JP4157078B2 - Road surface state measuring method and road surface state measuring device - Google Patents

Road surface state measuring method and road surface state measuring device Download PDF

Info

Publication number
JP4157078B2
JP4157078B2 JP2004224126A JP2004224126A JP4157078B2 JP 4157078 B2 JP4157078 B2 JP 4157078B2 JP 2004224126 A JP2004224126 A JP 2004224126A JP 2004224126 A JP2004224126 A JP 2004224126A JP 4157078 B2 JP4157078 B2 JP 4157078B2
Authority
JP
Japan
Prior art keywords
road surface
light
surface state
state measuring
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004224126A
Other languages
Japanese (ja)
Other versions
JP2006046936A (en
Inventor
浩 竹川
嘉弘 大石
博隆 小辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004224126A priority Critical patent/JP4157078B2/en
Publication of JP2006046936A publication Critical patent/JP2006046936A/en
Application granted granted Critical
Publication of JP4157078B2 publication Critical patent/JP4157078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3181Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using LEDs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/021Special mounting in general
    • G01N2201/0216Vehicle borne

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、車の安全性、操舵性能に大きな影響を与える路面上の湿潤、凍結等の情報をセンシングすることによりドライバーや各制御装置等に路面情報を提供することを目的とする路面状態計測方法及び路面状態計測装置に関する。   The present invention is intended to provide road surface information to a driver, each control device, etc. by sensing information such as wetness and freezing on the road surface, which greatly affects the safety and steering performance of a vehicle. The present invention relates to a method and a road surface state measuring apparatus.

車両運転者にとって、道路の路面状態を把握することは非常に重要である。特に高速走行時においては、路面状態が車の安全運行および操舵性に大きな影響を及ぼすため、車両運転者は、走行中常に注意を払っている。この路面状態の中でも、路面の湿潤、凍結等は車の操舵性を大きく奪うことから、その情報は運転者にとって非常に重要である。   It is very important for the vehicle driver to grasp the road surface condition of the road. In particular, when driving at high speed, the road surface condition greatly affects the safe operation and steering performance of the vehicle, so the vehicle driver always pays attention during traveling. Even in this road surface condition, the wetness and freezing of the road surface greatly deprives the steerability of the car, so that information is very important for the driver.

一方、道路管理者にとっても、路面状態を把握することは管理業務の主業務に挙げられており、路面の湿潤、凍結等の情報は、道路の安全確保のために適切な作業を行なうための判断材料として利用している。また、通行中のドライバーに注意を促すために、路面情報の提供も行なっている。   On the other hand, for road managers, grasping the road surface condition is listed as the main work of the management work, and information such as wetness and freezing of the road surface is used to perform appropriate work to ensure road safety. We use as judgment material. It also provides road surface information to alert drivers who are driving.

このような路面状態を把握するために用いられる装置としては、次のようなものが従来から提供されている。   As devices used for grasping such road surface conditions, the following devices have been conventionally provided.

まず、高速道路や一般道路向けの定置式のものとして、路面に埋設された温度計と各種気象情報や予測により路面の湿潤、凍結を予測するもの、赤外線を用いた反射光量の変化を用いたもの、定置カメラからの目視によるもの、道路設置型で近赤外の半導体レーザを使用したもの等、各種色々なものがある。   First of all, as a stationary type for highways and general roads, we used a thermometer embedded on the road surface and various weather information and predictions to predict wetness and freezing of the road surface, and changes in the amount of reflected light using infrared rays There are various types, such as those using visual observation from a stationary camera and those using a near-infrared semiconductor laser with a road installation type.

また、車載向けのものとして、外気温度により判断するもの、赤外光を用いるもの、電波を用いるもの等が提案されており、その中で赤外光を用いるものとして、空間周波数分析を用いたものがある(例えば、特許文献1参照。)。   In addition, those for in-vehicle use that are judged by the outside air temperature, those that use infrared light, those that use radio waves, etc. have been proposed. Among them, spatial frequency analysis was used as the one that uses infrared light. There are some (for example, refer to Patent Document 1).

この空間周波数分析を用いる方式では、照射光の正反射と拡散反射による光量比を元に演算処理することにより、路面上の物質を判別しているため、アスファルト以外の路面や白線上はその原理上、測定が困難である。また、近年、従来の路面上に使われていたアスファルトとは異なり、舗装体中の間隙率(空隙率)が多いことを特徴にした排水性舗装や高機能舗装と呼ばれる舗装技術が普及してきている。このような舗装技術による透水性アスファルトの測定では、従来のアスファルトより粒形の大きな骨材を使用しているので、空間周波数タイプの測定方式では、斑が大きいために測定が困難である。   In this method using spatial frequency analysis, the substance on the road surface is discriminated by calculating based on the light quantity ratio by regular reflection and diffuse reflection of the irradiated light, so the principle on road surfaces other than asphalt and white lines is the principle Moreover, measurement is difficult. Also, in recent years, pavement technology called drainage pavement and high-performance pavement, which is characterized by a high porosity (void ratio) in the pavement, unlike asphalt used on the conventional road surface, has become popular. Yes. In the measurement of water-permeable asphalt by such a pavement technique, aggregates having a particle shape larger than that of conventional asphalt are used. Therefore, in the spatial frequency type measurement method, measurement is difficult due to large spots.

一方、上記近赤外波長域での水の吸収特性を利用して水分量の測定を行なう方式を用いるものが提案されている(例えば、特許文献2参照。)。   On the other hand, a method using a method of measuring the amount of water using the water absorption characteristics in the near-infrared wavelength region has been proposed (see, for example, Patent Document 2).

この測定系では、光源に参照光と測定光に使用する波長を含むブロードなスペクトルを持つランプを使用し、フィルタで水に大きく吸収される波長(水の吸収波長)の近赤外線と水に吸収され難い波長(参照波長)の近赤外線との少なくとも2つの波長の近赤外光に分ける。そして、それぞれの光の反射光量の比を計算することにより、路面の水分量を計測するという方式が採用されている。この方式では、対象物の表面形状による影響を受け難く、同時に対象物に照射された光を利用するので時間的なずれがない。しかし、この方式では、路面の水分が水であるか、あるいは氷であるかの判定は、路面温度を測定することにより判断している。   In this measurement system, a lamp having a broad spectrum including the wavelengths used for the reference light and the measurement light is used as the light source, and the near-infrared light having a wavelength (water absorption wavelength) that is largely absorbed by the filter is absorbed by water. It is divided into near-infrared light having at least two wavelengths and near-infrared light having a wavelength that is difficult to be performed (reference wavelength). And the method of measuring the water | moisture content of a road surface by calculating the ratio of the reflected light quantity of each light is employ | adopted. In this method, it is difficult to be affected by the surface shape of the object, and at the same time, the light irradiated on the object is used, so there is no time lag. However, in this method, whether the water on the road surface is water or ice is determined by measuring the road surface temperature.

また、近赤外の半導体レーザを使用して、水にも氷にも吸収され難い波長0.905μm、水に吸収され易く(水の吸収ピーク)、氷に吸収され難い波長1.42μm、水に吸収され難く、氷に吸収され易い(氷の吸収ピーク)波長1.55μmの3波長を使用して、乾燥、積雪、湿潤、凍結の状態を区別する方式の測定方法も提案されている(例えば、特許文献3参照。)。   Also, using a near-infrared semiconductor laser, a wavelength of 0.905 μm, which is difficult to be absorbed by water and ice, a wavelength of 1.42 μm, which is easy to be absorbed by water (water absorption peak) and difficult to be absorbed by ice, water Has been proposed that uses three wavelengths with a wavelength of 1.55 μm, which are not easily absorbed by ice and are easily absorbed by ice (ice absorption peak), to distinguish between dry, snowy, wet, and frozen states ( For example, see Patent Document 3.)

しかし、この方式では、水と氷の区別は、水に吸収され易く(水の吸収ピーク)、氷に吸収され難い波長1.42μmと水に吸収され難く、氷に吸収され易い(氷の吸収ピーク)波長1.55μmの反射光量の大小関係のみで判定を行なっており、水と氷の吸収のピーク波長では他方の材質においても吸収され易いので、反射光量差を測定するのは困難である。さらに、水と氷の混じったシャーベット状の路面に対しては何ら考慮されていない。   However, in this method, the distinction between water and ice is easily absorbed by water (water absorption peak), and is not easily absorbed by water at a wavelength of 1.42 μm, which is difficult to be absorbed by ice, and is easily absorbed by ice (ice absorption). Peak) Determination is made based only on the magnitude relationship of the reflected light quantity at a wavelength of 1.55 μm, and at the peak wavelength of water and ice absorption, the other material is easily absorbed, so it is difficult to measure the reflected light quantity difference. . Furthermore, no consideration is given to the sherbet-like road surface mixed with water and ice.

その他に、レーザ光の偏光特性を利用して路面状態の測定を行なう方式のものも提案されている(例えば、特許文献4参照。)。   In addition, a method of measuring the road surface state using the polarization characteristics of laser light has been proposed (see, for example, Patent Document 4).

一般に半導体レーザの特性として、10℃程度の温度変化によってレーザの発振波長は数nm変化をし、光出力は10mW近く変動する。したがって、近赤外波長の半導体レーザを使用した方式では、温度制御を行なうか、光出力を一定に保つ回路が必要となる。   Generally, as a characteristic of a semiconductor laser, the oscillation wavelength of the laser changes several nm with a temperature change of about 10 ° C., and the optical output fluctuates by about 10 mW. Therefore, a system using a near-infrared wavelength semiconductor laser requires a circuit for controlling the temperature or keeping the optical output constant.

さらに、図8に示すように、ランプ光源91を用いて路面xに光を照射し、その反射光をフィルタによって3波長に分けて、各波長の比によって、路面状態を判別するものも提案されている(例えば、非特許文献1参照。)。   Furthermore, as shown in FIG. 8, a lamp light source 91 is used to irradiate light on the road surface x, the reflected light is divided into three wavelengths by a filter, and the road surface state is discriminated by the ratio of each wavelength. (For example, refer nonpatent literature 1.).

しかし、この文献に記載されているのは、反射光を3波長に分ける方式であり、反射光のうちの、どの波長の光を検出することで路面状態を判別できるのかは明らかにされていない。
国際公開第WO95/01549号パンフレット 特開平6−229917号公報 特開平9−318766号公報 特開平10−206314号公報 プラカッシュ ジョシ フィジカルサイエンス株式会社(Prakash Joshi,Physical Sciences,Inc.)「モビール ロード コンディション センサー アズ ウィンター メンテナンス エイド」(「A Mobile Road Condition Sensor as Winter Maintenance Aid」)2002年5月 (May 2002)p3,p9−10,p34
However, what is described in this document is a system that divides reflected light into three wavelengths, and it has not been clarified which wavelength of the reflected light can be detected to determine the road surface condition. .
International Publication No. WO95 / 01549 Pamphlet JP-A-6-229917 JP-A-9-318766 Japanese Patent Laid-Open No. 10-206314 Plakash Joshi Physical Science Co., Ltd. (Pracash Joshi, Physical Sciences, Inc.) “Mobile Road Condition Sensor As Winter Maintenance Aid 2” -10, p34

上記した従来技術では、2つまたは3つの波長の光の反射光量を比較して路面状態を判別しようとしているが、具体的な波長については言及していない。   In the above-described prior art, the road surface state is determined by comparing the reflected light amounts of light of two or three wavelengths, but no specific wavelength is mentioned.

また、使用波長が述べられている特許文献3に記載された技術においても、水と氷のそれぞれの吸収がピークになる波長を使用している。一般に、氷の吸収波長のピーク位置は変動しないが、水の吸収波長のピーク位置は温度によって変動するため、このように水と氷のそれぞれの吸収がピークになる波長を使用した場合、正確な測定ができなくなってしまう。特に半導体レーザのように非常に狭いスペクトルを使用した場合には、吸収の変動が大きくなる。さらに、近赤外波長の半導体レーザを用いたものについては、温度によるモードホッピングにより発振波長が大きく変わり、光出力が変動する。そのため、半導体レーザを用いる場合は発振波長がずれないようにするために半導体レーザ自身の温度を外部温度と関係なく一定に保ち、光出力を一定に保持する回路を増設する必要がある。   In the technique described in Patent Document 3 in which the wavelength used is described, the wavelength at which each absorption of water and ice reaches a peak is used. In general, the peak position of the absorption wavelength of ice does not vary, but the peak position of the absorption wavelength of water varies depending on the temperature. Measurement becomes impossible. In particular, when a very narrow spectrum is used like a semiconductor laser, the fluctuation of absorption becomes large. Furthermore, for a laser using a near-infrared wavelength semiconductor laser, the oscillation wavelength changes greatly due to mode hopping due to temperature, and the optical output fluctuates. For this reason, when a semiconductor laser is used, it is necessary to add a circuit for keeping the temperature of the semiconductor laser constant regardless of the external temperature and keeping the optical output constant in order to prevent the oscillation wavelength from deviating.

また、図3に示されている水と氷の透過率のグラフからも分かるように、それぞれの透過率がボトムとなる位置での一方の材質と他方の材質との透過率の差は小さいので、それぞれの光量比で判別するには精度が良くない。   Also, as can be seen from the water and ice transmittance graph shown in FIG. 3, the difference in transmittance between one material and the other material at the position where each transmittance is at the bottom is small. However, the accuracy is not good for discrimination by the respective light quantity ratios.

さらに、従来技術では、光源に近赤外領域の波長を含むキセノンランプ等を用いて路面の状態を判断しようとする試みも提案されているが、このようにランプを用いる光源のスペクトルはブロードであり、所望としている波長成分以外の成分の光を多く含んでいる。したがって、測定に用いられる波長の光量は、その照射光量全体からすれば小さいものである。実際の路面上での使用を考えた場合、外乱光等の影響を取り除くためにも、必然的にランプの照射光量を大きくする必要がある。そのため、装置が大型化したり、エネルギー効率が悪くなるといった問題が生じる。また、このような装置では、プリズムやフィルタなどの光学部品や受光側の素子も波長毎の素子が必要となり、部品点数も多くなり、システム的にも大きく高価なものになってしまう。   Furthermore, in the prior art, an attempt has been made to determine the road surface condition using a xenon lamp or the like including a near-infrared wavelength in the light source. In this way, the spectrum of the light source using the lamp is broad. There are many light components other than the desired wavelength component. Therefore, the light amount of the wavelength used for the measurement is small in terms of the entire irradiation light amount. When considering use on an actual road surface, it is inevitably necessary to increase the irradiation light quantity of the lamp in order to remove the influence of disturbance light or the like. For this reason, there arises a problem that the apparatus becomes larger and the energy efficiency becomes worse. Also, in such an apparatus, optical components such as prisms and filters, and elements on the light receiving side are required for each wavelength, the number of components increases, and the system becomes large and expensive.

以上のように光源にランプを使用した従来技術では、装置の大型化やコストアップになってしまう。さらに近赤外光を従来技術のように使用すると、複雑な路面状態に対して比較する波長の反射光量差が小さいので、温度による吸収波長の変動などに対して精度が悪くなり、的確な判別ができない可能性が高い。   As described above, the conventional technique using a lamp as a light source increases the size and cost of the apparatus. Furthermore, when using near-infrared light as in the prior art, the difference in reflected light amount of the wavelength to be compared with the complicated road surface condition is small, so the accuracy is deteriorated due to fluctuations in absorption wavelength due to temperature, etc., and accurate discrimination There is a high possibility of not being able to.

近赤外光を使用した空間周波数方式の場合でも、透過性のアスファルト道路では空隙が大きいために判別の精度が悪くなる。   Even in the case of the spatial frequency method using near-infrared light, since the gap is large on the transmissive asphalt road, the accuracy of discrimination is deteriorated.

本発明は、このような事情に鑑み創作されたものであって、路面の状態をリアルタイムで高精度に計測でき、小型でエネルギー効率の良い路面状態計測方法及び装置を提供することを目的とする。   The present invention was created in view of such circumstances, and an object of the present invention is to provide a road surface state measuring method and apparatus that can measure a road surface state with high accuracy in real time, and is small and energy efficient. .

上記課題を解決するため、本発明は、水および氷のいずれに対しても吸収され難い波長と、氷に対しては吸収され難く水に対しては吸収され易い波長と、水および氷のいずれに対しても同程度に吸収される波長の少なくとも3つの波長の近赤外光を光源から対象物に照射する照射工程と、この照射された各波長の近赤外光が対象物で反射された反射光を検出する検出工程と、この検出された反射光量を演算処理することにより路面状態を判別する演算処理工程と、を有することを特徴とする。   In order to solve the above problems, the present invention provides a wavelength that is not easily absorbed by both water and ice, a wavelength that is hardly absorbed by ice and is easily absorbed by water, and any of water and ice. The irradiation step of irradiating the object with near-infrared light of at least three wavelengths that are absorbed to the same degree from the light source, and the irradiated near-infrared light of each wavelength is reflected by the object. A detection step for detecting the reflected light, and a calculation processing step for determining the road surface state by calculating the detected amount of reflected light.

また、本発明は、水および氷のいずれに対しても吸収され難い波長と、氷に対しては吸収され難く水に対しては吸収され易い波長と、水および氷のいずれに対しても同程度に吸収される波長の少なくとも3つの波長の近赤外光を対象物に照射する光源と、この照射された各波長の近赤外光が対象物で反射された反射光を検出する検出手段と、この検出された反射光量を演算処理することにより路面状態を判別する演算処理手段と、を備えることを特徴とする。   Further, the present invention has the same wavelength for both water and ice, the wavelength that is difficult to absorb for both water and ice, the wavelength that is difficult for water to absorb and that is easily absorbed for water. A light source for irradiating the object with near infrared light of at least three wavelengths of wavelengths absorbed to the extent, and detection means for detecting reflected light reflected by the object with the irradiated near infrared light of each wavelength And arithmetic processing means for determining a road surface state by performing arithmetic processing on the detected amount of reflected light.

次に、本発明を詳細に説明する。   Next, the present invention will be described in detail.

まず、本発明の基礎となっている水と氷との光の吸収について詳細を述べる。   First, the details of light absorption by water and ice, which are the basis of the present invention, will be described.

物質に光が照射されると、物質を構成する原子のエネルギー状態は基底状態から励起状態へと遷移し、この時にエネルギーの吸収が行なわれる。この吸収されたエネルギーは、光の照射を止めると元の基底状態に戻ろうとし、吸収された光に応じた光が放出される。この吸収や放出される光の振動数は原子や分子の種類、構造に関して非常に選択的であり、このため光の吸収スペクトルや放出スペクトルを物質の同定や定量に利用できることは広く知られている。   When the material is irradiated with light, the energy state of the atoms constituting the material changes from the ground state to the excited state, and at this time, energy is absorbed. The absorbed energy tries to return to the original ground state when light irradiation is stopped, and light corresponding to the absorbed light is emitted. The frequency of absorption and emission of light is very selective with respect to the type and structure of atoms and molecules, and it is widely known that the absorption and emission spectra of light can be used for substance identification and quantification. .

本発明で用いる水と氷の場合、図3に示すように水が0.98μm,1.20μm,1.45μmおよび1.93μmの波長において吸収スペクトルのピークあるいは透過率のボトムを有する。同様に氷では、1.03μm,1.25μm,1.50μm及び1.99μmの波長において吸収スペクトルのピークあるいは透過率のボトムを有する。このように波長によって吸収や透過率が異なる水や氷を測定することにより、対象物である水、氷を判別することができる。   In the case of water and ice used in the present invention, as shown in FIG. 3, the water has an absorption spectrum peak or transmittance bottom at wavelengths of 0.98 μm, 1.20 μm, 1.45 μm and 1.93 μm. Similarly, ice has absorption spectrum peaks or transmittance bottoms at wavelengths of 1.03 μm, 1.25 μm, 1.50 μm and 1.99 μm. Thus, by measuring the water and ice having different absorption and transmittance depending on the wavelength, it is possible to discriminate the water and ice as the objects.

この場合の吸光度と透過率との関係は、Lambert−Beerの法則より以下の式(1)によって導くことができる。   The relationship between the absorbance and the transmittance in this case can be derived from the following equation (1) based on Lambert-Beer's law.

A=log(I0(λ)/It(λ))・・・(1)
A:吸光度、I0(λ):入射光量、It(λ):物質を透過後の光量
また、実際には水や氷の吸収波長の他に、水分や氷の影響を受けない他の波長の光を参照波長光として照射し、その参照波長による光量により物質の表面状態、粒度等の影響を含んだ入射光量I0とみなす。その水分の影響を受けない他の波長の光を参照波長光として照射し、それぞれの反射光量を測定する。この測定値を下記の式(2)に入れることによって水分量を求めることができる。
A = log (I0 (λ) / It (λ)) (1)
A: Absorbance, I0 (λ): Incident light amount, It (λ): Light amount after passing through the substance. Actually, in addition to the absorption wavelength of water and ice, other wavelengths not affected by water or ice Light is irradiated as reference wavelength light, and the incident light quantity I0 including the influence of the surface state, particle size, etc. of the substance is regarded as the light quantity by the reference wavelength. Light of other wavelengths that are not affected by the moisture is irradiated as reference wavelength light, and the amount of reflected light is measured. The amount of water can be determined by putting this measured value into the following equation (2).

W=a0+a1・In(R/s)・・・(2)
s:吸収波長光の反射光量
a0:定数
R:参照波長光の反射光量
a1:比例定数
W:水分量(%)
次に路面状態の判別法について説明する。
W = a0 + a1 · In (R / s) (2)
s: Reflected light amount of absorption wavelength light a0: Constant R: Reflected light amount of reference wavelength light a1: Proportional constant W: Water content (%)
Next, a method for determining the road surface condition will be described.

路面の乾燥(Dry)、湿潤(Wet,Water)、凍結(Ice)、積雪(Snow)、雪解け(slush)の判定基準は、測定結果が図6に示すマトリクスのどの位置になるかにより判定される。   The criteria for determining the dryness (Dry), wetness (Wet, Water), freezing (Ice), snow cover (Snow), and thaw (slush) of the road surface are determined by the position in the matrix shown in FIG. The

図6では、横軸にI(λ2)/(I(λ1)−I(λ3))で規格化された水の吸収度を表し、縦軸はI(λ1)/I(λ3)で路面からの反射光量の大きさで雪質かどうか等を判定している。   In FIG. 6, the horizontal axis represents the water absorption normalized by I (λ2) / (I (λ1) −I (λ3)), and the vertical axis represents I (λ1) / I (λ3) from the road surface. Whether or not the snow quality is determined by the amount of reflected light.

本発明によれば、水および氷のいずれに対しても吸収され難い波長と、氷に対しては吸収され難く水に対しては吸収され易い波長と、水および氷のいずれに対しても同程度に吸収される波長の少なくとも3つの波長の近赤外光が対象物で反射された反射光を検出し、上記説明したように演算処理することによって、路面状態を判別することができる。   According to the present invention, the wavelength that is difficult to absorb for both water and ice, the wavelength that is difficult to absorb for ice and easy to absorb for water, and the same for both water and ice. The road surface state can be determined by detecting reflected light obtained by reflecting near-infrared light of at least three wavelengths of wavelengths absorbed to the extent by the object and performing arithmetic processing as described above.

したがって、水と氷のそれぞれの吸収がピークになる波長を使用していないので、温度によって変動する水の吸収波長のピーク位置に影響されることがなく、正確な測定を行うことができる。また、水と氷のそれぞれの吸収がボトムとなる波長を用いていないので、一方の材質と他方の材質との透過率の差を確保することができるので、精度の良い計測をすることができる。   Therefore, since the wavelength at which each absorption of water and ice reaches its peak is not used, accurate measurement can be performed without being affected by the peak position of the absorption wavelength of water that varies with temperature. In addition, since the wavelength at which each absorption of water and ice becomes the bottom is not used, a difference in transmittance between one material and the other material can be ensured, so that accurate measurement can be performed. .

本発明において、前記近赤外光が、少なくとも3つの異なる単一波長の光をそれぞれ個別に出力する光源から照射されるように構成してもよい。   In this invention, you may comprise so that the said near-infrared light may be irradiated from the light source which each outputs the light of at least 3 different single wavelength separately.

本発明において、少なくとも3つの異なる単一波長の光を出力する光源の全てを1つのパッケージ内に配置し、それら光源からの光を光学部品によりコリメートあるいは集光するように構成してもよい。この場合、1つのパッケージ内に全ての光源を配置するので、小型の装置で計測することが可能になる。   In the present invention, all of the light sources that output light of at least three different single wavelengths may be arranged in one package, and the light from these light sources may be collimated or condensed by optical components. In this case, since all the light sources are arranged in one package, it is possible to measure with a small device.

本発明において、前記光源に、発光ダイオードを用いてもよい。この場合、半導体レーザを用いる場合と異なり、光出力を一定にするために回路を増設する必要がない。したがって、装置を小型にすることができる。また、ブロードなスペクトルを有するランプ光源を用いる場合と異なり、光源の照射光量を大きくする必要がなく、装置の小型化を図るとともに、エネルギー効率を良くすることができる。   In the present invention, a light emitting diode may be used as the light source. In this case, unlike the case where a semiconductor laser is used, there is no need to add a circuit in order to keep the optical output constant. Therefore, the apparatus can be reduced in size. Further, unlike the case of using a lamp light source having a broad spectrum, it is not necessary to increase the amount of light emitted from the light source, and the apparatus can be miniaturized and energy efficiency can be improved.

本発明において、前記反射光の検出には、1つの受光面を有する受光素子を用いてもよい。この場合、小型の装置で計測することが可能で、コストを低減することができる。   In the present invention, a light receiving element having one light receiving surface may be used for detecting the reflected light. In this case, measurement can be performed with a small device, and the cost can be reduced.

本発明において、前記受光素子の受光面の路面に対する光学的距離を保持するための補正手段を有してもよい。補正手段としては、例えば、コリメートあるいは集光に使用している対物レンズを光軸方向に移動させて、常にコリメート光あるいは路面に焦点させるようにする。   In this invention, you may have a correction means for hold | maintaining the optical distance with respect to the road surface of the light-receiving surface of the said light receiving element. As the correcting means, for example, the objective lens used for collimation or condensing is moved in the direction of the optical axis so that it is always focused on the collimated light or the road surface.

本発明において、前記少なくとも3つの波長の近赤外光を対象物に照射するタイミングを、前記各光源をトリガパルスによるシーケンシャル制御することによって設定してもよい。この場合、単一の駆動回路で各光源の照射を行うことができ、部品点数を削減することができる。また、精度を高めるために光源を増やした場合であっても、駆動回路を増やす必要がない。さらに、パルス駆動することにより、エネルギー効率を良くすることができる。   In the present invention, the timing of irradiating the object with near-infrared light of at least three wavelengths may be set by sequentially controlling each of the light sources with a trigger pulse. In this case, each light source can be irradiated with a single drive circuit, and the number of parts can be reduced. Even if the number of light sources is increased in order to increase accuracy, there is no need to increase the number of drive circuits. Furthermore, energy efficiency can be improved by pulse driving.

本発明において、前記各光源のシーケンシャル制御により対象物に照射される合計の時間あるいは測定時間を、50μs〜10msであるようにしてもよい。   In the present invention, the total time or measurement time during which the object is irradiated by the sequential control of each light source may be 50 μs to 10 ms.

