JP4160288B2 - Multilayer porous inorganic molded cured product - Google Patents

Multilayer porous inorganic molded cured product Download PDF

Info

Publication number
JP4160288B2
JP4160288B2 JP2001327815A JP2001327815A JP4160288B2 JP 4160288 B2 JP4160288 B2 JP 4160288B2 JP 2001327815 A JP2001327815 A JP 2001327815A JP 2001327815 A JP2001327815 A JP 2001327815A JP 4160288 B2 JP4160288 B2 JP 4160288B2
Authority
JP
Japan
Prior art keywords
slag
weight
parts
cured product
electric furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001327815A
Other languages
Japanese (ja)
Other versions
JP2003137631A (en
Inventor
榮治 渕上
熊夫 星野
圭一 鶴山
Original Assignee
株式会社星野産商
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社星野産商 filed Critical 株式会社星野産商
Priority to JP2001327815A priority Critical patent/JP4160288B2/en
Publication of JP2003137631A publication Critical patent/JP2003137631A/en
Application granted granted Critical
Publication of JP4160288B2 publication Critical patent/JP4160288B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00284Materials permeable to liquids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00413Materials having an inhomogeneous concentration of ingredients or irregular properties in different layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00724Uses not provided for elsewhere in C04B2111/00 in mining operations, e.g. for backfilling; in making tunnels or galleries
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/52Sound-insulating materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Road Paving Structures (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は道路の舗装材料、トンネルの内壁材料等に有用な多孔質無機成形硬化物に関するものである。
【0002】
【従来の技術】
従来、多孔質無機成形硬化物としては、ALCが提供されている。
【0003】
【発明が解決しようとする課題】
ALCは金属アルミニウムを発泡剤とし、180℃、10気圧程度の高温高圧養生を必要とするので、非常に高価になり、かつ軽量であるから制振性に乏しく、また強度も充分でない。
【0004】
【課題を解決するための手段】
本発明は上記従来の課題を解決するための手段として、粒径5〜13mmの急冷改質処理され、表面に微細な凹凸が形成された硬質電気炉酸化スラグ粒状物(8) からなる粗骨材100重量部、粒径5mm以下の細骨材0〜20重量部、水硬性無機材料粉末10〜15重量部とを含む混合物を成形硬化した多孔質無機成形硬化物を表層とし、その下側には粒径5〜25mmの急冷改質処理された硬質電気炉酸化スラグ粒状物からなる粗骨材100重量部、粒径5mm以下の細骨材60〜110重量部、水硬性無機材料粉末15〜30重量部とを含む混合物を成形硬化した圧密無機成形硬化物が基層として配されていることを特徴とする複層多孔質無機成形硬化物を提供するものである
該電気炉酸化スラグ粒状物は水砕スラグまたは粉砕スラグであることが望ましい。
【0005】
【作用】
本発明の複層多孔質無機成形硬化物の表層に使用する電気炉酸化スラグ粒状物(8) はスラグ成分のマトリクス内に鉱物相が分散した構造を有しているが、急冷改質処理を行うと、スラグ成分のマトリクスでもモース硬度6程度、鉱物相はモース硬度が8程度となるので、高い耐摩耗性を有する。なお鉱物相はマグネタイト、アイアンクロマイト等の鉄系鉱物からなる。そして水砕スラグの場合は表面に鉱物相が突出して微細な凹凸が形成され、また粉砕スラグの場合にはスラグ成分のマトリクスと鉱物相との境界で破断するためにやはり表面に微細な凹凸が形成される。
【0006】
このように本発明では電気炉酸化スラグ粒状物(8) 表面に微細な凹凸が形成されるから、バインダーとしての水硬性無機材料が食い込み易くなり、少量の水硬性無機材料を使用して多孔質としても、該電気炉酸化スラグ粒状物(8) は強固に結着され、高強度の成形硬化物である表層が得られる。また該電気炉酸化スラグ粒状物(8) は比重が3.3〜4.1であって重量が大であり、これを用いた無機成形硬化物は重量効果によって優れた制振性を有し、かつ遮音性、吸音性にも優れる。
本発明では上記電気炉酸化スラグを粗骨材として多孔性を確保するが、更に細骨材を加えて強度を向上せしめる。
【0007】
【発明の実施の形態】
以下に本発明を詳細に説明する。
〔電気炉酸化スラグ粒状物〕
本発明に言う電気炉酸化スラグは、通常Ca O10〜26重量%、Si O2 8〜22重量%、Mn O4〜7重量%、Mg O2〜8重量%、Fe O13〜32重量%、Fe23 9〜45重量%、Al23 4〜16重量%、Cr231〜4重量%程度含み、更に微量成分としてTi O2 0.25〜0.70重量%、P2 5 0.15〜0.50重量%、S0.005〜0.085重量%程度含み、安定な鉱物組成を得るためのFe を20〜45重量%程度含むものであり、天然骨材成分に含まれる粘土、有機不純物、塩分を全く含まず、不安定な遊離石灰、遊離マグネシアあるいは鉱物も殆ど含まない。
【0008】
上記電気炉酸化スラグには、比重を高めるために所望なれば高比重金属粉末や高比重金属酸化物が添加されてもよい。
上記高比重金属粉末とは、鉄、ニッケル、コバルト、クロム、モリブデン、銅、鉛、亜鉛、例えばステンレススチール等の合金の粉末であり、比重は7g/cm3以上、粒径は50μm 以下であることが望ましい。
【0009】
また上記高比重金属酸化物としては、上記高比重金属の酸化物がある。更に本発明においては使用可能な高比重酸化物粉末としては、鋼材を溶断する際に発生するスケール粉がある。このようなスケール粉は略球状でフェライトであり、電気炉酸化スラグ粒状物と同じような機能を付加することが出来る。
更に上記電気炉酸化スラグには、塩基度調節のため酸化カルシウム、酸化ケイ素等の他の金属酸化物が添加されてもよい。
【0010】
上記電気炉酸化スラグを粒化して粒状物(8) を製造するには、水砕法および破砕法の二つの方法がある。水砕法にあっては、該電気炉酸化スラグの溶融物を高速回転する羽根付きドラムに注入し、該溶融物を該羽根付きドラムによって破砕粒状化し、粒状化した該溶融物を水ミスト雰囲気中で急冷改質処理する方法が採られる。該羽根付きドラムは複数個配置して複数段の破砕粒状化を行なってもよい。
このようにして得られる電気炉酸化スラグの粒状物(8) は通常5mm以下の粒径を有し、粒径2.5mm以下のものは略球状であり、高比重金属粉末や高比重金属酸化物が添加されていない場合、比重は3.3〜4.1の範囲にあり、表面にはひび割れ等の欠陥はなく、表面に突出する鉱物相による微細な凹凸を有しまた中空構造のものからなるかまたは中空構造のものを含んでいる。
【0011】
破砕法にあっては、上記電気炉酸化スラグは溶融状態で耐熱容器中に所定の厚みに流し出され、上から水をかけることによって急冷改質処理が施される。この場合、耐熱容器中のスラグ溶融物の厚さが小さすぎると、水をかける前に自然冷却(徐冷)によって硬化し易くなり、所望の硬度が得られなくなるおそれがあり、また厚さが大きくなり過ぎると、水をかけた場合に水が急激に水蒸気となり、水蒸気爆発の危険がある。望ましいスラグ溶融物の厚さは80mm〜120mmである。
【0012】
水をかける場合には耐熱容器中のスラグ溶融物のスラグ溶融物の表面に水が溜まらないようにすることが望ましく、水をかける量が多過ぎてスラグ溶融物の表面に水が溜まって水の蒸発潜熱による急冷効果が期待出来なくなる。
上記水をかける量は、スラグ溶融物1トン当たり毎秒200〜400リットル程度が望ましい。
上記急冷によってスラグ溶融物は急速に硬化するが、この際自己破砕によって容器中のスラグ溶融物の厚さ程度の径を有するスラグ原塊が得られる。
【0013】
該スラグ原塊は粗砕機で粗砕され、更に細砕機で細砕される。上記粉砕によって、スラグ塊はスラグ成分のマトリクスと鉱物相との境界で破断し、表面に微細な凹凸が形成される。上記破砕物は粗篩機等によって粗分級され、更に細砕機等によって細分級して5〜25mm望ましくは5〜20mmの粗骨材、粒径5〜13mm望ましくは5〜10mmの粗骨材、および5mm以下の細骨材に分ける。
【0014】
上記粗砕および細砕はスラグ原塊が水で濡れたまゝで行ってもよいし、またスラグ原塊を乾燥して粗砕以後の工程を行ってもよいし、あるいはスラグ原塊を粗砕した後に乾燥して細砕以後の工程を行ってもよい。また上記分級工程において、篩を通過しない残分は破砕工程に戻されることが望ましい。
このようにして得られる粒状物の比重は水砕品と同様3.3〜4.1の範囲にある。
【0015】
〔水硬性無機材料〕
本発明で使用される水硬性無機材料としては、ポルトランドセメント、アルミナセメント、高炉セメント等のセメント類あるいは高炉急冷スラグ微粉末、電気炉急冷還元スラグ微粉末、該セメント類にケイ砂、ケイ石粉、シリカヒューム、高炉スラグ微粉末、フライアッシュ、シラスバルーン、パーライト、ベントナイト、ケイソウ土等のケイ酸含有物質を添加した混合粉体等がある。
【0016】
〔細骨材〕
本発明において使用される細骨材は粒径が5mm以下のものであり、このような細骨材としては、例えば上記電気炉酸化スラグ粒状物の粒径5mm以下のもの、粒径5mm以下の砂等が用いられる。
【0017】
〔粗骨材〕
上記電気炉酸化スラグ粒状物(8) からなる細骨材の一部に代えて、本発明では粒径5〜25mmの砕石、砂利等の粗骨材を使用してもよい。
【0018】
〔減水剤〕
本発明に使用される減水剤としては、AE減水剤、高性能減水剤等が例示される。
【0019】
〔多孔質無機成形硬化物の製造〕
本発明の多孔質無機成形硬化物を製造するには、粒径5〜13mm、望ましくは5〜10mmの上記電気炉酸化スラグ粒状物(8) である粗骨材を100重量部、粒径5mm以下の上記細骨材を0〜20重量部、上記水硬性無機材料粉末を10〜15重量部、所望なれば上記減水剤を0.01〜3重量部混合し、上記混合物100重量部に対して水を2.5〜3.5重量部程度添加して混練し、該混練物を型枠に充填して硬化させる。硬化は常温あるいは所望なれば水中加熱養生、水蒸気加熱養生等によって行われる。
【0020】
上記多孔質無機成形硬化物の形状は、プレート状、ブロック状等種々な形状とされるが、本発明では上記混練物は型枠に充填することなく、直接地盤、建築物基材等の基礎の表面に直接流し出され、あるいは塗布されてもよい。
【0021】
〔複層多孔質無機成形硬化物〕
本発明においては、更に上記成形硬化物を表層とし、その下側に基層を配した複層構造が提供される。該基層は圧密物として該多孔質表層を補強し、かつ遮水、遮音、制振等の機能を付与する。
上記基層としては下記の二種類の圧密無機成形硬化物がある。
【0022】
〔基層A〕
基層Aとしては、粒径5〜25mm、望ましくは5〜20mmの上記電気炉酸化スラグ粒状物(8) である粗骨材100重量部、粒径5mm以下の上記細骨材60〜110重量部、上記水硬性無機材料粉末を15〜30重量部、所望なれば上記減水剤0.01〜3重量部混合し、上記混合物100重量部に対して水を5〜10重量部程度添加して混練し、該混練物を表層と同様に成形あるいは塗布して硬化させる。上記基層Aには鉄筋が内挿されてもよい。
【0023】
〔基層B〕
基層Bとしては、粒径5mm以下の上記細骨材100重量部、水硬性無機材料粉末15〜60重量部、所望なれば上記減水剤0.01〜3重量部を混合し、上記混合物100重量部に対して水5〜10重量部程度添加して混練し、該混練物を基層Aと同様に成形あるいは塗布して硬化させる。上記基層Bには鉄筋が内挿されてもよい。
【0024】
〔積層〕
上記表層と基層とを積層するには、成形硬化せしめた表層と基層とを接着剤によって接着する方法、成形硬化せしめた表層または基層を型枠にインサートして基層または表層を成形硬化せしめる方法、基礎表面に基層混練物を塗布し、硬化せしめるかあるいは硬化せしめることなく表層混練物を塗布して強化せしめる方法がある。
【0025】
〔実施例1〕(水砕電気炉スラグ粒状物の製造)
図1に本発明の水砕電気炉スラグ粒状物(以下スラグ粒状物と略す)(8) を製造する装置を示す。
即ち1500℃前後の電気炉酸化スラグ溶融物(1) を取鍋(2) からシューター(3) に移し、該シューター(3) から高速回転する羽根付きドラム(4,5) に注入する。該製鋼スラグ溶融物(1) は該羽根付きドラム(4,5) によって細破砕されて粒状化し、該電気炉酸化スラグ溶融物の粒化物(1A)は急冷チャンバー(6) 内にスプレー装置(7) からスプレーされる水ミストによって急冷される。そしてこのようにして得られたスラグ粒状物(8) は備蓄容器(9) 内に備蓄される。
該スラグ粒状物(8) は略球状の中空体であり、表面にはひび割れ等の欠陥はなく、微細な凹凸が有り、高硬度(ビッカース硬さで755、モース硬さがマトリクスで6程度、鉱物相で8程度)を有し耐摩耗性に優れており、真比重は3.84、絶乾比重は3.52、耐火度は1100℃で、透磁性、誘電性、耐酸性、耐アルカリ性等にも優れている。
該スラグ粒状物(8) の粒度は5mm以下である。
【0026】
〔実施例2〕(破砕電気炉スラグ粒状物の製造)
電気炉から排出されたスラグの溶融物に鉄粉および酸化カルシウムと酸化ケイ素とを後添加して次の組成に調節する。
CaO 24.92重量%
SiO2 15.24重量%
Al23 6.72重量%
MnO 5.66重量%
MgO 4.25重量%
Cr23 1.97重量%
総Fe 41.24重量%
CaO/SiO2 =1.64
上記スラグ溶融物は約1350℃に加熱されているが、耐熱容器(皿型鋼鉄製)に約100mmの厚さに流し出され、直ちにスラグ溶融物1トン当たり毎秒300リットル、スプレーにより散水する。
【0027】
このようにして約100mm径のスラグ原塊が得られ、該スラグ原塊のモース硬さはマトリクスで6、鉱物相で8であった。該スラグ原塊は粗砕機で粗砕され、乾燥機で乾燥後細砕機で細砕される。細砕されたスラグ原塊は次いで粗篩機で粗分級され、更に細篩機で細分級されて、5〜20mm粒径の粗骨材、5〜13mm粒径の粗骨材、5mm以下の細骨材に分けられる。
【0028】
参考例3〕
粗骨材として実施例2で製造したスラグ粒状物のうち粒径5〜10mmのものを篩別して使用する。
細骨材として実施例1で製造した粒径5mm以下のスラグ粒状物を使用する。
参考例の配合は下記の通りである。
粗骨材 100重量部
細骨材 15 〃
ポルトランドセメント 13 〃
減水剤 1.3 〃
上記混合物100重量部に対して3.8重量部の水を添加して混練し、該混練物を型枠に充填して常温で3日間硬化させ、厚み50mmのブロック状の多孔質無機成形硬化物を製造した。
【0029】
図2に示すように該成形硬化物(10)は、トンネルの内壁および路床用のブロックとして使用する。このブロック(10)の吸音性能を表1に示す。
【0030】
【表1】
【0031】
表1に示すように本参考例のブロック(10)は、普通コンクリートブロックに比べると10倍〜20倍程度の吸音率を示す。
【0032】
参考例4〕
〔表層〕
粗骨材および細骨材として参考例3と同様なものを使用する。
参考例の表層配合は下記の通りである。
粗骨材 100重量部
細骨材 10 〃
ポルトランドセメント 15 〃
減水剤 1.5 〃
上記混合物100重量部に対して4.1重量部の水を添加して混練する。
【0033】
〔基層〕
粗骨材として実施例2で製造した粒径5〜20mmのものと、粒径5〜20mmの砂利との1:1混合物を使用する。
細骨材として実施例1で製造した粒径5mm以下のスラグ粒状物と粒径5mm以下の川砂との1:1混合物を使用する。
参考例の基層配合は下記の通りである。
粗骨材 100重量部
細骨材 110 〃
アルミナセメント 24 〃
減水剤 0.23 〃
上記混合物100重量部に対して7重量部の水を添加して混練する。
上記表層混練物を型枠中に充填し、その上に上記基層混練物を充填し、水蒸気加熱養生を6時間行って成形硬化させ、図3に示すブロック状の複層多孔質無機成形硬化物(11)を得た。上記複層ブロック(11)において、(11A) は基層、(11B) は表層であり、基層の厚みは30mm、表層の厚みは20mmである。
【0034】
上記複層ブロック(11)は透水性があり、かつ表面摩擦抵抗が高くすべりにくゝ、また高強度で耐摩耗性を有するので特に道路の舗装用ブロックとして有用であるが、吸音性にも優れ舗装用ブロック以外に建築物の床駆体や壁駆体としても有用である。この場合はブロックに成形せず、壁あるいは床の型枠に上記表層混練物と基層混練物とを流し込むことにより直接床駆体や壁駆体を構築する。
上記ブロックの特性を表2に示す。
【0035】
【表2】
【0036】
参考例5〕
〔表層〕
粗骨材として実施例2で製造した粒径5〜10mmのものを用いる。
細骨材として実施例2で製造した粒径5mm以下のものを用いる。
参考例の表層配合は下記の通りである。
粗骨材 100重量部
細骨材 14 〃
ポルトランドセメント 13 〃
減水剤 1.3 〃
上記混合物100重量部に対して3.8重量部の水を添加して混練する。
【0037】
〔基層〕
細骨材として実施例2で製造した粒径5mm以下のものを用いる。
参考例の基層配合は下記の通りである。
細骨材 100重量部
高炉スラグセメント 22 〃
減水剤 0.03 〃
上記混合物に対して11重量部の水を添加して混練する。
上記表層混練物と基層混練物とを使用して実施例4と同様にして複層ブロックを製造する。該複層ブロックの特性を表3に示す。
【0038】
【表3】
【0039】
この参考例の複層ブロックも参考例4の複層ブロックと同様、透水性があり、高強度で表面の摩擦係数が大きくすべりにくいので、舗装用ブロックとして有用である。
【0040】
参考例6〕
参考例5において基層の細骨材を粒径5mm以下の川砂に代え、その他は同様にして製造した複層ブロックの特性を表4に示す。
【0041】
【発明の効果】
本発明においては、透水性、吸音性、遮音性、制振性に優れかつ高強度の多孔質無機成形硬化物が得られる。
【図面の簡単な説明】
【図1】 電気炉スラグ粒状物製造装置の説明図
【図2】 トンネル断面図
【図3】 ブロック断面図
【符号の説明】
8 電気炉スラグ粒状物
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a porous inorganic molded cured product useful for road paving materials, tunnel inner wall materials, and the like.
[0002]
[Prior art]
Conventionally, ALC is provided as a porous inorganic molded cured product.
[0003]
[Problems to be solved by the invention]
ALC uses metallic aluminum as a foaming agent and requires high-temperature and high-pressure curing at 180 ° C. and about 10 atm. Therefore, ALC is very expensive and light in weight, so it has poor vibration damping properties and insufficient strength.
[0004]
[Means for Solving the Problems]
As a means for solving the above-described conventional problems, the present invention provides a rough bone made of a hard electric furnace oxidized slag granular material (8) which has been subjected to a rapid reforming treatment having a particle diameter of 5 to 13 mm and fine irregularities are formed on the surface. A porous inorganic molded cured product obtained by molding and curing a mixture containing 100 parts by weight of a material, 0 to 20 parts by weight of a fine aggregate having a particle size of 5 mm or less, and 10 to 15 parts by weight of a hydraulic inorganic material powder is used as a surface layer. Includes 100 parts by weight of coarse aggregate made of hard electric furnace oxidized slag granules having a grain size of 5 to 25 mm, 60 to 110 parts by weight of fine aggregate having a grain size of 5 mm or less, and a hydraulic inorganic material powder 15. Provided is a multilayer porous inorganic molded cured product characterized in that a compacted inorganic molded cured product obtained by molding and curing a mixture containing -30 parts by weight is disposed as a base layer .
The electric furnace oxidation slag particulates are preferably granulated slag or ground slag.
[0005]
[Action]
The electric furnace oxidation slag granular material (8) used for the surface layer of the multilayer porous inorganic molded cured product of the present invention has a structure in which the mineral phase is dispersed in the matrix of the slag component, but the rapid cooling reforming treatment is performed. When it does, since the Mohs hardness is about 6 even in the matrix of the slag component and the Mohs hardness is about 8 in the mineral phase, it has high wear resistance. The mineral phase consists of iron-based minerals such as magnetite and iron chromite. In the case of granulated slag, the mineral phase protrudes and fine irregularities are formed on the surface. In the case of pulverized slag, fine irregularities are formed on the surface because the slag breaks at the boundary between the matrix of the slag component and the mineral phase. It is formed.
[0006]
As described above, in the present invention, since the fine irregularities are formed on the surface of the electric furnace oxidation slag granule (8), the hydraulic inorganic material as a binder is easily eroded, and a porous material using a small amount of the hydraulic inorganic material is used. However, the electric furnace oxidation slag granules (8) are firmly bound, and a surface layer which is a high-strength molded cured product is obtained. Further, the electric furnace oxidized slag granular material (8) has a specific gravity of 3.3 to 4.1 and a large weight, and an inorganic molded cured product using this has excellent vibration damping properties due to the weight effect. In addition, it is excellent in sound insulation and sound absorption.
In the present invention, the electric furnace oxidation slag is used as a coarse aggregate to ensure porosity, but a fine aggregate is further added to improve the strength.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
[Electric furnace oxidation slag particulates]
Electric furnace oxidation slag referred to in the present invention is usually Ca O10~26 wt%, Si O 2 8 to 22 wt%, Mn O4~7 wt%, Mg O2~8 wt%, Fe O13~32 wt%, Fe 2 O 3 9-45 wt%, Al 2 O 3 4 to 16 wt%, Cr 2 O 3 containing about 1 to 4 wt%, further Ti O 2 0.25 to 0.70 wt% as a minor component, P 2 O 5 0.15 to 0.50% by weight, S 0.005 to 0.085% by weight, Fe containing 20 to 45% by weight for obtaining a stable mineral composition, included in natural aggregate components It contains no clay, organic impurities or salt, and contains almost no unstable free lime, free magnesia or minerals.
[0008]
A high specific gravity metal powder or a high specific gravity metal oxide may be added to the electric furnace oxidation slag as desired in order to increase the specific gravity.
The high specific gravity metal powder is a powder of an alloy such as iron, nickel, cobalt, chromium, molybdenum, copper, lead, zinc, such as stainless steel, and has a specific gravity of 7 g / cm 3 or more and a particle size of 50 μm or less. It is desirable.
[0009]
The high specific gravity metal oxide includes the high specific gravity metal oxide. Furthermore, the high specific gravity oxide powder that can be used in the present invention includes scale powder generated when a steel material is melted. Such scale powder is substantially spherical and ferrite, and can have the same function as the electric furnace oxidation slag granular material.
Furthermore, other metal oxides such as calcium oxide and silicon oxide may be added to the electric furnace oxidation slag for adjusting the basicity.
[0010]
There are two methods of granulating the electric furnace oxidation slag to produce the granular material (8): a water granulation method and a crushing method. In the water granulation method, the electric furnace oxidation slag melt is poured into a bladed drum that rotates at high speed, the melt is crushed and granulated by the bladed drum, and the granulated melt is placed in a water mist atmosphere. The method of rapid cooling reforming is adopted. A plurality of bladed drums may be arranged to perform a plurality of stages of crushing and granulating.
The electric furnace oxidation slag granules (8) thus obtained usually have a particle size of 5 mm or less, and those having a particle size of 2.5 mm or less are substantially spherical, and high specific gravity metal powder or high specific gravity metal oxidation. When no substance is added, the specific gravity is in the range of 3.3 to 4.1, the surface has no defects such as cracks, has fine irregularities due to the mineral phase protruding on the surface, and has a hollow structure Or a hollow structure.
[0011]
In the crushing method, the electric furnace oxidation slag is poured out into a heat-resistant container to a predetermined thickness in a molten state, and subjected to a rapid reforming process by pouring water from above. In this case, if the thickness of the slag melt in the heat-resistant container is too small, it tends to harden by natural cooling (slow cooling) before applying water, and the desired hardness may not be obtained. If it becomes too large, when water is applied, the water suddenly becomes water vapor and there is a danger of water vapor explosion. The preferred slag melt thickness is 80 mm to 120 mm.
[0012]
When water is applied, it is desirable to prevent water from accumulating on the surface of the slag melt in the heat-resistant container. Too much water is applied and water accumulates on the surface of the slag melt. The rapid cooling effect due to the latent heat of vaporization cannot be expected.
The amount of water applied is preferably about 200 to 400 liters per second per ton of slag melt.
The slag melt is rapidly cured by the rapid cooling, and at this time, a slag ingot having a diameter of about the thickness of the slag melt in the container is obtained by self-crushing.
[0013]
The slag bulk is crushed by a pulverizer and further pulverized by a pulverizer. By the pulverization, the slag lump is broken at the boundary between the slag component matrix and the mineral phase, and fine irregularities are formed on the surface. The crushed material is coarsely classified by a coarse sieving machine and the like, and further subdivided by a fine pulverizer or the like to give a coarse aggregate of 5 to 25 mm, preferably 5 to 20 mm, a coarse particle diameter of 5 to 13 mm, preferably 5 to 10 mm, And divide into fine aggregates of 5mm or less.
[0014]
The above crushing and pulverization may be carried out while the slag block is wet with water, or the slag block may be dried and subjected to the steps after crushing, or the slag block may be crushed. Then, it may be dried to carry out the steps after grinding. Moreover, in the said classification process, it is desirable to return the residue which does not pass a sieve to a crushing process.
The specific gravity of the granular material thus obtained is in the range of 3.3 to 4.1, similar to the granulated product.
[0015]
[Hydraulic inorganic material]
Examples of the hydraulic inorganic material used in the present invention include cements such as Portland cement, alumina cement, blast furnace cement or blast furnace quenching slag fine powder, electric furnace quenching reduced slag fine powder, Examples thereof include silica fume, blast furnace slag fine powder, fly ash, shirasu balloon, pearlite, bentonite, and mixed powder added with a silicate-containing substance such as diatomaceous earth.
[0016]
[Fine aggregate]
The fine aggregate used in the present invention has a particle size of 5 mm or less. Examples of such a fine aggregate include those having a particle size of 5 mm or less of the electric furnace oxidation slag granules, and a particle size of 5 mm or less. Sand or the like is used.
[0017]
(Coarse aggregate)
Instead of a part of the fine aggregate made of the electric furnace oxidized slag granular material (8), coarse aggregate such as crushed stone and gravel having a particle diameter of 5 to 25 mm may be used in the present invention.
[0018]
[Water reducing agent]
Examples of the water reducing agent used in the present invention include an AE water reducing agent and a high performance water reducing agent.
[0019]
[Manufacture of porous inorganic molded cured products]
In order to produce the porous inorganic molded cured product of the present invention, 100 parts by weight of the coarse aggregate which is the above-mentioned electric furnace oxidation slag granule (8) having a particle size of 5 to 13 mm, preferably 5 to 10 mm, and a particle size of 5 mm. 0-20 parts by weight of the following fine aggregates, 10-15 parts by weight of the hydraulic inorganic material powder, 0.01-3 parts by weight of the water reducing agent if desired, and 100 parts by weight of the mixture Then add about 2.5 to 3.5 parts by weight of water and knead, fill the kneaded material into a mold and cure. Curing is carried out at room temperature or, if desired, underwater heating curing, steam heating curing or the like.
[0020]
The shape of the porous inorganic molded cured product may be various shapes such as a plate shape and a block shape, but in the present invention, the kneaded material is not filled in a formwork, but directly on the foundation of the ground, building base material, etc. It may be poured directly onto the surface of the film or applied.
[0021]
[Multilayer porous inorganic molded cured product]
In the present invention, there is further provided a multilayer structure in which the molded cured product is used as a surface layer and a base layer is arranged on the lower side. The base layer reinforces the porous surface layer as a compact, and imparts functions such as water shielding, sound insulation and vibration control.
Examples of the base layer include the following two types of consolidated inorganic molded cured products.
[0022]
[Base layer A]
As the base layer A, 100 parts by weight of coarse aggregate which is the above-mentioned electric furnace oxidation slag granular material (8) having a particle diameter of 5 to 25 mm, preferably 5 to 20 mm, and 60 to 110 parts by weight of the above fine aggregate having a particle diameter of 5 mm or less. The hydraulic inorganic material powder is mixed in an amount of 15 to 30 parts by weight, and if desired, 0.01 to 3 parts by weight of the water reducing agent, and about 5 to 10 parts by weight of water is added to 100 parts by weight of the mixture. Then, the kneaded product is molded or applied and cured in the same manner as the surface layer. Reinforcing bars may be inserted into the base layer A.
[0023]
[Base layer B]
The base layer B, following on KiHosokotsu material 100 parts by weight of particle diameter 5 mm, 15 to 60 parts by weight of the hydraulic inorganic material powder, mixing the water reducing agent 0.01-3 parts by weight If desired becomes, the mixture 100 About 5 to 10 parts by weight of water is added with respect to parts by weight and kneaded, and the kneaded product is molded or applied in the same manner as the base layer A and cured. Reinforcing bars may be inserted into the base layer B.
[0024]
(Lamination)
In order to laminate the surface layer and the base layer, a method of adhering the molded and hardened surface layer and the base layer with an adhesive, a method of molding and curing the base layer or the surface layer by inserting the surface layer or base layer that has been molded and cured into a mold, There is a method in which the base layer kneaded material is applied to the base surface and cured, or the surface layer kneaded material is applied and reinforced without curing.
[0025]
[Example 1] (Production of granulated granulated electric furnace slag)
FIG. 1 shows an apparatus for producing granulated electric furnace slag granules (hereinafter abbreviated as slag granules) (8) of the present invention.
That is, the electric furnace oxidation slag melt (1) at around 1500 ° C. is transferred from the pan (2) to the shooter (3), and injected from the shooter (3) into the bladed drum (4, 5) rotating at high speed. The steelmaking slag melt (1) is crushed and granulated by the bladed drum (4, 5), and the granulated product (1A) of the electric furnace oxidation slag melt is sprayed into a quenching chamber (6) ( 7) Quenched by water mist sprayed from. And the slag granular material (8) obtained in this way is stored in the storage container (9).
The slag granular material (8) is a substantially spherical hollow body, has no defects such as cracks on the surface, has fine irregularities, and has high hardness (Vickers hardness of 755, Mohs hardness of about 6 in matrix, It has a mineral phase of about 8) and has excellent wear resistance. True specific gravity is 3.84, absolute dry specific gravity is 3.52, fire resistance is 1100 ° C, magnetic permeability, dielectric properties, acid resistance, and alkali resistance. Etc. are also excellent.
The particle size of the slag granules (8) is 5 mm or less.
[0026]
[Example 2] (Manufacture of crushed electric furnace slag granules)
Iron powder and calcium oxide and silicon oxide are post-added to the slag melt discharged from the electric furnace to adjust to the following composition.
CaO 24.92 wt%
SiO 2 15.24% by weight
Al 2 O 3 6.72% by weight
MnO 5.66 wt%
MgO 4.25 wt%
Cr 2 O 3 1.97 wt%
Total Fe 41.24 wt%
CaO / SiO 2 = 1.64
The slag melt is heated to about 1350 ° C., but is poured into a heat-resistant container (made of dish-shaped steel) to a thickness of about 100 mm, and immediately sprayed with 300 liters per second per ton of slag melt.
[0027]
In this way, a slag bulk having a diameter of about 100 mm was obtained, and the Mohs hardness of the slag bulk was 6 in the matrix and 8 in the mineral phase. The slag bulk is crushed with a crusher, dried with a drier and then pulverized with a crusher. The crushed slag ingot is then coarsely classified with a coarse sieve machine, and further finely classified with a fine sieve machine to obtain coarse aggregate with a particle size of 5 to 20 mm, coarse aggregate with a particle size of 5 to 13 mm, and 5 mm or less. Divided into fine aggregates.
[0028]
[ Reference Example 3]
Of the slag granules produced in Example 2 as coarse aggregate, those having a particle size of 5 to 10 mm are used after sieving.
As the fine aggregate, the slag granular material having a particle diameter of 5 mm or less produced in Example 1 is used.
The composition of this reference example is as follows.
Coarse aggregate 100 parts by weight Fine aggregate 15 〃
Portland cement 13 〃
Water reducing agent 1.3 〃
3.8 parts by weight of water is added to 100 parts by weight of the above mixture and kneaded. The kneaded product is filled into a mold and cured at room temperature for 3 days to form a block-like porous inorganic molding and curing having a thickness of 50 mm. The thing was manufactured.
[0029]
As shown in FIG. 2, the molded cured product (10) is used as an inner wall of a tunnel and a block for a road bed. The sound absorbing performance of this block (10) is shown in Table 1.
[0030]
[Table 1]
[0031]
As shown in Table 1, the block (10) of this reference example exhibits a sound absorption rate of about 10 to 20 times that of the ordinary concrete block.
[0032]
[ Reference Example 4]
[Surface]
The same coarse aggregate and fine aggregate as in Reference Example 3 are used.
The surface layer composition of this reference example is as follows.
Coarse aggregate 100 parts by weight Fine aggregate 10 〃
Portland cement 15 〃
Water reducing agent 1.5 〃
4.1 parts by weight of water is added to 100 parts by weight of the mixture and kneaded.
[0033]
[Base layer]
As a coarse aggregate, a 1: 1 mixture of one having a particle diameter of 5 to 20 mm produced in Example 2 and gravel having a particle diameter of 5 to 20 mm is used.
As a fine aggregate, a 1: 1 mixture of slag granules having a particle size of 5 mm or less and river sand having a particle size of 5 mm or less produced in Example 1 is used.
The base layer composition of this reference example is as follows.
Coarse aggregate 100 parts by weight Fine aggregate 110 〃
Alumina cement 24 〃
Water reducing agent 0.23 〃
7 parts by weight of water is added to 100 parts by weight of the mixture and kneaded.
The above-mentioned surface layer kneaded material is filled in a mold, and the above base layer kneaded material is filled thereon, followed by steam curing for 6 hours to form and cure, and the block-shaped multilayer porous inorganic molded cured material shown in FIG. (11) was obtained. In the multilayer block (11), (11A) is a base layer and (11B) is a surface layer. The base layer has a thickness of 30 mm and the surface layer has a thickness of 20 mm.
[0034]
The multi-layer block (11) is water permeable, has high surface friction resistance and is not slippery, and has high strength and wear resistance, so it is particularly useful as a road paving block. In addition to excellent paving blocks, it is also useful as a building floor or wall. In this case, the floor and wall precursors are directly constructed by pouring the surface layer kneaded material and the base layer kneaded material into a wall or floor mold without forming into blocks.
Table 2 shows the characteristics of the block.
[0035]
[Table 2]
[0036]
[ Reference Example 5]
[Surface]
The coarse aggregate having a particle diameter of 5 to 10 mm manufactured in Example 2 is used.
A fine aggregate having a particle size of 5 mm or less produced in Example 2 is used.
The surface layer composition of this reference example is as follows.
Coarse aggregate 100 parts by weight Fine aggregate 14 〃
Portland cement 13 〃
Water reducing agent 1.3 〃
3.8 parts by weight of water is added to 100 parts by weight of the mixture and kneaded.
[0037]
[Base layer]
A fine aggregate having a particle size of 5 mm or less produced in Example 2 is used.
The base layer composition of this reference example is as follows.
Fine aggregate 100 parts by weight Blast furnace slag cement 22 セ メ ン ト
Water reducing agent 0.03 〃
11 parts by weight of water is added to the mixture and kneaded.
A multilayer block is produced in the same manner as in Example 4 using the surface layer kneaded product and the base layer kneaded product. Table 3 shows the characteristics of the multilayer block.
[0038]
[Table 3]
[0039]
The multi-layer block of this reference example, like the multi-layer block of Reference Example 4, is water permeable, has high strength and has a large surface friction coefficient and is difficult to slide, and thus is useful as a paving block.
[0040]
[ Reference Example 6]
Table 4 shows the characteristics of the multilayer block produced in the same manner as in Reference Example 5 except that the fine aggregate of the base layer was replaced with river sand having a particle size of 5 mm or less.
[0041]
【The invention's effect】
In the present invention, a porous inorganic molded cured product having excellent water permeability, sound absorption, sound insulation, and vibration damping properties and high strength can be obtained.
[Brief description of the drawings]
[Fig. 1] Explanatory diagram of electric furnace slag granule manufacturing equipment [Fig. 2] Tunnel cross section [Fig. 3] Block cross section [Explanation of symbols]
8 Electric furnace slag granular material

Claims (2)

粒径5〜13mmの急冷改質処理され、表面に微細な凹凸が形成された硬質電気炉酸化スラグ粒状物からなる粗骨材100重量部、粒径5mm以下の細骨材0〜20重量部、水硬性無機材料粉末10〜15重量部とを含む混合物を成形硬化した多孔質無機成形硬化物を表層とし、その下側には粒径5〜25mmの急冷改質処理された硬質電気炉酸化スラグ粒状物からなる粗骨材100重量部、粒径5mm以下の細骨材60〜110重量部、水硬性無機材料粉末15〜30重量部とを含む混合物を成形硬化した圧密無機成形硬化物が基層として配されていることを特徴とする複層多孔質無機成形硬化物100 parts by weight of coarse aggregate made of hard electric furnace oxidized slag granule that has been subjected to a rapid cooling reforming process with a particle size of 5 to 13 mm and fine irregularities formed on the surface, and 0 to 20 parts by weight of fine aggregate with a particle size of 5 mm or less A porous inorganic molded cured product obtained by molding and curing a mixture containing 10 to 15 parts by weight of a hydraulic inorganic material powder is used as a surface layer, and the lower layer is subjected to a rapid reforming treatment with a particle diameter of 5 to 25 mm. A compacted inorganic molded cured product obtained by molding and curing a mixture containing 100 parts by weight of coarse aggregate made of slag granules, 60 to 110 parts by weight of fine aggregate having a particle size of 5 mm or less, and 15 to 30 parts by weight of a hydraulic inorganic material powder. Multilayer porous inorganic molded cured product characterized by being arranged as a base layer 該電気炉酸化スラグ粒状物は水砕スラグまたは粉砕スラグである請求項1に記載の複層多孔質無機成形硬化物2. The multilayer porous inorganic molded cured product according to claim 1, wherein the electric furnace oxidation slag particulates are granulated slag or pulverized slag.
JP2001327815A 2001-10-25 2001-10-25 Multilayer porous inorganic molded cured product Expired - Fee Related JP4160288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001327815A JP4160288B2 (en) 2001-10-25 2001-10-25 Multilayer porous inorganic molded cured product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001327815A JP4160288B2 (en) 2001-10-25 2001-10-25 Multilayer porous inorganic molded cured product

Publications (2)

Publication Number Publication Date
JP2003137631A JP2003137631A (en) 2003-05-14
JP4160288B2 true JP4160288B2 (en) 2008-10-01

Family

ID=19143981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001327815A Expired - Fee Related JP4160288B2 (en) 2001-10-25 2001-10-25 Multilayer porous inorganic molded cured product

Country Status (1)

Country Link
JP (1) JP4160288B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112648332A (en) * 2020-12-03 2021-04-13 北京科技大学 Spherical cell hole ladder-shaped deformation ore pressure controller and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4976010B2 (en) * 2004-12-27 2012-07-18 滋賀県 Porous surface ceramic
KR100966293B1 (en) 2007-10-15 2010-06-28 김영도 Double layered water permeability plat process and the preparation thereof
CN104894938A (en) * 2015-04-12 2015-09-09 中交一公局第三工程有限公司 Method for determining length of lower-layer operation section of cement stabilization granule structural layer during continual paving of two layers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112648332A (en) * 2020-12-03 2021-04-13 北京科技大学 Spherical cell hole ladder-shaped deformation ore pressure controller and method

Also Published As

Publication number Publication date
JP2003137631A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
JP5765125B2 (en) Simple paving material and simple paving method
WO2008013694A2 (en) Slag concrete manufactured aggregate
KR101957366B1 (en) Silicon manganese slag light weight aggregate and it's manufacturing method
Choi et al. Properties of silicon manganese slag as an aggregate for concrete depending on cooling conditions
JP4160288B2 (en) Multilayer porous inorganic molded cured product
JP2006222104A (en) Electromagnetic wave absorbing composition
JP5276861B2 (en) Ceramic aggregate for mold, method for producing the same, and mold using the same
JP4451328B2 (en) Ferrite-containing filler manufacturing method, electromagnetic heating material, electromagnetic shielding material
JP5668634B2 (en) Expanded controlled steel slag hydrated solid artificial stone and method for producing the same
JP3575499B2 (en) Ceramic fine aggregate for concrete
JP4630446B2 (en) INORGANIC CURABLE COMPOSITION AND PROCESS FOR PRODUCING THE SAME, INORGANIC CURED BODY AND PROCESS FOR PRODUCING THE SAME, Gypsum-based Cured Body, and Cement-Based Cured Body
JP3780269B2 (en) Road surface paving material and road surface heating method
JP2003147708A (en) Asphalt mixture
JP4204922B2 (en) Roadbed material and method for manufacturing the same
JPH0930873A (en) Production of water-permeable ceramic block
JP4181573B2 (en) Building floor material or roofing material and method for heating the flooring material or roofing material
JP2013086124A (en) Molding sand composition and mold
JP2018127794A (en) Ground improvement method using steel slag and ground construction method using steel slag
JP4181574B2 (en) Railroad sleeper material, road or slope covering material, water pipe or water pipe cladding material, aquarium wall material, or ceramic material
JP2000072523A (en) Sulfur concrete product
JP2003146724A (en) Spray concrete layer
KR20160075958A (en) Permeable block and manufacturing method of permeable block
JP2002160958A (en) Water permeable material and water permeable composite material
KR101720690B1 (en) Winter tunnel lining concrete composition
CN108745508A (en) Ceramet composite hammer head and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070813

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080711

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080717

R150 Certificate of patent or registration of utility model

Ref document number: 4160288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140725

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees