JP4181573B2 - Building floor material or roofing material and method for heating the flooring material or roofing material - Google Patents

Building floor material or roofing material and method for heating the flooring material or roofing material Download PDF

Info

Publication number
JP4181573B2
JP4181573B2 JP2005364427A JP2005364427A JP4181573B2 JP 4181573 B2 JP4181573 B2 JP 4181573B2 JP 2005364427 A JP2005364427 A JP 2005364427A JP 2005364427 A JP2005364427 A JP 2005364427A JP 4181573 B2 JP4181573 B2 JP 4181573B2
Authority
JP
Japan
Prior art keywords
slag
electric furnace
roofing
heating
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005364427A
Other languages
Japanese (ja)
Other versions
JP2006210329A (en
Inventor
榮治 渕上
熊夫 星野
圭一 鶴山
Original Assignee
株式会社星野産商
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社星野産商 filed Critical 株式会社星野産商
Priority to JP2005364427A priority Critical patent/JP4181573B2/en
Publication of JP2006210329A publication Critical patent/JP2006210329A/en
Application granted granted Critical
Publication of JP4181573B2 publication Critical patent/JP4181573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Road Paving Structures (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は電磁波加熱性組成物からなる建築物の床材料または屋根材および該床材料または屋根材の加熱方法に関するものである。   The present invention relates to a building floor material or roof material comprising an electromagnetic wave heating composition and a method for heating the floor material or roof material.

例えば路面や法面や屋根の融雪のための加熱や床等の暖房を行うには、従来路面舗装層や法面被覆層あるいは建築物の床や屋根の内部あるいは下側にニクロム線を配線し、該ニクロム線に通電して発熱せしめることによって路面や法面や屋根に積もった雪を加熱して融かし、あるいは床を加熱していた(例えば特許文献1〜5参照)。   For example, in order to heat the snow on the road surface, slope or roof, or to heat the floor, etc., conventionally, the nichrome wire is wired inside or below the road pavement layer, slope covering layer or building floor or roof, By energizing the nichrome wire to generate heat, the snow accumulated on the road surface, slope, and roof was heated and melted or the floor was heated (see, for example, Patent Documents 1 to 5).

特公昭42−11249号公報Japanese Patent Publication No.42-11249 特公昭61−47247号公報Japanese Examined Patent Publication No. 61-47247 特開2001−20210号公報JP 2001-20210 A 特開2002−317527号公報JP 2002-317527 A 特開平10−185221号公報Japanese Patent Laid-Open No. 10-185221

上記従来の方法では広範囲の路面や法面、あるいは床や屋根の加熱を行うには、ニクロム線配線区を多数設けておき、各配線区毎に通電して加熱を行うことが必要であり、構造が複雑で工事に手間がかゝりコスト高になる。またニクロム線が断線するおそれもあり、耐久性に乏しい。更に加熱速度が遅いと云う問題点もある。   In the above conventional method, in order to heat a wide range of road surfaces and slopes, or floors and roofs, it is necessary to provide a large number of nichrome wire wiring sections and to heat by heating each wiring section. However, it is complicated and labor is required for construction, resulting in high costs. Moreover, there is a possibility that the nichrome wire is broken, and the durability is poor. There is also a problem that the heating rate is slow.

本発明は上記従来の課題を解決するための手段として、電気炉酸化スラグ溶融物に電磁波加熱性を向上させるための添加物を添加した上で空気または酸素を吹込んで強制酸化処理を施し、そして急冷固化することによって得られた改質電気炉酸化スラグの粒状物または破砕物を水硬性無機材料または合成樹脂および/またはゴムおよび/またはアスファルトまたは陶磁器原料であるバインダーで結着した電磁波加熱性組成物からなる建築物の床材料または屋根材であって、該床材料または屋根材は電磁波を放射すことによって非接触的に発熱する床材料または屋根材を提供するものである。
該電磁波加熱性を向上させるための添加物とはFe ,Ba ,Co ,Ni ,Cr ,Cu ,Mn ,Sr ,Zn およびこれらの金属の酸化物または加熱により酸化物を与える金属化合物であることが望ましい。
更に本発明にあっては上記床材料または屋根材に電磁波を放射することによって該床材料または屋根材を非接触的に加熱する床材料または屋根材の加熱方法を提供するものである。
In the present invention, as means for solving the above-mentioned conventional problems, an additive for improving electromagnetic wave heating property is added to an electric furnace oxidation slag melt, and then forced oxidation treatment is performed by blowing air or oxygen, and Electromagnetic heating composition obtained by binding granulated or crushed material of reformed electric furnace oxidation slag obtained by rapid solidification with hydraulic inorganic material or synthetic resin and / or rubber and / or asphalt or ceramic raw material binder a flooring material or roofing material for buildings made of things, the bed material or roofing material is to provide a flooring material or roofing material generates heat contactlessly by that radiate electromagnetic waves.
The additive for improving the electromagnetic wave heating property is Fe, Ba, Co, Ni, Cr, Cu, Mn, Sr, Zn and oxides of these metals or metal compounds which give oxides by heating. desirable.
Furthermore, the present invention provides a method for heating a floor material or a roof material, which heats the floor material or the roof material in a non-contact manner by radiating electromagnetic waves to the floor material or the roof material.

〔作用〕
電気炉酸化スラグの粒状物または破砕物は、他のフェライト系無機質に比べて非常に安価であり、かつ耐化学性があり殆ど変質しないので実用性が高い。そして電磁波を及ぼせば発熱する。即ち非接触的に発熱させることが出来るから、配線、結線等が不要である。
本発明では、該電気炉酸化スラグとして電気炉酸化スラグ溶融物に電磁波加熱性を向上させるための添加物を添加した上で空気または酸素を吹込んで強制酸化処理を施し、そして急冷固化することによって得られた改質電気炉酸化スラグを使用するから、電磁波加熱性が更に向上し、小さな電力で高温度の加熱が可能になる。
[Action]
Granules or crushed materials of electric furnace oxidation slag are very cheap compared to other ferrite minerals, have chemical resistance and hardly change in quality, and are highly practical. When electromagnetic waves are applied, it generates heat. That is, since heat can be generated in a non-contact manner, wiring, connection, etc. are unnecessary.
In the present invention, an additive for improving electromagnetic wave heating property is added to the electric furnace oxidation slag melt as the electric furnace oxidation slag, and then forced oxidation treatment is performed by blowing air or oxygen, followed by rapid solidification. Since the obtained reformed electric furnace oxidation slag is used, electromagnetic wave heating property is further improved, and heating at a high temperature is possible with a small electric power.

〔発明の効果〕
本発明では、上記組成物中のバインダーによって結着されている改質電気炉酸化スラグ粒状物または破砕物を、電磁波によって加熱するから、広範囲にかつ急速に該組成物を加熱することが出来る。またニクロム線等を配線する必要もなく、非接触的に加熱が行われるので建築物の床や屋根材の加熱構造も非常に簡単になる。
〔The invention's effect〕
In the present invention, the reformed electric furnace oxidation slag granular material or crushed material bound by the binder in the composition is heated by electromagnetic waves, so that the composition can be heated widely and rapidly. In addition, there is no need to wire a nichrome wire or the like, and heating is performed in a non-contact manner, so that the heating structure for the floor of the building and the roofing material becomes very simple.

本発明を以下に詳細に説明する。
〔水硬性無機粉体〕
本発明でバインダーとして使用される水硬性無機粉体としては、ポルトランドセメント、アルミナセメント、高炉セメント等のセメント類あるいは高炉急冷スラグ微粉末、電気炉急冷還元スラグ微粉末、該セメント類にケイ砂、ケイ石粉、シリカヒューム、高炉スラグ微粉末、フライアッシュ、シラスバルーン、パーライト、ベントナイト、ケイソウ土等のケイ酸含有物質を添加した混合粉体等が例示される。
The present invention is described in detail below.
[Hydraulic inorganic powder]
Examples of the hydraulic inorganic powder used as a binder in the present invention include Portland cement, alumina cement, blast furnace cement and other cements or blast furnace quenching slag fine powder, electric furnace quenching reduced slag fine powder, silica sand to the cement, Examples thereof include silica powder, silica fume, blast furnace slag fine powder, fly ash, shirasu balloon, pearlite, bentonite, and mixed powder to which a silicate-containing substance such as diatomaceous earth is added.

〔合成樹脂〕
本発明でバインダーとして使用される合成樹脂としては、例えばポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−プロピレンターポリマー、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、フッ素樹脂、熱可塑性アクリル樹脂、熱可塑性ポリエステル、熱可塑性ポリアミド、熱可塑性ウレタン樹脂、アクリロニトリル−ブタジエン共重合体、スチレン−ブタジエン共重合体、アクリロニトリル−ブタジエン−スチレン共重合体等の熱可塑性樹脂、ウレタン樹脂、メラミン樹脂、熱硬化型アクリル樹脂、尿素樹脂、フェノール樹脂、エポキシ樹脂、熱硬化型ポリエステル等のような熱硬化性樹脂等が例示されるが、更に上記合成樹脂を生成するウレタン樹脂プレポリマー、エポキシ樹脂プレポリマー、メラミン樹脂プレポリマー、尿素樹脂プレポリマー、フェノール樹脂プレポリマー、ジアリルフタレートプレポリマー、アクリルオリゴマー、多価イソシアナート、メタクリルエステルモノマー、ジアリルフタレートモノマー等の合成樹脂前躯体が使用されてもよい。
上記合成樹脂および/または合成樹脂前躯体は二種以上混合使用されてもよい。
[Synthetic resin]
Examples of the synthetic resin used as a binder in the present invention include polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-propylene terpolymer, ethylene-vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, polystyrene, Thermoplastics such as vinyl acetate, fluororesin, thermoplastic acrylic resin, thermoplastic polyester, thermoplastic polyamide, thermoplastic urethane resin, acrylonitrile-butadiene copolymer, styrene-butadiene copolymer, acrylonitrile-butadiene-styrene copolymer Examples include thermosetting resins such as resins, urethane resins, melamine resins, thermosetting acrylic resins, urea resins, phenol resins, epoxy resins, thermosetting polyesters, etc. resin Synthetic resin precursors such as repolymers, epoxy resin prepolymers, melamine resin prepolymers, urea resin prepolymers, phenol resin prepolymers, diallyl phthalate prepolymers, acrylic oligomers, polyvalent isocyanates, methacrylic ester monomers, diallyl phthalate monomers are used. May be.
Two or more of the above synthetic resins and / or synthetic resin precursors may be used in combination.

〔ゴム〕
本発明でバインダーとして使用されるゴムとしては、例えばアクリルゴム、ブチルゴム、ケイ素ゴム、ウレタンゴム、フッ化物系ゴム、多硫化物系ゴム、グラフトゴム、ブタジエンゴム、イソプレンゴム、クロロプレンゴム、ポリイソブチレンゴム、ポリブテンゴム、イソブテン−イソプレンゴム、アクリレート−ブタジエンゴム、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム、ピリジン−ブタジエンゴム、スチレン−イソプレンゴム、アクリロニトリル−クロロプレンゴム、スチレン−クロロプレンゴム等の合成ゴムや天然ゴム、スチレン−ブタジエン−スチレン共重合体、スチレン−イソプレン−スチレン共重合体、スチレン−水素添加ポリオレフィン−スチレン共重合体等のスチレン系熱可塑性エラストマーやブタジエン−スチレンプロック共重合体、スチレン−ゴム中間ブロック−スチレン共重合体等のブロック共重合体等のエラストマーが例示される。
上記ゴムおよび/またはエラストマーは二種以上混合使用されてもよい。
[Rubber]
Examples of the rubber used as the binder in the present invention include acrylic rubber, butyl rubber, silicon rubber, urethane rubber, fluoride rubber, polysulfide rubber, graft rubber, butadiene rubber, isoprene rubber, chloroprene rubber, and polyisobutylene rubber. Synthetic rubber such as polybutene rubber, isobutene-isoprene rubber, acrylate-butadiene rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, pyridine-butadiene rubber, styrene-isoprene rubber, acrylonitrile-chloroprene rubber, styrene-chloroprene rubber, and natural rubber Styrene thermoplastic elastomers such as styrene-butadiene-styrene copolymer, styrene-isoprene-styrene copolymer, styrene-hydrogenated polyolefin-styrene copolymer, and pig Ene - styrene Proc copolymer, styrene - rubber midblock - elastomer block copolymers such as styrene copolymers.
Two or more of the above rubbers and / or elastomers may be used in combination.

〔アスファルト〕
本発明でバインダーとして使用されるアスファルトとしては、例えばブローンアスファルト、アスファルトコンパウンド、ストレートアスファルト、タール、ピッチ等の瀝青質等、如何なる種類のアスファルトも含まれ、これらの二種以上の混合物であつてもよい。
〔asphalt〕
Asphalt used as a binder in the present invention includes, for example, any type of asphalt such as blown asphalt, asphalt compound, straight asphalt, tar, pitch and other bitumen, and a mixture of two or more of these types. Good.

〔陶磁器原料〕
本発明でバインダーとして使用される陶磁器原料としては、カオリン、蛙目粘土、木節粘土、ロウ石質粘土、セッ器粘土、ベントナイト等の可塑性原料、ケイ石、ロウ石、素地粉等の非可塑性原料、長石、陶石、絹雲母、滑石等の媒溶原料等、その他アルミナ、マグネシア、ジルコニア、チタニア、ベリリア、トリア、スピネル、セルシャン等のセラミック原料が例示される。
[Ceramic raw materials]
As the ceramic raw material used as a binder in the present invention, plastic raw materials such as kaolin, glazed clay, kibushi clay, rhodolite clay, setter clay, bentonite, non-plasticity such as silica, wax stone, and ground powder Examples include raw materials, solvent materials such as feldspar, porcelain stone, sericite, and talc, and other ceramic materials such as alumina, magnesia, zirconia, titania, beryllia, tria, spinel, and selshan.

〔バインダー〕
上記バインダーとしての合成樹脂、ゴム、アスファルトは相互に混合されてもよい。例えばアスファルトの耐熱性を改良するためにはゴムが添加され、また合成樹脂の耐衝撃性等を改良するためにはゴム(エラストマー)が添加され、防音性を改良するためにはアスファルトが添加される。
〔binder〕
Synthetic resin, rubber and asphalt as the binder may be mixed with each other. For example, rubber is added to improve the heat resistance of asphalt, rubber (elastomer) is added to improve the impact resistance of synthetic resins, and asphalt is added to improve soundproofing. The

〔電気炉酸化スラグ〕
本発明で使用する電気炉酸化スラグは、通常Ca O10〜26質量%、Si O2 8〜22質量%、Mn O4〜7質量%、Mg O2〜8質量%、Fe O13〜32質量%、Fe23 9〜45質量%、Al23 4〜16質量%、Cr23 1〜4質量%程度含み、更に微量成分としてBa O0.05〜0.20質量%、Ti O2 0.25〜0.70質量%、P2 5 0.15〜0.50質量%、S0.005〜0.085質量%程度含み、安定な鉱物組成を得るためのFe を20〜45質量%程度含むものであり、天然骨材成分に含まれる粘土、有機不純物、塩分を全く含まず、不安定な遊離石灰、遊離マグネシアあるいは鉱物も殆ど含まない。該電気炉酸化スラグは粒状物または破砕物として提供される。
[Electric furnace oxidation slag]
The electric furnace oxidation slag used in the present invention is usually CaO 10 to 26% by mass, SiO2 8 to 22% by mass, MnO 4 to 7% by mass, MgO 2 to 8% by mass, FeO 13 to 32% by mass, Fe. 2 O 3 9 to 45% by mass, Al 2 O 3 4 to 16% by mass, Cr 2 O 3 1 to 4% by mass, BaO 0.05 to 0.20% by mass, TiO 2 0 .25 to 0.70% by mass, P 2 O 5 0.15 to 0.50% by mass, S 0.005 to 0.085% by mass, Fe for obtaining a stable mineral composition 20 to 45% by mass To the extent that it does not contain any clay, organic impurities or salt contained in the natural aggregate component, and contains almost no unstable free lime, free magnesia or minerals. The electric furnace oxidation slag is provided as a granular material or a crushed material.

〔電気炉酸化スラグ粒化法〕
上記電気炉酸化スラグを粒化して粒状物を製造するには、該電気炉酸化スラグの溶融物を高速回転する羽根付きドラムに注入し、該溶融物を該羽根付きドラムによって破砕粒状化し、粒状化した該溶融物を水ミスト雰囲気中で急冷処理する方法が採られる。該羽根付きドラムは複数個配置して複数段の破砕粒状化を行なってもよい。
このようにして得られる電気炉酸化スラグの粒状物は、再酸化が促進されるので、Fe23 系の鉱物を多く含み、かつ急冷により、極微細な粒状物になるため、電磁波加熱性が非常に良好なものとなる。また通常5mm以下の粒径を有し、粒径2.5mm以下のものは略球状であり、比重は3.3〜4.1の範囲にあり、表面にはひび割れ等の欠陥はなく、微細な凹凸を有しまた中空構造のものからなるかまたは中空構造のものを含んでいる。
[Electric furnace oxidation slag granulation method]
In order to granulate the electric furnace oxidation slag, a granular material is produced by injecting a melt of the electric furnace oxidation slag into a bladed drum rotating at high speed, and crushing and granulating the melt with the bladed drum. A method of quenching the melted melt in a water mist atmosphere is employed. A plurality of bladed drums may be arranged to perform a plurality of stages of crushing and granulating.
Since the granular material of the electric furnace oxidation slag obtained in this way promotes re-oxidation, it contains a large amount of Fe 2 O 3 mineral and becomes extremely fine granular material by rapid cooling. Will be very good. Also, the particles having a particle size of 5 mm or less are usually spherical, and the specific gravity is in the range of 3.3 to 4.1, and there are no defects such as cracks on the surface. And have a hollow structure or a hollow structure.

〔電気炉酸化スラグ破砕法〕
上記電気炉酸化スラグ破砕物を製造するには、上記電気炉酸化スラグを溶融状態で耐熱容器中に所定の厚みに流し出し、上から水をかけることによって急冷改質処理が施される。この場合、耐熱容器中のスラグ溶融物の厚さが小さすぎると、水をかける前に自然冷却(徐冷)によって硬化し易くなり、所望の硬度が得られなくなるおそれがあり、また厚さが大きくなり過ぎると、水をかけた場合に水が急激に水蒸気となり、水蒸気爆発の危険がある。望ましいスラグ溶融物の厚さは80mm〜120mmである。
[Electric furnace oxidation slag crushing method]
In order to manufacture the electric furnace oxidized slag crushed material, the electric furnace oxidized slag is poured into a heat-resistant container in a molten state to a predetermined thickness, and subjected to rapid cooling reforming by pouring water from above. In this case, if the thickness of the slag melt in the heat-resistant container is too small, it tends to harden by natural cooling (slow cooling) before applying water, and the desired hardness may not be obtained. If it becomes too large, when water is applied, the water suddenly becomes water vapor and there is a danger of water vapor explosion. The preferred slag melt thickness is 80 mm to 120 mm.

水をかける場合には耐熱容器中のスラグ溶融物のスラグ溶融物の表面に水が溜まらないようにすることが望ましく、水をかける量が多過ぎてスラグ溶融物の表面に水が溜まって水の蒸発潜熱による急冷効果が期待出来なくなる。
上記水をかける量は、スラグ溶融物1トン当たり毎秒200〜400リットル程度が望ましい。
上記急冷によってスラグ溶融物は急速に硬化するが、この際自己破砕によって容器中のスラグ溶融物の厚さ程度の径を有するスラグ原塊が得られる。
When water is applied, it is desirable to prevent water from accumulating on the surface of the slag melt in the heat-resistant container. Too much water is applied and water accumulates on the surface of the slag melt. The rapid cooling effect due to the latent heat of vaporization cannot be expected.
The amount of water applied is preferably about 200 to 400 liters per second per ton of slag melt.
The slag melt is rapidly cured by the rapid cooling, and at this time, a slag ingot having a diameter of about the thickness of the slag melt in the container is obtained by self-crushing.

該スラグ原塊は粗砕機で粗砕され、更に細砕機で細砕される。上記粉砕によって、スラグ塊はスラグ成分のマトリクスと鉱物相との境界で破断し、表面に微細な凹凸が形成される。所望なれば上記破砕物は粗篩機等によって粗分級され、更に細砕機等によって細分級して5〜25mm望ましくは5〜20mmの粗骨材、粒径5〜13mm望ましくは5〜10mmの粗骨材、および5mm以下の細骨材に分ける。   The slag bulk is crushed by a pulverizer and further pulverized by a pulverizer. By the pulverization, the slag lump is broken at the boundary between the slag component matrix and the mineral phase, and fine irregularities are formed on the surface. If desired, the crushed material is coarsely classified by a coarse sieving machine, etc., and further subdivided by a fine pulverizer or the like to give a coarse aggregate of 5 to 25 mm, preferably 5 to 20 mm, and a coarse particle of 5 to 13 mm, preferably 5 to 10 mm Divide into aggregates and fine aggregates of 5mm or less.

上記粗砕および細砕はスラグ原塊が水で濡れたまゝで行ってもよいし、またスラグ原塊を乾燥して粗砕以後の工程を行ってもよいし、あるいはスラグ原塊を粗砕した後に乾燥して細砕以後の工程を行ってもよい。また上記分級工程において、篩を通過しない残分は破砕工程に戻されることが望ましい。
このようにして得られる破砕物は徐冷スラグに較べ、再酸化が促進されるので、Fe23 系の鉱物を多く含み、かつ急冷により、微細な粒状物になるため、電磁波加熱性が非常に良好なものとなり、その比重は水砕品と同様3.3〜4.1の範囲にある。
The above crushing and pulverization may be carried out while the slag block is wet with water, or the slag block may be dried and subjected to the steps after crushing, or the slag block may be crushed. Then, it may be dried to carry out the steps after grinding. Moreover, in the said classification process, it is desirable to return the residue which does not pass a sieve to a crushing process.
Since the crushed material obtained in this way promotes reoxidation as compared with slow-cooled slag, it contains a lot of Fe 2 O 3 minerals and becomes a fine granular material by rapid cooling. It becomes very good, and its specific gravity is in the range of 3.3 to 4.1 like the granulated product.

〔改質電気炉酸化スラグ〕
更に本発明の電気炉酸化スラグには電磁波加熱性を向上させるための添加物を添加する。
上記電磁波加熱性を向上させるための添加物としては、Fe ,Ba ,Co ,Ni ,Cr ,Cu ,Mn ,Sr ,Zn 等の金属あるいはこれら金属を含む合金あるいはこれらの金属の酸化物、水酸化物、塩化物、硫酸塩等の加熱により酸化物を与える化合物である。望ましい添加物としては鉄スクラップ、スケール、BaO屑、硫酸バリウムを含む重晶石等がある。
上記添加物は前記粒化法あるいは破砕法において、電気炉酸化スラグ溶融物に添加されるかあるいは電気炉酸化スラグに混合されて共に溶融される。上記溶融は通常電気溶解炉で行われるが、この時溶融物に空気または酸素を吹込み強制酸化処理を施す。上記強制酸化処理は特にFe O比率が高い破砕法によるスラグに対して有効であり、上記強制酸化処理によってFe23 比率を高めて電磁波加熱性を向上せしめることが出来る。
該改質電気炉酸化スラグも粒状物または破砕物として提供される。
[Reformed electric furnace oxidation slag]
Furthermore, an additive for improving electromagnetic wave heating property is added to the electric furnace oxidation slag of the present invention.
Examples of the additive for improving the electromagnetic wave heating property include metals such as Fe, Ba, Co, Ni, Cr, Cu, Mn, Sr, Zn, alloys containing these metals, oxides of these metals, and hydroxylation. Compounds that give oxides upon heating such as chlorides, chlorides and sulfates. Desirable additives include iron scrap, scale, BaO scrap, barite containing barium sulfate, and the like.
In the granulation method or crushing method, the additive is added to the electric furnace oxidation slag melt or mixed with the electric furnace oxidation slag and melted together. The melting is usually carried out in an electric melting furnace. At this time, air or oxygen is blown into the melt and subjected to forced oxidation treatment. The forced oxidation treatment is effective against slug especially by Fe O ratio is high fracturing, by the forced oxidation treatment Fe 2 O 3 ratio of the can of improving an electromagnetic wave heating resistance enhances.
The reformed electric furnace oxidation slag is also provided as a granular or crushed material.

〔骨材〕
本発明においては、更に細骨材や粗骨材を添加してもよい。上記細骨材は粒径が5mm以下のものであり、このような細骨材としては、例えば上記電気炉酸化スラグ粒状物の粒径5mm以下のもの、粒径5mm以下の砂等が用いられる。
上記細骨材の一部に代えて、本発明では粒径5〜25mmの砕石、砂利等の粗骨材を使用してもよい。
〔aggregate〕
In the present invention, fine aggregate and coarse aggregate may be further added. The fine aggregate has a particle size of 5 mm or less. As such fine aggregate, for example, the electric furnace oxidation slag granular material having a particle size of 5 mm or less, sand having a particle size of 5 mm or less, and the like are used. .
Instead of a part of the fine aggregate, coarse aggregate such as crushed stone or gravel having a particle diameter of 5 to 25 mm may be used in the present invention.

〔減水剤〕
バインダーとして水硬性無機粉末を使用する場合、上記電気炉酸化スラグ粒状物または破砕物と、上記水硬性無機粉末との混合物には、更に減水剤を添加することが好ましい。
本発明に使用される減水剤としては、AE減水剤、高性能AE減水剤等が例示される。
[Water reducing agent]
When hydraulic inorganic powder is used as a binder, it is preferable to add a water reducing agent to the mixture of the electric furnace oxidation slag granular material or crushed material and the hydraulic inorganic powder.
Examples of the water reducing agent used in the present invention include an AE water reducing agent and a high performance AE water reducing agent.

〔増粘剤〕
本発明においてバインダーとして合成樹脂エマルジョンやゴムラテックスを使用する場合には、上記電気炉酸化スラグ粒状物または破砕物とバインダーとの混合物の粘度、またバインダーが水硬性無機粉末の場合には上記電気炉酸化スラグ粒状物または破砕物との混合物、あるいは該混合物に減水剤を混合した混合物を主体とする粉末組成物を水と混練した際の粘度を調節するために増粘剤を使用してもよい。例えばバインダーが水硬性無機粉末の場合、水との混練物がブリージング試験でブリージング率3%を越える場合、これを3%以下にするために増粘剤を使用する。上記増粘剤としては、例えばニカワ、ゼラチン、カゼイン、澱粉、変性澱粉、酸化澱粉、デキストリン、アラビアゴム、アルギン酸ソーダ、ポリビニルアルコール、カルボキシメチルセルロース、メチルセルロース、ハイドロキシエチルセルロース、ポリアクリル酸ソーダ、ポリメタクリル酸ソーダ、ポリアクリルアミド、ポリメタクリルアミド、ポリビニルメチルエーテル、酢酸ビニル−マレイン酸共重合体、スチレン−マレイン酸共重合体、ポリビニルピロリドン、ポリアクリル酸エステル部分鹸化物、ポリメタクリル酸エステル部分鹸化物等の水溶性高分子がある。
[Thickener]
In the present invention, when a synthetic resin emulsion or rubber latex is used as the binder, the viscosity of the electric furnace oxidation slag granule or mixture of the crushed material and the binder, or the electric furnace when the binder is a hydraulic inorganic powder, is used. A thickener may be used to adjust the viscosity when kneading with water a powder composition mainly composed of a mixture of oxidized slag granules or crushed material, or a mixture obtained by mixing a water reducing agent in the mixture. . For example, when the binder is a hydraulic inorganic powder, if the kneaded product with water exceeds 3% in the breathing test, a thickener is used to reduce this to 3% or less. Examples of the thickener include glue, gelatin, casein, starch, modified starch, oxidized starch, dextrin, gum arabic, sodium alginate, polyvinyl alcohol, carboxymethylcellulose, methylcellulose, hydroxyethylcellulose, sodium polyacrylate, and sodium polymethacrylate. , Polyacrylamide, polymethacrylamide, polyvinyl methyl ether, vinyl acetate-maleic acid copolymer, styrene-maleic acid copolymer, polyvinyl pyrrolidone, polyacrylate partial saponified product, polymethacrylate partial saponified product, etc. There are functional polymers.

〔配合、成形〕
本発明においてバインダーが水硬性無機材料の場合、通常電気炉酸化スラグ粒状物または破砕物100質量部に対して水硬性無機粉末15〜60質量部、減水剤および/または増粘剤0.01〜3.0質量部が混合される。水硬性無機粉末の添加量が60質量部を越えると発熱性が悪くなり、15質量部を下回るとバインダーの結着力が小さくなり、成形物の強度が充分発現しなくなる。
[Formulation, molding]
In the present invention, when the binder is a hydraulic inorganic material, usually 15 to 60 parts by mass of a hydraulic inorganic powder, a water reducing agent and / or a thickener 0.01 to 100 parts by mass of an electric furnace oxidation slag granule or crushed material. 3.0 parts by weight are mixed. When the addition amount of the hydraulic inorganic powder exceeds 60 parts by mass, the exothermic property is deteriorated, and when it is less than 15 parts by mass, the binding force of the binder is reduced, and the strength of the molded article is not sufficiently exhibited.

上記粉末混合物100質量部に対して水5〜25質量部を添加混練し、該混練物を型枠中に充填し、常温あるいは所望なれば蒸気あるいは電磁波等によって加熱養生することによって硬化せしめる。成形物の形状は、プレート状、スラブ状、ブロック状等用途に応じて種々な形状とされる。
更に上記混練物は型枠に充填されることなく、建物の床上に直接流し出されたり、あるいは壁表面に直接塗布されてもよい。
5 to 25 parts by mass of water is added and kneaded with respect to 100 parts by mass of the powder mixture, the kneaded product is filled in a mold, and cured by heating and curing at normal temperature or with steam or electromagnetic waves if desired. The shape of the molded product is various shapes such as a plate shape, a slab shape, and a block shape.
Furthermore, the kneaded material may be poured directly on the floor of the building without being filled in the formwork, or directly applied to the wall surface.

本発明においてバインダーが合成樹脂および/またはゴムの場合、通常電気炉酸化スラグ粒状物または破砕物100質量部に対して合成樹脂および/またはゴムが10〜100質量部混合される。合成樹脂および/またはゴムの添加量が100質量部を越えると発熱性が悪くなり、10質量部を下回るとバインダーの結着力が小さくなって、成形物の強度が充分発現しなくなる。   In the present invention, when the binder is a synthetic resin and / or rubber, 10 to 100 parts by mass of the synthetic resin and / or rubber is usually mixed with 100 parts by mass of the electric furnace oxidation slag granular material or crushed material. When the addition amount of the synthetic resin and / or rubber exceeds 100 parts by mass, the heat build-up becomes worse, and when the addition amount is less than 10 parts by mass, the binding force of the binder becomes small, and the strength of the molded product is not sufficiently developed.

上記合成樹脂および/またはゴムは通常粉状、粒状、エマルジョンまたはラテックス、有機溶剤溶液として提供される。上記合成樹脂および/またはゴムが粉状または粒状の場合は電気炉酸化スラグ粒状物または破砕物と混合し、所望なれば加熱溶融攪拌し、該混合物を射出成形、押出成形、カレンダー成形、スタンピング成形等の方法で成形するか、あるいは該混合物を押出機によって押出してペレット化(粒状化)し、該ペレットを射出成形、押出成形、カレンダー成形、スタンピング成形等の方法で成形する。更に押出成形やカレンダー成形によってシート状に成形した場合、所望なれば更に真空および/または圧空成形やプレス成形によって所望の形状に成形する。   The synthetic resin and / or rubber is usually provided as a powder, granule, emulsion or latex, or an organic solvent solution. When the above synthetic resin and / or rubber is powdery or granular, it is mixed with electric furnace oxidation slag granular material or crushed material, and if desired, heated, melted and stirred, and the mixture is injection molded, extruded, calendered, stamped. The mixture is extruded by an extruder and pelletized (granulated), and the pellet is formed by injection molding, extrusion molding, calendar molding, stamping molding, or the like. Further, when formed into a sheet by extrusion molding or calendar molding, if desired, it is further molded into a desired shape by vacuum and / or pressure forming or press molding.

上記合成樹脂および/またはゴムがエマルジョンまたはラテックスの場合には、該電気炉酸化スラグ粒状物または破砕物を添加混合し、通常キャスティング法により成形する。更にキャスティング法によってシート状に成形したものを真空および/または圧空成形やプレス成形等によって所望の形状に成形してもよい。   When the synthetic resin and / or rubber is an emulsion or latex, the electric furnace oxidation slag granules or crushed material is added and mixed, and usually molded by a casting method. Further, a sheet formed by casting may be formed into a desired shape by vacuum and / or pressure forming, press forming, or the like.

液状の合成樹脂前躯体の場合には上記エマルジョンやラテックスと同様にして樹脂化成形される。   In the case of a liquid synthetic resin precursor, it is formed into a resin in the same manner as the emulsion and latex.

本発明においてバインダーがアスファルトの場合、通常電気炉酸化スラグ粒状物または破砕物100質量部に対してアスファルトが20〜50質量部混合される。アスファルトの添加量が50質量部を越えると発熱性が悪くなり、20質量部を下回るとバインダーの結着力が小さくなって、成形物の強度が充分発現しなくなる。   In the present invention, when the binder is asphalt, 20 to 50 parts by mass of asphalt is usually mixed with 100 parts by mass of the electric furnace oxidation slag granular material or crushed material. When the added amount of asphalt exceeds 50 parts by mass, the heat build-up becomes worse, and when it is less than 20 parts by mass, the binding force of the binder becomes small, and the strength of the molded article is not sufficiently developed.

本発明においてバインダーが陶磁器原料の場合、通常電気炉酸化スラグ粒状物または破砕物100質量部に対して該陶磁器原料が10〜40質量部混合される。該陶磁器原料の添加量が40質量部を越えると発熱性が悪くなり、10質量部を下回るとバインダーの結着力が小さくなって、成形物の強度が充分発現しなくなる。   In the present invention, when the binder is a ceramic raw material, usually 10 to 40 parts by mass of the ceramic raw material is mixed with 100 parts by mass of the electric furnace oxidation slag granular material or crushed material. When the amount of the ceramic raw material exceeds 40 parts by mass, the heat build-up becomes worse. When the amount is less than 10 parts by mass, the binder binding force decreases, and the strength of the molded article is not sufficiently exhibited.

〔実施例1〕(電気炉スラグ粒状物の製造)
図1に本発明の電気炉スラグ粒状物(以下スラグ粒状物と略す)(8) を製造する装置を示す。
即ち1500℃前後の電気炉酸化スラグ溶融物(1) は電気溶解炉から取鍋(2) に移され、該取鍋(2) からシューター(3) に移し、該シューター(3) から高速回転する羽根付きドラム(4,5) に注入する。該製鋼スラグ溶融物(1) は該羽根付きドラム(4,5) によって細破砕されて粒状化し、該電気炉酸化スラグ溶融物の粒化物(1A)は急冷チャンバー(6) 内にスプレー装置(7) からスプレーされる水ミストによって急冷される。そしてこのようにして得られたスラグ粒状物(8) は備蓄容器(9) 内に備蓄される。
該スラグ粒状物(8) は略球状の中空体であり、表面にはひび割れ等の欠陥はなく、微細な凹凸が有り、高硬度(モース硬さでマトリックスが6程度、鉱物相が8程度であった。)を有し耐摩耗性に優れており、真比重は3.84、絶乾比重は3.52、耐火度は1100℃で、電磁波加熱性、透磁性、誘電性、耐酸性、耐アルカリ性等にも優れている。
該スラグ粒状物(8) の粒度分布を図2に示す。
[Example 1] (Production of electric furnace slag granules)
FIG. 1 shows an apparatus for producing an electric furnace slag granule (hereinafter abbreviated as slag granule) (8) of the present invention.
That is, the electric furnace oxidation slag melt (1) at around 1500 ° C is transferred from the electric melting furnace to the ladle (2), transferred from the ladle (2) to the shooter (3), and rotated at a high speed from the shooter (3). Pour into the bladed drum (4,5). The steelmaking slag melt (1) is crushed and granulated by the bladed drum (4, 5), and the granulated product (1A) of the electric furnace oxidation slag melt is sprayed into a quenching chamber (6) ( 7) Quenched by water mist sprayed from. And the slag granular material (8) obtained in this way is stored in the storage container (9).
The slag granular material (8) is a substantially spherical hollow body, has no defects such as cracks on the surface, has fine irregularities, and has high hardness (Mohs hardness is about 6 matrix, mineral phase is about 8). And has excellent wear resistance, true specific gravity of 3.84, absolute dry specific gravity of 3.52, fire resistance of 1100 ° C., electromagnetic wave heating property, magnetic permeability, dielectric property, acid resistance, Excellent alkali resistance.
The particle size distribution of the slag granule (8) is shown in FIG.

〔実施例2〕(電気炉スラグ破砕物の製造)
実施例1において電気溶解炉から取鍋(2) に移されたスラグの溶融物に鉄粉および酸化カルシウムと酸化ケイ素とを後添加して次の組成に調節する。
CaO 24.92重量%
SiO2 15.24重量%
Al23 6.72重量%
MnO 5.66重量%
MgO 4.25重量%
Cr23 1.97重量%
TiO2 0.42重量%
BaO 0.07重量%
総Fe 40.75重量%
CaO/SiO2 =1.64
上記スラグ溶融物は約1350℃に加熱されているが、取鍋(2) から耐熱容器(皿型鋼鉄製)に約100mmの厚さに流し出され、直ちにスラグ溶融物1トン当たり毎秒300リットル、スプレーにより散水する。
[Example 2] (Manufacture of electric furnace slag crushed material)
In Example 1, iron powder and calcium oxide and silicon oxide are post-added to the slag melt transferred from the electric melting furnace to the ladle (2) to adjust to the following composition.
CaO 24.92 wt%
SiO 2 15.24% by weight
Al 2 O 3 6.72% by weight
MnO 5.66 wt%
MgO 4.25 wt%
Cr 2 O 3 1.97 wt%
TiO 2 0.42% by weight
BaO 0.07% by weight
Total Fe 40.75 wt%
CaO / SiO 2 = 1.64
The slag melt is heated to about 1350 ° C., but is poured from the ladle (2) into a heat-resistant container (made of plate-shaped steel) to a thickness of about 100 mm, and immediately, 300 liters per second per ton of slag melt, Water spray.

このようにして約100mm径のスラグ原塊が得られ、該スラグ原塊のモース硬さはマトリクスで6、鉱物相で8であった。該スラグ原塊は粗砕機で粗砕され、乾燥機で乾燥後細砕機で細砕される。細砕されたスラグ原塊は次いで粗篩機で粗分級され、更に細篩機で細分級されて、5〜20mm粒径の粗骨材または5〜13mm粒径の粗骨材、5mm以下の細骨材に分けられる。   In this way, a slag bulk having a diameter of about 100 mm was obtained, and the Mohs hardness of the slag bulk was 6 in the matrix and 8 in the mineral phase. The slag bulk is crushed with a crusher, dried with a drier and then pulverized with a crusher. The crushed slag ingot is then coarsely classified by a coarse sieve machine, and further finely classified by a fine sieve machine to obtain a coarse aggregate having a particle diameter of 5 to 20 mm or a coarse aggregate having a particle diameter of 5 to 13 mm, or less than 5 mm. Divided into fine aggregates.

〔実施例3〕(改質電気炉スラグ破砕物の製造)
4.5トンの電気炉酸化スラグ(1) を図3に示す電気溶解炉(10)に投入し、更に鉄スクラップとして1.5トンの銑ダライと125kgの重晶石を加えてランス管(12)から酸素を吹精しつゝ加熱溶融し、得られた溶融物(1A)を図1に示す取鍋(2) に移し、以後実施例2と同様にして改質電気炉酸化スラグ破砕物を得る。
上記改質電気炉酸化スラグ破砕物の化学組成の一例を表1に示す。
[Example 3] (Production of crushed reformed electric furnace slag)
4.5 tons of electric furnace oxidation slag (1) was put into the electric melting furnace (10) shown in Fig. 3, and 1.5 tons of paddy palai and 125 kg of barite were added as iron scrap, and the lance pipe ( 12) Oxygen is blown and melted by heating and melting, and the resulting melt (1A) is transferred to the ladle (2) shown in FIG. Get things.
An example of the chemical composition of the reformed electric furnace oxidized slag crushed material is shown in Table 1.

Figure 0004181573
Figure 0004181573

〔実施例4〕
下記の処方の混合物を調製した。
実施例3の改質電気炉酸化スラグ破砕物(5〜10mm)100質量部
実施例1の電気炉酸化スラグ粒状物(5mm以下) 100質量部
ポルトランドセメント 25 〃
高性能AE減水剤 0.25 〃
メチルセルロース(増粘剤) 0.13 〃
Example 4
A mixture of the following formulation was prepared:
100 parts by mass of reformed electric furnace oxidation slag (5 to 10 mm) of Example 3 Granulated electric furnace oxidation slag (5 mm or less) of Example 1 100 parts by mass Portland cement 25 〃
High performance AE water reducing agent 0.25 〃
Methylcellulose (thickener) 0.13 〃

上記混合物に水12質量部を加え、ミキサーで3分間混練した。該混練物を型枠中に流し込み、コテによって表面を平坦にして常温で3日養生し、水和反応により硬化させた後脱型し、更に25日常温で水和反応させ、厚さ10mm、500×500mm角の板状成形体を成形した。   12 parts by weight of water was added to the above mixture and kneaded for 3 minutes with a mixer. The kneaded product was poured into a mold, the surface was flattened with a trowel, cured at room temperature for 3 days, cured by hydration reaction, demolded, and further hydrated at room temperature for 25 days. A 500 × 500 mm square plate-like molded body was molded.

上記板状成形体を10℃の室内に置き、2.5GHz、100Wの出力の電磁波を30分間放射したところ、放射前の成形体温度10.8℃、放射後の成形体温度38.6℃であった。   The plate-like molded body was placed in a room at 10 ° C., and an electromagnetic wave with an output of 2.5 GHz and 100 W was radiated for 30 minutes. Met.

〔比較例1〕
実施例4において、実施例3の改質電気炉酸化スラグ破砕物に代えて実施例2の電気炉酸化スラグ破砕物(5〜10mm)100質量部を使用し、実施例4と同様にして厚さ10mm、500×500mm角の板状成形体を成形した。
[Comparative Example 1]
In Example 4, instead of the reformed electric furnace oxidized slag crushed material of Example 3, 100 parts by mass of the electric furnace oxidized slag crushed material (5 to 10 mm) of Example 2 was used. A plate-like molded body having a thickness of 10 mm and a size of 500 × 500 mm was molded.

上記板状成形体を10℃の室内に置き、2.5GHz、100Wの出力の電磁波を8分間放射したところ、放射前の成形体温度10.9℃、放射後の成形体温度32.7℃であった。   The plate-like molded body was placed in a room at 10 ° C., and an electromagnetic wave with an output of 2.5 GHz and 100 W was radiated for 8 minutes. Met.

〔実施例5〕
下記の処方の混合物を調製した。
実施例3の改質電気炉酸化スラグ破砕物(5mm以下)100質量部
クロロプレンゴム 60 〃
酸化亜鉛 0.6〃
硫黄 0.3〃
上記混合物は加熱溶融混練され、Tダイを介して厚さ5mmのシートに押出された。
上記シートから500×500mm角の試料を切出し、10℃の室内に置き、2.5GHz、100Wの出力の電磁波を10分間放射したところ、放射前の試料温度10.5℃、放射後5分で30.1℃、放射後10分で41.3℃であった。
Example 5
A mixture of the following formulation was prepared:
100 parts by mass of reformed electric furnace oxidation slag crushed material (5 mm or less) of Example 3 Chloroprene rubber 60 〃
Zinc oxide 0.6〃
Sulfur 0.3〃
The above mixture was melted and kneaded by heating and extruded into a sheet having a thickness of 5 mm through a T die.
A 500 × 500 mm square sample was cut out from the above sheet and placed in a 10 ° C. room, and an electromagnetic wave with an output of 2.5 GHz and 100 W was emitted for 10 minutes. The sample temperature before radiation was 10.5 ° C., and 5 minutes after radiation. The temperature was 30.1 ° C. and 41.3 ° C. 10 minutes after radiation.

〔比較例2〕
実施例5において、実施例3の改質電気炉酸化スラグ破砕物に代えて、実施例1の電気炉酸化スラグ粒状物(5mm以下)100質量部を使用し、実施例5と同様にして厚さ5mm、500×500mm角のシート状試料を切出した。該試料を10℃の室内に置き、2.5GHz、100Wの出力の電磁波を10分間放射したところ、放射前の試料温度10.5℃、放射後5分で29.8℃、放射後10分で38.6℃であった。
[Comparative Example 2]
In Example 5, in place of the reformed electric furnace oxidized slag crushed material of Example 3, 100 parts by mass of the electric furnace oxidized slag granular material (5 mm or less) of Example 1 was used, and the thickness was increased in the same manner as in Example 5. A sheet-like sample having a thickness of 5 mm and a size of 500 × 500 mm was cut out. The sample was placed in a room at 10 ° C., and an electromagnetic wave with an output of 2.5 GHz and 100 W was radiated for 10 minutes. The sample temperature before radiation was 10.5 ° C., 5 minutes after radiation, 29.8 ° C., and 10 minutes after radiation. It was 38.6 degreeC.

〔実施例6〕
下記の処方の混合物を調製した。
実施例1の電気炉酸化スラグ粒状物(5mm以下) 110質量部
実施例3の改質電気炉酸化スラグ破砕物(5〜10mm)100質量部
アスファルト 80 〃
スチレン−ブタジエン−ゴム、 4 〃
上記混合物は100℃に加熱溶融混練され、型枠に流し込んで厚さ10mm、300×300mm角の板状成形体を成形した。
上記成形体を8℃の室内に置き、2.5GHz、100Wの出力の電磁波を10分間放射したところ、放射前の成形体温度8.1℃、放射後5分で33.8℃、10分で45.7℃であった。
Example 6
A mixture of the following formulation was prepared:
110 parts by mass of electric furnace oxidation slag granules (5 mm or less) of Example 1 100 parts by mass of reformed electric furnace oxidation slag (5 to 10 mm) of asphalt 80 ト
Styrene-butadiene-rubber, 4 ゴ ム
The above mixture was melted and kneaded at 100 ° C. and poured into a mold to form a plate-like molded body having a thickness of 10 mm and a 300 × 300 mm square.
The molded body was placed in a room at 8 ° C., and an electromagnetic wave with an output of 2.5 GHz and 100 W was radiated for 10 minutes. The molded body temperature before radiation was 8.1 ° C., and 53.8 minutes after radiation was 33.8 ° C. for 10 minutes. It was 45.7 degreeC.

〔比較例3〕
実施例6において、実施例3の改質電気炉酸化スラグ破砕物に代えて、実施例2の電気炉酸化スラグ破砕物(5〜10mm)100質量部を使用し、実施例6と同様にして厚さ10mm、300×300mm角の板状成形体を成形した。上記成形体を8℃の室内に置き、2.5GHz、100Wの出力の電磁波を10分間放射したところ、放射前の成形体温度8.2℃、放射後5分で30.4℃、放射後10分で42.0℃であった。
[Comparative Example 3]
In Example 6, instead of the reformed electric furnace oxidized slag crushed material of Example 3, 100 parts by mass of the electric furnace oxidized slag crushed material (5 to 10 mm) of Example 2 was used, and the same manner as in Example 6 was performed. A plate-like molded body having a thickness of 10 mm and a 300 × 300 mm square was molded. The molded body was placed in a room at 8 ° C., and an electromagnetic wave with an output of 2.5 GHz and 100 W was radiated for 10 minutes. The molded body temperature before radiation was 8.2 ° C., 30.4 ° C. 5 minutes after radiation, and after radiation. It was 42.0 ° C. in 10 minutes.

〔実施例7〕
下記の処方の混合物を調製した。
実施例3の改質電気炉酸化スラグ粒状物(5mm以下) 100質量部
ポリカーボネート 40 〃
上記混合物は射出成形によって厚さ10mm、300×300mm角のシート状試料を成形した。
上記試料を10℃の室内に置き、2.5GHz、100Wの出力の電磁波を5分間放射したところ、放射前の試料温度10.3℃、放射後3分で27.4℃、5分で35.6℃であった。
Example 7
A mixture of the following formulation was prepared:
Reformed electric furnace oxidation slag granular material of Example 3 (5 mm or less) 100 parts by mass Polycarbonate 40 〃
The mixture was formed by injection molding into a sheet sample having a thickness of 10 mm and a 300 × 300 mm square.
The sample was placed in a room at 10 ° C., and an electromagnetic wave having an output of 2.5 GHz and 100 W was radiated for 5 minutes. The sample temperature before radiation was 10.3 ° C., 37.4 minutes after radiation, 27.4 ° C. and 35 minutes after 5 minutes. It was 6 ° C.

〔比較例4〕
実施例7において、実施例3の改質電気炉酸化スラグ粒状物に代えて、実施例1の電気炉酸化スラグ粒状物(5mm以下)100質量部を使用し、実施例7と同様にして厚さ10mm、300×300mm角のシート状試料を成形した。上記試料を10℃の室内に置き、2.5GHz、100Wの出力の電磁波を5分間放射したところ、放射前の試料温度10.2℃、放射後3分で26.6℃、放射後5分で34.3℃であった。
[Comparative Example 4]
In Example 7, instead of the reformed electric furnace oxidation slag granules of Example 3, 100 parts by mass of the electric furnace oxidation slag granules (5 mm or less) of Example 1 were used, and the thickness was increased in the same manner as in Example 7. A sheet-like sample having a thickness of 10 mm and a size of 300 × 300 mm was formed. The sample was placed in a room at 10 ° C, and an electromagnetic wave with an output of 2.5 GHz and 100 W was emitted for 5 minutes. The sample temperature before radiation was 10.2 ° C, 36.6 minutes after radiation, 26.6 ° C, and 5 minutes after radiation. It was 34.3 degreeC.

〔実施例8〕
下記の処方の混練物を調製した。
実施例3の改質電気炉酸化スラグ粒状物(5mm以下) 100質量部
陶磁器原料* 20 〃
水 10 〃
*陶磁器原料組成
天草陶石 35質量%
カオリン 27 〃
長石 22 〃
蛙目粘土 15 〃
滑石 1 〃
上記混練物は型内で油圧プレスにより30MPaに加圧し、厚さ10mm、300×300mm角の板状生試料を成形した。上記生試料は乾燥後800〜900℃、12時間、素焼きガマで熱処理され、次いで1100〜1200℃、12時間本焼きガマで焼成され陶磁器試料が作成された。
上記試料を10℃の室内に置き、2.5GHz、100Wの出力の電磁波を10分間放射したところ、放射前の試料温度10.1℃、放射後5分で32.1℃、10分で42.3℃であった。
Example 8
A kneaded product having the following formulation was prepared.
Reformed electric furnace oxidation slag granular material of Example 3 (5 mm or less) 100 parts by mass Ceramic raw material * 20 〃
Water 10 〃
* Ceramic raw material composition Amakusa pottery stone 35% by mass
Kaolin 27 〃
22 feldspar
Sasame clay 15 〃
Talc 1 〃
The kneaded product was pressurized to 30 MPa in a mold by a hydraulic press to form a plate-shaped raw sample having a thickness of 10 mm and a 300 × 300 mm square. The raw sample was dried and then heat-treated with an unglazed burr for 12 hours at 800 to 900 ° C., and then baked with a main boil for 12 hours at 1100 to 1200 ° C. to prepare a ceramic sample.
The sample was placed in a room at 10 ° C., and an electromagnetic wave with an output of 2.5 GHz and 100 W was emitted for 10 minutes. The sample temperature before radiation was 10.1 ° C., 5 minutes after radiation, 32.1 ° C. and 42 minutes after 10 minutes. It was 3 ° C.

〔比較例5〕
実施例8において、実施例3の改質電気炉酸化スラグ粒状物に代えて、実施例1の電気炉酸化スラグ粒状物(5mm以下)100質量部を使用し、実施例8と同様にして厚さ10mm、300×300mm角の陶磁器試料を作成した。上記試料を10℃の室内に置き、2.5GHz、100Wの出力の電磁波を10分間放射したところ、放射前の試料温度10.1℃、放射後5分で30.5℃、放射後10分で40.2℃であった。
[Comparative Example 5]
In Example 8, instead of the reformed electric furnace oxidation slag granules of Example 3, 100 parts by mass of the electric furnace oxidation slag granules (5 mm or less) of Example 1 were used, and the thickness was changed in the same manner as in Example 8. A ceramic sample having a length of 10 mm and a size of 300 × 300 mm was prepared. The sample was placed in a room at 10 ° C., and an electromagnetic wave with an output of 2.5 GHz and 100 W was radiated for 10 minutes. The sample temperature before radiation was 10.1 ° C., 5 minutes after radiation, 30.5 ° C., and 10 minutes after radiation. It was 40.2 degreeC.

本発明の電磁波加熱性組成物からなる建築物の床材料や屋根材は、上記組成物中のバインダーによって結着されている電気炉酸化スラグ粒状物または破砕物が、電磁波によって非接触的に広範囲かつ急速に加熱されるので、ニクロム線等を配線する必要もない。   The building floor material and roofing material comprising the electromagnetic wave heating composition of the present invention, the electric furnace oxidation slag granular material or crushed material bound by the binder in the composition, a wide range in a non-contact manner by electromagnetic waves And since it is heated rapidly, there is no need to wire a nichrome wire or the like.

電気炉スラグ粒状物製造装置の説明図Explanatory drawing of electric furnace slag granular material manufacturing equipment 電気炉スラグ粒状物の粒度分布を示すグラフGraph showing the particle size distribution of electric furnace slag granules 電気溶解炉説明図Electric melting furnace illustration

符号の説明Explanation of symbols

8 電気炉スラグ粒状物   8 Electric furnace slag granular material

Claims (3)

電気炉酸化スラグ溶融物に電磁波加熱性を向上させるための添加物を添加した上で空気または酸素を吹込んで強制酸化処理を施し、そして急冷固化することによって得られた改質電気炉酸化スラグの粒状物または破砕物を水硬性無機材料または合成樹脂および/またはゴムおよび/またはアスファルトまたは陶磁器原料であるバインダーで結着した電磁波加熱性組成物からなる建築物の床材料または屋根材であって、該床材料または屋根材は電磁波を放射すことによって非接触的に発熱することを特徴とする建築物の床材料または屋根材The electric furnace oxidation slag melt was subjected to forced oxidation treatment by adding air or oxygen to the additive for improving electromagnetic wave heating, and then rapidly cooled and solidified. A flooring material or a roofing material for a building comprising an electromagnetic wave heating composition in which a granular material or crushed material is bound with a binder that is a hydraulic inorganic material or synthetic resin and / or rubber and / or asphalt or ceramic raw material, the bed material or roofing floor material or roofing of a building, characterized by heating a non-contact manner by that radiate electromagnetic waves. 該電磁波加熱性を向上させるための添加物とはFe ,Ba ,Co ,Ni ,Cr ,Cu ,Mn ,Sr ,Zn およびこれらの金属の酸化物または加熱により酸化物を与える金属化合物である請求項1に記載の建築物の床材料または屋根材The additive for improving the electromagnetic wave heating property is Fe, Ba, Co, Ni, Cr, Cu, Mn, Sr, Zn and oxides of these metals or metal compounds which give oxides by heating. The floor material or roof material of the building according to 1. 請求項1または請求項2記載の床材料または屋根材に電磁波を放射することによって該床材料または屋根材を非接触的に加熱することを特徴とする建築物の床材料または屋根材の加熱方法。 A method for heating a floor material or a roofing material in a building, wherein the flooring material or the roofing material is heated in a non-contact manner by radiating electromagnetic waves to the flooring material or the roofing material according to claim 1. .
JP2005364427A 2005-12-19 2005-12-19 Building floor material or roofing material and method for heating the flooring material or roofing material Expired - Fee Related JP4181573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005364427A JP4181573B2 (en) 2005-12-19 2005-12-19 Building floor material or roofing material and method for heating the flooring material or roofing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005364427A JP4181573B2 (en) 2005-12-19 2005-12-19 Building floor material or roofing material and method for heating the flooring material or roofing material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003273476A Division JP3780269B2 (en) 2003-07-11 2003-07-11 Road surface paving material and road surface heating method

Publications (2)

Publication Number Publication Date
JP2006210329A JP2006210329A (en) 2006-08-10
JP4181573B2 true JP4181573B2 (en) 2008-11-19

Family

ID=36966894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005364427A Expired - Fee Related JP4181573B2 (en) 2005-12-19 2005-12-19 Building floor material or roofing material and method for heating the flooring material or roofing material

Country Status (1)

Country Link
JP (1) JP4181573B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102010161A (en) * 2010-10-29 2011-04-13 清华大学 Method for preventing resin from floating in cementation of radioactive spent resin
KR101234787B1 (en) * 2010-11-10 2013-02-20 주식회사 에코마이스터 Ultra-fast hard hydraulic binder using reduced slag powder and its manufacturing method

Also Published As

Publication number Publication date
JP2006210329A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
JP2006222104A (en) Electromagnetic wave absorbing composition
JP4181573B2 (en) Building floor material or roofing material and method for heating the flooring material or roofing material
JP3780269B2 (en) Road surface paving material and road surface heating method
JP4181574B2 (en) Railroad sleeper material, road or slope covering material, water pipe or water pipe cladding material, aquarium wall material, or ceramic material
JPH0977543A (en) Artificial lightweight aggregate and its production
JP4850777B2 (en) Method for producing steelmaking slag solidified body, and steelmaking slag solidified body
JP3575499B2 (en) Ceramic fine aggregate for concrete
JP4630446B2 (en) INORGANIC CURABLE COMPOSITION AND PROCESS FOR PRODUCING THE SAME, INORGANIC CURED BODY AND PROCESS FOR PRODUCING THE SAME, Gypsum-based Cured Body, and Cement-Based Cured Body
JP2009052875A (en) Floor heating structure
JP4204922B2 (en) Roadbed material and method for manufacturing the same
JP4160288B2 (en) Multilayer porous inorganic molded cured product
JP3997136B2 (en) Heat-resistant block and heat-resistant concrete suitable for cast floors
JP2001342055A (en) Water-pervious ceramic block and its production method
JP2006222105A (en) Process for producing filler containing ferrite, electromagnetic wave heating material, electromagnetic wave shielding material
JP2005320217A (en) Electromagnetic wave shielding material
JP2009002137A (en) Roof material and snow melting type roof structure
JPS5812226B2 (en) Refractories for hot spray repair
JP2000302534A (en) Ceramic block and its production
KR20000043700A (en) Block molded product using steel-making slag and waste vinyl
JP2002160958A (en) Water permeable material and water permeable composite material
JP2001261390A (en) Method of producing artificial light-weight aggregate
JPH11322401A (en) Solidification and formation of ash
JP2003146724A (en) Spray concrete layer
JPH0769743A (en) Thermally insulating castable
JP2592887B2 (en) Inorganic cured product and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080829

R150 Certificate of patent or registration of utility model

Ref document number: 4181573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140905

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees