JP4158426B2 - Light emitting element - Google Patents

Light emitting element Download PDF

Info

Publication number
JP4158426B2
JP4158426B2 JP2002163997A JP2002163997A JP4158426B2 JP 4158426 B2 JP4158426 B2 JP 4158426B2 JP 2002163997 A JP2002163997 A JP 2002163997A JP 2002163997 A JP2002163997 A JP 2002163997A JP 4158426 B2 JP4158426 B2 JP 4158426B2
Authority
JP
Japan
Prior art keywords
light emitting
derivatives
electron transport
transport layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002163997A
Other languages
Japanese (ja)
Other versions
JP2003059669A5 (en
JP2003059669A (en
Inventor
剛 富永
暁 槇山
亨 小濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2002163997A priority Critical patent/JP4158426B2/en
Publication of JP2003059669A publication Critical patent/JP2003059669A/en
Publication of JP2003059669A5 publication Critical patent/JP2003059669A5/ja
Application granted granted Critical
Publication of JP4158426B2 publication Critical patent/JP4158426B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Description

【0001】
【発明の属する技術分野】
本発明は、電気エネルギーを光に変換できる素子であって、表示素子、フラットパネルディスプレイ、バックライト、照明、インテリア、標識、看板、電子写真機、光信号発生器などの分野に利用可能な発光素子に関するものである。
【0002】
【従来の技術】
陰極から注入された電子と陽極から注入された正孔が両極に挟まれた有機蛍光体内で再結合する際に発光するという有機積層薄膜発光素子の研究が近年活発に行われている。この素子は、薄型、低駆動電圧下での高輝度発光、蛍光材料を選ぶことによる多色発光が特徴であり注目を集めている。
【0003】
この研究は、コダック社のC.W.Tangらが有機積層薄膜素子が高輝度に発光することを示して以来(Appl.Phys.Lett.51(12)21,p.913,1987)、多くの研究機関が検討を行っている。コダック社の研究グループが提示した有機積層薄膜発光素子の代表的な構成は、ITOガラス基板上に正孔輸送性のジアミン化合物、発光層である8−ヒドロキシキノリンアルミニウム、そして陰極としてMg:Agを順次設けたものであり、10V程度の駆動電圧で1000cd/m2の緑色発光が可能であった。
【0004】
この有機積層薄膜発光素子の構成については、上記の陽極/正孔輸送層/発光層/陰極の他に、電子輸送層を適宜設けたものが知られている。正孔輸送層とは陽極より注入された正孔を発光層に輸送する機能を有し、一方の電子輸送層は陰極より注入された電子を発光層に輸送する。これらの層を発光層と両極の間に挿入することにより、発光効率、耐久性が向上することが知られている。これらを用いた素子構成の例として、陽極/正孔輸送層/発光層/電子輸送層/陰極、陽極/発光層/電子輸送層/陰極などが挙げられる。
【0005】
【発明が解決しようとする課題】
しかし従来、電子輸送材料は数少ない既存材料を用いても、発光材料と相互作用を起こす、もしくは電子輸送材料自体の発光が混在する等の理由で所望の発光色が得られなかったり、高効率発光が得られるものの耐久性が短い等の問題があった。例えば、特定のフェナントロリン誘導体は高効率発光を示すものの、長時間の通電により結晶化し、薄膜が白濁化する問題がある。また、発光効率および耐久性に比較的良い特性を示すものとして、キノリノール金属錯体やベンゾキノリノール金属錯体があるが、これらはこの材料自身に高い青緑〜黄色での発光能力があるために、電子輸送材料として用いた際に、これらの材料自身の発光が混在して色純度が悪化する。また、イオン化ポテンシャルが5.9eV以上で、分子量が400以上の有機化合物を電子輸送層に用いた例としてキノキサリン誘導体(Macromol.,31,p.6434,1998、Adv.Mater.,11,p.41,2001)があるが、発光層が昇華性を有さない高分子材料を用いており、積層構造がうまく形成されていないため低い発光輝度しか得られていない。
【0006】
本発明は、かかる従来技術の問題を解決し、熱的安定性に優れ、発光効率が高く、高輝度で色純度に優れた発光素子を提供することを目的とするものである。
【0007】
本発明は、少なくとも陽極、発光層、電子輸送層、陰極が順に積層された構造を有する発光素子において、発光層および電子輸送層を主に構成する材料が昇華性を有する有機化合物からなり、電子輸送層を主に構成する材料がイオン化ポテンシャル5.9eV以上かつ分子量400以上の有機化合物であり、該有機化合物がベンゾキノリンあるいはフェナントロリンからなる母骨格を複数含み、複数の母骨格が共役結合、置換もしくは無置換の芳香族炭化水素、置換もしくは無置換の芳香複素環あるいはこれらを混合した基のいずれかにより連結された構造からなる有機化合物を含むことを特徴とする発光素子である。
【0008】
【発明の実施の形態】
本発明において陽極は、光を取り出すために透明であれば酸化錫、酸化インジウム、酸化錫インジウム(ITO)などの導電性金属酸化物、あるいは金、銀、クロムなどの金属、ヨウ化銅、硫化銅などの無機導電性物質、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーなど特に限定されるものでないが、ITOガラスやネサガラスを用いることが特に望ましい。透明電極の抵抗は素子の発光に十分な電流が供給できればよいので限定されないが、素子の消費電力の観点からは低抵抗であることが望ましい。例えば300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、低抵抗品を使用することが特に望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常100〜300nmの間で用いられることが多い。また、ガラス基板はソーダライムガラス、無アルカリガラスなどが用いられ、また厚みも機械的強度を保つのに十分な厚みがあればよいので、0.5mm以上あれば十分である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましいが、SiOなどのバリアコートを施したソーダライムガラスも市販されているのでこれを使用できる。さらに、陽極が安定に機能するのであれば、基板はガラスである必要はなく、例えばプラスチック基板上に陽極を形成しても良い。ITO膜形成方法は、電子線ビーム法、スパッタリング法、化学反応法など特に制限を受けるものではない。
【0009】
陰極は、電子を本有機物層に効率良く注入できる物質であれば特に限定されないが、一般に白金、金、銀、銅、鉄、錫、亜鉛、アルミニウム、インジウム、クロム、リチウム、ナトリウム、カリウム、カルシウム、マグネシウム、セシウム、ストロンチウムなどがあげられる。電子注入効率をあげて素子特性を向上させるためにはリチウム、ナトリウム、カリウム、カルシウム、マグネシウム、セシウム、ストロンチウムまたはこれら低仕事関数金属を含む合金が有効である。しかし、これらの低仕事関数金属は、一般に大気中で不安定であることが多く、例えば、有機層に微量のリチウムやマグネシウム、セシウム(真空蒸着の膜厚計表示で1nm以下)をドーピングして安定性の高い電極を使用する方法が好ましい例として挙げることができるが、フッ化リチウムのような無機塩の使用も可能であることから特にこれらに限定されるものではない。更に電極保護のために白金、金、銀、銅、鉄、錫、アルミニウム、インジウムなどの金属、またはこれら金属を用いた合金、そしてシリカ、チタニア、窒化ケイ素などの無機物、ポリビニルアルコール、塩化ビニル、炭化水素系高分子などを積層することが好ましい例として挙げられる。これらの電極の作製法も抵抗加熱、電子線ビーム、スパッタリング、イオンプレーティング、コーティングなど導通を取ることができれば特に制限されない。
【0010】
発光層とは実際に発光物質が形成される層であり、発光材料は1種類の有機化合物のみから構成されてもよいし、2種以上の有機化合物からなる混合層でもよいが、発光効率、色純度および耐久性の向上の点からは2種以上の有機化合物から構成される方が好ましい。2種以上の有機化合物からなる組み合わせとしてホスト材料とドーパント材料の組み合わせを挙げることができる。この場合、ホスト材料は発光層の薄膜形成能および電荷輸送能を主に担い、一方のドーパント材料は発光能を主に担い、その発光機構にはエネルギー移動型とキャリヤトラップ型が提唱されている。エネルギー移動型では、両極より注入された電荷がホスト層内で再結合して、ホスト材料が励起され、励起ホスト材料からドーパント材料にエネルギー移動が起こり、最終的にドーパント材料からの発光を得るものである。一方のキャリヤトラップ型ではホスト層中を移動してきたキャリヤが直接ドーパント材料上で再結合し、励起されたドーパントが発光するものである。いずれにせよ発光能を担うドーパント材料に溶液状態で高色純度および/あるいは高蛍光量子収率のものを用いることにより、高色純度および/あるいは高効率の発光を得ることができる。さらに、ドーパント材料の添加により膜形成の母体をなすホスト層の膜質が結晶性低減の方向に働く場合があり、この場合には耐久性も向上する。
【0011】
このようなホスト材料とドーパント材料の組み合わせを用いる場合、ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれであってもよい。さらに、ドーパント材料は積層されていても、分散されていても、いずれであってもよい。また、ドーピング量は、多すぎると濃度消光現象が起きるため、ホスト物質に対して10重量%以下で用いることが好ましく、更に好ましくは2重量%以下である。
【0012】
さらに、耐久性向上の観点から発光能は担わずに、膜質変化あるいは過剰なキャリヤをトラップする目的でドーパント材料を添加する場合もある。この場合のドーピング条件についても上記と同様である。
【0013】
単独で発光層を形成する場合の有機化合物あるいはホストおよびドーパント材料の組み合わせにおけるホスト材料としては具体的に以下のものを挙げることができる。アントラセンやピレン、ペリレンなどの縮合環誘導体、ピラジン、ナフチリジン、キノキサリン、ピロロピリジン、ピリミジン、チオフェン、チオキサンテンなどの複素環誘導体、トリス(8−キノリノラト)アルミニウム錯体、などのキノリノール金属錯体、ベンゾキノリノール金属錯体、ビピリジン金属錯体、ローダミン金属錯体、アゾメチン金属錯体、ジスチリルベンゼン誘導体、テトラフェニルブタジエン誘導体、スチルベン誘導体、アルダジン誘導体、クマリン誘導体、フタルイミド誘導体、ナフタルイミド誘導体、ペリノン誘導体、ピロロピロール誘導体、シクロペンタジエン誘導体、イミダゾール誘導体やオキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体などのアゾール誘導体およびその金属錯体、ベンズオキサゾール、ベンズイミダゾール、ベンゾチアゾールなどのベンズアゾール誘導体およびその金属錯体、トリフェニルアミン誘導体やカルバゾール誘導体などのアミン誘導体、メロシアニン誘導体、ポリフィリン誘導体、トリス(2−フェニルピリジン)イリジウム錯体などのりん光材料、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、そして、ポリチオフェン誘導体などが使用できる。
【0014】
ドーパント材料としては、従来から知られている、アントラセン、ペリレンなどの縮合多環芳香族炭化水素、7−ジメチルアミノ−4−メチルクマリンを始めとするクマリン誘導体、ビス(ジイソプロピルフェニル)ペリレンテトラカルボン酸イミドなどのナフタルイミド誘導体、ペリノン誘導体、アセチルアセトンやベンゾイルアセトンとフェナントロリンなどを配位子とするEu錯体などの希土類錯体、ジシアノメチレンピラン誘導体、ジシアノメチレンチオピラン誘導体、マグネシウムフタロシアニン、アルミニウムクロロフタロシアニンなどの金属フタロシアニン誘導体、ポルフィリン誘導体、ローダミン誘導体、デアザフラビン誘導体、クマリン誘導体、オキサジン化合物、チオキサンテン誘導体、シアニン色素誘導体、フルオレセイン誘導体、アクリジン誘導体、キナクリドン誘導体、ピロロピロール誘導体、キナゾリン誘導体、ピロロピリジン誘導体、スクアリリウム誘導体、ビオラントロン誘導体、フェナジン誘導体、アクリドン誘導体、ジアザフラビン誘導体、ピロメテン誘導体およびその金属錯体、フェノキサジン誘導体、フェノキサゾン誘導体、チアジアゾロピレン誘導体、トリス(2−フェニルピリジン)イリジウム錯体、トリス(2−フェニルピリジル)イリジウム錯体、トリス{2−(2−チオフェニル)ピリジル}イリジウム錯体、トリス{2−(2−ベンゾチオフェニル)ピリジル}イリジウム錯体、トリス(2−フェニルベンゾチアゾール)イリジウム錯体、トリス(2−フェニルベンゾオキサゾール)イリジウム錯体、トリスベンゾキノリンイリジウム錯体、ビス(2−フェニルピリジル)(アセチルアセトナート)イリジウム錯体、ビス{2−(2−チオフェニル)ピリジル}イリジウム錯体、ビス{2−(2−ベンゾチオフェニル)ピリジル}(アセチルアセトナート)イリジウム錯体、ビス(2−フェニルベンゾチアゾール)(アセチルアセトナート)イリジウム錯体、ビス(2−フェニルベンゾオキサゾール)(アセチルアセトナート)イリジウム錯体、ビスベンゾキノリン(アセチルアセトナート)イリジウム錯体、白金ポルフィリン錯体などのりん光材料が知られているが、これらは単独で用いてもよいし、複数の誘導体を混合して用いも良い。
【0015】
電子輸送層とは陰極から電子が注入され、さらに電子を輸送することを司る層であり、電子注入効率が高く、注入された電子を効率良く輸送することが望ましい。しかしながら、正孔と電子の輸送バランスを考えた場合に、陽極からの正孔が再結合せずに陰極側へ流れるのを効率よく阻止できる役割を主に果たす場合には、電子輸送能力がそれ程高くなくても、発光効率を向上させる効果は電子輸送能力が高い材料と同等に有する。したがって、本発明における電子輸送層は、正孔の移動を効率よく阻止できる正孔阻止層も同義のものとして含まれる。
【0016】
本発明の電子輸送層を主に構成する材料はイオン化ポテンシャルが5.9eV以上の有機化合物からなる。イオン化ポテンシャルが5.9eV以上であれば、陽極より注入された正孔が発光層内で再結合せずに陰極側に流れるのを効率良く阻止できることができ、発光効率を向上させる。さらに、電子輸送層自体が発光することもないために、発光層のみからの高色純度発光が得られる。5.9eV以上であれば十分であるが、より好ましくは6.0eV以上である。尚、イオン化ポテンシャルの絶対値は測定方法により異なることが報告されているが、本発明では大気雰囲気型紫外線光電子分析装置(AC−1、理研計器(株)製)を用いてITOガラス基板上に蒸着した薄膜を測定した値を採用している。
【0017】
また、本発明の電子輸送層を主に構成する材料は分子量が400以上の有機化合物からなる。分子量が400以上でないと効率よく正孔を阻止できても、電子輸送層が熱的に不安定で結晶化しやすくなり、長時間の通電に対して安定な発光が得られない。分子量が400以上であれば安定な発光が得られるが、さらに好ましくは600以上である。
【0018】
さらに、有機化合物の熱的安定性の指標として、ガラス転移温度が挙げられ、ガラス転移温度が高いほど熱的に安定なアモルファス薄膜を与えることができる。本発明の電子輸送層を主に構成する材料はガラス転移温度が90℃以上であることが好ましく、より好ましくは120℃以上であり、さらに好ましくは150℃以上である。また、結晶化しづらい膜を与えるという観点からは冷結晶化温度が高い方が好ましく、具体的には140℃以上であることが好ましく、より好ましくは170℃以上、さらに好ましくは200℃以上である。さらに、極めて結晶化しづらい膜を与えるという点からは冷結晶化温度が観測されないことが好ましい。ここでいう観測されないとは、試料のガラス転移温度や冷結晶化温度を測定する際に、ある一定の速度で試料を昇温したときの場合であり、ガラス転移温度以上の温度で試料を長時間保持した場合に結晶化が観測されるか否かを意味するものではない。尚、本発明では示差走査熱量計を用いて温度変調DSC法により粉末試料を測定した値を採用している。
【0019】
このような電子輸送層を構成する有機化合物の化学構造としては、チオフェンジオキサイド、ピラゾール、イミダゾール、トリアゾール、テトラゾール、オキサゾール、オキサジアゾール、チアゾール、チアジアゾール、ピリジン、ピリダジン、ピリミジン、ピリミドン、ピラジン、トリアジンなどの芳香複素環やベンゼン、ナフタレン、アントラセン、フェナンスレン、ピレン、スチレン、スチルベンなどの芳香族炭化水素のような電子輸送能を有する母骨格となりうるものやこれらの母骨格にビニル基、カルボニル基、カルボキシル基、アルデヒド基、ニトロ基、シアノ基、ハロゲン、スルホン、リンオキサイドなどの電子輸送能を有する官能基を修飾したものが含まれていればどのような化学構造を有していても良いが、電子輸送能を維持しつつ上記の熱的安定性を有するには該有機化合物が複数の母骨格を含み、複数の母骨格が共役結合、芳香族炭化水素、芳香複素環により連結されていることが好ましい。母骨格は連結に使われる箇所以外が置換されていても無置換でも良い。一方の連結基も同様に連結に使われる箇所以外が置換されていても無置換でも良く、また1種類でもこれらを混合したものでも良い。さらに、高いイオン化ポテンシャル値を得るためには、母骨格に少なくとも1個以上のピリジン環が含まれていることが好ましく、より好ましくはピリジン環がベンゼンあるいはピリジンと縮合したキノリンあるいはナフチリジンであり、さらに好ましくはキノリンがベンゼンやピリジンと縮合したベンゾキノリンやフェナントロリンである。これらの母骨格は連結に使われる箇所以外が置換されていても無置換でも良い。また、ピリジン環以外にもリンオキサイドを同様に好ましい母骨格として挙げることができる。
【0020】
好ましい連結基の具体例として下記に示すものが挙げられる。
【0021】
【化1】

Figure 0004158426
【0022】
【化2】
Figure 0004158426
【0023】
【化3】
Figure 0004158426
【0024】
これらの連結基は、市販のものを入手したり、常法に従って合成することができるが、いくつかの骨格の具体例を以下に記す。
【0025】
9,9’−スピロビフルオレン骨格の合成は、J.Am.Chem.Soc.,vol.52(1930)の第2881頁、特開平7−278537号公報の実施例「A.出発化合物(a)9,9−スピロビフルオレンの合成」などが挙げられる。2−ブロモビフェニルをTHF中で金属マグネシウムを用いてグリニャール化し、次いで室温から50℃で、9−フルオレノンと反応させ、常法で処理し、得られたヒドロキシ体を酢酸に小量の塩酸を加えた中で加熱脱水し、常法で処理する。
【0026】
さらに、9−フルオレノンの代わりに9−キサントンを用いてスピロキサンテンフルオレンが得られ、9−チオキサントンを用いてスピロチオキサンテンフルオレンが得られ、N−ブチル−アクリドンを用いてスピロ−N−ブチル−アクリジンフルオレンが得られ、アンスロンを用いてスピロジヒドロアントラセンフルオレンが得られ、さらにスベロンを用いてスピロジヒドロジベンゾシクロヘプタンフルオレンを得ることができる。
【0027】
9,9’−スピロビ(9H−9−シラフルオレン)骨格の合成は、参考文献としてJ.Am.Chem.Soc.,vol.80(1958)の第1883頁などが挙げられる。2,2’−ジブロモビフェニルをエーテル中で金属リチウムと反応させ、次いで所定の温度で、テトラクロロシランと反応させ、常法で処理し得ることができる。
【0028】
テトラフェニルメタン骨格の合成は、参考文献としてAngew.Chem.Int.Ed.Engl.vol.25(1986)No.12の第1098頁や、Tetrahedron Letters,vol.38(1997)の第1487頁などがあげられる。無溶媒または酢酸溶媒中、トリフェニルメタノールまたはトリフェニルメチルクロライドを、アニリンまたはアニリン塩酸塩と100℃乃至220℃で反応させ、得られた中間体を常法で処理して単離し、次いでエタノール/硫酸の混合溶媒中、−10℃でイソアミルナイトライトと反応させ、ホスフィン酸を加えて加熱還流し、常法で処理する。
【0029】
ヘキサベンゾプロペラン骨格の合成は、参考文献としてLibigs Ann.Chem.,vol.749(1971)の第38頁などが挙げられる。9−フルオレノンを亜りん酸トリエチルと反応させ、メタノールで処理してスピロケトン化合物を得る。次にエーテル中のスピロケトン化合物に2−ブロモビフェニルのリチオ体を所定の温度で反応させ、常法で処理し、得られたヒドロキシ体を酢酸およびメタンスルホン酸を加えた中で加熱脱水し、常法で処理し得ることができる。
【0030】
連結基への母骨格の導入は、母骨格に応じて常法に従い導入することができるが、例えばベンゾキノリンやフェナントロリン母骨格の導入としては、アセチル基のような反応性置換基を導入した後、ベンゾキノリン環あるいはフェナントロリン環を形成する方法や、ヨード基やブロモ基などの反応性置換基を導入した後、ベンゾキノリン環あるいはフェナントロリン環を付加する方法があげられる。
【0031】
アセチル基の導入法は、一般的かつ簡便なフリーデル・クラフツのアシル化があげられる。参考文献としては、特開平7−278537号公報の実施例「A.出発化合物(f)2,2’−ジアセチル−9,9’−スピロビフルオレンを介しての9,9’−スピロビフルオレンからの9,9’−スピロビフルオレン−2,2’−ジカルボン酸」やHelvetiva Chimica Acta,vol.52(1969)第1210頁「Experimenteller Tell 2,2'-diacetyl-9,9'-spirobifluorene(IV)」などがあげられる。連結基を1,2−ジクロロエタン中で50℃で塩化アセチルと塩化アルミニウムと反応させ、定法で処理し、アセチル基を導入することができる。
【0032】
アセチル基からのベンゾキノリン骨格あるいはフェナントロリン骨格の導入法は、参考文献としてJ.Org.Chem.1996,61.第3021頁「1,3-Di(benzo)[h]quinolin-2-yl)benzene]」、Tetrahedron Letters,vol.40(1999).第7321頁スキームなどがあげられる。連結基のアセチル体をジオキサン中で60℃で1−アミノ−2−ナフタレンカルボアルデヒドあるいは8−アミノ−7−キノリンカルボアルデヒドなどの対応するナフタレン誘導体あるいはキノリン誘導体、水酸化カリウムと反応させ、常法で処理する方法である。
【0033】
ヨード基の導入は、参考文献として、日本化学雑誌92巻11号(1971)第1023頁「1.1,1−メチルナフタレンのヨウ素化」やTetrahedron Letters,vol.38(1997)の第1487頁などがあげられる。連結基を80%酢酸中で80℃でヨウ素と過ヨウ素酸2水和物と反応させ、常法で処理するか、あるいは四塩化炭素中で50℃乃至60℃でヨウ素とビス(トリフルオロアセトキシ)ヨードベンゼンと反応させ、常法で処理し、ヨード基を導入することができる。
【0034】
ブロモ基の導入は、参考文献として、特開平7−278537号公報の実施例「A.出発化合物(a)9,9’−スピロビフルオレンの合成」、Angew.Chem.Int.Ed.Engl.25(1986)No.12の第1098頁などがあげられる。連結基を室温で臭素と反応させ、常法で処理し、ブロモ基を導入することができる。
【0035】
ヨード基、ブロモ基からのベンゾキノリン骨格あるいはフェナントロリン骨格の導入としては、連結基のヨード体またはブロモ体を金属リチウムでリチオ化し、次いで対応する無水ベンゾキノリンあるいは無水フェナントロリンと反応させて、水、二酸化マンガンで処理する方法がある。
【0036】
さらに、連結基へのベンゾキノリン骨格あるいはフェナントロリン骨格の導入は、上記のようにまず連結基を合成し、そこに反応性置換基を導入する方法だけでなく、連結基を合成する際に反応性置換基を含んだ原料を用いることにより、反応性置換基を導入させた連結基を直接得てもよい。例えば、下記に示すアセチル基を導入した連結基の合成については、2,2’−ブロモビフェニルに4−アセチルボロン酸を鈴木カップリング(参考文献:Chem.Rev.,vol.95(1995)の第2457頁)の条件で反応させることにより得ることができる。
【0037】
【化4】
Figure 0004158426
【0038】
本発明における電子輸送層は上記有機化合物一種のみに限る必要はなく、複数の材料を混合あるいは積層して層を形成してもよい。さらに、それ自身は電子輸送能を有さないが、電子輸送層全体の輸送能や熱的安定性、電気化学的安定性の向上など種々の目的で有機化合物や無機化合物、金属錯体を電子輸送材料に添加して電子輸送層を形成しても良い。
【0039】
以上の発光層および電子輸送層を主に構成する有機化合物は昇華性を有する。ここでいう昇華性とは、固体が液体を経ずに気化するという厳密な意味ではなく、真空中で加熱したときに分解することなく揮発し、薄膜形成が可能であるという広義の意味で用いている。本発明における発光素子は積層構造を有するが、昇華性を有する有機化合物であれば真空蒸着法などのドライプロセスにより積層構造の形成が容易である。また、発光層内にドーピング層を形成する場合においても、ホスト材料との共蒸着法やホスト材料と予め混合してから同時に蒸着する方法を用いることにより制御性に優れたドーピング層が形成できる。さらに、マトリクスやセグメント方式で表示するディスプレイなどを構成する際に所望のパターン化された発光を得る必要があるが、昇華性を有する有機化合物であればドライプロセスでのパターニング形成により容易にパターニングできる。
【0040】
また、本発明における発光層および電子輸送層を主に構成する材料とは、各層の薄膜状態の性質がその材料により決定されているということである。例えばホストおよびドーパント材料の組み合わせからなる発光層では、発光層を主に構成する材料とはホスト材料のことを意味する。
【0041】
本発明における発光素子は、正孔および電子が発光層内で効率よく再結合させる目的から陽極と発光層の間に、さらに正孔輸送層を有することが好ましい。正孔輸送層とは陽極から正孔が注入され、さらに正孔を輸送することを司る層であり、正孔輸送性材料として具体的にはN,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−4,4’−ジフェニル−1,1’−ジアミン、N,N’−ビス(1−ナフチル)−N,N’−ジフェニル−4,4’−ジフェニル−1,1’−ジアミンなどのトリフェニルアミン類、ビス(N−アリルカルバゾール)またはビス(N−アルキルカルバゾール)類などのカルバゾール誘導体、ピラゾリン誘導体、スチルベン系化合物、ジスチリル誘導体、ヒドラゾン系化合物、オキサジアゾール誘導体やフタロシアニン誘導体、ポルフィリン誘導体に代表される複素環化合物、ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリビニルカルバゾール、ポリシランなどが挙げられるが、素子作製に必要な薄膜を形成し、陽極から正孔が注入できて、さらに正孔を輸送できる化合物であれば特に限定されるものではない。これらは単独で用いてもよいし、複数の誘導体を混合あるいは積層して用いて層を形成しても良い。さらに、それ自身は正孔輸送能を有さないが、正孔輸送層全体の輸送能や熱的安定性、電気化学的安定性の向上など種々の目的で有機化合物や無機化合物、金属錯体を正孔輸送材料に添加して正孔輸送層を形成しても良い。
【0042】
各層の形成方法は、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、コーティング法など特に限定されるものではないが、通常は、抵抗加熱蒸着、電子ビーム蒸着が特性面で好ましい。層の厚みは、発光物質の抵抗値にもよるので限定することはできないが、1〜1000nmの間から選ばれる。
【0043】
電気エネルギーとは主に直流電流を指すが、パルス電流や交流電流を用いることも可能である。電流値および電圧値は特に制限はないが、素子の消費電力、寿命を考慮するとできるだけ低いエネルギーで最大の輝度が得られるようにするべきである。
【0044】
本発明におけるマトリクスとは、表示のための画素が格子状に配置されたものをいい、画素の集合で文字や画像を表示する。画素の形状、サイズは用途によって決まる。例えばパソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられるし、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法としては、線順次駆動方法やアクティブマトリックスのどちらでもよい。線順次駆動の方が構造が簡単であるという利点があるが、動作特性を考慮した場合、アクティブマトリックスの方が優れる場合があるので、これも用途によって使い分けることが必要である。
【0045】
本発明におけるセグメントタイプとは、予め決められた情報を表示するようにパターンを形成し、決められた領域を発光させることになる。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示、自動車のパネル表示などがあげられる。そして、前記マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。
【0046】
本発明の発光素子はバックライトとしても好ましく用いられる。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ装置、自動車パネル、表示板、標識などに使用される。特に液晶表示装置、中でも薄型化が課題となっているパソコン用途のバックライトとしては、従来方式のものが蛍光灯や導光板からなっているため薄型化が困難であることを考えると、本発明における発光素子を用いたバックライトは薄型、軽量が特徴になる。
【0047】
【実施例】
以下、実施例および比較例をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。
【0048】
実施例1
ITO透明導電膜を150nm堆積させたガラス基板(旭硝子(株)製、15Ω/□、電子ビーム蒸着品)を30×40mmに切断、エッチングを行った。得られた基板をアセトン、”セミコクリン56”で各々15分間超音波洗浄してから、超純水で洗浄した。続いてイソプロピルアルコールで15分間超音波洗浄してから熱メタノールに15分間浸漬させて乾燥させた。この基板を素子を作製する直前に1時間UV−オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が1×10-5Pa以下になるまで排気した。抵抗加熱法によって、まず第一の正孔注入輸送層として銅フタロシアニン(CuPc)を10nm蒸着し、引き続いて第二の正孔輸送層としてN,N’−ジフェニル−N,N’−ビス(1−ナフチル)−1,1’−ジフェニル−4,4’−ジアミン(α−NPD)を50nm積層した。さらに、引き続いて発光層部分をホスト材料としてトリス(8−キノリノラト)アルミニウム(III)(Alq3)、ドーパント材料として2,3,5,6−テトラヒドロ−9−(2−ベンゾチアゾリル)−キノリジノ−[9,9a,1−gh]クマリンを用いて、ドーパントが1.0wt%になるように25nmの厚さに共蒸着した。ついで電子輸送層として下記に示すETM1を25nmの厚さに積層した。引き続いてリチウムを0.2nmドーピングし、最後にアルミニウムを150nm蒸着して陰極とし、5×5mm角の素子を作製した。ETM1のイオン化ポテンシャルは6.01eV、分子量は1025である。この発光素子からは、10Vの印加電圧で、発光ピーク波長が523nmのドーパント材料に基づく緑色発光が得られ、発光輝度は20000cd/m2であった。また、この発光素子の通電後500時間経過後の初期輝度保持率は80%であり、均質な発光面を維持していた。
【0049】
【化5】
Figure 0004158426
【0050】
実施例2
電子輸送層として下記に示すETM2を用いた以外は実施例1と全く同様にして発光素子を作製した。ETM2のイオン化ポテンシャルは6.07eV、分子量は672、ガラス転移温度は219℃である。この発光素子からは、10Vの印加電圧で、発光ピーク波長が523nmのドーパント材料に基づく緑色発光が得られ、発光輝度は38000cd/m2であった。また、この発光素子の通電後500時間経過後の初期輝度保持率は80%であり、均質な発光面を維持していた。
【0051】
【化6】
Figure 0004158426
【0052】
比較例1
電子輸送層としてAlq3を用いた以外は実施例1と全く同様にして発光素子を作製した。Alq3のイオン化ポテンシャルは5.79eV、分子量は459である。この発光素子からは、10Vの印加電圧で、発光ピーク波長が523nmのドーパント材料に基づく緑色発光が得られ、発光輝度は6000cd/m2であった。
【0053】
比較例2
電子輸送層として2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(BCP)を用いた以外は実施例1と全く同様にして発光素子を作製した。BCPのイオン化ポテンシャルは6.2eV、分子量は360である。この発光素子からは、10Vの印加電圧で、発光ピーク波長が523nmのドーパント材料に基づく緑色発光が得られ、発光輝度は12000cd/m2であった。しかしながら、この発光素子の通電後500時間経過後の初期輝度保持率は50%以下であり、発光面にはムラが見られた。
【0054】
実施例3
発光材料として下記に示すEM1を用いた以外は実施例2と全く同様にして発光素子を作製した。この発光素子からは、15Vの印加電圧で、発光ピーク波長が463nmのEM1に基づく青色発光が得られ、発光輝度は8000cd/m2であった。
【0055】
【化7】
Figure 0004158426
【0056】
実施例4
発光層部分を4,4’−ビス(N−カルバゾリル)ビフェニルとトリス(2−フェニルピリジン)イリジウム錯体の混合物(イリジウム錯体の含有量8wt%)を20nmの厚さ積層した以外は実施例2と全く同様にして発光素子を作製した。この発光素子からは6Vの印加電圧で、発光ピーク波長が515nmのイリジウム錯体に基づく緑色発光が得られ、発光輝度は1000cd/m2であった。
【0057】
実施例5
発光層部分をホスト材料として1,4−ジケト−2,5−ビス(3,5−ジメチルベンジル)−3,6−ビス(4−メチルフェニル)ピロロ[3,4−c]ピロール、ドーパント材料として下記に示すEM2を用いて、ドーパントが1.0wt%になるように15nmの厚さに共蒸着した以外は実施例2と全く同様にして発光素子を作製した。この発光素子からは、14Vの印加電圧で、発光ピーク波長618nmのドーパント材料に基づく赤色発光が得られ、発光輝度は10000cd/m2であった。
【0058】
【化8】
Figure 0004158426
【0059】
比較例3
電子輸送層としてAlq3を用いる以外は実施例65と全く同様にして発光素子を作製した。この発光素子からは、10Vの印加電圧で赤色発光は得られず、618nmの発光ピーク波長と共に535nmの付近にショルダーピークを有する橙色発光となった。
【0060】
実施例6(ETM3の合成)
2,2’−ジブロモビフェニル2.5g、3−アセチルフェニルボロン酸3.9g、2M炭酸ナトリウム21ml、テトラキス(トリフェニルホスフィン)パラジウム(0)0.37gを1,2−ジメトキシエタン200mlに加え、10時間窒素下で還流し、鈴木カップリング反応を行い、常法で処理し2,2’−ビス(3−アセチルフェニル)ビフェニル0.57gを得た。このジアセチル体0.57gをジオキサン中60℃で8−アミノ−7−キノリンカルボアルデヒド0.63g、水酸化カリウム0.6gを反応させ、常法で処理し、下記に示すETM3(0.76g)を得た。
1H-NMR(CDCl3,ppm):9.20(d・d,2H)、8.43(d,2H)、8.16(d・d,2H)、7.79(d,2H)、7.61-7.26(m,18H)、7.17(t,2H)、6.77(d,2H)
【0061】
【化9】
Figure 0004158426
【0062】
実施例7
電子輸送層としてETM3を用いる以外は実施例5と全く同様にして発光素子を作製した。ETM3のイオン化ポテンシャルは6.14eV、分子量は663、ガラス転移温度は150℃である。この発光素子からは、14Vの印加電圧で、発光ピーク波長618nmのドーパント材料に基づく赤色発光が得られ、発光輝度は7000cd/m2であった。
【0063】
実施例8
ITO透明導電膜を150nm堆積させたガラス基板(旭硝子(株)製、15Ω/□、電子ビーム蒸着品)を30×40mmに切断、フォトリソグラフィ法によって300μmピッチ(残り幅270μm)×32本のストライプ状にパターン加工した。ITOストライプの長辺方向片側は外部との電気的接続を容易にするために1.27mmピッチ(開口部幅800μm)まで広げてある。得られた基板をアセトン、”セミコクリン56”で各々15分間超音波洗浄してから、超純水で洗浄した。続いてイソプロピルアルコールで15分間超音波洗浄してから熱メタノールに15分間浸漬させて乾燥させた。この基板を素子を作製する直前に1時間UV−オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まずCuPcを10nm蒸着し、引き続いてα−NPDを50nm蒸着した。次に発光層部分をホスト材料としてAlq3、ドーパント材料として2,3,5,6−テトラヒドロ−9−(2−ベンゾチアゾリル)−キノリジノ−[9,9a,1−gh]クマリンを用いて、ドーパントが1.0wt%になるように25nmの厚さに共蒸着した。引き続いて電子輸送層としてETM2を25nmの厚さに積層した。次に厚さ50μmのコバール板にウエットエッチングによって16本の250μmの開口部(残り幅50μm、300μmピッチに相当)を設けたマスクを、真空中でITOストライプに直交するようにマスク交換し、マスクとITO基板が密着するように裏面から磁石で固定した。そしてリチウムを0.5nm有機層にドーピングした後、アルミニウムを200nm蒸着して32×16ドットマトリクス素子を作製した。本素子をマトリクス駆動させたところ、クロストークなく文字表示できた。
【0064】
【発明の効果】
本発明は、熱的安定性に優れ、電気エネルギーの利用効率が高く、色純度に優れた赤色発光素子を提供できるものである。[0001]
BACKGROUND OF THE INVENTION
The present invention is an element that can convert electrical energy into light, and can be used in the fields of display elements, flat panel displays, backlights, lighting, interiors, signs, signboards, electrophotographic machines, optical signal generators, and the like. It relates to an element.
[0002]
[Prior art]
In recent years, research on an organic laminated thin film light emitting device in which light is emitted when electrons injected from a cathode and holes injected from an anode are recombined in an organic phosphor sandwiched between both electrodes has been actively conducted. This element is attracting attention because it is thin, has high luminance emission under a low driving voltage, and multicolor emission by selecting a fluorescent material.
[0003]
This study was conducted by C.D. W. Since Tang et al. Have shown that organic laminated thin-film elements emit light with high brightness (Appl. Phys. Lett. 51 (12) 21, p. 913, 1987), many research institutions have studied. A typical structure of an organic laminated thin film light emitting device presented by a research group of Kodak Company is a hole transporting diamine compound on an ITO glass substrate, 8-hydroxyquinoline aluminum as a light emitting layer, and Mg: Ag as a cathode. It is provided sequentially, and is 1000 cd / m with a driving voltage of about 10V. 2 Green light emission was possible.
[0004]
As for the structure of the organic laminated thin film light-emitting device, one in which an electron transport layer is appropriately provided in addition to the above-mentioned anode / hole transport layer / light-emitting layer / cathode is known. The hole transport layer has a function of transporting holes injected from the anode to the light emitting layer, and one electron transport layer transports electrons injected from the cathode to the light emitting layer. It is known that the luminous efficiency and durability are improved by inserting these layers between the light emitting layer and both electrodes. Examples of device configurations using these include anode / hole transport layer / light-emitting layer / electron transport layer / cathode, anode / light-emitting layer / electron transport layer / cathode, and the like.
[0005]
[Problems to be solved by the invention]
Conventionally, however, even if a few existing electron transport materials are used, the desired light emission color cannot be obtained due to interaction with the light emitting material or the light emission of the electron transport material itself coexisting, or high efficiency light emission. However, there were problems such as short durability. For example, although a specific phenanthroline derivative exhibits high-efficiency luminescence, there is a problem that the thin film becomes turbid due to crystallization by energization for a long time. In addition, there are quinolinol metal complexes and benzoquinolinol metal complexes that exhibit relatively good characteristics in terms of luminous efficiency and durability, but these materials themselves have a high blue-green to yellow light-emitting ability. When used as a transport material, the light purity of these materials themselves is mixed and the color purity deteriorates. Further, as an example in which an organic compound having an ionization potential of 5.9 eV or more and a molecular weight of 400 or more is used for the electron transport layer, a quinoxaline derivative (Macromol., 31, p. 6434, 1998, Adv. Mater., 11, p. 41, 2001), but the light emitting layer uses a polymer material that does not have sublimation properties, and the laminated structure is not well formed, so that only low light emission luminance is obtained.
[0006]
An object of the present invention is to solve such problems of the prior art, and to provide a light emitting device having excellent thermal stability, high luminous efficiency, high luminance and excellent color purity.
[0007]
The present invention relates to a light-emitting element having a structure in which at least an anode, a light-emitting layer, an electron transport layer, and a cathode are sequentially laminated, and the material mainly constituting the light-emitting layer and the electron transport layer is composed of an organic compound having sublimation properties. The material mainly constituting the transport layer is an organic compound having an ionization potential of 5.9 eV or more and a molecular weight of 400 or more, and the organic compound contains a plurality of mother skeletons composed of benzoquinoline or phenanthroline. And an organic compound having a structure in which a plurality of mother skeletons are linked by any of a conjugated bond, a substituted or unsubstituted aromatic hydrocarbon, a substituted or unsubstituted aromatic heterocyclic ring, or a group in which these are mixed. The light emitting element is characterized by the above.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, if the anode is transparent for extracting light, a conductive metal oxide such as tin oxide, indium oxide and indium tin oxide (ITO), or a metal such as gold, silver and chromium, copper iodide, sulfide Inorganic conductive materials such as copper, conductive properties such as polythiophene, polypyrrole, polyaniline polymer Although not particularly limited, it is particularly desirable to use ITO glass or Nesa glass. The resistance of the transparent electrode is not limited as long as a current sufficient for light emission of the element can be supplied. For example, an ITO substrate of 300 Ω / □ or less functions as an element electrode. However, since it is now possible to supply a substrate of about 10 Ω / □, it is particularly desirable to use a low resistance product. The thickness of ITO can be arbitrarily selected according to the resistance value, but is usually used in a range of 100 to 300 nm. Further, soda lime glass, non-alkali glass or the like is used for the glass substrate, and the thickness of the glass substrate only needs to be sufficient to maintain the mechanical strength, so 0.5 mm or more is sufficient. As for the glass material, it is better to use alkali-free glass because it is better to have less ions eluted from the glass. 2 Since soda lime glass with a barrier coating such as is commercially available, it can be used. Furthermore, if the anode functions stably, the substrate does not have to be glass, and the anode may be formed on a plastic substrate, for example. The ITO film forming method is not particularly limited, such as an electron beam method, a sputtering method, or a chemical reaction method.
[0009]
The cathode is not particularly limited as long as it can efficiently inject electrons into the organic layer, but is generally platinum, gold, silver, copper, iron, tin, zinc, aluminum, indium, chromium, lithium, sodium, potassium, calcium. , Magnesium, cesium, strontium and the like. Lithium, sodium, potassium, calcium, magnesium, cesium, strontium, or alloys containing these low work function metals are effective for increasing the electron injection efficiency and improving device characteristics. However, these low work function metals are generally unstable in the atmosphere. For example, the organic layer is doped with a small amount of lithium, magnesium, or cesium (1 nm or less as indicated by a vacuum deposition film thickness meter). A method using a highly stable electrode can be mentioned as a preferable example, but an inorganic salt such as lithium fluoride can also be used, and the method is not particularly limited thereto. Furthermore, for electrode protection, metals such as platinum, gold, silver, copper, iron, tin, aluminum, indium, or alloys using these metals, and inorganic substances such as silica, titania, silicon nitride, polyvinyl alcohol, vinyl chloride, Preferred examples include laminating hydrocarbon polymers. The method for producing these electrodes is not particularly limited as long as conduction can be achieved such as resistance heating, electron beam, sputtering, ion plating, and coating.
[0010]
The light emitting layer is a layer in which a light emitting substance is actually formed, and the light emitting material may be composed of only one kind of organic compound or a mixed layer composed of two or more kinds of organic compounds. From the viewpoint of improvement in color purity and durability, it is preferable to be composed of two or more organic compounds. As a combination of two or more organic compounds, a combination of a host material and a dopant material can be given. In this case, the host material is mainly responsible for the thin film forming ability and charge transporting ability of the light emitting layer, while one of the dopant materials is mainly responsible for the light emitting ability, and an energy transfer type and a carrier trap type are proposed for its light emission mechanism. . In the energy transfer type, charges injected from both electrodes are recombined in the host layer, the host material is excited, energy transfer occurs from the excited host material to the dopant material, and light emission from the dopant material is finally obtained. It is. On the other hand, in the carrier trap type, carriers that have moved through the host layer are recombined directly on the dopant material, and the excited dopant emits light. In any case, high-color purity and / or high-efficiency light emission can be obtained by using a dopant material having a light-emitting ability with high color purity and / or high fluorescence quantum yield in a solution state. Further, the film quality of the host layer that forms the base of film formation may be added in the direction of reducing crystallinity by adding a dopant material. In this case, durability is also improved.
[0011]
When such a combination of a host material and a dopant material is used, the dopant material may be included in the host material as a whole, or may be partially included. Further, the dopant material may be either laminated or dispersed. Further, since the concentration quenching phenomenon occurs when the doping amount is too large, it is preferably used at 10 wt% or less, more preferably 2 wt% or less with respect to the host substance.
[0012]
Furthermore, from the viewpoint of improving durability, a dopant material may be added for the purpose of trapping trapping of a change in film quality or excessive carriers without taking on the luminous ability. The doping conditions in this case are the same as described above.
[0013]
Specific examples of a host material in a combination of an organic compound or a host and a dopant material in the case of forming a light-emitting layer alone can include the following. Condensed ring derivatives such as anthracene, pyrene and perylene, heterocyclic derivatives such as pyrazine, naphthyridine, quinoxaline, pyrrolopyridine, pyrimidine, thiophene, thioxanthene, quinolinol metal complexes such as tris (8-quinolinolato) aluminum complexes, benzoquinolinol metals Complexes, bipyridine metal complexes, rhodamine metal complexes, azomethine metal complexes, distyrylbenzene derivatives, tetraphenylbutadiene derivatives, stilbene derivatives, aldazine derivatives, coumarin derivatives, phthalimide derivatives, naphthalimide derivatives, perinone derivatives, pyrrolopyrrole derivatives, cyclopentadiene derivatives Imidazole derivatives, oxazole derivatives, thiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, etc. Azole derivatives and metal complexes thereof, benzazole derivatives such as benzoxazole, benzimidazole and benzothiazole and metal complexes thereof, amine derivatives such as triphenylamine derivatives and carbazole derivatives, merocyanine derivatives, porphyrin derivatives, tris (2-phenylpyridine) For phosphorescent materials such as iridium complexes and polymer systems, polyphenylene vinylene derivatives, polyparaphenylene derivatives, polythiophene derivatives, and the like can be used.
[0014]
As dopant materials, conventionally known condensed polycyclic aromatic hydrocarbons such as anthracene and perylene, coumarin derivatives such as 7-dimethylamino-4-methylcoumarin, and bis (diisopropylphenyl) perylenetetracarboxylic acid Naphthalimide derivatives such as imide, perinone derivatives, rare earth complexes such as Eu complexes with acetylacetone or benzoylacetone and phenanthroline as ligands, metals such as dicyanomethylenepyran derivatives, dicyanomethylenethiopyran derivatives, magnesium phthalocyanine, aluminum chlorophthalocyanine Phthalocyanine derivatives, porphyrin derivatives, rhodamine derivatives, deazaflavin derivatives, coumarin derivatives, oxazine compounds, thioxanthene derivatives, cyanine dye derivatives, fluoresceins In derivatives, acridine derivatives, quinacridone derivatives, pyrrolopyrrole derivatives, quinazoline derivatives, pyrrolopyridine derivatives, squarylium derivatives, violanthrone derivatives, phenazine derivatives, acridone derivatives, diazaflavin derivatives, pyromethene derivatives and their metal complexes, phenoxazine derivatives, phenoxazone derivatives, thia Diazolopyrene derivatives, tris (2-phenylpyridine) iridium complex, tris (2-phenylpyridyl) iridium complex, tris {2- (2-thiophenyl) pyridyl} iridium complex, tris {2- (2-benzothiophenyl) pyridyl } Iridium Complex, Tris (2-phenylbenzothiazole) iridium Complex, Tris (2-phenylbenzoxazole) iridium Complex, Trisbenzoquinoline Lidium complex, bis (2-phenylpyridyl) (acetylacetonato) iridium complex, bis {2- (2-thiophenyl) pyridyl} iridium complex, bis {2- (2-benzothiophenyl) pyridyl} (acetylacetonate) Iridium complex, bis (2-phenylbenzothiazole) (acetylacetonato) iridium complex, bis (2-phenylbenzoxazole) (acetylacetonato) iridium complex, bisbenzoquinoline (acetylacetonato) iridium complex, platinum porphyrin complex, etc. These phosphorescent materials are known, but these may be used alone or in combination with a plurality of derivatives.
[0015]
The electron transport layer is a layer that administers electrons injected from the cathode and further transports electrons. It is desirable that the electron transport efficiency is high and the injected electrons are transported efficiently. However, considering the transport balance between holes and electrons, if the role of effectively preventing the holes from the anode from flowing to the cathode side without recombination is mainly played, the electron transport capability is much higher. Even if it is not high, the effect of improving the luminous efficiency is equivalent to that of a material having a high electron transport capability. Therefore, the electron transport layer in the present invention includes a hole blocking layer that can efficiently block the movement of holes as the same meaning.
[0016]
The material mainly constituting the electron transport layer of the present invention is made of an organic compound having an ionization potential of 5.9 eV or more. When the ionization potential is 5.9 eV or more, it is possible to efficiently prevent holes injected from the anode from flowing to the cathode side without recombination within the light emitting layer, and to improve the light emission efficiency. Further, since the electron transport layer itself does not emit light, high color purity light emission from only the light emitting layer can be obtained. 5.9 eV or more is sufficient, but more preferably 6.0 eV or more. Although it has been reported that the absolute value of the ionization potential varies depending on the measurement method, in the present invention, an atmospheric atmosphere type ultraviolet photoelectron analyzer (AC-1, manufactured by Riken Keiki Co., Ltd.) is used to place the ionization potential on the ITO glass substrate. The value measured for the deposited thin film is used.
[0017]
The material mainly constituting the electron transport layer of the present invention is composed of an organic compound having a molecular weight of 400 or more. Even if holes can be efficiently blocked unless the molecular weight is 400 or more, the electron transport layer is thermally unstable and easily crystallized, and stable light emission cannot be obtained with a long-time energization. If the molecular weight is 400 or more, stable light emission can be obtained, but more preferably 600 or more.
[0018]
Furthermore, an example of the thermal stability index of the organic compound is a glass transition temperature. A higher glass transition temperature can provide a thermally stable amorphous thin film. The material mainly constituting the electron transport layer of the present invention preferably has a glass transition temperature of 90 ° C. or higher, more preferably 120 ° C. or higher, and further preferably 150 ° C. or higher. Also crystallization difficult From the viewpoint of providing a film, a higher cold crystallization temperature is preferable, specifically 140 ° C. or higher, more preferably 170 ° C. or higher, and further preferably 200 ° C. or higher. Furthermore, extremely crystallized difficult From the standpoint of providing a film, it is preferred that no cold crystallization temperature be observed. What is not observed here is the case where the sample is heated at a certain rate when measuring the glass transition temperature or cold crystallization temperature of the sample. It does not mean whether crystallization is observed when the time is maintained. In the present invention, a value obtained by measuring a powder sample by a temperature modulation DSC method using a differential scanning calorimeter is employed.
[0019]
The chemical structure of the organic compound constituting such an electron transport layer includes thiophene dioxide, pyrazole, imidazole, triazole, tetrazole, oxazole, oxadiazole, thiazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrimidone, pyrazine, triazine. Such as aromatic heterocycles such as benzene, naphthalene, anthracene, phenanthrene, pyrene, styrene, stilbene, and other aromatic hydrocarbons that can be a mother skeleton having an electron transport ability, and these mother skeletons are vinyl groups, carbonyl groups, It may have any chemical structure as long as it contains a modified functional group having an electron transporting ability such as a carboxyl group, an aldehyde group, a nitro group, a cyano group, a halogen, a sulfone, or a phosphorus oxide. , Electron transport ability While lifting the organic compound to have the thermal stability of the comprising a plurality of mother skeletons, a plurality of mother skeleton conjugated, aromatic hydrocarbons, that are connected by an aromatic heterocyclic preferred. The mother skeleton may be substituted or non-substituted except for the part used for linking. Similarly, one linking group may be substituted or non-substituted except for the portion used for linking, or one kind or a mixture thereof may be used. Furthermore, in order to obtain a high ionization potential value, it is preferable that the mother skeleton contains at least one pyridine ring, more preferably quinoline or naphthyridine in which the pyridine ring is condensed with benzene or pyridine, Preferred is benzoquinoline or phenanthroline in which quinoline is condensed with benzene or pyridine. These mother skeletons may be substituted or unsubstituted except for the portion used for the connection. In addition to the pyridine ring, phosphorus oxide can be similarly exemplified as a preferable mother skeleton.
[0020]
Specific examples of preferred linking groups include those shown below.
[0021]
[Chemical 1]
Figure 0004158426
[0022]
[Chemical 2]
Figure 0004158426
[0023]
[Chemical 3]
Figure 0004158426
[0024]
These linking groups can be obtained commercially or synthesized according to conventional methods. Specific examples of some skeletons are described below.
[0025]
Synthesis of 9,9′-spirobifluorene skeleton was carried out according to Example “A. Starting Compound (a) of J. Am. Chem. Soc., Vol. 52 (1930), page 2881, JP-A-7-278537. ) Synthesis of 9,9-spirobifluorene ". 2-Bromobiphenyl was Grignarded with magnesium metal in THF, then reacted with 9-fluorenone at room temperature to 50 ° C., treated in a conventional manner, and the resulting hydroxy compound was added to acetic acid with a small amount of hydrochloric acid. Heat dehydrate in a bath and treat in a conventional manner.
[0026]
Furthermore, 9-xanthone is used instead of 9-fluorenone to obtain spiroxanthenefluorene, 9-thioxanthone is used to obtain spirothioxanthenefluorene, and N-butyl-acridone is used to produce spiro-N-butyl-acridine. Fluorene is obtained, spirodihydroanthracenefluorene is obtained using anthrone, and spirodihydrodibenzocycloheptanefluorene can be obtained using suberone.
[0027]
The synthesis of 9,9′-spirobi (9H-9-silafluorene) skeleton includes, for example, page 1883 of J. Am. Chem. Soc., Vol. 80 (1958). 2,2′-Dibromobiphenyl can be reacted with metallic lithium in ether and then reacted with tetrachlorosilane at a predetermined temperature and treated in a conventional manner.
[0028]
As a reference, the synthesis of the tetraphenylmethane skeleton includes Angew. Chem. Int. Ed. Engl. Vol. 25 (1986) No. 12, page 1098, Tetrahedron Letters, vol. 38 (1997), page 1487, etc. Can be given. In a solvent-free or acetic acid solvent, triphenylmethanol or triphenylmethyl chloride is reacted with aniline or aniline hydrochloride at 100 ° C. to 220 ° C., and the resulting intermediate is isolated by conventional treatment, and then ethanol / The mixture is reacted with isoamyl nitrite in a mixed solvent of sulfuric acid at −10 ° C., added with phosphinic acid, heated to reflux, and treated in a conventional manner.
[0029]
The synthesis of the hexabenzoproperane skeleton includes, for example, page 38 of Libigs Ann. Chem., Vol. 749 (1971). 9-Fluorenone is reacted with triethyl phosphite and treated with methanol to give the spiro ketone compound. Next, the spiro ketone compound in ether is reacted with a 2-bromobiphenyl lithio compound at a predetermined temperature, treated in a conventional manner, and the resulting hydroxy compound is heated and dehydrated with acetic acid and methanesulfonic acid added thereto. Can be processed by law.
[0030]
The introduction of the mother skeleton to the linking group can be introduced in accordance with the conventional method depending on the mother skeleton, but for example, as introduction of the benzoquinoline or phenanthroline mother skeleton, after introducing a reactive substituent such as an acetyl group And a method for forming a benzoquinoline ring or a phenanthroline ring, and a method for adding a benzoquinoline ring or a phenanthroline ring after introducing a reactive substituent such as an iodo group or a bromo group.
[0031]
Examples of the method for introducing an acetyl group include general and simple acylation of Friedel-Crafts. As a reference, Examples “A. Starting compound (f) 9,9′-spirobifluorene via 2,2′-diacetyl-9,9′-spirobifluorene” in JP-A-7-278537 are disclosed. 9,9′-spirobifluorene-2,2′-dicarboxylic acid ”from Helvetiva Chimica Acta, vol. 52 (1969), page 1210“ Experimenteller Tell 2,2′-diacetyl-9,9′-spirobifluorene ( IV) ". The linking group can be reacted with acetyl chloride and aluminum chloride in 1,2-dichloroethane at 50 ° C. and treated in a conventional manner to introduce an acetyl group.
[0032]
A method for introducing a benzoquinoline skeleton or a phenanthroline skeleton from an acetyl group is disclosed in J. Org. Chem. 1996, 61., p. 3021 “1,3-Di (benzo) [h] quinolin-2-yl) benzene”. ], Tetrahedron Letters, vol. 40 (1999), page 7321 scheme. The acetylated form of the linking group is reacted with a corresponding naphthalene derivative such as 1-amino-2-naphthalenecarbaldehyde or 8-amino-7-quinolinecarbaldehyde or a quinoline derivative or potassium hydroxide in dioxane at 60 ° C. It is the method of processing with.
[0033]
The introduction of the iodo group is, as a reference, the Nihon Kagaku Journal Vol. 92, No. 11 (1971), p. 1023 “1.1, iodination of 1-methylnaphthalene” and Tetrahedron Letters, vol. 38 (1997), p. 1487. Etc. The linking group is reacted with iodine and periodic acid dihydrate at 80 ° C. in 80% acetic acid and treated in the usual manner, or iodine and bis (trifluoroacetoxy) at 50 ° C. to 60 ° C. in carbon tetrachloride. ) It can be reacted with iodobenzene and treated in a conventional manner to introduce iodo groups.
[0034]
The introduction of the bromo group was carried out by referring to Examples “A. Synthesis of starting compound (a) 9,9′-spirobifluorene”, Angew. Chem. Int. Ed. Engl. 25 (1986) No. 12, page 1098. The linking group can be reacted with bromine at room temperature and treated in the usual manner to introduce the bromo group.
[0035]
In order to introduce a benzoquinoline skeleton or phenanthroline skeleton from an iodo group or a bromo group, the iodo or bromo form of the linking group is lithiated with lithium metal, and then reacted with the corresponding anhydrous benzoquinoline or anhydrous phenanthroline to form water, There is a method of treating with manganese.
[0036]
Furthermore, the introduction of the benzoquinoline skeleton or phenanthroline skeleton into the linking group is not only a method of first synthesizing the linking group as described above, and then introducing reactive substituents there, but also the reactivity when synthesizing the linking group. By using a raw material containing a substituent, a linking group into which a reactive substituent is introduced may be obtained directly. For example, for the synthesis of a linking group introduced with an acetyl group as shown below, Suzuki coupling with 4-acetylboronic acid on 2,2′-bromobiphenyl (reference: Chem. Rev., vol. 95 (1995)). Page 2457).
[0037]
[Formula 4]
Figure 0004158426
[0038]
The electron transport layer in the present invention need not be limited to only one organic compound, and a layer may be formed by mixing or laminating a plurality of materials. In addition, although it does not have electron transport capability itself, it can transport organic compounds, inorganic compounds, and metal complexes for various purposes such as improving the transport capability, thermal stability, and electrochemical stability of the entire electron transport layer. An electron transport layer may be formed by adding to the material.
[0039]
The organic compound mainly constituting the light emitting layer and the electron transport layer has sublimability. As used herein, sublimation is not a strict meaning that a solid is vaporized without passing through a liquid, but is used in a broad sense that a thin film can be formed by volatilization without being decomposed when heated in a vacuum. ing. Although the light-emitting element in the present invention has a laminated structure, it is easy to form a laminated structure by a dry process such as a vacuum evaporation method if it is an organic compound having sublimation properties. In addition, when a doping layer is formed in the light emitting layer, a doping layer having excellent controllability can be formed by using a co-evaporation method with a host material or a method of pre-mixing with a host material and simultaneously evaporating. Furthermore, it is necessary to obtain a desired patterned light emission when configuring a display that displays in a matrix or a segment system, but an organic compound having a sublimation property can be easily patterned by patterning in a dry process. .
[0040]
The material mainly constituting the light emitting layer and the electron transport layer in the present invention means that the properties of the thin film state of each layer are determined by the material. For example, in a light emitting layer composed of a combination of a host and a dopant material, the material mainly constituting the light emitting layer means a host material.
[0041]
The light emitting device in the present invention preferably further has a hole transport layer between the anode and the light emitting layer for the purpose of efficiently recombining holes and electrons in the light emitting layer. The hole transport layer is a layer that administers holes from the anode and further transports holes. Specifically, the hole transport material is N, N′-diphenyl-N, N′-bis. (3-methylphenyl) -4,4′-diphenyl-1,1′-diamine, N, N′-bis (1-naphthyl) -N, N′-diphenyl-4,4′-diphenyl-1,1 Triphenylamines such as' -diamine, carbazole derivatives such as bis (N-allylcarbazole) or bis (N-alkylcarbazole), pyrazoline derivatives, stilbene compounds, distyryl derivatives, hydrazone compounds, oxadiazole derivatives, Heterocyclic compounds typified by phthalocyanine derivatives and porphyrin derivatives. In polymer systems, polycarbonates and styrene derivatives, polyvinyls having the above monomers in the side chain Carbazole, although such polysilane and the like, to form a thin film required for device fabrication, and can inject holes from the anode, and is not particularly limited as long as it is a further compound capable of transporting holes. These may be used alone, or a plurality of derivatives may be mixed or laminated to form a layer. In addition, it does not have hole transporting ability itself, but organic compounds, inorganic compounds, and metal complexes are used for various purposes such as improving the transporting ability, thermal stability, and electrochemical stability of the entire hole transporting layer. A hole transport layer may be formed by adding to the hole transport material.
[0042]
The method for forming each layer is not particularly limited, such as resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, and coating method, but resistance heating vapor deposition and electron beam vapor deposition are usually preferred in terms of characteristics. The thickness of the layer depends on the resistance value of the luminescent material and cannot be limited, but is selected from 1 to 1000 nm.
[0043]
Electrical energy mainly refers to direct current, but pulsed current or alternating current can also be used. The current value and the voltage value are not particularly limited, but the maximum luminance should be obtained with the lowest possible energy in consideration of the power consumption and lifetime of the element.
[0044]
The matrix in the present invention refers to a matrix in which pixels for display are arranged in a lattice pattern, and displays characters and images by a set of pixels. The shape and size of the pixel are determined by the application. For example, a rectangular pixel with a side of 300 μm or less is normally used for displaying images and characters on a personal computer, monitor, television, etc. In a large display such as a display panel, a pixel with a side of mm order is used. . In monochrome display, pixels of the same color may be arranged. However, in color display, red, red, green, and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type. The matrix driving method may be either a line sequential driving method or an active matrix. The line-sequential driving has an advantage that the structure is simple. However, the active matrix may be superior in consideration of the operation characteristics, so that it is necessary to properly use it depending on the application.
[0045]
The segment type in the present invention means that a pattern is formed so as to display predetermined information, and a predetermined region is caused to emit light. For example, the time and temperature display in a digital clock or a thermometer, the operation status display of an audio device or an electromagnetic cooker, the panel display of an automobile, etc. can be mentioned. The matrix display and the segment display may coexist in the same panel.
[0046]
The light emitting device of the present invention is also preferably used as a backlight. The backlight is mainly used for the purpose of improving the visibility of a display device that does not emit light, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display board, a sign, and the like. In particular, as a backlight for a liquid crystal display device, particularly a personal computer application where thinning is an issue, considering that it is difficult to reduce the thickness of the conventional method because it is made of a fluorescent lamp or a light guide plate, the present invention The backlight using the light emitting element is characterized by being thin and light.
[0047]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated, this invention is not limited by these examples.
[0048]
Example 1
A glass substrate on which an ITO transparent conductive film was deposited to a thickness of 150 nm (Asahi Glass Co., Ltd., 15Ω / □, electron beam evaporated product) was cut into 30 × 40 mm and etched. The obtained substrate was ultrasonically washed with acetone and “Semicocrine 56” for 15 minutes, respectively, and then washed with ultrapure water. Subsequently, it was ultrasonically cleaned with isopropyl alcohol for 15 minutes and then immersed in hot methanol for 15 minutes to dry. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, and placed in a vacuum evaporation apparatus, and the degree of vacuum in the apparatus was 1 × 10. -Five It exhausted until it became Pa or less. First, copper phthalocyanine (CuPc) is deposited to a thickness of 10 nm as a first hole injecting and transporting layer by resistance heating, and then N, N′-diphenyl-N, N′-bis (1 -Naphthyl) -1,1'-diphenyl-4,4'-diamine (α-NPD) was laminated to 50 nm. Subsequently, tris (8-quinolinolato) aluminum (III) (Alq3) is used as the host material, and 2,3,5,6-tetrahydro-9- (2-benzothiazolyl) -quinolidino- [9 is used as the dopant material. , 9a, 1-gh] coumarin, and co-evaporated to a thickness of 25 nm so that the dopant was 1.0 wt%. Next, ETM1 shown below as an electron transport layer was laminated to a thickness of 25 nm. Subsequently, lithium was doped with 0.2 nm, and finally aluminum was deposited with a thickness of 150 nm to form a cathode, thereby fabricating a 5 × 5 mm square device. ETM1 has an ionization potential of 6.01 eV and a molecular weight of 1025. From this light emitting element, green light emission based on a dopant material having an emission peak wavelength of 523 nm is obtained at an applied voltage of 10 V, and the emission luminance is 20000 cd / m. 2 Met. In addition, the initial luminance retention after 500 hours from the energization of this light emitting element was 80%, and a uniform light emitting surface was maintained.
[0049]
[Chemical formula 5]
Figure 0004158426
[0050]
Example 2
A light emitting device was produced in the same manner as in Example 1 except that ETM2 shown below was used as the electron transport layer. ETM2 has an ionization potential of 6.07 eV, a molecular weight of 672, and a glass transition temperature of 219 ° C. From this light emitting element, green light emission based on a dopant material having an emission peak wavelength of 523 nm is obtained at an applied voltage of 10 V, and the emission luminance is 38000 cd / m. 2 Met. In addition, the initial luminance retention after 500 hours from the energization of this light emitting element was 80%, and a uniform light emitting surface was maintained.
[0051]
[Chemical 6]
Figure 0004158426
[0052]
Comparative Example 1
A light emitting device was fabricated in the same manner as in Example 1 except that Alq3 was used as the electron transport layer. Alq3 has an ionization potential of 5.79 eV and a molecular weight of 459. From this light emitting element, green light emission based on a dopant material having an emission peak wavelength of 523 nm is obtained at an applied voltage of 10 V, and the emission luminance is 6000 cd / m. 2 Met.
[0053]
Comparative Example 2
A light emitting device was produced in the same manner as in Example 1 except that 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) was used as the electron transport layer. BCP has an ionization potential of 6.2 eV and a molecular weight of 360. From this light emitting element, green light emission based on a dopant material having an emission peak wavelength of 523 nm can be obtained at an applied voltage of 10 V, and the emission luminance is 12000 cd / m. 2 Met. However, the initial luminance retention after 500 hours has passed after the light-emitting element has been energized is 50% or less, and unevenness was observed on the light-emitting surface.
[0054]
Example 3
A light emitting device was fabricated in exactly the same manner as in Example 2 except that EM1 shown below was used as the light emitting material. From this light emitting element, blue light emission based on EM1 having an emission peak wavelength of 463 nm is obtained at an applied voltage of 15 V, and the emission luminance is 8000 cd / m. 2 Met.
[0055]
[Chemical 7]
Figure 0004158426
[0056]
Example 4
Example 2 except that the light emitting layer portion was formed by laminating a mixture of 4,4′-bis (N-carbazolyl) biphenyl and tris (2-phenylpyridine) iridium complex (iridium complex content: 8 wt%) to a thickness of 20 nm. A light emitting device was fabricated in exactly the same manner. From this light emitting element, green light emission based on an iridium complex having an emission peak wavelength of 515 nm was obtained at an applied voltage of 6 V, and the emission luminance was 1000 cd / m. 2 Met.
[0057]
Example 5
1,4-diketo-2,5-bis (3,5-dimethylbenzyl) -3,6-bis (4-methylphenyl) pyrrolo [3,4-c] pyrrole, dopant material using light emitting layer portion as host material A light emitting device was fabricated in exactly the same manner as in Example 2 except that EM2 shown below was used and co-evaporated to a thickness of 15 nm so that the dopant was 1.0 wt%. From this light emitting element, red light emission based on a dopant material having an emission peak wavelength of 618 nm is obtained at an applied voltage of 14 V, and the light emission luminance is 10,000 cd / m. 2 Met.
[0058]
[Chemical 8]
Figure 0004158426
[0059]
Comparative Example 3
A light emitting device was fabricated in the same manner as in Example 65 except that Alq3 was used as the electron transport layer. From this light emitting element, red light emission was not obtained at an applied voltage of 10 V, and orange light emission having a shoulder peak near 535 nm with an emission peak wavelength of 618 nm was obtained.
[0060]
Example 6 (Synthesis of ETM3)
2,2′-dibromobiphenyl 2.5 g, 3-acetylphenylboronic acid 3.9 g, 2M sodium carbonate 21 ml, tetrakis (triphenylphosphine) palladium (0) 0.37 g were added to 1,2-dimethoxyethane 200 ml, The mixture was refluxed for 10 hours under nitrogen, subjected to Suzuki coupling reaction, and treated in a conventional manner to obtain 0.57 g of 2,2′-bis (3-acetylphenyl) biphenyl. 0.57 g of this diacetyl compound was reacted with 0.63 g of 8-amino-7-quinolinecarbaldehyde and 0.6 g of potassium hydroxide in dioxane at 60 ° C. and treated in the usual manner, and ETM3 (0.76 g) shown below Got.
1H-NMR (CDCl3, ppm): 9.20 (d, d, 2H), 8.43 (d, 2H), 8.16 (d, d, 2H), 7.79 (d, 2H), 7.61-7.26 (m, 18H), 7.17 (t, 2H), 6.77 (d, 2H)
[0061]
[Chemical 9]
Figure 0004158426
[0062]
Example 7
A light emitting device was produced in the same manner as in Example 5 except that ETM3 was used as the electron transport layer. ETM3 has an ionization potential of 6.14 eV, a molecular weight of 663, and a glass transition temperature of 150 ° C. From this light emitting element, red light emission based on a dopant material having an emission peak wavelength of 618 nm is obtained with an applied voltage of 14 V, and the light emission luminance is 7000 cd / m. 2 Met.
[0063]
Example 8
A glass substrate (manufactured by Asahi Glass Co., Ltd., 15Ω / □, electron beam evaporated product) on which an ITO transparent conductive film is deposited to 150 nm is cut into 30 × 40 mm, and 300 μm pitch (remaining width 270 μm) × 32 stripes by photolithography. Patterned into a shape. One side of the ITO stripe in the long side direction is expanded to a pitch of 1.27 mm (opening width 800 μm) in order to facilitate electrical connection with the outside. The obtained substrate was ultrasonically washed with acetone and “Semicocrine 56” for 15 minutes, respectively, and then washed with ultrapure water. Subsequently, it was ultrasonically cleaned with isopropyl alcohol for 15 minutes and then immersed in hot methanol for 15 minutes to dry. This substrate was treated with UV-ozone for 1 hour immediately before producing the device, and placed in a vacuum vapor deposition apparatus. The degree of vacuum in the apparatus was 5 × 10. -Four It exhausted until it became Pa or less. First, CuPc was vapor-deposited to 10 nm by resistance heating, and subsequently α-NPD was vapor-deposited to 50 nm. Next, using Alq3 as the host material and 2,3,5,6-tetrahydro-9- (2-benzothiazolyl) -quinolidino- [9,9a, 1-gh] coumarin as the dopant material, Co-evaporated to a thickness of 25 nm so as to be 1.0 wt%. Subsequently, ETM2 was laminated to a thickness of 25 nm as an electron transport layer. Next, the mask in which 16 250 μm openings (corresponding to the remaining width of 50 μm and 300 μm pitch) were formed by wet etching on a 50 μm thick Kovar plate was replaced in a vacuum so as to be orthogonal to the ITO stripe. And it fixed with the magnet from the back so that an ITO board | substrate might closely_contact | adhere. And after doping lithium with a 0.5 nm organic layer, aluminum was vapor-deposited 200 nm, and the 32 * 16 dot matrix element was produced. When this element was driven in matrix, characters could be displayed without crosstalk.
[0064]
【The invention's effect】
INDUSTRIAL APPLICABILITY The present invention can provide a red light emitting device that has excellent thermal stability, high use efficiency of electric energy, and excellent color purity.

Claims (4)

少なくとも陽極、発光層、電子輸送層、陰極が順に積層された構造を有する発光素子において、発光層および電子輸送層を主に構成する材料が昇華性を有する有機化合物からなり、電子輸送層を主に構成する材料がイオン化ポテンシャル5.9eV以上かつ分子量400以上の有機化合物であり、該有機化合物がベンゾキノリンあるいはフェナントロリンからなる母骨格を複数含み、複数の母骨格が共役結合、置換もしくは無置換の芳香族炭化水素、置換もしくは無置換の芳香複素環あるいはこれらを混合した基のいずれかにより連結された構造からなる有機化合物を含むことを特徴とする発光素子。In a light emitting device having a structure in which at least an anode, a light emitting layer, an electron transport layer, and a cathode are sequentially laminated, the material mainly constituting the light emitting layer and the electron transport layer is composed of an organic compound having sublimation properties, and the electron transport layer is mainly used. the material constituting the are and a molecular weight of 400 or more organic compounds or ionization potential 5.9 eV, see more including the mother skeleton organic compound consists of benzoquinone or phenanthroline, a plurality of mother skeleton conjugated bond, a substituted or unsubstituted A light emitting device comprising an organic compound having a structure connected by any one of the above aromatic hydrocarbons, a substituted or unsubstituted aromatic heterocyclic ring, or a group in which these are mixed . 前記電子輸送層を主に構成する有機化合物のガラス転移温度が90℃以上であることを特徴とする請求項1記載の発光素子。The light emitting device according to claim 1, wherein a glass transition temperature of an organic compound mainly constituting the electron transport layer is 90 ° C. or more. 陽極と発光層の間に、さらに正孔輸送層を有することを特徴とする請求項1記載の発光素子。The light emitting device according to claim 1, further comprising a hole transport layer between the anode and the light emitting layer. 発光層が少なくとも2種類以上の有機化合物から構成されることを特徴とする請求項1記載の発光素子。The light emitting device according to claim 1, wherein the light emitting layer is composed of at least two kinds of organic compounds.
JP2002163997A 2001-06-08 2002-06-05 Light emitting element Expired - Lifetime JP4158426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002163997A JP4158426B2 (en) 2001-06-08 2002-06-05 Light emitting element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-173610 2001-06-08
JP2001173610 2001-06-08
JP2002163997A JP4158426B2 (en) 2001-06-08 2002-06-05 Light emitting element

Publications (3)

Publication Number Publication Date
JP2003059669A JP2003059669A (en) 2003-02-28
JP2003059669A5 JP2003059669A5 (en) 2005-10-06
JP4158426B2 true JP4158426B2 (en) 2008-10-01

Family

ID=26616581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163997A Expired - Lifetime JP4158426B2 (en) 2001-06-08 2002-06-05 Light emitting element

Country Status (1)

Country Link
JP (1) JP4158426B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10446764B2 (en) 2014-05-22 2019-10-15 Samsung Sdi Co., Ltd. Organic compound, composition, organic optoelectric device, and display device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2259360B1 (en) * 2001-08-29 2021-11-03 The Trustees of Princeton University Organic light emitting devices having carrier transporting layers comprising metal complexes
US20090191427A1 (en) * 2008-01-30 2009-07-30 Liang-Sheng Liao Phosphorescent oled having double hole-blocking layers
JP5255296B2 (en) * 2008-02-27 2013-08-07 東洋インキScホールディングス株式会社 Materials and compounds for organic electroluminescence devices
WO2013149958A1 (en) * 2012-04-02 2013-10-10 Novaled Ag Use of a semiconducting compound in an organic light emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10446764B2 (en) 2014-05-22 2019-10-15 Samsung Sdi Co., Ltd. Organic compound, composition, organic optoelectric device, and display device

Also Published As

Publication number Publication date
JP2003059669A (en) 2003-02-28

Similar Documents

Publication Publication Date Title
JP4876333B2 (en) Light emitting element
JP4876311B2 (en) Light emitting element
KR100867496B1 (en) Luminescent Element Material and Luminescent Element Comprising the Same
JP3389888B2 (en) Light emitting element
JP4843889B2 (en) Light emitting element
JP2002015871A (en) Luminescent element
JP4052010B2 (en) Light emitting device material and light emitting device using the same
JP4089331B2 (en) Light emitting element
JP2003059670A (en) Light-emitting element
JP4590678B2 (en) Light emitting element
JP4058881B2 (en) Light emitting element
JP2001307884A (en) Electoluminiscent element
JP2002367786A (en) Luminous element
JP2001291590A5 (en)
JP3899907B2 (en) Light emitting element
JP4158426B2 (en) Light emitting element
JP2003151774A (en) Light emitting element
JP2003217857A (en) Light emitting element
JP4613411B2 (en) Light emitting element
JP2002008866A (en) Light element
JP2004055258A (en) Light emitting element
JP2002367785A (en) Luminous element
JP4798138B2 (en) Light emitting element
JP2001223081A (en) Light emitting element
JP2000208273A (en) Light emitting element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050527

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080707

R151 Written notification of patent or utility model registration

Ref document number: 4158426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140725

Year of fee payment: 6

EXPY Cancellation because of completion of term