本発明において、前記少なくとも3つの波長の近赤外光を対象物に照射するタイミングを、前記水および氷のいずれに対しても吸収され難い波長の光が点灯している時間内に、前記氷に対しては吸収され難く水に対しては吸収され易い波長の光と、前記水および氷のいずれに対しても同程度に吸収される波長の光とが、交互に点灯時と不点灯時になるように設定し、これら各波長の光のそれぞれの点灯時と不点灯時に光量の測定を行なうようにしてもよい。この場合、短い時間で測定することができる。   In the present invention, the timing of irradiating the object with near-infrared light of at least three wavelengths is within the time when light of a wavelength that is difficult to be absorbed by both water and ice is lit. Light with a wavelength that is less likely to be absorbed with respect to water and light with a wavelength that is absorbed to the same extent with respect to both water and ice Thus, the light quantity may be measured when the light of each wavelength is turned on and off. In this case, measurement can be performed in a short time.

本発明により検知された情報を、各種の車両制御装置へフィードバックするようにしてもよい。この場合、車両を安全に制御することができる。   Information detected by the present invention may be fed back to various vehicle control devices. In this case, the vehicle can be controlled safely.

本発明によれば、路面の状態をリアルタイムで高精度に計測でき、小型でエネルギー効率の良い路面状態計測方法及び装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the road surface state can be measured with high precision in real time, and a small and energy efficient road surface state measuring method and apparatus can be provided.

以下、本発明の実施例を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

この実施例に係る路面状態検出装置1は、水および氷のいずれに対しても吸収され難い波長λ1と、氷に対しては吸収され難く水に対しては吸収され易い波長λ2と、水および氷のいずれに対しても同程度に吸収される波長λ3の3つの波長の近赤外光を対象物に照射する光源2と、この照射された各波長の近赤外光が対象物で反射された反射光を検出する受光素子3と、この検出された反射光量を演算処理することにより路面状態を判別する演算装置4と、を備えている(図1参照)。   The road surface condition detection apparatus 1 according to this embodiment has a wavelength λ1 that is difficult to absorb for both water and ice, a wavelength λ2 that is difficult to absorb for ice and is easily absorbed for water, A light source 2 that irradiates the object with near-infrared light having a wavelength λ3 that is absorbed to the same extent with respect to any of the ice, and the irradiated near-infrared light of each wavelength is reflected by the object. A light-receiving element 3 that detects the reflected light and a calculation device 4 that determines the road surface state by calculating the detected amount of reflected light (see FIG. 1).

光源2は、3波長(波長λ1,λ2,λ3)の近赤外発光ダイオード21,22,23で構成されおり、それら近赤外発光ダイオード21,22,23が一つのパッケージ24の中に搭載されている(図2参照)。   The light source 2 is composed of near-infrared light emitting diodes 21, 22 and 23 having three wavelengths (wavelengths λ 1, λ 2 and λ 3), and these near-infrared light emitting diodes 21, 22 and 23 are mounted in one package 24. (See FIG. 2).

この3波長(波長λ1,λ2,λ3)は、氷の透過率が温度に対して変動が無いことを利用して、図3に示されるように氷での透過率が小さくなる直前の波長λ2(図3では、1.40〜1.42μm)、水と氷の透過率がほぼ同じになる波長λ3(図3では、1.47μm付近)と水にも氷にも透過率の良い波長λ1(図3では、1.14μm以下)の波長としている。   These three wavelengths (wavelengths λ1, λ2, and λ3) are obtained by utilizing the fact that the ice transmittance does not vary with respect to temperature, and as shown in FIG. 3, the wavelength λ2 immediately before the ice transmittance decreases. (In FIG. 3, 1.40 to 1.42 μm), the wavelength λ3 (in the vicinity of 1.47 μm in FIG. 3) at which the transmittance of water and ice is almost the same, and the wavelength λ1 having good transmittance for water and ice The wavelength is 1.14 μm or less in FIG.

これらの近赤外発光ダイオード21,22,23は、図4に示すようにシーケンシャルに発光され、ビームスプリッタ5、レンズ6を介して近赤外光が路面xに照射される。   These near-infrared light emitting diodes 21, 22 and 23 emit light sequentially as shown in FIG. 4, and near-infrared light is irradiated onto the road surface x through the beam splitter 5 and the lens 6.

そして、この照射された各波長の近赤外光が路面xで反射された反射光は、受光素子3により検出され、検出された反射光量は演算装置4により演算処理されて路面状態が判別される。   Then, the reflected light obtained by reflecting the irradiated near-infrared light of each wavelength on the road surface x is detected by the light receiving element 3, and the detected reflected light amount is arithmetically processed by the arithmetic unit 4 to determine the road surface state. The

受光素子3としては、InGaAs PINフォトダイオードが使用されており、受光素子3の出力は、電圧信号として演算装置4に入力される。   As the light receiving element 3, an InGaAs PIN photodiode is used, and the output of the light receiving element 3 is input to the arithmetic unit 4 as a voltage signal.

すなわち、路面xからの反射光は受光素子4に入射し、光電変換されて後段の演算装置4の中にある増幅器(図示せず)により増幅された後、A/D変換機(図示せず)によりデジタル化され、演算処理結果より路面状態が判別されて、表示装置7に表示される。   That is, the reflected light from the road surface x enters the light receiving element 4, is photoelectrically converted and amplified by an amplifier (not shown) in the arithmetic unit 4 at the subsequent stage, and then an A / D converter (not shown). ), And the road surface state is determined from the calculation processing result and displayed on the display device 7.

この実施例では、近赤外発光ダイオード21,22,23は、少なくとも3種類必要であるが、受光素子3は1つで済むため、装置の小型化、低コストに貢献する。また、上記のようなシーケンシャル処理により、発光ダイオード用の駆動回路が1つで済むため、部品点数の削減にも貢献できる。さらに、精度を高めるために光源2を増やした場合でも、近赤外発光ダイオードを増加するだけで済み、受光素子3、駆動回路を増やす必要は無い。   In this embodiment, at least three types of near-infrared light emitting diodes 21, 22, and 23 are necessary. However, since only one light receiving element 3 is required, this contributes to downsizing and low cost of the apparatus. In addition, the sequential processing as described above can contribute to a reduction in the number of components because only one drive circuit for the light emitting diode is required. Further, even when the number of light sources 2 is increased in order to increase accuracy, it is only necessary to increase the number of near-infrared light emitting diodes, and it is not necessary to increase the number of light receiving elements 3 and driving circuits.

しかし、上記のようなシーケンシャル処理による発光タイミングでは、高速移動時には参照光と水または氷の測定光の測る対象物が異なってくることも考えられる。実際に車載で時速60km移動すると、1msで約17mmの移動量となる。そのため、上記の別の実施例として参照光用の発光ダイオード21は常時点灯させ、他の測定対象用の発光ダイオード22,23のみをシーケンシャルに点灯、非点灯を行ない、測定時間を短くすることもできる(図5参照)。   However, at the light emission timing by the sequential processing as described above, it is conceivable that the object to be measured by the reference light and the measurement light of water or ice is different during high-speed movement. Actually, if the vehicle moves at a speed of 60 km / h, the movement amount is about 17 mm in 1 ms. Therefore, as another embodiment described above, the light-emitting diode 21 for reference light is always turned on, and only the light-emitting diodes 22 and 23 for other measurement objects are sequentially turned on and off, thereby shortening the measurement time. Yes (see FIG. 5).

この方式では、参照光(λ1)が常時路面xに照射されて、その反射光量が受光素子3で検出され、受光素子3の出力信号は、演算装置4によって監視されている。演算装置4は、演算装置4は、受光素子3の出力信号を前後参照光レベルの平均値と比較することにより、その波長による吸光度を算定し、路面xの湿潤、凍結を判別する。このようなシーケンシャル処理を行なう場合、受光素子3が飽和しないように設計する必要がある。   In this method, the reference light (λ1) is always applied to the road surface x, the amount of reflected light is detected by the light receiving element 3, and the output signal of the light receiving element 3 is monitored by the arithmetic unit 4. The arithmetic device 4 compares the output signal of the light receiving element 3 with the average value of the front and rear reference light levels, calculates the absorbance due to the wavelength, and determines whether the road surface x is wet or frozen. When performing such a sequential process, it is necessary to design so that the light receiving element 3 may not be saturated.

次に、演算装置4における演算処理について、具体的に説明する。   Next, the arithmetic processing in the arithmetic device 4 will be specifically described.

それぞれの波長の路面xからの反射光量を検出し、その測定値をI(λ1)、I(λ2)、I(λ3)とすると、図6に示されるようにそれぞれの演算結果から設定された判定基準に照らし合わせて路面状態を判別する。   When the reflected light amount from the road surface x of each wavelength is detected and the measured values are I (λ1), I (λ2), and I (λ3), they are set from the respective calculation results as shown in FIG. The road surface condition is determined in light of the determination criteria.

その判別法を説明すると、上述したように、路面の乾燥(Dry)、湿潤(Wet,Water)、凍結(Ice)、積雪(Snow)、雪解け(slush)の判定基準を、測定結果が図6に示すマトリクスのどの位置になるかにより判定する。   The discrimination method will be described. As described above, the determination results of the dry (Dry), wet (Wet, Water), freezing (Ice), snow cover (Snow), and thaw (slush) are shown in FIG. Judgment is made according to which position in the matrix shown in FIG.

図6では、横軸にI(λ2)/(I(λ1)−I(λ3))で規格化した水の吸収度を表し、縦軸はI(λ1)/I(λ3)で路面からの反射光量の大きさで雪質かどうか等を判定している。   In FIG. 6, the horizontal axis represents the water absorption normalized by I (λ2) / (I (λ1) −I (λ3)), and the vertical axis represents I (λ1) / I (λ3) from the road surface. Whether it is snowy or not is determined by the amount of reflected light.

本実施例では、水や氷に左右されない2つの波長で、反射光量の最大と最少を求め、水と氷とで吸収が異なることより反射光量が異なる波長で水、氷の区別をしているところに特徴がある。   In this embodiment, the maximum and minimum amounts of reflected light are obtained at two wavelengths that are not affected by water or ice, and water and ice are distinguished at wavelengths having different amounts of reflected light due to differences in absorption between water and ice. There is a feature.

なお、図6に示すものは判定例の1つであって、路面状態の判別する目的に応じて判別方法を変えることもできる。すなわち、目的によっては、別のI(λ1)、I(λ2)、I(λ3)の組み合せで、判定することも可能である。   Note that the example shown in FIG. 6 is one of the determination examples, and the determination method can be changed according to the purpose of determining the road surface condition. That is, depending on the purpose, it is also possible to make a determination by another combination of I (λ1), I (λ2), and I (λ3).

本発明に係る路面状態計測装置1の利用例として、路面状態の判別結果を各種の車両制御装置へ情報を提供することもできる。   As an example of use of the road surface state measuring apparatus 1 according to the present invention, information on road surface state determination results can be provided to various vehicle control devices.

また、車両に登載する場合、図7に示すように、受発光装置を進行方向のバンパー付近に設置してもよいが、より好適には、複数の装置をタイヤの前方付近に設置することによって、本当にタイヤが通過する路面の状態を知ることが可能となる。特に山陰のカーブや凍結しやすい場所が左右、前後のタイヤ情報により判明するので、運転者により有効な警告を発したり、制御系へフィードバックすることにより安全に車を制御することができるようになる。   In addition, when mounting on a vehicle, as shown in FIG. 7, the light emitting / receiving device may be installed near the bumper in the traveling direction, but more preferably, by installing a plurality of devices near the front of the tire. It is possible to really know the condition of the road surface through which the tire passes. In particular, it is possible to control the car safely by issuing effective warnings and giving feedback to the control system because the information on the left and right, front and rear tires can be found in the Sanin curve and easy-to-freeze places. .

さらに、オートクルーズ機能や自動車両走行時の路面状態を自動で判断することにより、走行速度制御のパラメータとしてブレーキシステムや急ハンドル操作の抑制を中心とした各種駆動系への制御やスリップ注意の警告灯表示の安全装置へフィードバックするようにしてもよい。   Furthermore, by automatically judging the road surface condition during auto cruise function and driving of an automatic vehicle, it is possible to control various drive systems and control the slip warning as a parameter for driving speed control, including suppression of brake system and sudden handle operation. You may make it feed back to the safety device of a lamp display.

さらにまた、別の利用例としては、本発明の装置を取り付けた車両からの路面情報をネットワークに提供することによって、ネットワークで繋がれた別の車両が路面情報を受け取り、カーナビゲーションなどの情報システムに有効に活かす事も可能となる。   Furthermore, as another application example, by providing road surface information from a vehicle equipped with the device of the present invention to a network, another vehicle connected by the network receives the road surface information, and an information system such as car navigation It is also possible to utilize it effectively.

本発明は、ドライバーや各制御装置等に路面情報を提供する路面状態計測方法および装置に有効に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be effectively used for a road surface state measuring method and apparatus that provide road surface information to a driver, each control device, and the like.

本発明の路面状態計測装置の一例を示す概略図である。It is the schematic which shows an example of the road surface state measuring apparatus of this invention. 図1に示す路面状態計測装置の発光装置の構成を示す概略図である。It is the schematic which shows the structure of the light-emitting device of the road surface state measuring apparatus shown in FIG. 水と氷の透過率特性を示す図である。It is a figure which shows the transmittance | permeability characteristic of water and ice. 本発明の実施形態における各発光ダイオードの発光とデータ読み取りタイミングを示す図である。It is a figure which shows light emission and the data reading timing of each light emitting diode in embodiment of this invention. 本発明の実施形態における各発光ダイオードの発光とデータ読み取りタイミングの他の例を示す図である。It is a figure which shows the other example of light emission of each light emitting diode in embodiment of this invention, and data reading timing. 本発明の実施形態における路面状態の判別のためのマトリクスを示す図である。It is a figure which shows the matrix for discrimination | determination of the road surface state in embodiment of this invention. 本発明の路面状態計測装置を車両に搭載した例を示す図である。It is a figure which shows the example which mounted the road surface state measuring apparatus of this invention in the vehicle. 従来の路面状態計測装置を示す概略図である。It is the schematic which shows the conventional road surface state measuring apparatus.

符号の説明Explanation of symbols

1 路面状態計測装置
2 光源
21,22,23 近赤外発光ダイオード
3 受光素子(検出手段)
4 演算装置(演算処理手段)
5 ビームスプリッタ
6 コリメートレンズ
x 路面
DESCRIPTION OF SYMBOLS 1 Road surface state measuring apparatus 2 Light source 21, 22, 23 Near-infrared light emitting diode 3 Light receiving element (detection means)
4. Arithmetic unit (arithmetic processing means)
5 Beam splitter 6 Collimating lens x Road surface

Claims (11)

水および氷のいずれに対しても吸収され難い波長と、氷に対しては吸収され難く水に対しては吸収され易い波長と、水および氷のいずれに対しても同程度に吸収される波長の少なくとも3つの波長の近赤外光を光源から対象物に照射する照射工程と、
この照射された各波長の近赤外光が対象物で反射された反射光を検出する検出工程と、
この検出された反射光量を演算処理することにより路面状態を判別する演算処理工程と、を有することを特徴とする路面状態計測方法。
Wavelengths that are difficult to absorb for both water and ice, wavelengths that are hard to absorb for ice and easy for water, and wavelengths that are absorbed to the same extent for both water and ice An irradiation step of irradiating an object with near-infrared light having at least three wavelengths of
A detection step of detecting the reflected light reflected by the object with the irradiated near-infrared light of each wavelength;
A road surface state measuring method comprising: an arithmetic processing step of determining a road surface state by processing the detected amount of reflected light.
水および氷のいずれに対しても吸収され難い波長と、氷に対しては吸収され難く水に対しては吸収され易い波長と、水および氷のいずれに対しても同程度に吸収される波長の少なくとも3つの波長の近赤外光を対象物に照射する光源と、
この照射された各波長の近赤外光が対象物で反射された反射光を検出する検出手段と、
この検出された反射光量を演算処理することにより路面状態を判別する演算処理手段と、を備えることを特徴とする路面状態計測装置。
Wavelengths that are difficult to absorb for both water and ice, wavelengths that are hard to absorb for ice and easy for water, and wavelengths that are absorbed to the same extent for both water and ice A light source that irradiates an object with near-infrared light of at least three wavelengths of:
Detecting means for detecting the reflected light of the irradiated near-infrared light of each wavelength reflected by the object;
A road surface state measuring apparatus comprising: arithmetic processing means for determining a road surface state by performing arithmetic processing on the detected amount of reflected light.
前記近赤外光は、少なくとも3つの異なる単一波長の光をそれぞれ個別に出力する光源から照射されていることを特徴とする請求項1または2記載の路面状態計測方法または路面状態計測装置。   3. The road surface state measuring method or the road surface state measuring device according to claim 1, wherein the near infrared light is irradiated from a light source that individually outputs at least three light beams having different single wavelengths. 前記少なくとも3つの異なる単一波長の光を出力する光源の全てが1つのパッケージ内に配置され、それら光源からの光が光学部品によりコリメートあるいは集光されることを特徴とする請求項3記載の路面状態計測方法または路面状態計測装置。   The light source that outputs the light of at least three different single wavelengths is disposed in one package, and the light from the light source is collimated or condensed by an optical component. Road surface state measuring method or road surface state measuring device. 前記光源は、発光ダイオードを用いることを特徴とする請求項1ないし4のいずれか記載の路面状態計測方法または路面状態計測装置。   The road surface state measuring method or the road surface state measuring apparatus according to any one of claims 1 to 4, wherein the light source uses a light emitting diode. 前記反射光の検出には、1つの受光面を有する受光素子が用いられていることを特徴とする請求項1ないし5のいずれか記載の路面状態計測方法または路面状態計測装置。   The road surface state measuring method or the road surface state measuring apparatus according to claim 1, wherein a light receiving element having one light receiving surface is used for detecting the reflected light. 前記受光素子の受光面の路面に対する光学的距離を保持するための補正手段を有することを特徴とする請求項6記載の路面状態計測方法または路面状態計測装置。   The road surface state measuring method or the road surface state measuring apparatus according to claim 6, further comprising a correcting unit for maintaining an optical distance of the light receiving surface of the light receiving element with respect to the road surface. 前記少なくとも3つの波長の近赤外光を対象物に照射するタイミングは、前記各光源をトリガパルスによるシーケンシャル制御することによって設定されていることを特徴とする請求項1ないし7のいずれか記載の路面状態計測方法または路面状態計測装置。   8. The timing of irradiating an object with near-infrared light of at least three wavelengths is set by sequentially controlling each of the light sources with a trigger pulse. 9. Road surface state measuring method or road surface state measuring device. 前記各光源のシーケンシャル制御により対象物に照射される合計の時間あるいは測定時間が、50μs〜10msであることを特徴とする請求項8記載の路面状態計測方法または路面状態計測装置。   9. The road surface state measuring method or the road surface state measuring device according to claim 8, wherein a total time or measurement time for irradiating the object by sequential control of each light source is 50 [mu] s to 10 ms. 前記少なくとも3つの波長の近赤外光を対象物に照射するタイミングは、前記水および氷のいずれに対しても吸収され難い波長の光が点灯している時間内に、前記氷に対しては吸収され難く水に対しては吸収され易い波長の光と、前記水および氷のいずれに対しても同程度に吸収される波長の光とが、交互に点灯時と不点灯時になるように設定されており、これら各波長の光のそれぞれの点灯時と不点灯時に光量の測定が行なわれることを特徴とする請求項1ないし9のいずれか記載の路面状態計測方法または路面状態計測装置。   The timing of irradiating the object with near-infrared light of at least three wavelengths is within the time when light of a wavelength that is difficult to be absorbed by both water and ice is lit, Light that has a wavelength that is not easily absorbed and is easily absorbed by water, and light that has a wavelength that is absorbed to the same extent by both water and ice, are set to alternately turn on and off. 10. The road surface state measuring method or the road surface state measuring device according to claim 1, wherein the light amount is measured when the light of each wavelength is turned on and off. 請求項1ないし10に記載の方法または装置により検知された情報を、各種の車両制御装置へフィードバックすることを特徴とする路面状態計測方法または路面状態計測装置。   A road surface state measuring method or a road surface state measuring device, wherein information detected by the method or device according to claim 1 is fed back to various vehicle control devices.
JP2004224126A 2004-07-30 2004-07-30 Road surface state measuring method and road surface state measuring device Expired - Fee Related JP4157078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004224126A JP4157078B2 (en) 2004-07-30 2004-07-30 Road surface state measuring method and road surface state measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004224126A JP4157078B2 (en) 2004-07-30 2004-07-30 Road surface state measuring method and road surface state measuring device

Publications (2)

Publication Number Publication Date
JP2006046936A JP2006046936A (en) 2006-02-16
JP4157078B2 true JP4157078B2 (en) 2008-09-24

Family

ID=36025667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004224126A Expired - Fee Related JP4157078B2 (en) 2004-07-30 2004-07-30 Road surface state measuring method and road surface state measuring device

Country Status (1)

Country Link
JP (1) JP4157078B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7851984B2 (en) 2006-08-08 2010-12-14 Federal-Mogul World Wide, Inc. Ignition device having a reflowed firing tip and method of construction

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5151169B2 (en) * 2007-01-31 2013-02-27 株式会社デンソー Measuring device, vehicle control device, and alarm device
JP4918732B2 (en) * 2010-03-05 2012-04-18 日本電気株式会社 Light measuring apparatus and method
DE102010023856A1 (en) * 2010-06-15 2011-12-22 Wabco Gmbh Sensor for non-contact determination of the road condition and its use
JP5462098B2 (en) * 2010-07-26 2014-04-02 有限会社アストロン Weather measurement equipment
CN103063611B (en) * 2011-10-21 2014-10-15 中国科学院对地观测与数字地球科学中心 Snow accumulation parameter measurement system and method based on near infrared imaging technology
KR101326991B1 (en) * 2011-12-01 2013-11-13 현대자동차주식회사 Apparatus and method for sensing property of road surface
JP5881397B2 (en) * 2011-12-12 2016-03-09 独立行政法人国立高等専門学校機構 Snow, hail, rain discrimination method and discrimination device
JP5888104B2 (en) * 2012-05-14 2016-03-16 株式会社島津製作所 Oxygen concentration measuring device
KR101307178B1 (en) * 2013-01-28 2013-09-11 공주대학교 산학협력단 Identification methods of road weather conditions in dual wavelength road weather condition monitoring apparatus
WO2015060899A1 (en) * 2013-10-24 2015-04-30 The Regents Of The University Of Michigan Ice and supercooled water detection system
US9304081B2 (en) 2013-10-24 2016-04-05 The Regents Of The University Of Michigan Ice and water detection system
JP6542619B2 (en) * 2015-08-31 2019-07-10 株式会社豊田中央研究所 Moisture detection device and moisture detection method
US20170096144A1 (en) * 2015-10-05 2017-04-06 Ford Global Technologies, Llc System and Method for Inspecting Road Surfaces
US10336465B2 (en) 2016-01-08 2019-07-02 The Regents Of The University Of Michigan Ice crystals and volcanic ash detection system
JP7001305B2 (en) * 2017-06-06 2022-01-19 株式会社豊田中央研究所 Road surface condition determination device and road surface condition determination program
JP6788863B2 (en) * 2017-08-29 2020-11-25 パナソニックIpマネジメント株式会社 Moisture content sensor and road surface condition detector
JP7024996B2 (en) * 2017-10-30 2022-02-24 国立研究開発法人宇宙航空研究開発機構 Monitoring system
JP6626523B2 (en) 2018-03-28 2019-12-25 株式会社Subaru Vehicle control device and vehicle control method
US10621865B2 (en) 2018-03-29 2020-04-14 The Regents Of The University Of Michigan Road condition monitoring system
US10508952B1 (en) 2018-10-31 2019-12-17 The Regents Of The University Of Michigan Optimum spectral bands for active vision systems
DE102019205903A1 (en) * 2019-04-25 2020-10-29 Robert Bosch Gmbh Method and device for determining a solid state of water on a road surface
DE102019208881A1 (en) * 2019-06-19 2020-12-24 Robert Bosch Gmbh Device and method for determining a surface condition of a roadway on or to be driven on by a vehicle
WO2021049109A1 (en) * 2019-09-11 2021-03-18 パナソニックIpマネジメント株式会社 Moisture sensing device
WO2021235091A1 (en) * 2020-05-18 2021-11-25 パナソニックIpマネジメント株式会社 Moisture detection device
JP2022038604A (en) 2020-08-27 2022-03-10 株式会社Subaru Vehicle control device for vehicle
JP2023039044A (en) 2021-09-08 2023-03-20 株式会社Subaru Vehicle friction coefficient estimation device for road surface
JP2023039045A (en) 2021-09-08 2023-03-20 株式会社Subaru Road surface state determination device for vehicle
WO2023105276A1 (en) * 2021-12-10 2023-06-15 Bosch Car Multimedia Portugal, S.A. Optical beam combiner road condition sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7851984B2 (en) 2006-08-08 2010-12-14 Federal-Mogul World Wide, Inc. Ignition device having a reflowed firing tip and method of construction

Also Published As

Publication number Publication date
JP2006046936A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP4157078B2 (en) Road surface state measuring method and road surface state measuring device
EP2196792B1 (en) Optical device for motor vehicles, for detecting the condition of the road surface
JP6830212B2 (en) Road surface condition prediction system, driving support system, road surface condition prediction method and data distribution method
EP0710817B1 (en) Object discriminator ( road surface )
US8890713B2 (en) Device and method for outputting a signal when there is a hazardous underlying surface under a vehicle
US9135219B2 (en) Method and device for controlling at least one driver assistance system of a vehicle
ES2222709T3 (en) PROVISION OF RECOGNITION OF THE STATE OF A FOOTWEAR.
US5962853A (en) Process for determining the surface state of highways in particular, and device for carrying out this process
US20150375753A1 (en) Method and beam sensor module for predictively determining the condition of the road in a vehicle
DK1890128T3 (en) Device for detecting road surface condition
KR101862831B1 (en) Vehicle headlight with a device for determining road conditions and a system for monitoring road conditions
CA2712855A1 (en) Non-contact freezing temperature determination
EP3677897B1 (en) Water content sensor and road surface state detection device
JP2013529775A (en) Sensor for detecting the roadway condition without contact and use thereof
JPH10206314A (en) Measuring method for road surface condition and device therefore
JP2008185563A (en) Measuring device, vehicle control device, and alarm device
US20210372919A1 (en) Black-ice and standing-water detection system
JPH1096694A (en) Road surface state detector and vehicle loading the apparatus, and road surface information control system using the apparatus
Ruiz-Llata et al. LiDAR design for road condition measurement ahead of a moving vehicle
Hirano Development of vehicle-following distance warning system for trucks and buses
EP2330439B1 (en) Obstacle-detection system for a vehicle
JP7134855B2 (en) ROAD CONDITION DETERMINATION DEVICE AND ROAD CONDITION DETERMINATION SYSTEM
JPH1096622A (en) Road surface friction coefficient measuring device and vehicle loading this device and road surface information monitoring system thereof
JPH11248438A (en) Device for measuring road-surface friction factor, and car braking control system using the same
JP2697307B2 (en) Road surface identification device and its application device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees