JP2006222104A - Electromagnetic wave absorbing composition - Google Patents

Electromagnetic wave absorbing composition Download PDF

Info

Publication number
JP2006222104A
JP2006222104A JP2005031177A JP2005031177A JP2006222104A JP 2006222104 A JP2006222104 A JP 2006222104A JP 2005031177 A JP2005031177 A JP 2005031177A JP 2005031177 A JP2005031177 A JP 2005031177A JP 2006222104 A JP2006222104 A JP 2006222104A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
slag
electric furnace
wave absorbing
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005031177A
Other languages
Japanese (ja)
Inventor
Eiji Fuchigami
榮治 渕上
Kumao Hoshino
熊夫 星野
Keiichi Tsuruyama
圭一 鶴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOSHINO SANSHO KK
Hoshino Sansho KK
Original Assignee
HOSHINO SANSHO KK
Hoshino Sansho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOSHINO SANSHO KK, Hoshino Sansho KK filed Critical HOSHINO SANSHO KK
Priority to JP2005031177A priority Critical patent/JP2006222104A/en
Publication of JP2006222104A publication Critical patent/JP2006222104A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure

Landscapes

  • Road Paving Structures (AREA)
  • Building Environments (AREA)
  • Magnetic Ceramics (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic wave absorbing composition useful for electromagnetic wave shielding material or electromagnetic wave heating material. <P>SOLUTION: A composition where a ferrite based inorganic granular material or debris are bonded by binder is provided. When an electromagnetic wave is exerted on such a composition, the ferrite based inorganic material absorbs and interrupts the electromagnetic wave and, at the same time, generates heat and thereby the composition is heated quickly. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は電磁波吸収性組成物に関するものであり、該電磁波吸収性組成物は電磁波加熱性材料や電磁波遮蔽性材料として有用である。   The present invention relates to an electromagnetic wave absorbing composition, and the electromagnetic wave absorbing composition is useful as an electromagnetic wave heating material or an electromagnetic wave shielding material.

例えば路面や法面の融雪を行うには、従来路面舗装層や法面被覆層の内部あるいは下側にニクロム線を配線し、該ニクロム線に通電して発熱せしめることによって路面や法面に積もった雪を加熱して融かしていた(例えば特許文献1〜3参照)。
また従来から電磁波遮蔽性材料としては、例えば合成樹脂、ゴム、コンクリート等に金属粉を混合するか、金属網を挿入するかあるいは金属薄膜を貼着したものが提供されている(例えば特許文献4,5参照)。
For example, in order to melt snow on a road surface or a slope, a nichrome wire is wired inside or below a conventional road pavement layer or slope coating layer, and the nichrome wire is energized to generate heat, thereby accumulating on the road surface or slope. The snow was melted by heating (see, for example, Patent Documents 1 to 3).
Conventionally, as the electromagnetic wave shielding material, for example, a synthetic resin, rubber, concrete, or the like in which metal powder is mixed, a metal net is inserted, or a metal thin film is attached is provided (for example, Patent Document 4). , 5).

特公昭42−11249号公報Japanese Patent Publication No.42-11249 特公昭61−47247号公報Japanese Examined Patent Publication No. 61-47247 特開2001−20210号公報JP 2001-20210 A 特開2001−352193号公報JP 2001-352193 A 特開平10−163675号公報JP-A-10-163675

上記従来の方法では広範囲の路面の融雪を行うにはニクロム線配線区を多数設けておき、各配線区毎に通電して融雪を行うことが必要であり、構造が複雑で工事に手間がかゝりコスト高になる。またニクロム線が断線するおそれもあり、耐久性に乏しい。更に加熱速度が遅いと云う問題点もある。
また電磁波遮蔽性材料に使用する金属粉、金属網あるいは金属薄膜は非常に高価であるし、また腐食され易く、更に金属網や金属薄膜は機械的強度が小さく破損し易いと云う問題点がある。
In the conventional method described above, in order to melt snow on a wide range of road surfaces, it is necessary to provide a large number of nichrome wire wiring sections and to conduct snow melting by energizing each wiring section. Increases cost. Moreover, there is a possibility that the nichrome wire may break, and the durability is poor. There is also a problem that the heating rate is slow.
Also, the metal powder, metal mesh or metal thin film used for the electromagnetic wave shielding material is very expensive and easily corroded. Further, the metal mesh and metal thin film have a problem that they have low mechanical strength and are easily damaged. .

本発明は上記従来の課題を解決するための手段として、フェライト系無機質粒状物または破砕物をバインダーで結着した電磁波吸収性組成物を提供するものである。該バインダーは水硬性無機材料あるいは合成樹脂および/またはゴムおよび/またはアスファルト、あるいは陶磁器原料であり、該フェライト系無機質粒状物または破砕物は電気炉酸化スラグおよび/または銅スラグおよび/または電気炉ダスト処理スラグであることが望ましく、該電気炉酸化スラグおよび/または銅スラグおよび/または電気炉ダスト処理スラグ溶融物に空気または酸素を吹込んで強制酸化処理を施した上で急冷固化することによって得られた改質品であることが望ましく、該電気炉酸化スラグおよび/または銅スラグおよび/または電気炉ダスト処理スラグ溶融物には該電磁波吸収性を向上させるためにFe,Ba,Co,Ni,Cr,Cu,Mn,Sr,Znおよびこれらの金属の酸化物または加熱によりこれらの金属の酸化物を与える金属化合物が添加されることが望ましい。
該電磁波吸収性組成物は、電磁波加熱性材料として使用され、路面舗装材料、鉄道枕木材料、法面被覆材料、建築物の床材料や屋根材、配水管または配水管の被覆管の材料、水槽の壁材、陶磁器等に有用である。
該電磁波吸収性組成物は、電磁波遮蔽性材料として使用され、この場合該電磁波遮蔽性材料は板体であり、該板体の電磁波入射反対側には金属網が装着されていることが望ましい。
The present invention provides an electromagnetic wave absorbing composition obtained by binding a ferrite-based inorganic granular material or crushed material with a binder as a means for solving the above conventional problems. The binder is a hydraulic inorganic material or a synthetic resin and / or rubber and / or asphalt, or a ceramic raw material, and the ferrite-based inorganic particulate or crushed material is electric furnace oxidation slag and / or copper slag and / or electric furnace dust. It is desirable to be treated slag, which is obtained by subjecting the electric furnace oxidation slag and / or copper slag and / or electric furnace dust treatment slag melt to a forced oxidation treatment by blowing air or oxygen and then rapidly solidifying it. The electric furnace oxidation slag and / or copper slag and / or electric furnace dust treatment slag melt is preferably Fe, Ba, Co, Ni, Cr to improve the electromagnetic wave absorption. , Cu, Mn, Sr, Zn and oxides of these metals or their gold by heating Metal compound providing the oxide is added desirably.
The electromagnetic wave absorbing composition is used as an electromagnetic wave heating material, road pavement material, railway sleeper material, slope covering material, building floor material and roofing material, water pipe or water pipe cladding pipe material, water tank Useful for wall materials and ceramics.
The electromagnetic wave absorptive composition is used as an electromagnetic wave shielding material. In this case, the electromagnetic wave shielding material is preferably a plate, and a metal net is preferably attached to the opposite side of the plate from which electromagnetic waves are incident.

〔作用〕
本発明の組成物において、バインダーによって結着されているフェライト系無機質粒状物または破砕物は耐化学性があり、上記組成物中でも殆ど変質しない。したがって耐久性のある電磁波吸収性組成物が得られる。該電磁波吸収性組成物は電磁波遮蔽性材料として使用されるが、更に電磁波吸収性組成物に電磁波を及ぼせば発熱するから、電磁波加熱性材料として使用することが出来る。本発明の電磁波加熱性材料は非接触的に発熱させることが出来るから、配線、結線等が不要である。
上記フェライト系無機質粒状物または破砕物として、電気炉酸化スラグおよび/または銅スラグおよび/または電気炉ダスト処理スラグ粒状物または破砕物を使用すれば、これらの材料は非常に安価であり、実用性が高い。該電気炉酸化スラグおよび/または銅スラグおよび/または電気炉ダスト処理スラグとして電気炉酸化スラグおよび/または銅スラグおよび/または電気炉ダスト処理スラグ溶融物に空気または酸素を吹込んで強制酸化処理を施した上で急冷固化することによって得られた改質品を使用すれば、電磁波吸収性が更に向上し、電磁波遮蔽性に優れた材料が得られるし、小さな電力で高温度の加熱が可能になる。
また該電気炉酸化スラグおよび/または銅スラグおよび/または電気炉ダスト処理スラグの溶融物には該電磁波吸収性を向上させるためにFe,Ba,Co,Ni,Cr,Cu,Mn,Sr,Znおよびこれらの金属の酸化物または加熱によりこれらの金属の酸化物を与える金属化合物を添加してもよい。
[Action]
In the composition of the present invention, the ferrite-based inorganic granular material or crushed material bound by the binder has chemical resistance and hardly changes even in the above composition. Therefore, a durable electromagnetic wave absorbing composition can be obtained. The electromagnetic wave absorptive composition is used as an electromagnetic wave shielding material. However, since it generates heat when an electromagnetic wave is applied to the electromagnetic wave absorptive composition, it can be used as an electromagnetic wave heating material. Since the electromagnetic wave heatable material of the present invention can generate heat in a non-contact manner, wiring, connection and the like are unnecessary.
If the electric furnace oxidation slag and / or copper slag and / or electric furnace dust treatment slag granule or crushed material are used as the ferritic inorganic particles or crushed material, these materials are very inexpensive and practical. Is expensive. As the electric furnace oxidation slag and / or copper slag and / or electric furnace dust treatment slag, forced oxidation treatment is performed by blowing air or oxygen into the electric furnace oxidation slag and / or copper slag and / or electric furnace dust treatment slag melt. In addition, if a modified product obtained by rapid cooling and solidification is used, the electromagnetic wave absorbability is further improved, a material excellent in electromagnetic wave shielding properties can be obtained, and heating at a high temperature is possible with a small electric power. .
In order to improve the electromagnetic wave absorbability, the electric furnace oxidation slag and / or copper slag and / or electric furnace dust treatment slag is melted with Fe, Ba, Co, Ni, Cr, Cu, Mn, Sr, Zn. These metal oxides or metal compounds that give these metal oxides upon heating may be added.

〔効果〕
本発明では、水硬性無機材料、合成樹脂、陶磁器原料等のバインダーに安価な耐蝕性のあるフェライト系無機粒状物または破砕物を添加して電磁波吸収性を付与するから、耐久性のある電磁波遮蔽性材料が提供され、また電磁波によって広範囲にかつ急速に該組成物を加熱することが出来るから、ニクロム線等を配線する必要もなく、非接触的に加熱が行われるので路面、法面、建築物の床や屋根材、鉄道枕木等の加熱構造も非常に簡単になる。
〔effect〕
In the present invention, an electromagnetic wave-absorbing ferritic inorganic granular material or crushed material is added to a binder such as a hydraulic inorganic material, a synthetic resin, or a ceramic raw material to provide electromagnetic wave absorption. Since the composition can be heated in a wide range and rapidly by electromagnetic waves, there is no need to wire a nichrome wire or the like, and heating is performed in a non-contact manner. Heating structures such as floors, roofing materials and railroad sleepers are very simple.

本発明を以下に詳細に説明する。
〔水硬性無機粉体〕
本発明でバインダーとして使用される水硬性無機粉体としては、ポルトランドセメント、アルミナセメント、高炉セメント等のセメント類あるいは高炉急冷スラグ微粉末、電気炉急冷還元スラグ微粉末、該セメント類にケイ砂、ケイ石粉、シリカヒューム、高炉スラグ微粉末、フライアッシュ、シラスバルーン、パーライト、ベントナイト、ケイソウ土等のケイ酸含有物質を添加した混合粉体等が例示される。
The present invention is described in detail below.
[Hydraulic inorganic powder]
Examples of the hydraulic inorganic powder used as a binder in the present invention include Portland cement, alumina cement, blast furnace cement and other cements or blast furnace quenching slag fine powder, electric furnace quenching reduced slag fine powder, silica sand to the cement, Examples thereof include silica powder, silica fume, blast furnace slag fine powder, fly ash, shirasu balloon, pearlite, bentonite, and mixed powder to which a silicate-containing substance such as diatomaceous earth is added.

〔合成樹脂〕
本発明でバインダーとして使用される合成樹脂としては、例えばポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−プロピレンターポリマー、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、フッ素樹脂、熱可塑性アクリル樹脂、熱可塑性ポリエステル、熱可塑性ポリアミド、熱可塑性ウレタン樹脂、アクリロニトリル−ブタジエン共重合体、スチレン−ブタジエン共重合体、アクリロニトリル−ブタジエン−スチレン共重合体等の熱可塑性樹脂、ウレタン樹脂、メラミン樹脂、熱硬化型アクリル樹脂、尿素樹脂、フェノール樹脂、エポキシ樹脂、熱硬化型ポリエステル等のような熱硬化性樹脂等が例示されるが、更に上記合成樹脂を生成するウレタン樹脂プレポリマー、エポキシ樹脂プレポリマー、メラミン樹脂プレポリマー、尿素樹脂プレポリマー、フェノール樹脂プレポリマー、ジアリルフタレートプレポリマー、アクリルオリゴマー、多価イソシアナート、メタクリルエステルモノマー、ジアリルフタレートモノマー等の合成樹脂全躯体が使用されてもよい。
上記合成樹脂および/または合成樹脂全躯体は二種以上混合使用されてもよい。
[Synthetic resin]
Examples of the synthetic resin used as a binder in the present invention include polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-propylene terpolymer, ethylene-vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, polystyrene, Thermoplastics such as vinyl acetate, fluororesin, thermoplastic acrylic resin, thermoplastic polyester, thermoplastic polyamide, thermoplastic urethane resin, acrylonitrile-butadiene copolymer, styrene-butadiene copolymer, acrylonitrile-butadiene-styrene copolymer Examples include thermosetting resins such as resins, urethane resins, melamine resins, thermosetting acrylic resins, urea resins, phenol resins, epoxy resins, thermosetting polyesters, etc. resin Repolymer, epoxy resin prepolymer, melamine resin prepolymer, urea resin prepolymer, phenolic resin prepolymer, diallyl phthalate prepolymer, acrylic oligomer, polyvalent isocyanate, methacrylic ester monomer, diallyl phthalate monomer, etc. May be.
Two or more of the above synthetic resins and / or synthetic resin whole casings may be mixed and used.

〔ゴム〕
本発明でバインダーとして使用されるゴムとしては、例えばアクリルゴム、ブチルゴム、ケイ素ゴム、ウレタンゴム、フッ化物系ゴム、多硫化物系ゴム、グラフトゴム、ブタジエンゴム、イソプレンゴム、クロロプレンゴム、ポリイソブチレンゴム、ポリブテンゴム、イソブテン−イソプレンゴム、アクリレート−ブタジエンゴム、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム、ピリジン−ブタジエンゴム、スチレン−イソプレンゴム、アクリロニトリル−クロロプレンゴム、スチレン−クロロプレンゴム等の合成ゴムや天然ゴム、スチレン−ブタジエン−スチレン共重合体、スチレン−イソプレン−スチレン共重合体、スチレン−水素添加ポリオレフィン−スチレン共重合体等のスチレン系熱可塑性エラストマーやブタジエン−スチレンプロック共重合体、スチレン−ゴム中間ブロック−スチレン共重合体等のブロック共重合体等のエラストマーが例示される。
上記ゴムおよび/またはエラストマーは二種以上混合使用されてもよい。
[Rubber]
Examples of the rubber used as the binder in the present invention include acrylic rubber, butyl rubber, silicon rubber, urethane rubber, fluoride rubber, polysulfide rubber, graft rubber, butadiene rubber, isoprene rubber, chloroprene rubber, and polyisobutylene rubber. Synthetic rubber such as polybutene rubber, isobutene-isoprene rubber, acrylate-butadiene rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, pyridine-butadiene rubber, styrene-isoprene rubber, acrylonitrile-chloroprene rubber, styrene-chloroprene rubber, and natural rubber Styrene thermoplastic elastomers such as styrene-butadiene-styrene copolymer, styrene-isoprene-styrene copolymer, styrene-hydrogenated polyolefin-styrene copolymer, and pig Ene - styrene Proc copolymer, styrene - rubber midblock - elastomer block copolymers such as styrene copolymers.
Two or more of the above rubbers and / or elastomers may be used in combination.

〔アスファルト〕
本発明でバインダーとして使用されるアスファルトとしては、例えばブローンアスファルト、アスファルトコンパウンド、ストレートアスファルト、タール、ピッチ等の瀝青質等、如何なる種類のアスファルトも含まれ、これらの二種以上の混合物であつてもよい。
〔asphalt〕
The asphalt used as a binder in the present invention includes any kind of asphalt, such as blown asphalt, asphalt compound, straight asphalt, bitumen such as tar, pitch, etc., and a mixture of two or more kinds thereof. Good.

〔陶磁器原料〕
本発明でバインダーとして使用される陶磁器原料としては、カオリン、蛙目粘土、木節粘土、ロウ石質粘土、セッ器粘土、ベントナイト等の可塑性原料、ケイ石、ロウ石、素地粉等の非可塑性原料、長石、陶石、絹雲母、滑石等の媒溶原料等、その他アルミナ、マグネシア、ジルコニア、チタニア、ベリリア、トリア、スピネル、セルシャン等のセラミック原料が例示される。
[Ceramic raw materials]
As the ceramic raw material used as a binder in the present invention, plastic raw materials such as kaolin, glazed clay, kibushi clay, rhodolite clay, setter clay, bentonite, non-plasticity such as silica, wax stone, and ground powder Examples include raw materials, solvent materials such as feldspar, porcelain stone, sericite, and talc, and other ceramic materials such as alumina, magnesia, zirconia, titania, beryllia, tria, spinel, and selshan.

〔バインダー〕
上記バインダーとしての合成樹脂、ゴム、アスファルトは相互に混合されてもよい。例えばアスファルトの耐熱性を改良するためにはゴムが添加され、また合成樹脂の耐衝撃性等を改良するためにはゴム(エラストマー)が添加され、防音性を改良するためにはアスファルトが添加される。
〔binder〕
Synthetic resin, rubber and asphalt as the binder may be mixed with each other. For example, rubber is added to improve the heat resistance of asphalt, rubber (elastomer) is added to improve the impact resistance of synthetic resins, and asphalt is added to improve soundproofing. The

〔フェライト系無機質〕
本発明で使用するフェライト系無機質は、MIIO・Fe23 およびFe34を含むものであり、MIIとしてはFe,Ba,Cr,Co,Ni,Cu,Zn,Mg,Cdが例示され、望ましいフェライト系無機質としては、FeO・Fe23を含むものである。
上記フェライト系無機質としては、鋼材を溶断する際に発生するスケール粉や電気炉酸化スラグを使用することが望ましい。これらのフェライト系無機質は安価に入手出来る。
更に本発明において望ましいフェライト系無機質としては、電気炉酸化スラグ、銅スラグ、および電気炉ダスト処理スラグがある。上記スラグは産業廃棄物として処理されていたものであるが、本発明においては上記スラグの有効な再利用が可能になる。
電気炉酸化スラグは、通常CaO10〜26質量%、SiO28〜22質量%、MnO4〜7質量%、MgO2〜8質量%、FeO13〜32質量%、Fe239〜45質量%、Al234〜16質量%、Cr231〜4質量%程度含み、更に微量成分としてBaO0.05〜0.20質量%、TiO20.25〜0.70質量%、P250.15〜0.50質量%、S0.005〜0.085質量%程度含み、安定な鉱物組成を得るためのFeを20〜45質量%程度含むものであり、天然骨材成分に含まれる粘土、有機不純物、塩分を全く含まず、不安定な遊離石灰、遊離マグネシアあるいは鉱物も殆ど含まない。該電気炉酸化スラグは粒状物または破砕物として提供される。
銅スラグは銅精錬工程で得られるスラグであり、通常CaO1〜10質量%、SiO225〜40質量%、FeはFeO換算15〜55質量%程度含み、上記電気炉酸化スラグと同様天然骨材に含まれる粘土、有機不純物、塩分は全く含まない。
電気炉ダスト処理スラグは電気炉による製鋼過程において発生する集塵ダストを加熱溶融し、該ダスト中の低沸点有害および/または有価金属あるいは重金属を蒸発分離除去し、蒸発分離した上記金属あるいは重金属を回収する処理を施したスラグであり、通常CaO5〜20質量%、FeはFeO換算35〜55質量%程度含み、上記電気炉酸化スラグと同様天然骨材に含まれる粘土、有機不純物、塩分は全く含まない。
上記銅スラグ、電気炉ダスト処理スラグも上記電気炉酸化スラグと同様に粒状物または破砕物として提供される。
[Ferrite mineral]
The ferrite mineral used in the present invention contains M II O · Fe 2 O 3 and Fe 3 O 4 , and M II includes Fe, Ba, Cr, Co, Ni, Cu, Zn, Mg, and Cd. The preferred ferrite minerals include FeO.Fe 2 O 3 .
As the ferritic inorganic material, it is desirable to use scale powder or electric furnace oxidation slag generated when fusing steel. These ferrite minerals can be obtained at low cost.
In addition, preferred ferritic minerals in the present invention include electric furnace oxidation slag, copper slag, and electric furnace dust treatment slag. Although the slag has been treated as industrial waste, the slag can be effectively reused in the present invention.
The electric furnace oxidation slag is usually CaO 10 to 26% by mass, SiO 2 8 to 22% by mass, MnO 4 to 7% by mass, MgO 2 to 8% by mass, FeO 13 to 32% by mass, Fe 2 O 3 9 to 45% by mass, Al 2 O 3 4 to 16 wt%, Cr 2 O 3 containing about 1 to 4 wt%, further BaO0.05~0.20 wt% as a minor component, TiO 2 .25-0.70 wt%, P 2 O 5 0.15 to 0.50% by mass, S 0.005 to 0.085% by mass, including about 20 to 45% by mass of Fe for obtaining a stable mineral composition, and included in natural aggregate components It contains no clay, organic impurities or salt, and contains almost no unstable free lime, free magnesia or minerals. The electric furnace oxidation slag is provided as a granular material or a crushed material.
Copper slag is a slag obtained in the copper refining process, and usually contains CaO 1 to 10% by mass, SiO 2 25 to 40% by mass, Fe contains about 15 to 55% by mass in terms of FeO, and natural aggregate similar to the above electric furnace oxidation slag Contains no clay, organic impurities, or salt.
The electric furnace dust treatment slag heats and melts the dust collected during the steelmaking process in the electric furnace, evaporates and removes low-boiling point harmful and / or valuable metals or heavy metals in the dust, and removes the evaporated or separated metals or heavy metals. It is a slag that has been subjected to a recovery process. Usually, CaO contains 5 to 20% by mass, Fe contains about 35 to 55% by mass in terms of FeO, and the clay, organic impurities, and salt contained in the natural aggregate as well as the electric furnace oxidation slag are completely Not included.
The copper slag and the electric furnace dust treatment slag are also provided as granular materials or crushed materials in the same manner as the electric furnace oxidation slag.

〔電気炉酸化スラグ粒化法〕
上記電気炉酸化スラグを粒化して粒状物を製造するには、該電気炉酸化スラグの溶融物を高速回転する羽根付きドラムに注入し、該溶融物を該羽根付きドラムによって破砕粒状化し、粒状化した該溶融物を水ミスト雰囲気中で急冷処理する方法が採られる。該羽根付きドラムは複数個配置して複数段の破砕粒状化を行なってもよい。
このようにして得られる電気炉酸化スラグの粒状物は、再酸化が促進されるので、Fe23系の鉱物およびFe34系の鉱物(マグネタイト)を多く含み、かつ急冷により、極微細な粒状物になるため、電磁波吸収性が非常に良好なものとなる。また通常5mm以下の粒径を有し、粒径2.5mm以下のものは略球状であり、比重は3.3〜4.1の範囲にあり、表面にはひび割れ等の欠陥はなく、微細な凹凸を有しまた中空構造のものからなるかまたは中空構造のものを含んでいる。
[Electric furnace oxidation slag granulation method]
In order to granulate the electric furnace oxidation slag, a granular material is produced by injecting a melt of the electric furnace oxidation slag into a bladed drum rotating at high speed, and crushing and granulating the melt with the bladed drum. A method of quenching the melted melt in a water mist atmosphere is employed. A plurality of bladed drums may be arranged to perform a plurality of stages of crushing and granulating.
Since the granular material of the electric furnace oxidation slag obtained in this manner promotes reoxidation, it contains a large amount of Fe 2 O 3 -based minerals and Fe 3 O 4 -based minerals (magnetite), and by quenching, Since it becomes a fine granular material, electromagnetic wave absorptivity becomes very good. In addition, usually those having a particle size of 5 mm or less, those having a particle size of 2.5 mm or less are substantially spherical, the specific gravity is in the range of 3.3 to 4.1, and there are no defects such as cracks on the surface, and fine And have a hollow structure or a hollow structure.

〔電気炉酸化スラグ破砕法〕
上記電気炉酸化スラグ破砕物を製造するには、上記電気炉酸化スラグを溶融状態で耐熱容器中に所定の厚みに流し出し、上から水をかけることによって急冷改質処理が施される。この場合、耐熱容器中のスラグ溶融物の厚さが小さすぎると、水をかける前に自然冷却(徐冷)によって硬化し易くなり、所望の硬度が得られなくなるおそれがあり、また厚さが大きくなり過ぎると、水をかけた場合に水が急激に水蒸気となり、水蒸気爆発の危険がある。望ましいスラグ溶融物の厚さは80mm〜120mmである。
[Electric furnace oxidation slag crushing method]
In order to manufacture the electric furnace oxidized slag crushed material, the electric furnace oxidized slag is poured into a heat-resistant container in a molten state to a predetermined thickness, and subjected to rapid cooling reforming by pouring water from above. In this case, if the thickness of the slag melt in the heat-resistant container is too small, it tends to harden by natural cooling (slow cooling) before applying water, and the desired hardness may not be obtained. If it becomes too large, when water is applied, the water suddenly becomes water vapor and there is a danger of water vapor explosion. A desirable slag melt thickness is 80 mm to 120 mm.

水をかける場合には耐熱容器中のスラグ溶融物のスラグ溶融物の表面に水が溜まらないようにすることが望ましく、水をかける量が多過ぎてスラグ溶融物の表面に水が溜まって水の蒸発潜熱による急冷効果が期待出来なくなる。
上記水をかける量は、スラグ溶融物1トン当たり毎秒200〜400リットル程度が望ましい。
上記急冷によってスラグ溶融物は急速に硬化するが、この際自己破砕によって容器中のスラグ溶融物の厚さ程度の径を有するスラグ原塊が得られる。
When water is applied, it is desirable to prevent water from accumulating on the surface of the slag melt in the heat-resistant container. Too much water is applied and water accumulates on the surface of the slag melt. The rapid cooling effect due to the latent heat of vaporization cannot be expected.
The amount of water applied is preferably about 200 to 400 liters per second per ton of slag melt.
The slag melt is rapidly cured by the rapid cooling, and at this time, a slag ingot having a diameter of about the thickness of the slag melt in the container is obtained by self-crushing.

該スラグ原塊は粗砕機で粗砕され、更に細砕機で細砕される。上記粉砕によって、スラグ塊はスラグ成分のマトリクスと鉱物相との境界で破断し、表面に微細な凹凸が形成される。所望なれば上記破砕物は粗篩機等によって粗分級され、更に細砕機等によって細分級して5〜25mm望ましくは5〜20mmの粗骨材、粒径5〜13mm望ましくは5〜10mmの粗骨材、および5mm以下の細骨材に分ける。   The slag bulk is crushed by a pulverizer and further pulverized by a pulverizer. By the pulverization, the slag lump is broken at the boundary between the slag component matrix and the mineral phase, and fine irregularities are formed on the surface. If desired, the crushed material is coarsely classified by a coarse sieving machine, etc., and further subdivided by a fine pulverizer or the like to give coarse aggregate of 5 to 25 mm, preferably 5 to 20 mm, and coarse particles of 5 to 13 mm, preferably 5 to 10 mm Divide into aggregate and fine aggregate of 5mm or less.

上記粗砕および細砕はスラグ原塊が水で濡れたまゝで行ってもよいし、またスラグ原塊を乾燥して粗砕以後の工程を行ってもよいし、あるいはスラグ原塊を粗砕した後に乾燥して細砕以後の工程を行ってもよい。また上記分級工程において、篩を通過しない残分は破砕工程に戻されることが望ましい。
このようにして得られる破砕物は徐冷スラグに較べ、再酸化が促進されるので、Fe23系の鉱物を多く含み、かつ急冷により、微細な粒状物になるため、電磁波吸収性が非常に良好なものとなり、その比重は水砕品と同様3.3〜4.1の範囲にある。
The above crushing and pulverization may be carried out while the slag block is wet with water, or the slag block may be dried and subjected to the steps after crushing, or the slag block may be crushed. Then, it may be dried to carry out the steps after grinding. Moreover, in the said classification process, it is desirable to return the residue which does not pass a sieve to a crushing process.
Since the crushed material obtained in this way promotes reoxidation as compared with slow-cooled slag, it contains a large amount of Fe 2 O 3 mineral and becomes a fine granular material by rapid cooling. It becomes very good, and its specific gravity is in the range of 3.3 to 4.1 like the granulated product.

〔改質電気炉酸化スラグ〕
更に本発明にあっては、電気炉酸化スラグに電磁波吸収性を向上させるための添加物を添加してもよい。
上記電磁波吸収性を向上させるための添加物としては、Fe,Ba,Co,Ni,Cr,Cu,Mn,Sr,Zn等の金属あるいはこれら金属を含む合金あるいはこれらの金属の酸化物、水酸化物、塩化物、硫酸塩等の加熱により酸化物を与える化合物およびシリカ粉、ケイ砂、ケイ石の粉末、水ガラス、ケイ藻土、ドロマイト、シリカヒューム、高炉スラグ、フライアッシュ、シラスバルーン、パーライト等のケイ酸含有物質がある。望ましい添加物としては鉄スクラップ、スケール、BaO屑、硫酸バリウムを含む重晶石等がある。
上記添加物は前記粒化法あるいは破砕法において、電気炉酸化スラグ溶融物に添加されるかあるいは電気炉酸化スラグに混合されて共に溶融される。上記溶融は通常電気溶解炉で行われるが、この時溶融物に空気または酸素を吹込み強制酸化処理を施す。上記強制酸化処理は特にFeO比率が高い破砕法によるスラグに対して有効であり、上記強制酸化処理によってFe23やFe34の含有率を高めて電磁波吸収性を向上せしめることが出来る。
該改質電気炉酸化スラグも粒状物または破砕物として提供される。
[Reformed electric furnace oxidation slag]
Furthermore, in this invention, you may add the additive for improving electromagnetic wave absorptivity to an electric furnace oxidation slag.
Examples of the additive for improving the electromagnetic wave absorption include metals such as Fe, Ba, Co, Ni, Cr, Cu, Mn, Sr, and Zn, alloys containing these metals, oxides of these metals, and hydroxylation. Compounds that give oxides when heated, such as chlorides, chlorides, sulfates, etc., silica powder, silica sand, silica powder, water glass, diatomaceous earth, dolomite, silica fume, blast furnace slag, fly ash, shirasu balloon, perlite There are silicic acid-containing substances such as Desirable additives include iron scrap, scale, BaO scrap, barite containing barium sulfate, and the like.
In the granulation method or crushing method, the additive is added to the electric furnace oxidation slag melt or mixed with the electric furnace oxidation slag and melted together. The melting is usually carried out in an electric melting furnace. At this time, air or oxygen is blown into the melt and subjected to forced oxidation treatment. The forced oxidation treatment is particularly effective for slag by a crushing method with a high FeO ratio, and the content of Fe 2 O 3 and Fe 3 O 4 can be increased by the forced oxidation treatment to improve electromagnetic wave absorption. .
The reformed electric furnace oxidation slag is also provided as a granular or crushed material.

銅スラグおよび電気炉ダスト処理スラグは上記電気炉酸化スラグと同様に、上記銅スラグや電気炉ダスト処理スラグの溶融物を急冷処理して粒化あるいは破砕して分級する。
上記電気炉酸化スラグと同様に、上記銅スラグおよび電気炉ダスト処理スラグには上記電磁波吸収性を向上させるための添加物が添加されてもよいし、また強制酸化処理が行なわれてもよい。
上記銅スラグ粒状物および電気炉ダスト処理スラグ粒状物は上記電気炉酸化スラグ粒状物と同様に通常5mm以下の粒径を有し、粒径2.5mm以下のものは略球状であり、比重は銅スラグ粒状物で3.2〜3.7、電気炉ダスト処理スラグで3.5〜4.5の範囲にあり、表面にはひび割れ等の欠陥はなく、微細な凹凸を有し、また中空構造のものからなるかまたは中空構造のものを含んでいる。
Similarly to the electric furnace oxidation slag, the copper slag and the electric furnace dust treatment slag are classified by granulating or crushing the molten copper slag and the electric furnace dust treatment slag and granulating or crushing them.
Similarly to the electric furnace oxidation slag, the copper slag and the electric furnace dust treatment slag may be added with an additive for improving the electromagnetic wave absorption, or may be subjected to forced oxidation treatment.
The copper slag granule and the electric furnace dust-treated slag granule have a particle size of usually 5 mm or less like the electric furnace oxidation slag granule, and those having a particle size of 2.5 mm or less are substantially spherical, and the specific gravity is Copper slag granular material is in the range of 3.2 to 3.7, electric furnace dust treatment slag is in the range of 3.5 to 4.5, the surface has no defects such as cracks, has fine irregularities, and is hollow It consists of a structure or includes a hollow structure.

〔骨材〕
本発明においては、更に細骨材や粗骨材を添加してもよい。上記細骨材は粒径が5mm以下のものであり、このような細骨材としては、例えば上記電気炉酸化スラグ粒状物の粒径5mm以下のもの、粒径5mm以下の砂等が用いられる。
上記細骨材の一部に代えて、本発明では粒径5〜25mmの砕石、砂利等の粗骨材を使用してもよい。
〔aggregate〕
In the present invention, fine aggregate and coarse aggregate may be further added. The fine aggregate has a particle size of 5 mm or less. As such a fine aggregate, for example, the electric furnace oxidation slag granular material having a particle size of 5 mm or less, sand having a particle size of 5 mm or less, or the like is used. .
Instead of a part of the fine aggregate, coarse aggregate such as crushed stone or gravel having a particle diameter of 5 to 25 mm may be used in the present invention.

〔減水剤〕
バインダーとして水硬性無機粉末を使用する場合、上記フェライト系無機質粒状物または破砕物と、上記水硬性無機粉末との混合物には、更に減水剤を添加することが好ましい。
本発明に使用される減水剤としては、AE減水剤、高性能AE減水剤等が例示される。
[Water reducing agent]
When a hydraulic inorganic powder is used as a binder, it is preferable to add a water reducing agent to the mixture of the ferrite inorganic granular material or crushed material and the hydraulic inorganic powder.
Examples of the water reducing agent used in the present invention include an AE water reducing agent and a high performance AE water reducing agent.

〔増粘剤〕
本発明においてバインダーとして合成樹脂エマルジョンやゴムラテックスを使用する場合には、上記フェライト系無機質粒状物または破砕物とバインダーとの混合物の粘度、またバインダーが水硬性無機粉末の場合には上記フェライト系無機質粒状物または破砕物との混合物、あるいは該混合物に減水剤を混合した混合物を主体とする粉末組成物を水と混練した際の粘度を調節するために増粘剤を使用してもよい。例えばバインダーが水硬性無機粉末の場合、水との混練物がブリージング試験でブリージング率3%を越える場合、これを3%以下にするために増粘剤を使用する。上記増粘剤としては、例えばニカワ、ゼラチン、カゼイン、澱粉、変性澱粉、酸化澱粉、デキストリン、アラビアゴム、アルギン酸ソーダ、ポリビニルアルコール、カルボキシメチルセルロース、メチルセルロース、ハイドロキシエチルセルロース、ポリアクリル酸ソーダ、ポリメタクリル酸ソーダ、ポリアクリルアミド、ポリメタクリルアミド、ポリビニルメチルエーテル、酢酸ビニル−マレイン酸共重合体、スチレン−マレイン酸共重合体、ポリビニルピロリドン、ポリアクリル酸エステル部分鹸化物、ポリメタクリル酸エステル部分鹸化物等の水溶性高分子がある。
[Thickener]
In the present invention, when a synthetic resin emulsion or rubber latex is used as the binder, the viscosity of the ferrite inorganic granular material or the mixture of the crushed material and the binder, and when the binder is a hydraulic inorganic powder, the ferrite inorganic material is used. A thickener may be used to adjust the viscosity when a powder composition mainly composed of a mixture of a granular material or a crushed material, or a mixture obtained by mixing a water reducing agent in the mixture is kneaded with water. For example, when the binder is a hydraulic inorganic powder, if the kneaded product with water exceeds 3% in the breathing test, a thickener is used to reduce this to 3% or less. Examples of the thickener include glue, gelatin, casein, starch, modified starch, oxidized starch, dextrin, gum arabic, sodium alginate, polyvinyl alcohol, carboxymethylcellulose, methylcellulose, hydroxyethylcellulose, sodium polyacrylate, and sodium polymethacrylate. , Polyacrylamide, polymethacrylamide, polyvinyl methyl ether, vinyl acetate-maleic acid copolymer, styrene-maleic acid copolymer, polyvinyl pyrrolidone, polyacrylate partial saponified product, polymethacrylate partial saponified product, etc. There are functional polymers.

〔配合、成形〕
本発明においてバインダーが水硬性無機材料の場合、通常フェライト系無機質粒状物または破砕物100質量部に対して水硬性無機粉末15〜60質量部、減水剤および/または増粘剤0.01〜3.0質量部が混合される。水硬性無機粉末の添加量が60質量部を越えると発熱性が悪くなり、15質量部を下回るとバインダーの結着力が小さくなり、成形物の強度が充分発現しなくなる。
[Formulation, molding]
In the present invention, when the binder is a hydraulic inorganic material, usually 15 to 60 parts by mass of a hydraulic inorganic powder, a water reducing agent and / or a thickener 0.01 to 3 parts per 100 parts by mass of a ferrite-based inorganic granular material or crushed material. 0.0 parts by weight are mixed. When the addition amount of the hydraulic inorganic powder exceeds 60 parts by mass, the exothermic property is deteriorated, and when it is less than 15 parts by mass, the binding force of the binder is reduced, and the strength of the molded article is not sufficiently exhibited.

上記粉末混合物100質量部に対して水5〜25質量部を添加混練し、該混練物を型枠中に充填し、常温あるいは所望なれば蒸気あるいは電磁波等によって加熱養生することによって硬化せしめる。成形物の形状は、プレート状、スラブ状、ブロック状等用途に応じて種々な形状とされる。
更に上記混練物は型枠に充填されることなく、道路基礎や建物の床上に直接流し出されたり、あるいは壁表面に直接塗布されてもよい。
5 to 25 parts by mass of water is added and kneaded with respect to 100 parts by mass of the powder mixture, the kneaded product is filled in a mold, and cured by heating and curing at normal temperature or with steam or electromagnetic waves if desired. The shape of the molded product is various shapes such as a plate shape, a slab shape, and a block shape.
Furthermore, the kneaded material may be poured directly onto the road foundation or building floor without being filled in the formwork, or directly applied to the wall surface.

本発明においてバインダーが合成樹脂および/またはゴムの場合、通常フェライト系無機質粒状物または破砕物100質量部に対して合成樹脂および/またはゴムが10〜100質量部混合される。合成樹脂および/またはゴムの添加量が100質量部を越えると発熱性が悪くなり、10質量部を下回るとバインダーの結着力が小さくなって、成形物の強度が充分発現しなくなる。   In the present invention, when the binder is a synthetic resin and / or rubber, 10 to 100 parts by mass of the synthetic resin and / or rubber is usually mixed with 100 parts by mass of the ferrite-based inorganic granular material or crushed material. When the addition amount of the synthetic resin and / or rubber exceeds 100 parts by mass, the heat build-up becomes worse, and when the addition amount is less than 10 parts by mass, the binding force of the binder becomes small, and the strength of the molded product is not sufficiently developed.

上記合成樹脂および/またはゴムは通常粉状、粒状、エマルジョンまたはラテックス、有機溶剤溶液として提供される。上記合成樹脂および/またはゴムが粉状または粒状の場合はフェライト系無機質粒状物または破砕物と混合し、所望なれば加熱溶融攪拌し、該混合物を射出成形、押出成形、カレンダー成形、スタンピング成形等の方法で成形するか、あるいは該混合物を押出機によって押出してペレット化(粒状化)し、該ペレットを射出成形、押出成形、カレンダー成形、スタンピング成形等の方法で成形する。更に押出成形やカレンダー成形によってシート状に成形した場合、所望なれば更に真空および/または圧空成形やプレス成形によって所望の形状に成形する。   The synthetic resin and / or rubber is usually provided as a powder, granule, emulsion or latex, or an organic solvent solution. When the synthetic resin and / or rubber is powdery or granular, it is mixed with ferrite inorganic granular material or crushed material, and if desired, heated and melted and stirred, and the mixture is injection molded, extruded, calendered, stamped, etc. Alternatively, the mixture is extruded by an extruder and pelletized (granulated), and the pellet is formed by injection molding, extrusion molding, calendar molding, stamping molding, or the like. Further, when formed into a sheet by extrusion molding or calender molding, if desired, it is further molded into a desired shape by vacuum and / or pressure forming or press molding.

上記合成樹脂および/またはゴムがエマルジョンまたはラテックスの場合には、該フェライト系無機質粒状物または破砕物を添加混合し、通常キャスティング法により成形する。更にキャスティング法によってシート状に成形したものを真空および/または圧空成形やプレス成形等によって所望の形状に成形してもよい。   When the synthetic resin and / or rubber is an emulsion or latex, the ferrite-based inorganic granular material or crushed material is added and mixed, and usually molded by a casting method. Further, a sheet formed by casting may be formed into a desired shape by vacuum and / or pressure forming, press forming, or the like.

液状の合成樹脂全躯体の場合には上記エマルジョンやラテックスと同様にして樹脂化成形される。   In the case of a liquid synthetic resin whole body, it is formed into a resin in the same manner as the emulsion and latex.

本発明においてバインダーがアスファルトの場合、通常フェライト系無機質粒状物または破砕物100質量部に対してアスファルトが20〜50質量部混合される。アスファルトの添加量が50質量部を越えると発熱性が悪くなり、20質量部を下回るとバインダーの結着力が小さくなって、成形物の強度が充分発現しなくなる。   In the present invention, when the binder is asphalt, 20 to 50 parts by mass of asphalt is usually mixed with 100 parts by mass of the ferrite-based inorganic granular material or crushed material. When the added amount of asphalt exceeds 50 parts by mass, the heat build-up becomes worse, and when it is less than 20 parts by mass, the binding force of the binder becomes small, and the strength of the molded article is not sufficiently developed.

本発明においてバインダーが陶磁器原料の場合、通常フェライト系無機質粒状物または破砕物100質量部に対して該陶磁器原料が10〜40質量部混合される。該陶磁器原料の添加量が40質量部を越えると発熱性が悪くなり、10質量部を下回るとバインダーの結着力が小さくなって、成形物の強度が充分発現しなくなる。   In the present invention, when the binder is a ceramic raw material, usually 10 to 40 parts by mass of the ceramic raw material is mixed with 100 parts by mass of the ferrite-based inorganic granular material or crushed material. When the amount of the ceramic raw material exceeds 40 parts by mass, the heat build-up becomes worse. When the amount is less than 10 parts by mass, the binder binding force decreases, and the strength of the molded article is not sufficiently exhibited.

〔実施例1〕(電気炉酸化スラグ粒状物の製造)
図1に本発明の電気炉酸化スラグ粒状物(以下スラグ粒状物と略す)8を製造する装置を示す。
即ち1500℃前後の電気炉酸化スラグ溶融物1は電気溶解炉から取鍋2に移され、該取鍋2からシューター3に移し、該シューター3から高速回転する羽根付きドラム4,5に注入する。該製鋼スラグ溶融物1は該羽根付きドラム4,5によって細破砕されて粒状化し、該電気炉酸化スラグ溶融物の粒化物1Aは急冷チャンバー6内にスプレー装置7からスプレーされる水ミストによって急冷される。そしてこのようにして得られたスラグ粒状物8は備蓄容器9内に備蓄される。
該スラグ粒状物8は略球状の中空体であり、表面にはひび割れ等の欠陥はなく、微細な凹凸が有り、高硬度(モース硬さでマトリックスが6程度、鉱物相が8程度であった。)を有し耐摩耗性に優れており、真比重は3.84、絶乾比重は3.52、耐火度は1100℃で、電磁波吸収性、透磁性、誘電性、耐酸性、耐アルカリ性等にも優れている。
該スラグ粒状物8の粒度分布を図2に示す。
[Example 1] (Manufacture of electric furnace oxidation slag granular material)
FIG. 1 shows an apparatus for producing an electric furnace oxidation slag granular material (hereinafter abbreviated as slag granular material) 8 of the present invention.
That is, the electric furnace oxidation slag melt 1 around 1500 ° C. is transferred from the electric melting furnace to the ladle 2, transferred from the ladle 2 to the shooter 3, and injected from the shooter 3 to the bladed drums 4 and 5 that rotate at high speed. . The steelmaking slag melt 1 is crushed and granulated by the bladed drums 4, 5, and the granulated product 1 A of the electric furnace oxidation slag melt is quenched by water mist sprayed from the spray device 7 into the quenching chamber 6. Is done. And the slag granular material 8 obtained in this way is stored in the storage container 9.
The slag granular material 8 is a substantially spherical hollow body, has no defects such as cracks on the surface, has fine irregularities, and has high hardness (Mohs hardness of about 6 matrix and mineral phase of about 8). )) And has excellent wear resistance, true specific gravity of 3.84, absolute dry specific gravity of 3.52, fire resistance of 1100 ° C., electromagnetic wave absorption, magnetic permeability, dielectric property, acid resistance, alkali resistance Etc. are also excellent.
The particle size distribution of the slag granular material 8 is shown in FIG.

〔実施例2〕(電気炉酸化スラグ破砕物の製造)
実施例1において電気溶解炉から取鍋2に移されたスラグの溶融物に鉄粉および酸化カルシウムと酸化ケイ素とを後添加して次の組成に調節する。
CaO 24.92重量%
SiO2 15.24重量%
Al23 6.72重量%
MnO 5.66重量%
MgO 4.25重量%
Cr23 1.97重量%
TiO2 0.42重量%
BaO 0.07重量%
総Fe 40.75重量%
CaO/SiO2 =1.64
上記スラグ溶融物は約1350℃に加熱されているが、取鍋2から耐熱容器(皿型鋼鉄製)に約100mmの厚さに流し出され、直ちにスラグ溶融物1トン当たり毎秒300リットル、スプレーにより散水する。
[Example 2] (Production of electric furnace oxidized slag crushed material)
In Example 1, iron powder, calcium oxide, and silicon oxide are post-added to the molten slag transferred from the electric melting furnace to the ladle 2 to adjust to the following composition.
CaO 24.92 wt%
SiO 2 15.24% by weight
Al 2 O 3 6.72% by weight
MnO 5.66 wt%
MgO 4.25 wt%
Cr 2 O 3 1.97 wt%
TiO 2 0.42% by weight
BaO 0.07% by weight
Total Fe 40.75 wt%
CaO / SiO 2 = 1.64
The slag melt is heated to about 1350 ° C., but is poured out of the ladle 2 into a heat-resistant container (made of dish-shaped steel) to a thickness of about 100 mm, and immediately, 300 liters per second per ton of slag melt is sprayed. Sprinkle water.

このようにして約100mm径のスラグ原塊が得られ、該スラグ原塊のモース硬さはマトリクスで6、鉱物相で8であった。該スラグ原塊は粗砕機で粗砕され、乾燥機で乾燥後細砕機で細砕される。細砕されたスラグ原塊は次いで粗篩機で粗分級され、更に細篩機で細分級されて、5〜20mm粒径の粗骨材または5〜13mm粒径の粗骨材、5mm以下の細骨材に分けられる。   In this way, a slag bulk having a diameter of about 100 mm was obtained, and the Mohs hardness of the slag bulk was 6 in the matrix and 8 in the mineral phase. The slag bulk is crushed with a crusher, dried with a drier and then pulverized with a crusher. The crushed slag ingot is then coarsely classified by a coarse sieve machine, and further finely classified by a fine sieve machine. Divided into fine aggregates.

〔実施例3〕(改質電気炉スラグ破砕物の製造)
4.5トンの電気炉酸化スラグ1を図3に示す電気溶解炉10に投入し、更に鉄スクラップとして1.5トンの銑ダライと125kgの重晶石を加えてランス管12から酸素を吹精しつゝ加熱溶融し、得られた溶融物1Aを図1に示す取鍋2に移し、以後実施例2と同様にして改質電気炉酸化スラグ破砕物を得る。
上記改質電気炉酸化スラグ破砕物の化学組成の一例を表1に示す。
[Example 3] (Production of crushed reformed electric furnace slag)
4.5 tons of electric furnace oxidation slag 1 is put into the electric melting furnace 10 shown in FIG. 3, and 1.5 tons of paddy dairy and 125 kg of barite are added as iron scrap, and oxygen is blown from the lance pipe 12. The melt 1A obtained by heating and melting with precision is transferred to the ladle 2 shown in FIG. 1, and then the reformed electric furnace oxidation slag crushed material is obtained in the same manner as in Example 2.
An example of the chemical composition of the reformed electric furnace oxidized slag crushed material is shown in Table 1.

Figure 2006222104
Figure 2006222104

〔実施例4〕(電磁波加熱性材料)
下記の処方の混合物を調製した。
実施例1の電気炉酸化スラグ粒状物(5mm以下) 100質量部
ポルトランドセメント 16 〃
AE減水剤 0.04 〃
上記混合物に水6質量部を加え、ミキサーで3分間混練し、該混練物を型枠中に流し込み、コテによって表面を平坦にして常温で1日養生し、水和反応により硬化させた後脱型し、更に27日常温で水和反応させ、厚さ10mm、500×500mm角の板状成形体を成形した。
[Example 4] (Electromagnetic heating material)
A mixture of the following formulation was prepared:
Electric furnace oxidation slag granular material of Example 1 (5 mm or less) 100 parts by mass Portland cement 16 〃
AE water reducing agent 0.04 〃
Add 6 parts by mass of water to the above mixture, knead with a mixer for 3 minutes, pour the kneaded material into a mold, flatten the surface with a trowel, cure at room temperature for 1 day, cure by hydration reaction, and then remove. And then hydrated at room temperature for 27 days to form a 10 mm thick, 500 × 500 mm square plate-like molded body.

上記板状成形体を10℃の室内に置き、2.45GHz、100Wの出力の電磁波を30分間放射したところ、放射前の成形体温度10.5℃、放射後の成形体温度35.0℃であった。   The plate-shaped molded body was placed in a room at 10 ° C., and an electromagnetic wave having an output of 2.45 GHz and 100 W was radiated for 30 minutes. The molded body temperature before radiation was 10.5 ° C., and the molded body temperature after radiation was 35.0 ° C. Met.

〔実施例5〕(電磁波加熱性材料)
下記の処方の混合物を調製した。
実施例2の電気炉酸化スラグ破砕物(5〜10mm) 100質量部
実施例1の電気炉酸化スラグ粒状物(5mm以下) 100質量部
ポルトランドセメント 25 〃
高性能AE減水剤 0.25 〃
メチルセルロース(増粘剤) 0.13 〃
上記混合物に水12質量部を加え、ミキサーで3分間混練した。該混練物を型枠中に流し込み、コテによって表面を平坦にして常温で3日養生し、水和反応により硬化させた後脱型し、更に25日常温で水和反応させ、厚さ10mm、500×500mm角の板状成形体を成形した。
[Example 5] (Electromagnetic heating material)
A mixture of the following formulation was prepared:
100 parts by mass of electric furnace oxidized slag crushed material (5 to 10 mm) of Example 2 100 parts by mass of Portland cement 25 電 気
High performance AE water reducing agent 0.25 〃
Methylcellulose (thickener) 0.13 〃
12 parts by mass of water was added to the above mixture, and the mixture was kneaded for 3 minutes. The kneaded product was poured into a mold, the surface was flattened with a trowel and cured at room temperature for 3 days, cured by a hydration reaction, demolded, and further hydrated at room temperature for 25 days, with a thickness of 10 mm, A plate-like molded body of 500 × 500 mm square was molded.

上記板状成形体を10℃の室内に置き、2.45GHz、100Wの出力の電磁波を30分間放射したところ、放射前の成形体温度10.9℃、放射後の成形体温度32.7℃であった。   The plate-shaped molded body was placed in a room at 10 ° C., and an electromagnetic wave with an output of 2.45 GHz and 100 W was radiated for 30 minutes. The molded body temperature before radiation was 10.9 ° C., and the molded body temperature after radiation was 32.7 ° C. Met.

〔実施例6〕(電磁波加熱性材料)
実施例5において、実施例2の電気炉酸化スラグ破砕物に代えて実施例3の改質電気炉酸化スラグ破砕物(5〜10mm)100質量部を使用し、実施例5と同様にして厚さ10mm、500×500mm角の板状成形体を成形した。
上記板状成形体を10℃の室内に置き、2.45GHz、100Wの出力の電磁波を8分間放射したところ、放射前の成形体温度10.8℃、放射後の成形体温度38.6℃であった。
[Example 6] (Electromagnetic heating material)
In Example 5, instead of the electric furnace oxidized slag crushed material of Example 2, 100 parts by mass of the reformed electric furnace oxidized slag crushed material (5 to 10 mm) of Example 3 was used. A plate-like molded body having a thickness of 10 mm and a size of 500 × 500 mm was molded.
The plate-like molded body was placed in a room at 10 ° C., and an electromagnetic wave with an output of 2.45 GHz and 100 W was emitted for 8 minutes. The molded body temperature before radiation was 10.8 ° C., and the molded body temperature after radiation was 38.6 ° C. Met.

〔実施例7〕(電磁波加熱性材料)
下記の処方の混合物を調製した。
実施例1の電気炉酸化スラグ粒状物(5mm以下) 100質量部
クロロプレンゴム 60 〃
酸化亜鉛 0.6 〃
硫黄 0.3〃
上記混合物は加熱溶融混練され、Tダイを介して厚さ5mmのシートに押出された。
上記シートから500×500mm角の試料を切出し、10℃の室内に置き、2.45GHz、100Wの出力の電磁波を10分間放射したところ、放射前の試料温度10.4℃、放射後5分で29.8℃、放射後10分で38.6℃であった。
[Example 7] (Electromagnetic heating material)
A mixture of the following formulation was prepared:
Electric furnace oxidation slag granular material of Example 1 (5 mm or less) 100 parts by mass Chloroprene rubber 60 〃
Zinc oxide 0.6 〃
Sulfur 0.3〃
The mixture was melted and kneaded by heating and extruded into a sheet having a thickness of 5 mm through a T die.
A 500 × 500 mm square sample was cut out from the sheet and placed in a 10 ° C. room, and an electromagnetic wave with an output of 2.45 GHz and 100 W was emitted for 10 minutes. The sample temperature before radiation was 10.4 ° C. and 5 minutes after radiation. The temperature was 29.8 ° C. and 38.6 ° C. 10 minutes after radiation.

〔実施例8〕(電磁波加熱性材料)
実施例7において、実施例1の電気炉酸化スラグ粒状物に代えて、実施例3の改質電気炉酸化スラグ破砕物(5mm以下)100質量部を使用し、実施例7と同様にして厚さ5mm、500×500mm角のシート状試料を切出した。該試料を10℃の室内に置き、2.45GHz、100Wの出力の電磁波を10分間放射したところ、放射前の試料温度10.5℃、放射後5分で30.1℃、放射後10分で41.3℃であった。
[Example 8] (Electromagnetic heating material)
In Example 7, instead of the electric furnace oxidation slag granular material of Example 1, 100 parts by mass of the reformed electric furnace oxidation slag crushed material (5 mm or less) of Example 3 was used. A sheet-like sample having a thickness of 5 mm and a size of 500 × 500 mm was cut out. When the sample was placed in a room at 10 ° C. and radiated an electromagnetic wave with an output of 2.45 GHz and 100 W for 10 minutes, the sample temperature before radiation was 10.5 ° C., 5 minutes after radiation, 30.1 ° C., and 10 minutes after radiation. It was 41.3 ° C.

〔実施例9〕(電磁波加熱性材料)
下記の処方の混合物を調製した。
実施例1の電気炉酸化スラグ粒状物(5mm以下) 110質量部
実施例2の電気炉酸化スラグ破砕物(5〜10mm) 100質量部
アスファルト 80 〃
スチレン−ブタジエン−ゴム、 4 〃
上記混合物は100℃に加熱溶融混練され、型枠に流し込んで厚さ10mm、300×300mm角の板状成形体を成形した。
上記成形体を8℃の室内に置き、2.45GHz、100Wの出力の電磁波を10分間放射したところ、放射前の成形体温度8.2℃、放射後5分で30.4℃、10分で42.0℃であった。
[Example 9] (Electromagnetic heating material)
A mixture of the following formulation was prepared:
Electric furnace oxidation slag granular material of Example 1 (5 mm or less) 110 parts by mass Electric furnace oxidation slag crushed material of Example 2 (5 to 10 mm) 100 parts by mass Asphalt 80 〃
Styrene-butadiene-rubber, 4 ゴ ム
The mixture was melted and kneaded at 100 ° C. and poured into a mold to form a plate-like molded body having a thickness of 10 mm and a 300 × 300 mm square.
The molded body was placed in a room at 8 ° C., and an electromagnetic wave having an output of 2.45 GHz and 100 W was radiated for 10 minutes. The molded body temperature before radiation was 8.2 ° C., and 5 minutes after radiation, 30.4 ° C. and 10 minutes. It was 42.0 ° C.

〔実施例10〕(電磁波加熱性材料)
実施例9において、実施例2の電気炉酸化スラグ破砕物に代えて、実施例3の改質電気炉酸化スラグ破砕物(5〜10mm)100質量部を使用し、実施例9と同様にして厚さ10mm、300×300mm角の板状成形体を成形した。上記成形体を8℃の室内に置き、2.45GHz、100Wの出力の電磁波を10分間放射したところ、放射前の成形体温度8.1℃、放射後5分で33.8℃、放射後10分で45.7℃であった。
[Example 10] (Electromagnetic heating material)
In Example 9, instead of the electric furnace oxidized slag crushed material of Example 2, 100 parts by mass of the reformed electric furnace oxidized slag crushed material (5 to 10 mm) of Example 3 was used, and in the same manner as in Example 9. A plate-like molded body having a thickness of 10 mm and a 300 × 300 mm square was molded. When the molded body was placed in a room at 8 ° C. and radiated an electromagnetic wave with an output of 2.45 GHz and 100 W for 10 minutes, the temperature of the molded body before radiation was 8.1 ° C., 33.8 ° C. 5 minutes after radiation, and after radiation. It was 45.7 ° C. in 10 minutes.

〔実施例11〕(電磁波加熱性材料)
下記の処方の混合物を調製した。
実施例1の電気炉酸化スラグ粒状物(5mm以下) 100質量部
ポリカーボネート 40 〃
上記混合物は射出成形によって厚さ10mm、300×300mm角のシート状試料を成形した。
上記試料を10℃の室内に置き、2.45GHz、100Wの出力の電磁波を5分間放射したところ、放射前の試料温度10.2℃、放射後3分で26.6℃、5分で34.3℃であった。
[Example 11] (Electromagnetic wave heating material)
A mixture of the following formulation was prepared:
Electric furnace oxidation slag granular material of Example 1 (5 mm or less) 100 parts by mass Polycarbonate 40 〃
The mixture was formed by injection molding into a sheet sample having a thickness of 10 mm and a 300 × 300 mm square.
When the sample was placed in a room at 10 ° C. and radiated an electromagnetic wave with an output of 2.45 GHz and 100 W for 5 minutes, the sample temperature before irradiation was 10.2 ° C., 36.6 minutes after radiation, 26.6 ° C. and 34 minutes at 5 minutes. It was 3 ° C.

〔実施例12〕(電磁波加熱性材料)
実施例11において、実施例1の電気炉酸化スラグ粒状物に代えて、実施例3の改質電気炉酸化スラグ破砕物(5mm以下)100質量部を使用し、実施例11と同様にして厚さ10mm、300×300mm角のシート状試料を成形した。上記試料を10℃の室内に置き、2.45GHz、100Wの出力の電磁波を5分間放射したところ、放射前の試料温度10.3℃、放射後3分で27.4℃、放射後5分で35.6℃であった。
[Example 12] (Electromagnetic heating material)
In Example 11, instead of the electric furnace oxidation slag granular material of Example 1, 100 parts by mass of the reformed electric furnace oxidation slag crushed material (5 mm or less) of Example 3 was used, and the thickness was increased in the same manner as in Example 11. A sheet-like sample having a thickness of 10 mm and a 300 × 300 mm square was molded. When the sample was placed in a room at 10 ° C. and radiated an electromagnetic wave with an output of 2.45 GHz and 100 W for 5 minutes, the sample temperature before radiation was 10.3 ° C., 37.4 minutes after radiation, 27.4 ° C., and 5 minutes after radiation. It was 35.6 degreeC.

〔実施例13〕(電磁波加熱性材料)
下記の処方の混練物を調製した。
実施例1の電気炉酸化スラグ粒状物(5mm以下) 100質量部
陶磁器原料* 20 〃
水 10 〃
*陶磁器原料組成
天草陶石 35質量%
カオリン 27 〃
長石 22 〃
蛙目粘土 15 〃
滑石 1 〃
上記混練物は型内で油圧プレスにより30MPaに加圧し、厚さ10mm、300×300mm角の板状生試料を成形した。上記生試料は乾燥後800〜900℃、12時間、素焼きガマで熱処理され、次いで1100〜1200℃、12時間本焼きガマで焼成され陶磁器試料が作成された。
上記試料を10℃の室内に置き、2.45GHz、100Wの出力の電磁波を10分間放射したところ、放射前の試料温度10.1℃、放射後5分で30.5℃、10分で40.2℃であった。
[Example 13] (Electromagnetic heating material)
A kneaded product having the following formulation was prepared.
Electric furnace oxidation slag granular material of Example 1 (5 mm or less) 100 parts by mass Ceramic raw material * 20 〃
Water 10 〃
* Ceramic raw material composition Amakusa pottery stone 35% by mass
Kaolin 27 〃
Feldspar 22 〃
Sasame clay 15 〃
Talc 1 〃
The kneaded product was pressurized to 30 MPa in a mold by a hydraulic press to form a plate-shaped raw sample having a thickness of 10 mm and a 300 × 300 mm square. The raw sample was dried and then heat-treated with an unglazed burr for 12 hours at 800 to 900 ° C., and then baked with a main boil for 12 hours at 1100 to 1200 ° C. to prepare a ceramic sample.
When the sample was placed in a room at 10 ° C. and radiated an electromagnetic wave with an output of 2.45 GHz and 100 W for 10 minutes, the sample temperature before radiation was 10.1 ° C., 5 minutes after radiation, 30.5 ° C. and 40 minutes after 10 minutes. It was 2 ° C.

〔実施例14〕(電磁波加熱性材料)
実施例13において、実施例1の電気炉酸化スラグ粒状物に代えて、実施例3の改質電気炉酸化スラグ破砕物(5mm以下)100質量部を使用し、実施例11と同様にして厚さ10mm、300×300mm角の陶磁器試料を作成した。上記試料を10℃の室内に置き、2.45GHz、100Wの出力の電磁波を10分間放射したところ、放射前の試料温度10.1℃、放射後5分で32.1℃、放射後10分で42.3℃であった。
[Example 14] (Electromagnetic heating material)
In Example 13, in place of the electric furnace oxidation slag granular material of Example 1, 100 parts by mass of reformed electric furnace oxidation slag crushed material (5 mm or less) of Example 3 was used, and the thickness was increased in the same manner as in Example 11. A ceramic sample having a thickness of 10 mm and a size of 300 × 300 mm was prepared. When the sample was placed in a room at 10 ° C. and radiated an electromagnetic wave with an output of 2.45 GHz and 100 W for 10 minutes, the sample temperature before radiation was 10.1 ° C., 5 minutes after radiation, 32.1 ° C., and 10 minutes after radiation. It was 42.3 ° C.

〔実施例15〕(電磁波遮蔽性材料)
(1)電磁波遮蔽性セメント組成物Aの調製
下記の組成を混合した。
ポルトランドセメント 21質量%
電気炉酸化スラグ粒状物*1 78 〃
超微粉末セメント*2 1 〃
*1:実施例1の電気炉酸化スラグ粒状物(粒径2.5mm以下)
*2:45μm以下、流動性を改良して水分添加量を減らす目的で使用した。
(2)成形品試料の作成
上記組成物Aを使用して表2の組成を混合した。
Example 15 (Electromagnetic wave shielding material)
(1) Preparation of electromagnetic wave shielding cement composition A The following compositions were mixed.
Portland cement 21% by mass
Electric furnace oxidation slag particulate * 1 78 〃
Ultra fine cement * 2 1 〃
* 1: Electric furnace oxidation slag granular material of Example 1 (particle size 2.5 mm or less)
* 2: 45 μm or less, used for the purpose of improving fluidity and reducing the amount of water added.
(2) Preparation of molded article sample The composition shown in Table 2 was mixed using the composition A.

Figure 2006222104
Figure 2006222104

上記組成のスラリーを型枠中に流し込み、養生硬化して150mm×150mm、厚さ3mmの板状成形品試料C−1〜C−5を作成した。C−2、C−3にあっては型枠底部に上記鋼鉄網を挿入した状態で上記スラリーを流し込んみ、片面に鋼鉄網を装着固定した板状成形品試料を作成した。
(3)比較成形品の作成
ポルトランドセメント2200g、山砂(粒径2.5mm以下)4450g(ポル トランドセメント:山砂=1:1容量となる)、超微粉末セメント175g、AE減 水剤40g、水800gを混合したスラリーを型枠中に流し込んで養生硬化せしめて 150mm×150mm、厚さ3mmの板状比較成形品試料を作成した。
(4)電磁波遮蔽性試料
上記試料C−1〜C−5および比較成形品試料について種々の周波数における電界 遮蔽効果および磁界遮蔽効果を調べた。なおC−2、C−3にあっては、鋼鉄網装着 反対側から電磁波を及ぼした。その結果を図4a、b〜図9a、bに示す。
図4a:C−1の電界遮蔽効果
〃b:C−1の磁界 〃
図5a:C−2の電界遮蔽効果
〃b:C−2の磁界 〃
図6a:C−3の電界遮蔽効果
〃b:C−3の磁界 〃
図7a:C−4の電界遮蔽効果
〃b:C−4の磁界 〃
図8a:C−5の電界遮蔽効果
〃b:C−5の磁界 〃
図9a:比較成形品試料の電界遮蔽効果
〃b:比較成形品試料の磁界 〃
The slurry having the above composition was poured into a mold and cured and cured to prepare plate-shaped molded product samples C-1 to C-5 having a size of 150 mm × 150 mm and a thickness of 3 mm. In C-2 and C-3, the slurry was poured in a state where the steel mesh was inserted into the bottom of the mold, and a plate-shaped molded product sample having a steel mesh mounted and fixed on one side was prepared.
(3) Preparation of comparative molded product Portland cement 2200g, mountain sand (particle size 2.5mm or less) 4450g (Portland cement: mountain sand = 1: 1 capacity), super fine powder cement 175g, AE water reducing agent 40g Then, a slurry mixed with 800 g of water was poured into a mold and cured and cured to prepare a plate-shaped comparative molded product sample having a size of 150 mm × 150 mm and a thickness of 3 mm.
(4) Electromagnetic wave shielding sample The samples C-1 to C-5 and the comparative molded product samples were examined for electric field shielding effect and magnetic field shielding effect at various frequencies. In C-2 and C-3, electromagnetic waves were applied from the opposite side of the steel net. The results are shown in FIGS. 4a, b to 9a, b.
Fig. 4a: Field shielding effect of C-1 b: Magnetic field of C-1
Fig. 5a: Electric field shielding effect of C-2 〃b: Magnetic field of C-2 〃
Fig. 6a: Electric field shielding effect of C-3 〃b: Magnetic field of C-3 〃
Fig. 7a: Electric field shielding effect of C-4 〃b: Magnetic field of C-4 〃
Fig. 8a: Electric field shielding effect of C-5 〃 b: Magnetic field of C-5 〃
Fig. 9a: Electric field shielding effect of comparative molded product sample 〃b: Magnetic field of comparative molded product sample 〃

図4a、b〜図9a、bを参照すれば、電気炉酸化スラグを添加したC−1〜C−5はいづれも電気炉酸化スラグを添加しない比較成形品試料に比べて高い電界遮蔽性を有していることが認められ、また鋼鉄網の装着によって電磁波遮蔽性、特に磁界遮蔽性が大巾に向上することが認められ(C−2、C−3)、鋼鉄網においても素線が細く網目サイズの小さい網Aの方が磁界遮蔽性がより高いことが認められる(C−2)。   Referring to FIGS. 4a and b to FIGS. 9a and b, each of C-1 to C-5 added with electric furnace oxidation slag has a higher electric field shielding property than a comparative molded product sample without addition of electric furnace oxidation slag. It is recognized that the electromagnetic wave shielding property, particularly the magnetic field shielding property is greatly improved by the installation of the steel mesh (C-2, C-3). It is recognized that the finer mesh A having a smaller mesh size has higher magnetic field shielding properties (C-2).

〔実施例16〕(電磁波遮蔽性材料)
表3の組成を混合した。
[Example 16] (Electromagnetic wave shielding material)
The compositions in Table 3 were mixed.

Figure 2006222104
Figure 2006222104

上記組成のスラリーを型枠中に流し込み、養生硬化して150mm×150mm、厚さ3mmの板状成形品試料を作成した。C−6、C−7にあっては型枠中に銅網を挿入した状態で上記スラリーを流し込んみ、片面に銅網を装着固定した板状成形品試料を作成した。
上記成形品C−6〜C−8について種々の周波数における電界遮蔽効果および磁界遮蔽効果を調べた。なおC−6、C−7にあっては、銅網装着反対側から電磁波を及ぼした。その結果を図10a、b〜図12a、bに示す。
図10a:C−6の電界遮蔽効果
〃 b:C−6の磁界 〃
図11a:C−7の電界遮蔽効果
〃 b:C−7の磁界 〃
図12a:C−8の電界遮蔽効果
〃 b:C−8の磁界 〃
A slurry having the above composition was poured into a mold and cured and cured to prepare a plate-shaped molded product sample having a size of 150 mm × 150 mm and a thickness of 3 mm. In C-6 and C-7, the slurry was poured in a state in which a copper mesh was inserted into a mold, and a plate-shaped molded product sample having a copper mesh mounted and fixed on one side was prepared.
The molded products C-6 to C-8 were examined for electric field shielding effect and magnetic field shielding effect at various frequencies. In C-6 and C-7, electromagnetic waves were applied from the opposite side of the copper net. The results are shown in FIGS. 10a, b to 12a, b.
Fig. 10a: Electric field shielding effect of C-6 〃 b: Magnetic field of C-6 〃
Fig. 11a: Electric field shielding effect of C-7 b b: Magnetic field of C-7 〃
Fig. 12a: Electric field shielding effect of C-8 b b: Magnetic field of C-8 〃

図10a、b〜図12a、bを参照すれば、カッタースケールを添加したC−8はC−1の結果と比べて殆ど差がなく、カッタースケールの添加による電磁波遮蔽性向上効果は認められないが、銅網を装着したC−6、C−7は電磁波遮蔽効果、特に電界遮蔽効果の大巾な向上が認められ、その効果は鋼鉄網を挿入した場合(C−2、C−3)よりも若干高いことが認められる。そして銅網においても電磁波遮蔽効果は素線が細く網目サイズの小さい網Bの方がより電磁波遮蔽性が高いことが認められる。   Referring to FIGS. 10a, b to 12a, b, C-8 to which a cutter scale is added has little difference compared to the result of C-1, and the effect of improving the electromagnetic wave shielding property by adding the cutter scale is not recognized. However, C-6 and C-7 fitted with a copper mesh showed a significant improvement in the electromagnetic wave shielding effect, particularly the electric field shielding effect, and the effect was obtained when a steel mesh was inserted (C-2, C-3). It is recognized that it is slightly higher than that. Also in the copper net, it is recognized that the electromagnetic wave shielding effect is higher in the net B having a fine wire and a small mesh size.

〔実施例17〕(電磁波遮蔽性材料)
(1)バインダー組成物Bの調製
下記の組成を混合した。
アクリル樹脂エマルジョン*1 132質量部
ポルトランドセメント 88 〃
AE減水剤 4.4 〃
メチルセルロース 0.7 〃
消泡剤 0.6 〃
*1:商品名アクロナール、固形分50質量%
(2)成形品試料の作成
上記組成物B225.7gに表4の組成を混合した。
[Example 17] (Electromagnetic wave shielding material)
(1) Preparation of binder composition B The following composition was mixed.
Acrylic resin emulsion * 1 132 parts by weight Portland cement 88 〃
AE water reducing agent 4.4 〃
Methylcellulose 0.7 〃
Defoamer 0.6 〃
* 1: Product name Acronal, solid content 50% by mass
(2) Preparation of molded product sample The composition shown in Table 4 was mixed with 225.7 g of the composition B.

Figure 2006222104
Figure 2006222104

上記組成を型中に流し込み、室温で乾燥硬化せしめて150mm×150mm、厚さ3mmの板状成形品試料R−1〜R−8を作成した。R−3、R−4、R−5にあっては、型枠底部に上記銅網または鋼鉄網を挿入した状態で上記組成を流し込んみ、片面に銅網または鋼鉄網を装着固定した板状成形品試料を作成した。
上記成形品の試料R−1〜R−8および比較4の試料について種々の周波数における電界遮蔽効果および磁界遮蔽効果を調べた。なおR−3、R−4、R−5にあっては、銅網または鋼鉄網装着反対側から電磁波を及ぼした。その結果を図13a、b〜図21a、bに示す。
図13a:R−1の電界遮蔽効果
〃 b:R−1の磁界 〃
図14a:R−2の電界遮蔽効果
〃 b:R−2の磁界 〃
図15a:R−3の電界遮蔽効果
〃 b:R−3の磁界 〃
図16a:R−4の電界遮蔽効果
〃 b:R−4の磁界 〃
図17a:R−5の電界遮蔽効果
〃 b:R−5の磁界 〃
図18a:R−6の電界遮蔽効果
〃 b:R−6の磁界 〃
図19a:R−7の電界遮蔽効果
〃 b:R−7の磁界 〃
図20a:R−8の電界遮蔽効果
〃 b:R−8の磁界 〃
図21a:比較1の電界遮蔽効果
〃 b:比較1の磁界 〃
The above composition was poured into a mold and dried and cured at room temperature to prepare plate-shaped molded product samples R-1 to R-8 having a size of 150 mm × 150 mm and a thickness of 3 mm. In R-3, R-4, and R-5, the above composition is poured in the state where the copper mesh or steel mesh is inserted into the bottom of the mold, and a plate shape in which the copper mesh or steel mesh is attached and fixed on one side. A molded product sample was prepared.
The electric field shielding effect and the magnetic field shielding effect at various frequencies were examined for the molded product samples R-1 to R-8 and the comparative sample 4. In R-3, R-4, and R-5, electromagnetic waves were applied from the opposite side of the copper net or steel net. The results are shown in FIGS. 13a, b to 21a, b.
Fig. 13a: Field shielding effect of R-1 〃 b: Magnetic field of R-1 〃
Fig. 14a: Electric field shielding effect of R-2 b b: Magnetic field of R-2 〃
Fig. 15a: Electric field shielding effect of R-3 b b: Magnetic field of R-3 〃
Figure 16a: R-4 electric field shielding effect 〃 b: R-4 magnetic field 〃
Fig. 17a: Electric field shielding effect of R-5 〃 b: Magnetic field of R-5 〃
18a: Electric field shielding effect of R-6 〃 b: Magnetic field of R-6 〃
19a: Electric field shielding effect of R-7 〃 b: Magnetic field of R-7 〃
Figure 20a: Electric field shielding effect of R-8 〃 b: Magnetic field of R-8 〃
Fig. 21a: Electric field shielding effect of comparison 1 b b: Magnetic field of comparison 1 〃

図13a、b〜図21a、bを参照すれば、電気炉酸化スラグを添加したR−1、R−2、R−3、R−4、R−5はいづれも電磁波遮蔽効果を有するが、電気炉酸化スラグを添加しない比較1は殆ど電磁波遮蔽効果を示さない。また電気炉酸化スラグの粒径を変えたR−1、R−2については、電磁波遮蔽性が略同等であり、金属網を挿入したR−3、R−4、R−5についてはいづれも電磁波遮蔽性の大巾な向上が認められる。
更に炭素繊維、鉄粉、K−ショット屑等を併用したR−6、R−7、R−8にあっては、炭素繊維を併用したR−6に電磁波遮蔽性の大巾な向上がみられるが、鉄粉やK−ショット屑を併用したR−7、R−8にも若干の電磁波遮蔽性の向上が認められた。
Referring to FIGS. 13a and b to FIGS. 21a and b, R-1, R-2, R-3, R-4, and R-5 added with electric furnace oxidation slag all have an electromagnetic wave shielding effect. Comparative 1 with no addition of electric furnace oxidation slag shows little electromagnetic shielding effect. Moreover, about R-1 and R-2 which changed the particle size of the electric furnace oxidation slag, electromagnetic wave shielding property is substantially equivalent, and about R-3, R-4, and R-5 which inserted the metal net | network, any A significant improvement in electromagnetic shielding properties is observed.
Furthermore, in R-6, R-7, and R-8 using carbon fiber, iron powder, K-shot scraps, etc., the electromagnetic wave shielding performance is greatly improved over R-6 using carbon fiber. However, a slight improvement in electromagnetic shielding properties was also observed in R-7 and R-8 using iron powder and K-shot dust together.

〔実施例18〕(電磁波遮蔽性材料)
下記の処方の混合物を調製した。
実施例1の電気炉酸化スラグ粒状物(5mm以下) 100質量部
クロロプレンゴム 60 〃
酸化亜鉛 0.6 〃
硫黄 0.3 〃
上記混合物は加熱溶融混練され、Tダイを介して厚さ5mmのシートに押出された。
上記シートから500×500mm角の試料を切出し、電磁波遮蔽効果を調べた。その結果は図22a、bに示される。図を参照すれば、特に電界遮蔽効果が顕著であることが認められる。
[Example 18] (Electromagnetic wave shielding material)
A mixture of the following formulation was prepared:
Electric furnace oxidation slag granular material of Example 1 (5 mm or less) 100 parts by mass Chloroprene rubber 60 〃
Zinc oxide 0.6 〃
Sulfur 0.3 〃
The mixture was melted and kneaded by heating and extruded into a sheet having a thickness of 5 mm through a T die.
A 500 × 500 mm square sample was cut out from the sheet, and the electromagnetic shielding effect was examined. The result is shown in FIGS. 22a and 22b. Referring to the drawing, it is recognized that the electric field shielding effect is particularly remarkable.

〔実施例19〕(銅スラグ、電気炉ダスト処理スラグ粒状物の製造)
銅スラグおよび電気炉ダスト処理スラグ粒状物は、電気炉酸化スラグと同様図1に示す装置によって製造される。銅スラグまたは電気炉ダスト処理スラグはあらかじめ図3に示すような電気溶解炉10中で溶融され、ランス管12から圧縮空気を吹精して強制酸化処理を行ない、上記強制酸化処理を施された銅スラグまたは電気炉ダスト処理スラグ溶融物は1400℃前後の温度であり、該電気溶解炉10から取鍋2に移され、以後実施例1と同様な方法によって粒化される。
得られた銅スラグ粒状物または電気炉ダスト処理スラグ粒状物は略球状の中空体であり、表面にはひび割れ等の欠陥はなく、微細な凹凸があり、高硬度(モース硬さでマトリックスが6程度、鉱物相が8程度であった)を有し、耐摩耗性に優れており、耐火度は1100℃程度であって、比重は銅スラグ粒状物で3.50、電気炉ダスト処理スラグ粒状物で4.1であり、電磁波吸収性、透磁性、誘電性、耐酸性、耐アルカリ性に優れている。上記銅スラグ粒状物および電気炉ダスト処理スラグ粒状物の粒度分布は図2に示す電気炉酸化スラグ粒状物の粒度分布と略同様である。
上記強制酸化処理前後の銅スラグと電気炉ダスト処理スラグの化学組成を表5および表6に示す。
[Example 19] (Copper slag, manufacture of electric furnace dust treatment slag granule)
Copper slag and electric furnace dust treatment slag granules are produced by the apparatus shown in FIG. 1 in the same manner as electric furnace oxidation slag. The copper slag or electric furnace dust treatment slag was previously melted in an electric melting furnace 10 as shown in FIG. 3 and subjected to forced oxidation treatment by blowing compressed air from the lance pipe 12 and subjected to the above-mentioned forced oxidation treatment. The copper slag or electric furnace dust treatment slag melt is at a temperature around 1400 ° C. and is transferred from the electric melting furnace 10 to the ladle 2 and thereafter granulated by the same method as in the first embodiment.
The obtained copper slag granule or electric furnace dust-treated slag granule is a substantially spherical hollow body, has no defects such as cracks on the surface, has fine irregularities, and has a high hardness (Mohs hardness of 6 matrix). Grade, mineral phase was about 8), excellent wear resistance, fire resistance of about 1100 ° C, specific gravity of copper slag granules 3.50, electric furnace dust treatment slag granules It is 4.1 and is excellent in electromagnetic wave absorption, magnetic permeability, dielectric properties, acid resistance, and alkali resistance. The particle size distribution of the copper slag granules and the electric furnace dust-treated slag granules is substantially the same as the particle size distribution of the electric furnace oxidation slag granules shown in FIG.
Tables 5 and 6 show the chemical compositions of the copper slag before and after the forced oxidation treatment and the electric furnace dust treatment slag.

Figure 2006222104
Figure 2006222104

Figure 2006222104
Figure 2006222104

表5および表6を参照すれば、銅スラグ、電気炉ダスト処理スラグ共に強制酸化処理によってFeOの大部分がFe23やFe34に変化することが認められる。 Referring to Tables 5 and 6, it can be seen that the majority of FeO is changed to Fe 2 O 3 or Fe 3 O 4 by forced oxidation treatment in both copper slag and electric furnace dust treatment slag.

〔実施例20〕(銅スラグ、電気炉ダスト処理スラグ破砕物の製造:重晶石添加)
図3に示す電気溶解炉10に銅スラグまては電気炉ダスト処理スラグを投入し、更に銅スラグまたは電気炉ダスト処理スラグ1000kgに対して重晶石100kgの割合でそれぞれ投入し、加熱溶融すると共にランス管12から圧縮空気を吹精して強制酸化処理を行なった。強制酸化処理後、溶融物は取鍋2に移され、該取鍋2から耐熱性容器に流しだされ、実施例2と同様にして破砕物を製造した。
上記強制酸化(改質)処理前後の銅スラグと電気炉ダスト処理スラグの化学組成を表7および表8に示す。
[Example 20] (Copper slag, electric furnace dust treatment slag crushed product: barite addition)
Copper slag or electric furnace dust treatment slag is introduced into the electric melting furnace 10 shown in FIG. 3, and further charged at a rate of 100 kg barite with respect to 1000 kg of copper slag or electric furnace dust treatment slag, and heated and melted. At the same time, forced oxidation treatment was performed by blowing compressed air from the lance tube 12. After the forced oxidation treatment, the melt was transferred to the ladle 2 and poured from the ladle 2 into a heat-resistant container, and crushed material was produced in the same manner as in Example 2.
Tables 7 and 8 show the chemical compositions of the copper slag and the electric furnace dust treatment slag before and after the forced oxidation (reforming) treatment.

Figure 2006222104
Figure 2006222104

Figure 2006222104
Figure 2006222104

表7および表8を参照すれば、銅スラグ、電気炉ダスト処理スラグ共に改質処理によってFeOの大部分がFe23やFe34に変化することが認められる。 Referring to Tables 7 and 8, it can be seen that the majority of FeO is changed to Fe 2 O 3 or Fe 3 O 4 by the modification treatment in both the copper slag and the electric furnace dust treatment slag.

〔実施例21〕(電磁波遮蔽性材料) (1)セメント組成物Aの調製
下記の組成を混合した。
ポルトランドセメント 21質量%
銅スラグ粒状物*1 78 〃
超微粉末セメント*2 1 〃
*1:実施例19の銅スラグ粒状物(粒径2.5mm以下)
*2:45μm以下、流動性を改良して水分添加量を減らす目的で使用した。
(2)成形品試料の作成
上記組成物Aを使用して表9の組成を混合した。
[Example 21] (Electromagnetic wave shielding material) (1) Preparation of cement composition A The following compositions were mixed.
Portland cement 21% by mass
Copper slag granules * 1 78 〃
Ultra fine cement * 2 1 〃
* 1: Copper slag granular material of Example 19 (particle diameter 2.5 mm or less)
* 2: 45 μm or less, used for the purpose of improving fluidity and reducing the amount of water added.
(2) Preparation of molded article sample The composition shown in Table 9 was mixed using the composition A.

Figure 2006222104
Figure 2006222104

上記組成のスラリーC−11,C−12を型枠中に流し込み、養生硬化して150mm×150mm、厚さ3mmの板状成形品試料を作成した。C−12にあっては型枠底部に上記鋼鉄網を挿入した状態で上記スラリーを流し込み、片面に鋼鉄網を装着固定した板状成形品試料を作成した。
(3)比較成形品の作成
ポルトランドセメント2200g、山砂(粒径2.5mm以下)4450g(ポル トランドセメント:山砂=1:1容量となる)、超微粉末セメント175g、AE減 水剤40g、水800gを混合したスラリーを型枠中に流し込んで養生硬化せしめて 150mm×150mm、厚さ3mmの板状比較成形品試料を作成した。
(4)電磁波遮蔽性試料
上記試料C−11、C−12および比較成形品試料について種々の周波数における 電界遮蔽効果および磁界遮蔽効果を調べた。なおC−12にあっては、鋼鉄網装着反 対側から電磁波を及ぼした。その結果を図23a、b〜図25a、bに示す。
図23a:C−11の電界遮蔽効果
〃 b:C−11の磁界 〃
図24a:C−12の電界遮蔽効果
〃 b:C−12の磁界 〃
図25a:比較成形品試料の電界遮蔽効果
〃 b:比較成形品試料の磁界 〃
Slurries C-11 and C-12 having the above composition were poured into a mold and cured and cured to prepare a plate-shaped molded product sample having a size of 150 mm × 150 mm and a thickness of 3 mm. In C-12, the slurry was poured in a state where the steel mesh was inserted into the bottom of the mold, and a plate-like molded product sample having a steel mesh mounted and fixed on one side was prepared.
(3) Preparation of comparative molded product Portland cement 2200g, mountain sand (particle size 2.5mm or less) 4450g (Portland cement: mountain sand = 1: 1 capacity), super fine powder cement 175g, AE water reducing agent 40g Then, a slurry mixed with 800 g of water was poured into a mold and cured and cured to prepare a plate-shaped comparative molded product sample having a size of 150 mm × 150 mm and a thickness of 3 mm.
(4) Electromagnetic wave shielding sample The electric field shielding effect and the magnetic field shielding effect at various frequencies were investigated for the samples C-11 and C-12 and the comparative molded product sample. In C-12, electromagnetic waves were applied from the opposite side of the steel net. The results are shown in FIGS. 23a and b to 25a and b.
Fig. 23a: Electric field shielding effect of C-11 〃 b: Magnetic field of C-11 〃
Figure 24a: Electric field shielding effect of C-12 〃 b: Magnetic field of C-12 〃
Fig. 25a: Electric field shielding effect of comparative molded product sample 〃 b: Magnetic field of comparative molded product sample 〃

図23a、b〜図25a、bを参照すれば、銅スラグを添加したC−11およびC−12はいづれも銅スラグを添加しない比較成形品試料に比べて高い電界遮蔽性を有していることが認められた。   Referring to FIGS. 23a and b to 25a and b, both C-11 and C-12 to which copper slag is added have higher electric field shielding properties than a comparative molded product sample to which copper slag is not added. It was recognized that

〔実施例22〕(電磁波加熱性材料)
実施例21のセメント組成物Aを使用したD−1,D−2および比較成形品のスラリーを型枠中に流し込み、養生硬化して300mm×300mm、厚さ10mmの板状成形品試料を作成した。各板状成形品試料を20℃の室内に置き、2.45GHz、500Wの出力の電磁波を10分間放射したところ、D−1試料は205℃、D−2試料は390℃に達したが比較成形品試料は40℃に達するに止まった。
[Example 22] (Electromagnetic heating material)
Slurries of D-1, D-2 and comparative molded products using the cement composition A of Example 21 were poured into molds and cured and cured to prepare plate-shaped molded product samples of 300 mm × 300 mm and thickness 10 mm. did. Each plate-shaped molded product sample was placed in a room at 20 ° C. and radiated an electromagnetic wave with an output of 2.45 GHz and 500 W for 10 minutes. The D-1 sample reached 205 ° C. and the D-2 sample reached 390 ° C. The molded product sample only reached 40 ° C.

本発明の電磁波吸収性組成物は、組成物中のバインダーによって結着されているフェライト系無機質粒状物が、電磁波を効率良く吸収するので、安価な電磁波遮蔽材として使用出来、例えばIT関係や医療関係の施設の建築躯体、壁材、床材等に有用であり、また建物、構築物等による電磁波散乱による例えばETCの誤作動防止やテレビ電波のゴースト対策にも有用である。更に本発明の電磁波吸収性組成物は電磁波によって広範囲にかつ急速に加熱され、ニクロム線等を配線する必要もなく、非接触的に加熱が行われるので、路面舗装材料、法面被覆材料、建築物の床材料や屋根材、配水管または配水管の被覆管の材料、水槽の壁材等に有用である。   The electromagnetic wave absorbing composition of the present invention can be used as an inexpensive electromagnetic wave shielding material because the ferrite-based inorganic particulate material bound by the binder in the composition efficiently absorbs electromagnetic waves. It is useful for building structures, wall materials, floor materials, etc. of related facilities, and is also useful for preventing malfunctions of ETC due to electromagnetic wave scattering by buildings, structures, etc., and for preventing ghosts of television waves. Furthermore, the electromagnetic wave absorbing composition of the present invention is heated extensively and rapidly by electromagnetic waves, and there is no need to wire a nichrome wire or the like, and heating is performed in a non-contact manner. It is useful for flooring materials and roofing materials, distribution pipes or materials for cladding pipes of distribution pipes, wall materials for water tanks, and the like.

電気炉スラグ粒状物製造装置の説明図Explanatory drawing of electric furnace slag granular material manufacturing equipment 電気炉スラグ粒状物の粒度分布を示すグラフGraph showing the particle size distribution of electric furnace slag granules 電気溶解炉説明図 図4〜図25は実施例4〜7において作成した試料について、電界遮蔽効果aと磁界遮蔽効果bとを調べた結果のグラフであり、縦軸に減衰量(dB)、横軸に周波数(MHz)をとった。FIG. 4 to FIG. 25 are graphs of the results of examining the electric field shielding effect a and the magnetic field shielding effect b for the samples prepared in Examples 4 to 7, and the vertical axis represents the attenuation (dB), The horizontal axis represents frequency (MHz). a:試料C−1の電界遮蔽効果 〃 b:試料C−1の磁界遮蔽効果a: Electric field shielding effect of sample C-1 b b: Magnetic field shielding effect of sample C-1 a:試料C−2の電界遮蔽効果 〃 b:試料C−2の磁界遮蔽効果a: Electric field shielding effect of sample C-2 〃 b: Magnetic field shielding effect of sample C-2 a:試料C−3の電界遮蔽効果 〃 b:試料C−3の磁界遮蔽効果a: Electric field shielding effect of sample C-3 〃 b: Magnetic field shielding effect of sample C-3 a:試料C−4の電界遮蔽効果 〃 b:試料C−4の磁界遮蔽効果a: Electric field shielding effect of sample C-4 〃 b: Magnetic field shielding effect of sample C-4 a:試料C−5の電界遮蔽効果 〃 b:試料C−5の磁界遮蔽効果a: Electric field shielding effect of sample C-5 b b: Magnetic field shielding effect of sample C-5 a:試料C−6の電界遮蔽効果 〃 b:試料C−6の磁界遮蔽効果a: Electric field shielding effect of sample C-6 〃 b: Magnetic field shielding effect of sample C-6 a:試料C−6の電界遮蔽効果 〃 b:試料C−6の磁界遮蔽効果a: Electric field shielding effect of sample C-6 〃 b: Magnetic field shielding effect of sample C-6 a:試料C−7の電界遮蔽効果 〃 b:試料C−7の磁界遮蔽効果a: Electric field shielding effect of sample C-7 〃 b: Magnetic field shielding effect of sample C-7 a:試料C−8の電界遮蔽効果 〃 b:試料C−8の磁界遮蔽効果a: Electric field shielding effect of sample C-8 〃 b: Magnetic field shielding effect of sample C-8 a:試料R−1の電界遮蔽効果 〃 b:試料R−1の磁界遮蔽効果a: Electric field shielding effect of sample R-1 〃 b: Magnetic field shielding effect of sample R-1 a:試料R−2の電界遮蔽効果 〃 b:試料R−2の磁界遮蔽効果a: Electric field shielding effect of sample R-2 〃 b: Magnetic field shielding effect of sample R-2 a:試料R−3の電界遮蔽効果 〃 b:試料R−3の磁界遮蔽効果a: Electric field shielding effect of sample R-3 〃 b: Magnetic field shielding effect of sample R-3 a:試料R−4の電界遮蔽効果 〃 b:試料R−4の磁界遮蔽効果a: Electric field shielding effect of sample R-4 〃 b: Magnetic field shielding effect of sample R-4 a:試料R−5の電界遮蔽効果 〃 b:試料R−5の磁界遮蔽効果a: Electric field shielding effect of sample R-5 b b: Magnetic field shielding effect of sample R-5 a:試料R−6の電界遮蔽効果 〃 b:試料R−6の磁界遮蔽効果a: Electric field shielding effect of sample R-6 〃 b: Magnetic field shielding effect of sample R-6 a:試料R−7の電界遮蔽効果 〃 b:試料R−7の磁界遮蔽効果a: Electric field shielding effect of sample R-7 〃 b: Magnetic field shielding effect of sample R-7 a:試料R−8の電界遮蔽効果 〃 b:試料R−8の磁界遮蔽効果a: Electric field shielding effect of sample R-8 〃 b: Magnetic field shielding effect of sample R-8 a:比較1の電界遮蔽効果 〃 b:比較1の磁界遮蔽効果a: Electric field shielding effect of comparison 1 b b: Magnetic field shielding effect of comparison 1 a:実施例18の試料の電界遮蔽効果 〃 b:実施例18の試料の磁界遮蔽効果a: Electric field shielding effect of sample of Example 18 〃 b: Magnetic field shielding effect of sample of Example 18 a:実施例21の試料C−11の電界遮蔽効果 〃 b:実施例21の試料C−11の磁界遮蔽効果a: Electric field shielding effect of sample C-11 of Example 21 〃 b: Magnetic field shielding effect of sample C-11 of Example 21 a:実施例21の試料C−12の電界遮蔽効果 〃 b:実施例21の試料C−12の磁界遮蔽効果a: Electric field shielding effect of sample C-12 of Example 21 〃 b: Magnetic field shielding effect of sample C-12 of Example 21 a:実施例21の比較試料の電界遮蔽効果 〃 b:実施例21の比較試料の磁界遮蔽効果a: Electric field shielding effect of comparative sample of Example 21 〃 b: Magnetic field shielding effect of comparative sample of Example 21

符号の説明Explanation of symbols

1 電気炉酸化スラグ溶融物
8 電気炉スラグ粒状物
1 Electric furnace oxidation slag melt 8 Electric furnace slag granular material

Claims (17)

フェライト系無機質粒状物または破砕物をバインダーで結着したことを特徴とする電磁波吸収性組成物。   An electromagnetic wave absorbing composition comprising a ferrite-based inorganic granular material or crushed material bound with a binder. 該バインダーは水硬性無機材料である請求項1に記載の電磁波吸収性組成物。   The electromagnetic wave absorbing composition according to claim 1, wherein the binder is a hydraulic inorganic material. 該バインダーは合成樹脂および/またはゴムおよび/またはアスファルトである請求項1に記載の電磁波吸収性組成物。   The electromagnetic wave absorbing composition according to claim 1, wherein the binder is a synthetic resin and / or rubber and / or asphalt. 該バインダーは陶磁器原料である請求項1に記載の電磁波吸収性組成物。   The electromagnetic wave absorbing composition according to claim 1, wherein the binder is a ceramic raw material. 該フェライト系無機質粒状物または破砕物は電気炉酸化スラグおよび/または銅スラグおよび/または電気炉ダスト処理スラグの粒状物または破砕物である請求項1〜4のいずれか1項に記載の電磁波吸収性組成物。   The electromagnetic wave absorption according to any one of claims 1 to 4, wherein the ferrite-based inorganic granular material or crushed material is a granular material or crushed material of electric furnace oxidation slag and / or copper slag and / or electric furnace dust treatment slag. Sex composition. 該電気炉酸化スラグおよび/または銅スラグおよび/または電気炉ダスト処理スラグは電気炉酸化スラグおよび/または銅スラグおよび/または電気炉ダスト処理スラグの溶融物に空気または酸素を吹込んで強制酸化処理を施した上で急冷固化することによって得られた改質品である請求項5に記載の電磁波吸収性組成物。   The electric furnace oxidation slag and / or copper slag and / or electric furnace dust treatment slag is subjected to forced oxidation treatment by blowing air or oxygen into the melt of the electric furnace oxidation slag and / or copper slag and / or electric furnace dust treatment slag. The electromagnetic wave absorbing composition according to claim 5, which is a modified product obtained by applying and quenching and solidifying. 該電気炉酸化スラグおよび/または銅スラグおよび/または電気炉ダスト処理スラグの溶融物には該電磁波吸収性を向上させるためにFe,Ba,Co,Ni,Cr,Cu,Mn,Sr,Znおよびこれらの金属の酸化物または加熱によりこれらの金属の酸化物を与える金属化合物が添加される請求項6に記載の電磁波吸収性組成物。   In order to improve the electromagnetic wave absorption, the electric furnace oxidation slag and / or copper slag and / or electric furnace dust treatment slag melt may be Fe, Ba, Co, Ni, Cr, Cu, Mn, Sr, Zn and The electromagnetic wave absorptive composition according to claim 6 to which an oxide of these metals or a metal compound which gives oxides of these metals by heating is added. 該電磁波吸収性組成物は電磁波加熱性材料として使用される請求項1〜7のいずれか1項に記載の電磁波吸収性組成物。   The electromagnetic wave absorbing composition according to any one of claims 1 to 7, wherein the electromagnetic wave absorbing composition is used as an electromagnetic wave heating material. 該組成物は路面舗装材料として使用される請求項8に記載の電磁波吸収性組成物。   The electromagnetic wave absorbing composition according to claim 8, wherein the composition is used as a road pavement material. 該組成物は鉄道枕木材料として使用される請求項8に記載の電磁波吸収性組成物。   The electromagnetic wave absorbing composition according to claim 8, wherein the composition is used as a railway sleeper material. 該組成物は法面被覆材料として使用される請求項8に記載の電磁波吸収性組成物。   The electromagnetic wave absorbing composition according to claim 8, wherein the composition is used as a slope coating material. 該組成物は建築物の床材料として使用される請求項8に記載の電磁波吸収性組成物。   The electromagnetic wave absorbing composition according to claim 8, wherein the composition is used as a building floor material. 該組成物は建築物の屋根材として使用される請求項8に記載の電磁波吸収性組成物。   The electromagnetic wave absorbing composition according to claim 8, wherein the composition is used as a roofing material for a building. 該組成物は配水管または配水管の被覆管の材料として使用される請求項8に記載の電磁波吸収性組成物。   The electromagnetic wave absorbing composition according to claim 8, wherein the composition is used as a material for a water pipe or a cladding pipe of the water pipe. 該組成物は水槽の壁材として使用される請求項8に記載の電磁波吸収性組成物。   The electromagnetic wave absorbing composition according to claim 8, wherein the composition is used as a wall material for an aquarium. 該電磁波吸収性組成物は電磁波遮蔽性材料として使用される請求項1〜7のいずれか1項に記載の電磁波吸収性組成物。   The electromagnetic wave absorbing composition according to claim 1, wherein the electromagnetic wave absorbing composition is used as an electromagnetic wave shielding material. 該電磁波遮蔽性材料は板体であり、該板体の電磁波入射反対側には金属網が装着されている請求項16に記載の電磁波吸収性組成物。   The electromagnetic wave absorptive composition according to claim 16, wherein the electromagnetic wave shielding material is a plate body, and a metal net is attached to the opposite side of the plate body to the electromagnetic wave incidence.
JP2005031177A 2005-02-08 2005-02-08 Electromagnetic wave absorbing composition Pending JP2006222104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005031177A JP2006222104A (en) 2005-02-08 2005-02-08 Electromagnetic wave absorbing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005031177A JP2006222104A (en) 2005-02-08 2005-02-08 Electromagnetic wave absorbing composition

Publications (1)

Publication Number Publication Date
JP2006222104A true JP2006222104A (en) 2006-08-24

Family

ID=36984234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005031177A Pending JP2006222104A (en) 2005-02-08 2005-02-08 Electromagnetic wave absorbing composition

Country Status (1)

Country Link
JP (1) JP2006222104A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127796A (en) * 2006-11-17 2008-06-05 Kictec Inc Snow-melting block
JP2009002137A (en) * 2007-05-24 2009-01-08 Hoshino Sansho:Kk Roof material and snow melting type roof structure
KR101051041B1 (en) 2010-10-19 2011-07-21 주식회사 갑오 A admixture composite for cabe trough concrete with induction property of electrical current
JP2017089258A (en) * 2015-11-11 2017-05-25 セメダイン株式会社 Substrate adjustment method and interior/exterior finishing method
CN113096906A (en) * 2021-03-24 2021-07-09 华南理工大学 FeSiCr alloy magnetic powder with double coating layers and preparation method thereof, magnetic powder core and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127796A (en) * 2006-11-17 2008-06-05 Kictec Inc Snow-melting block
JP4660454B2 (en) * 2006-11-17 2011-03-30 株式会社キクテック Snow melting block
JP2009002137A (en) * 2007-05-24 2009-01-08 Hoshino Sansho:Kk Roof material and snow melting type roof structure
JP2011047275A (en) * 2007-05-24 2011-03-10 Hoshino Sansho:Kk Roof material and snow-melting type roof structure
KR101051041B1 (en) 2010-10-19 2011-07-21 주식회사 갑오 A admixture composite for cabe trough concrete with induction property of electrical current
JP2017089258A (en) * 2015-11-11 2017-05-25 セメダイン株式会社 Substrate adjustment method and interior/exterior finishing method
CN113096906A (en) * 2021-03-24 2021-07-09 华南理工大学 FeSiCr alloy magnetic powder with double coating layers and preparation method thereof, magnetic powder core and preparation method thereof

Similar Documents

Publication Publication Date Title
CN108218272B (en) Environment-friendly artificial aggregate (aggregate) derived from waste
KR101957366B1 (en) Silicon manganese slag light weight aggregate and it&#39;s manufacturing method
JP2006222104A (en) Electromagnetic wave absorbing composition
JP4644965B2 (en) Method for producing hardened slag
JP3780269B2 (en) Road surface paving material and road surface heating method
JP4181573B2 (en) Building floor material or roofing material and method for heating the flooring material or roofing material
JP4451328B2 (en) Ferrite-containing filler manufacturing method, electromagnetic heating material, electromagnetic shielding material
JPH03275134A (en) Utilization of coal ash
JP4181574B2 (en) Railroad sleeper material, road or slope covering material, water pipe or water pipe cladding material, aquarium wall material, or ceramic material
JP4160288B2 (en) Multilayer porous inorganic molded cured product
JP3575499B2 (en) Ceramic fine aggregate for concrete
JP4630446B2 (en) INORGANIC CURABLE COMPOSITION AND PROCESS FOR PRODUCING THE SAME, INORGANIC CURED BODY AND PROCESS FOR PRODUCING THE SAME, Gypsum-based Cured Body, and Cement-Based Cured Body
JP4204922B2 (en) Roadbed material and method for manufacturing the same
JP2005320217A (en) Electromagnetic wave shielding material
JPH1029841A (en) Production of artificial aggregate
JP2000044305A (en) Method for reclaiming and reutilizing scrapped poly(vinyl chloride)-based resins and other refuse
JP2009002137A (en) Roof material and snow melting type roof structure
JPH0426636B2 (en)
JP2002018411A (en) Method for solidifying and molding ash
JP4697920B2 (en) Floor structure
JP2002011366A (en) Ash grinding method and solidified molding of ash
JP3628661B2 (en) Method for producing porous granular material using inorganic waste as raw material
JPS5812226B2 (en) Refractories for hot spray repair
JP2002160958A (en) Water permeable material and water permeable composite material
JPH06106153A (en) Cement solidification of incineration ash and cement solidified product of incineration ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090803