口、である。
【0016】
更にまた、符号5は、後行する推進鋼管2bに対して推進力Aが付与されているタイミングにおいて鋼製押口4の前端部を受けることにより、当該先行する推進鋼管2aと当該後行する推進鋼管2bとの折れ角Bを設定する折角設定手段たる当接部であって鋼製受口3の一部を構成するもの、である。
【0017】
また、符号6は、後行する推進鋼管2bに対して推進力Aが付与されているタイミングにおいて鋼製受口3の後端部を受けることにより、当該先行する推進鋼管2aと当該後行する推進鋼管2bとの折れ角Bを設定する折角設定手段たる当接部であって鋼製押口4の一部を構成するもの、である。
【0018】
更に、符号7は、曲線鋼管2内部への継手部からの地下水の浸入を防止する止水パッキン、である。
【0019】
即ち、本実施の形態における推進鋼管の継手構造は、先後の推進鋼管2a、2bの連結に係る端部に固着されるリング状の鋼製受口3及びリング状の鋼製押口4からなり、当該鋼製受口3及び鋼製押口4が推進時に当該先後の推進鋼管2a、2bの折れ角Bが設定され折角設定手段たる当接部5及び当接部6を有している。
【0020】
次に、本実施の形態に係る曲線パイプルーフ工法について図1〜図3を用いて説明する。尚、図3は、本曲線パイプルーフ工法における掘進機回収工程の概略を示す平断面図、である。
【0021】
本実施の形態では、平面線形が曲線であるトンネルの掘削領域外周に係る部位に前記継手構造を有する掘削機1を用いて前記継手構造を有する複数の推進鋼管2a、2b…を連結してなる曲線鋼管2を列状に配置することとなるが、ここではそのうちの一の鋼管を配置する場合について説明する。また、方向制御はジャイロにて行うものとする。以下、(1)先端推進工程、(2)二番手推進工程、(3)曲線推進工程、(4)掘進機回収工程、(5)継手溶接工程に分けて説明する。
【0022】
(1)先端推進工程
まず、発進立坑の鏡部及び元押し装置(図示外)の間に掘進機1が搬入されると、オペレーターの操作により、当該掘進機1のカッター1dが回転した状態におかれる。
【0023】
このような状態において、当該元押し装置にてストラット(図示外)を介して掘進機1の後端部に対して推進力Aが付与されると、当該掘進機1は、発進立坑の鏡部に設けられた坑口リング(図示外)から地中の所定位置まで挿入される。このとき、オペレーターの操作により、前端領域1bに対して送泥を行い、切羽の安定を確保する。
【0024】
続いて、立坑の鏡部及び元押し装置の間に先端の推進鋼管2aが搬入されると、当該元押し装置にてストラットを介して先端の推進鋼管2aの後端部に対して推進力Aが付与される。すると、当該掘進機1の後端部に固着されるリング状の鋼製受口3に対して当該先端の推進鋼管2aの前端部に固着されるリング状の鋼製押口4が挿嵌される。
【0025】
続いて、更に当該元押し装置にて先端の推進鋼管2aの後端部に対して推進力Aが付与されると、一方では、鋼製押口4の前端部が鋼製受口3の有する当接部5にて受けられ、他方では、鋼製受口3の後端部が鋼製押口4の有する当接部6にて受けられ、これにより、掘進機1と先端の推進鋼管2aとの折れ角Bが設定される。
【0026】
そして、更に当該元押し装置にて先端の推進鋼管2aの後端部に対して推進力Aが付与されると、当該先端の推進鋼管2aは、掘進機1に続いて地中の所定位置まで挿入される。このとき、掘進機1及び先端の推進鋼管2aの挿入過程において上記折れ角Bが継続して維持される結果、平面線形が直線である場合と略同様の元押し装置の操作要領で掘進機1を平面線形が曲線に沿って挿入することができる。
【0027】
(2)二番手推進工程
次に、立坑の鏡部及び元押し装置の間に二番手の推進鋼管2bが搬入されると、当該元押し装置にて二番手の推進鋼管2bの後端部に対して推進力Aが付与される。すると、当該先端の推進鋼管2aの後端部に固着されるリング状の鋼製受口3に対して当該二番手の推進鋼管2bの前端部に固着されるリング状の鋼製押口4が挿嵌される。
【0028】
続いて、更に当該元押し装置にて二番手の推進鋼管2bの後端部に対して推進力Aが付与されると、一方では、鋼製押口4の前端部が鋼製受口3の有する当接部5にて受けられ、他方では、鋼製受口3の後端部が鋼製押口4の有する当接部6にて受けられ、これにより、先端の推進鋼管2aと二番手の推進鋼管2bとの折れ角Bが設定される。
【0029】
そして、更に当該元押し装置にて二番手の推進鋼管2bの後端部に対して推進力Aが付与されると、当該二番手の推進鋼管2bは、掘削機及び先端の推進鋼管2aに続いて地中の所定位置まで挿入される。このとき、掘進機1、先端の推進鋼管2a及び二番手の推進鋼管2bの挿入過程において上記折れ角Bが継続して維持される結果、平面線形が直線である場合と略同様の元押し装置の操作要領で掘進機1及び先端の推進鋼管2aを平面線形が曲線に沿って挿入することができる。
【0030】
(3)曲線推進工程
続いて、(2)二番手推進工程が適宜繰り返される曲線推進工程を行う。当該曲線推進工程は、掘進機1が所望の位置に到達するまで繰り返される。
【0031】
(4)掘進機回収工程
そして、(3)曲線推進工程が行われた後において掘進機1を先端の推進鋼管2aから外して回収する掘進機回収工程を行う。
【0032】
まず、到達立坑が存在する場合は、掘進機1の全体及び先端の推進鋼管2aの前部が当該到達立坑内に露出しているところ、当該掘進機1全体を先端の推進鋼管2aから外し、天井クレーン(図示外)等の利用により、当該到達立坑外へと搬出する。これにより、円滑かつ迅速に掘進機1を回収することができる。
【0033】
一方、到達立坑が存在しない場合は、図3に示すように、送排泥管1cなどの掘進機1に後続する設備機材を撤去したうえで掘進機1のケーシング12を掘進機本体11から取り外し、次いで当該掘進機本体11の後端部に対して引き戻し用のPC鋼線21を固止する。
【0034】
そして、一方では、当該ケーシング12をそのままの位置で残し、他方では、PC鋼線21を用いて当該掘進機本体11を(3)曲線推進工程にて地中に挿入された推進鋼管2a、2b…を通じて引き戻すのである。このとき、掘削機本体11の外径が所定の大きさ以下となっていることから、折れ曲がり部を円滑に通過することができる。よって、到達立坑が存在しない場合においても、円滑かつ迅速に掘進機本体11を回収することができる。
【0035】
尚、本実施の形態では、当該ケーシング12として、推進鋼管2a、2b…と構造上同等であるものを用いているから、トンネル掘削の先受防護を行うルーフとしての性能は十分に担保されている。
【0036】
(5)継手溶接工程
(4)掘進機回収工程の後に、挿入された曲線鋼管2の内部に溶接作業者が入り、各推進鋼管2a、2b…の継手部を内側から溶接され、これにより、複数の推進鋼管2a、2b…を連結してなる曲線鋼管2が構造上一体の鋼管となる。
【0037】
尚、本実施の形態では、この継手溶接工程を(4)掘進機回収工程の後のタイミングで曲線鋼管2の内側から行っているが、これに限られるものでない。よって、例えば立坑の鏡部及び元押し装置の間で先行する鋼製受口3に対して後行する鋼製押口4が挿嵌された時点で外側から行うこととしてもよい。
【0038】
従って、本実施の形態に係る曲線パイプルーフ工法によれば、平面線形が曲線であるトンネルの掘削領域外周に係る部位に複数の推進鋼管2a、2b…を連結してなる曲線鋼管2を列状に配置することとしたので、平面線形が曲線であるトンネルに追随したルーフの形成ができることとなり、これにより、余分な掘削や注入をも不要となった。
【0039】
【発明の効果】
本発明に係る推進鋼管の継手構造によれば、以上のように構成したため、平面線形が曲線であるトンネルに追随したルーフを形成することが可能になる。よって、余分な掘削や注入を必要としない。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る曲線パイプルーフ工法の概略を示す平断面図である。
【図2】本発明の一実施の形態に係る曲線パイプルーフ工法で用いられる推進鋼管の継手構造の概略を示す平断面図である。
【図3】本発明の一実施の形態に係る曲線パイプルーフ工法における掘進機回収工程の概略を示す平断面図である。
【符号の説明】
1…掘進機
1a…隔壁
1b…前端領域
1c…送排泥管
1d…カッター
2…曲線鋼管
2a…(先行する,先端の)推進鋼管
2b…(後行する,二番手の)推進鋼管
3…鋼製受口
4…鋼製押口
5…当接部
6…当接部
7…止水パッキン
11…掘進機本体
12…ケーシング
21…PC鋼線
A…推進力
B…折れ角
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pipe roof construction method used as an auxiliary construction method for tunnel excavation performed directly below a railway, and in particular, a joint structure for a propulsion steel pipe that enables formation of a roof that follows a tunnel having a curved plane alignment. about the elephants.
[0002]
[Prior art]
As a conventional pipe roof construction method, for example, a steel pipe insertion step of forming a roof by inserting straight steel pipes in a row in a portion related to the outer periphery of the tunnel excavation area while excavating and discharging with an auger screw, and using the auger screw There is known a method including a cement milk injection process in which cement milk is injected into an overexcavation region and a steel pipe and a ground are integrated.
[0003]
According to this pipe roof construction method, tunnel excavation can be performed while receiving protection with a straight steel pipe roof integrated with the ground, so that the railway is actually in use above the excavation area, etc. It is effective for tunnel excavation in cases where slack in the natural ground and deformation of the ground surface are not allowed or in cases where the natural ground is collapsible.
[0004]
[Problems to be solved by the invention]
However, in this pipe roof construction method, even when the tunnel to be constructed has a curved plane alignment, a straight steel pipe is used to form the roof. As a result of being placed at a point where the tunnel excavation cross section does not interfere with either the point or the end point, considerable excavation or injection is required. Further, such a roof formation is not preferable from the viewpoint of stable support.
[0005]
An object of the present invention, it is possible to form a roof that follows the tunnel horizontal alignment is curved, therefore, is to provide a joint structure of the propulsion steel pipe which does not require extra excavation and infusion.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a joint structure for a propulsion steel pipe according to the first aspect of the present invention includes a ring-shaped steel receiving port formed at a rear end portion of a casing of an excavator, and the steel receiving port. And a ring-shaped steel push hole formed at the front end portion of the propulsion steel pipe following the casing, and at least one of the steel receiving opening and the steel push hole is in relation to the propulsion steel pipe Folding angle setting for setting the folding angle between the casing and the propulsion steel pipe by receiving at least one of the front end portion of the steel pusher and the rear end portion of the steel receiving port while the propulsive force is applied have a means, between the steel Osaeguchi Prefecture and the steel socket, waterproofing packing to prevent the entry of groundwater into the propulsion steel pipe inside is characterized in that it is interposed.
[0007]
That is, the first invention, the shield casing and the subsequent becomes a steel receptacle and Osaeguchi metallic ring shaped steel ring-shaped formed at an end portion of the coupling of the propulsion steel pipe, those 該推 proceeds during propulsion steel By providing a joint structure for propulsion steel pipes having a bend angle setting means in which the bend angle is set, it is possible to form a roof that follows a tunnel having a curved plane alignment, thus eliminating the need for extra excavation and injection Is possible.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.
FIG. 1 is a plan sectional view showing an outline of a curved pipe roof construction method according to an embodiment of the present invention, FIG. 2 is a plan sectional view showing an outline of a joint structure of a propulsion steel pipe used in the curved pipe roof construction method, It is.
[0013]
In these drawings, reference numeral 1 indicates that the face is stabilized by the supply / discharge mud using the supply / discharge mud pipe 1c to the front end region 1b sealed by the partition wall 1a, and the propulsive force A by the main pushing device (not shown). The muddy water pressurizing excavator that performs excavation by rotating the cutter 1d. In the present embodiment, the excavator 1 is composed of an excavator body 11 including a partition wall 1a, a cutter 1d, and the like, and a casing 12 that is structurally equivalent to the propulsion steel pipes 2a, 2b,. . The casing 12 is detachable from the excavator main body 11.
[0014]
Reference numeral 2 denotes a curved steel pipe formed by connecting a plurality of propulsion steel pipes 2a, 2b. In the present embodiment, although not shown, the curved steel pipes 2 are arranged in a row, thereby forming a roof that follows a tunnel having a curved plane alignment. The propulsion steel pipes 2a, 2b,... Themselves are straight steel pipes.
[0015]
Further, reference numeral 3 is a ring-shaped steel receptacle fixed to the rear end portion of the preceding propulsion steel pipe 2a, and reference numeral 4 is a propulsion that is inserted into the steel receptacle 3 and followed. It is a ring-shaped steel push mouth fixed to the front end portion of the steel pipe 2b.
[0016]
Furthermore, reference numeral 5 denotes the preceding propulsion steel pipe 2a and the subsequent propulsion by receiving the front end portion of the steel pusher 4 at the timing when the propulsion force A is applied to the propulsion steel pipe 2b that follows. It is a contact part which is a bending angle setting means for setting a bending angle B with the steel pipe 2b, and constitutes a part of the steel receiving port 3.
[0017]
Moreover, the code | symbol 6 carries out the said propulsion steel pipe 2a and the said succession by receiving the rear-end part of the steel receptacle 3 in the timing when the thrust A is provided with respect to the propulsion steel pipe 2b to follow. It is a contact part which is a bending angle setting means for setting a bending angle B with the propulsion steel pipe 2b, and constitutes a part of the steel pusher 4.
[0018]
Furthermore, the code | symbol 7 is the water stop packing which prevents the penetration | invasion of the groundwater from the joint part to the inside of the curved steel pipe 2. FIG.
[0019]
That is, the joint structure of the propulsion steel pipe in the present embodiment is composed of a ring-shaped steel receiving port 3 and a ring-shaped steel push port 4 fixed to the end portions related to the connection of the preceding and following propulsion steel pipes 2a and 2b. The steel receiving port 3 and the steel pressing port 4 have a contact part 5 and a contact part 6 which are set as the folding angle B of the propulsion steel pipes 2a and 2b at the time of propulsion and serve as folding angle setting means.
[0020]
Next, the curved pipe roof construction method according to the present embodiment will be described with reference to FIGS. FIG. 3 is a plan sectional view showing an outline of the excavator recovery process in the curved pipe roof construction method.
[0021]
In the present embodiment, a plurality of propulsion steel pipes 2a, 2b,... Having the joint structure are connected to a portion related to the outer periphery of the tunnel excavation region having a curved plane alignment using the excavator 1 having the joint structure. The curved steel pipes 2 are arranged in a row, and here, a case where one of the steel pipes is arranged will be described. Direction control is performed by a gyro. Hereinafter, (1) tip propulsion process, (2) second count propulsion process, (3) curve propulsion process, (4) excavator recovery process, and (5) joint welding process will be described.
[0022]
(1) Tip propulsion process First, when the excavator 1 is carried between the mirror part of the start shaft and the main pushing device (not shown), the cutter 1d of the excavator 1 is rotated by the operation of the operator. I'm left.
[0023]
In such a state, when the driving force A is applied to the rear end portion of the excavator 1 via a strut (not shown) by the main pushing device, the excavator 1 is a mirror part of the starting shaft. It is inserted from a wellhead ring (not shown) provided in to a predetermined position in the ground. At this time, mud is sent to the front end region 1b by the operation of the operator to ensure the stability of the face.
[0024]
Subsequently, when the propulsion steel pipe 2a at the tip is carried in between the mirror part of the shaft and the main pushing device, the propulsive force A is applied to the rear end portion of the propulsion steel pipe 2a at the leading end via the strut in the main pushing device. Is granted. Then, the ring-shaped steel push port 4 fixed to the front end portion of the propulsion steel pipe 2a at the tip is inserted into the ring-shaped steel receiving port 3 fixed to the rear end portion of the excavator 1. .
[0025]
Subsequently, when a propulsive force A is further applied to the rear end portion of the propulsion steel pipe 2a at the leading end by the main pushing device, on the other hand, the front end portion of the steel push port 4 has a contact with the steel receiving port 3. On the other hand, the rear end portion of the steel receiving port 3 is received by the abutting portion 6 of the steel pressing port 4, whereby the excavator 1 and the propulsion steel pipe 2 a at the front end are received. A bend angle B is set.
[0026]
And if propulsive force A is further given with respect to the rear-end part of the front-end | tip propulsion steel pipe 2a with the said main pushing apparatus, the said front-end | tip propulsion steel pipe 2a will continue to the predetermined position in the ground following the excavator 1 Inserted. At this time, the bending angle B is continuously maintained in the insertion process of the excavator 1 and the propulsion steel pipe 2a at the tip. Can be inserted along the curve.
[0027]
(2) Second-number propulsion step Next, when the second-number propulsion steel pipe 2b is carried in between the mirror part of the shaft and the main pushing device, the second pushing-up steel pipe 2b is moved to the rear end portion of the second number propulsion steel pipe 2b by the main pushing device On the other hand, a driving force A is given. Then, the ring-shaped steel push port 4 fixed to the front end portion of the second propulsion steel pipe 2b is inserted into the ring-shaped steel receiving port 3 fixed to the rear end portion of the propulsion steel pipe 2a at the tip. Fitted.
[0028]
Subsequently, when a propulsive force A is further applied to the rear end portion of the second-numbered propulsion steel pipe 2b by the main pushing device, on the other hand, the front end portion of the steel push port 4 has the steel receiving port 3. On the other hand, the rear end portion of the steel receiving port 3 is received by the abutting portion 6 of the steel pusher 4, and thereby, the propulsion steel pipe 2 a at the tip and the second number of propulsion are received. A bending angle B with the steel pipe 2b is set.
[0029]
When the driving force A is further applied to the rear end portion of the second propulsion steel pipe 2b by the main pushing device, the second propulsion steel pipe 2b follows the excavator and the propulsion steel pipe 2a at the tip. Is inserted to a predetermined position in the ground. At this time, as a result of the continuation of the bending angle B in the insertion process of the excavator 1, the propulsion steel pipe 2a at the front end, and the second propulsion steel pipe 2b, the main pushing device is substantially the same as when the plane alignment is a straight line. In this operation procedure, the excavation machine 1 and the propulsion steel pipe 2a at the tip can be inserted along a curved line.
[0030]
(3) Curve promotion step Subsequently, (2) a curve promotion step in which the second-number promotion step is repeated as appropriate is performed. The curve propulsion process is repeated until the excavator 1 reaches a desired position.
[0031]
(4) Excavator recovery process And (3) After the curve propulsion process is performed, the excavator recovery process is performed in which the excavator 1 is removed from the propulsion steel pipe 2a at the tip and recovered.
[0032]
First, when the reaching shaft is present, the entire excavator 1 and the front portion of the tip propulsion steel pipe 2a are exposed in the reaching shaft, the entire excavator 1 is removed from the tip propulsion steel pipe 2a, By using an overhead crane (not shown) or the like, it is carried out of the reach shaft. Thereby, the excavator 1 can be collected smoothly and quickly.
[0033]
On the other hand, when there is no reaching shaft, as shown in FIG. 3, the equipment 12 such as the mud pipe 1 c is removed from the excavator 1 and the casing 12 of the excavator 1 is removed from the excavator body 11. Then, the PC steel wire 21 for pulling back is secured to the rear end portion of the machine 11.
[0034]
And on the one hand, the casing 12 is left at the same position, and on the other hand, the propulsion steel pipes 2a, 2b inserted into the ground in the (3) curve propulsion process using the PC steel wire 21. Pull back through. At this time, since the outer diameter of the excavator main body 11 is equal to or smaller than a predetermined size, the bent portion can be smoothly passed. Therefore, even when the reaching shaft is not present, the excavator main body 11 can be collected smoothly and quickly.
[0035]
In the present embodiment, since the casing 12 is structurally equivalent to the propulsion steel pipes 2a, 2b, etc., the performance as a roof for receiving protection in tunnel excavation is sufficiently secured. Yes.
[0036]
(5) Joint welding process (4) After the excavator recovery process, a welding operator enters the inserted curved steel pipe 2, and the joint parts of the propulsion steel pipes 2a, 2b... Are welded from the inside. A curved steel pipe 2 formed by connecting a plurality of propulsion steel pipes 2a, 2b... Is a structurally integrated steel pipe.
[0037]
In this embodiment, this joint welding process is performed from the inside of the curved steel pipe 2 at a timing after the (4) excavator recovery process, but is not limited thereto. Therefore, for example, it may be performed from the outside when the steel push port 4 that follows the steel receiving port 3 that precedes between the mirror portion of the shaft and the main pushing device is inserted.
[0038]
Therefore, according to the curved pipe roof construction method according to the present embodiment, curved steel pipes 2 formed by connecting a plurality of propulsion steel pipes 2a, 2b,... Therefore, it is possible to form a roof that follows a tunnel having a curved plane alignment, thereby eliminating the need for extra excavation and injection.
[0039]
【The invention's effect】
According to the joint structure of the propulsion steel pipe according to the present invention, since the structure described above, it is possible to form a roof that follows the tunnel horizontal alignment is curved. Thus, no extra drilling or injection is required.
[Brief description of the drawings]
FIG. 1 is a plan sectional view showing an outline of a curved pipe roof construction method according to an embodiment of the present invention.
FIG. 2 is a plan sectional view schematically showing a joint structure of a propulsion steel pipe used in a curved pipe roof construction method according to an embodiment of the present invention.
FIG. 3 is a cross-sectional plan view showing an outline of the excavator recovery process in the curved pipe roof construction method according to the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Excavator 1a ... Bulkhead 1b ... Front end area | region 1c ... Feeding / discharging mud pipe 1d ... Cutter 2 ... Curve steel pipe 2a ... (leading, front-end) propulsion steel pipe 2b ... Steel receiving port 4 ... Steel pusher 5 ... Abutting part 6 ... Abutting part 7 ... Water stop packing 11 ... Excavator main body 12 ... Casing 21 ... PC steel wire A ... Propulsive force B ... Bending angle

Claims (1)

掘進機のケーシングの後端部において形成されるリング状の鋼製受口と、
当該鋼製受口に対して挿嵌され、かつ、前記ケーシングに続く推進鋼管の前端部において形成されるリング状の鋼製押口とからなり、
前記鋼製受口及び鋼製押口の少なくともいずれか一方は、当該推進鋼管に対して推進力が付与されている間において当該鋼製押口の前端部及び鋼製受口の後端部の少なくともいずれか一方を受けることにより、前記ケーシングと当該推進鋼管との折れ角を設定する折角設定手段を有し、
前記鋼製受口と前記鋼製押口との間に、前記推進鋼管内への地下水の浸入を防止する止水パッキンが介設されていることを特徴とする、推進鋼管の継手構造。
A ring-shaped steel socket formed at the rear end of the casing of the excavator;
It is inserted into the steel receiving port, and consists of a ring-shaped steel pressing port formed at the front end of the propulsion steel pipe following the casing,
At least one of the steel receiving port and the steel pressing port is at least one of a front end portion of the steel pressing port and a rear end portion of the steel receiving port while a propulsive force is applied to the propulsion steel pipe. By receiving one of them, it has a folding angle setting means for setting a folding angle between the casing and the propulsion steel pipe,
A joint structure for a propulsion steel pipe, characterized in that a water stop packing for preventing infiltration of groundwater into the propulsion steel pipe is interposed between the steel receiving opening and the steel push hole.
JP04765799A 1999-02-25 1999-02-25 Propulsion steel pipe joint structure Expired - Fee Related JP4160681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04765799A JP4160681B2 (en) 1999-02-25 1999-02-25 Propulsion steel pipe joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04765799A JP4160681B2 (en) 1999-02-25 1999-02-25 Propulsion steel pipe joint structure

Publications (2)

Publication Number Publication Date
JP2000240391A JP2000240391A (en) 2000-09-05
JP4160681B2 true JP4160681B2 (en) 2008-10-01

Family

ID=12781340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04765799A Expired - Fee Related JP4160681B2 (en) 1999-02-25 1999-02-25 Propulsion steel pipe joint structure

Country Status (1)

Country Link
JP (1) JP4160681B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5185084B2 (en) * 2008-11-20 2013-04-17 大成建設株式会社 Ground improvement method

Also Published As

Publication number Publication date
JP2000240391A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
JP4160681B2 (en) Propulsion steel pipe joint structure
JP3170215B2 (en) Pipe burial method
JP2004324256A (en) Shield machine
JP3616898B2 (en) Method for joining underground structures using propulsion device
JP5339466B2 (en) Pipe roof construction method
JP3182100B2 (en) Method of propelling and burying tubular body and tubular body used in this method
JP3093437B2 (en) Shield machine
JPH116391A (en) Equipment for internal push method
JP4142828B2 (en) Shield machine
JP2003239680A (en) Method for connecting shield new pipe to existing pipe under ground
JPS6383397A (en) Pipe burying propulsion construction method and device
JP2673187B2 (en) Shield tunnel joining method
JPH01121423A (en) Method of burying branch pipe
JPH07127384A (en) Small-sized pipe jacking and layout device
JP3622954B2 (en) Branch shield start method and apparatus using shield machine
JP2538370B2 (en) Ground improvement method associated with the construction of vertical or inclined shafts and side shafts
JP2801959B2 (en) Pipe propulsion device
JP3137743B2 (en) Existing tunnel removal shield machine
JPS6353382A (en) Laying changer for existing pipe
JPH10110591A (en) Underground pipe jacking method
JP3943274B2 (en) Curved excavation method and apparatus
JP2001303885A (en) Underground joining method for tunnel and shield machine used therefor
JPS59102085A (en) Enlarging shield machine
JPH08326477A (en) Underground piping method
JPS59130994A (en) Method of horizontal boring construction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080718

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140725

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees