JP5881397B2 - Snow, hail, rain discrimination method and discrimination device - Google Patents

Snow, hail, rain discrimination method and discrimination device Download PDF

Info

Publication number
JP5881397B2
JP5881397B2 JP2011270971A JP2011270971A JP5881397B2 JP 5881397 B2 JP5881397 B2 JP 5881397B2 JP 2011270971 A JP2011270971 A JP 2011270971A JP 2011270971 A JP2011270971 A JP 2011270971A JP 5881397 B2 JP5881397 B2 JP 5881397B2
Authority
JP
Japan
Prior art keywords
infrared light
value
light
snow
rain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011270971A
Other languages
Japanese (ja)
Other versions
JP2013122413A (en
Inventor
巌 水本
巌 水本
章 塚田
章 塚田
桂一郎 山本
桂一郎 山本
隆史 勝島
隆史 勝島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2011270971A priority Critical patent/JP5881397B2/en
Publication of JP2013122413A publication Critical patent/JP2013122413A/en
Application granted granted Critical
Publication of JP5881397B2 publication Critical patent/JP5881397B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、空中に降っている降下物が雪、霙、雨のいずれかであるか判別する判別方法及び判別装置に関する。   The present invention relates to a determination method and a determination apparatus for determining whether a fallen object falling in the air is snow, hail, or rain.

路面凍結防止や雪崩対策等のため、気象状態の観測が重要であるところから気象状態の観測を行う技術が従来より開発されている。例えば、特許文献1には、雨、雪、霧の判別を行う方法が開示されている。   In order to prevent road freezing and avalanche countermeasures, techniques for observing meteorological conditions have been developed since observation of meteorological conditions is important. For example, Patent Document 1 discloses a method for determining rain, snow, or fog.

特許文献1は気象状態の判別のために赤外光を用いるものであり、単一波長の赤外光を空中に投光する発光器と、空中の雪、雨等の降下物から反射された後方散乱光を受光する受光器とを備えている。そして受光器の受光量に基づいて得られる平均値、偏差値及びこれらを関数とした変異係数を演算し、変異係数の値によって雨、雪、霧の判別を行うものである。受光量における平均値は雪、霧>雨であり、偏差値は雨、雪>霧であるところから、これらを関数とした変異係数が雨>雪>霧となることにより判別を行うものである。   Patent Document 1 uses infrared light for discrimination of weather conditions, and is reflected from a light emitter that projects infrared light of a single wavelength into the air and falling objects such as snow and rain in the air. And a light receiver for receiving the backscattered light. Then, an average value, a deviation value, and a variation coefficient using these as a function are calculated based on the amount of light received by the light receiver, and rain, snow, and fog are discriminated based on the variation coefficient value. Since the average value in the amount of received light is snow, fog> rain, and the deviation value is rain, snow> mist, the discrimination is made by making the variation coefficient as a function of rain> snow> mist. .

特許文献1に加え、近年では、光学センサ、感雨センサ、温度センサを組み合わせた降雪センサを気象観測に用いることがなされている。すなわち、波長875nmの単一波長の近赤外光を用い、この近赤外光の前方散乱光における光学センサのデータ、感雨センサのデータ、温度センサのデータを処理して雪と霙の判別を行うものである。   In addition to Patent Document 1, in recent years, a snowfall sensor that combines an optical sensor, a rain sensor, and a temperature sensor has been used for weather observation. That is, using near-infrared light having a single wavelength of 875 nm, the optical sensor data, rain sensor data, and temperature sensor data in the forward scattered light of this near infrared light are processed to discriminate between snow and hail. Is to do.

特開平4−175687号公報JP-A-4-175687

山地等の積雪状態に対して、霙が降ると積雪している表層部分が重くなるため、雪崩発生の原因となる。このため、気象状態が雪であるか、霙であるかを判別することは雪山遭難を防止する観点から重要なこととなっている。   When snowfall occurs in snowy areas such as mountainous areas, the snow covered surface layer becomes heavy, causing avalanches. For this reason, it is important to determine whether the weather condition is snow or hail from the viewpoint of preventing snow mountain distress.

しかしながら、特許文献1では、雪、雨、霧の判別が可能であるとしても、霙の判別ができないものとなっている。霙は雨と雪が混ざって降る気象現象であり、雨と雪の限界領域のため、単一波長の赤外光を用い、この単一波長の赤外光の受光量だけでは雪や雨との判別が分かり難いためである。
光学センサ、感雨センサ、温度センサを組み合わせた降雪センサも同様であり、単一波長の近赤外光を用いることから雪、霙の判別が曖昧となっている。又、この降雪センサでは、各種センサを組み合わせていることから構成部品が多く、操作や制御が面倒であり、しかも得られたデータの処理が面倒となる問題も有している。
However, in Patent Document 1, even if snow, rain, and fog can be discriminated, hail cannot be discriminated.霙 is a meteorological phenomenon in which rain and snow are mixed, and because of the limit region of rain and snow, single wavelength infrared light is used. This is because the discrimination is difficult to understand.
The same applies to a snowfall sensor in which an optical sensor, a rain sensor, and a temperature sensor are combined, and the use of single-wavelength near-infrared light makes it ambiguous to distinguish between snow and hail. In addition, since this snowfall sensor is combined with various sensors, there are many components, and the operation and control are troublesome, and the processing of the obtained data is troublesome.

本発明はこのような従来の問題点を考慮してなされたものであり、雪、雨の判別だけでなく、霙を雪や雨と明確に判別することが可能な判別方法を提供すると共に、これらの判別が簡単な構成で可能であり、その際の操作や制御、処理が簡単な判別装置を提供することを目的とする。   The present invention has been made in view of such conventional problems, and provides a determination method capable of clearly determining not only snow and rain, but also snow and rain. An object of the present invention is to provide a discriminating apparatus which can be discriminated with a simple configuration and can be easily operated, controlled and processed.

本発明の雪、霙、雨の判別方法は、水による吸収量が多い波長域の近赤外光及び水による吸収量が少ない波長域の近赤外光のそれぞれを空中の降下物に向けて投光する投光段階と、前記それぞれの波長域の近赤外光を前記空中の降下物から受光する受光段階と、前記投光した近赤外光の強度に対する前記受光した近赤外光の強度の変動値を前記各波長域ごとに測定し、測定した変動値に基づいた値を所定の基準値と比較して雪、霙、雨のいずれかを判別する判別段階とを備え、前記受光段階は、前記投光段階で投光した近赤外光が空中の降下物を透過した透過光を受光することを特徴とする。 The method for discriminating snow, hail, and rain according to the present invention is directed to near-infrared light in a wavelength region with a large amount of absorption by water and near-infrared light in a wavelength region with a small amount of absorption by water directed at falling objects in the air. A projecting stage for projecting light, a light receiving stage for receiving near-infrared light in the respective wavelength regions from the falling objects in the air, and the received near-infrared light with respect to the intensity of the projected near-infrared light. the variation value of the intensity measured for each of the respective wavelength ranges, with snow, sleet, and determining step of determining either rain a value based on the measured variable value is compared with a predetermined reference value, the light receiving The step is characterized in that the near-infrared light projected in the projecting step receives the transmitted light that has passed through the fallen object in the air .

この場合、前記判別段階は、前記各波長域ごとの近赤外光の強度の変動値に対して所定の閾値を設定し、閾値以上の変動値を各波長域の有効値とし、双方の波長域の有効値の比較演算によって判別値を得、この判別値を前記所定の基準値と比較して雪、霙、雨のいずれかを判別することが好ましい。
又、前記水による吸収量が多い波長域の近赤外光は1400nm〜1500nmの波長域であり、前記水による吸収量が少ない波長域の近赤外光は900nm〜1350nmの波長域であることが好ましい。
In this case, the determination step sets a predetermined threshold for the variation value of the near-infrared light intensity for each wavelength region, sets the variation value equal to or greater than the threshold value as an effective value for each wavelength region, and sets both wavelengths. It is preferable to obtain a discriminant value by comparing the effective values of the area and compare the discriminant value with the predetermined reference value to discriminate between snow, hail and rain.
The near-infrared light in the wavelength range where the amount of absorption by water is large is in the wavelength range of 1400 nm to 1500 nm, and the near-infrared light in the wavelength range where the amount of absorption by water is small is in the wavelength range of 900 nm to 1350 nm. Is preferred.

本発明の雪、霙、雨の判別装置は、水による吸収量が多い波長域の近赤外光を空中の降下物に向けて投光した後、前記近赤外光を前記空中の降下物から受光する第1光路部と、水による吸収量が少ない波長域の近赤外光を空中の降下物に向けて投光した後、前記近赤外光を前記空中の降下物から受光する第2光路部と、前記投光した近赤外光の強度に対する受光した近赤外光の強度の変動値を前記第1光路部及び第2光路部ごとに測定し、測定した変動値に基づいた値を所定の基準値と比較して雪、霙、雨のいずれかを判別する判別手段とを備え、前記第1光路部及び第2光路部は、前記空中の降下物を透過した透過光を受光することを特徴とする。 According to the snow, hail, and rain discriminating apparatus of the present invention, after projecting near-infrared light in a wavelength region having a large amount of absorption by water toward a fallout in the air, the near-infrared light is dropped in the air. A first optical path portion that receives light from the first light path, and after projecting near-infrared light in a wavelength region with a small amount of absorption by water toward the falling object in the air, the first infrared light is received from the falling object in the air. The variation value of the intensity of the received near infrared light with respect to the intensity of the two optical path portions and the projected near infrared light is measured for each of the first optical path portion and the second optical path portion, and based on the measured variation value A discriminating means for discriminating one of snow, hail, and rain by comparing the value with a predetermined reference value, and the first optical path section and the second optical path section transmit transmitted light that has passed through the fallout in the air. It is characterized by receiving light .

この場合、前記判別手段は、前記近赤外光の強度の変動値に対して所定の閾値以上のときに有効値とし、前記第1光路部側の有効値及び第2光路部側の有効値の比較演算によって判別値を得、この判別値を前記所定の基準値と比較して雪、霙、雨のいずれかを判別することが好ましい。
又、前記第1光路部は1400nm〜1500nmの波長域の近赤外光を発光する第1発光器とを備え、前記第2光路部は900nm〜1350nmの波長域の赤外光を発光する第2発光器を備えていることが好ましい。
In this case, the discriminating means sets an effective value when the variation value of the intensity of the near infrared light is equal to or greater than a predetermined threshold, and an effective value on the first optical path side and an effective value on the second optical path side. It is preferable to obtain a discriminant value by the comparison operation and compare the discriminant value with the predetermined reference value to discriminate between snow, hail and rain.
The first optical path unit includes a first light emitter that emits near-infrared light in a wavelength range of 1400 nm to 1500 nm, and the second optical path unit emits infrared light in a wavelength range of 900 nm to 1350 nm. It is preferable to provide two light emitters.

本発明の雪、霙、雨の判別方法によれば、水の吸収量が多い波長域及び水の吸収量が少ない波長域の2つの波長域の近赤外光を用い、それぞれの波長域の近赤外光を空中の降下物に向けて投光し、空中の降下物を透過した透過光を受光し、投光したときの強度及び降下物から受光したときの強度を波長域ごとに比較するため、雪、霙、雨を明確に判別することができる。 According to the method for discriminating snow, hail, and rain according to the present invention, near-infrared light in two wavelength regions, a wavelength region with a large amount of water absorption and a wavelength region with a small amount of water absorption, is used. Project near-infrared light toward a falling object in the air, receive transmitted light that has passed through the falling object in the air, and compare the intensity when projected and the intensity when received from the falling object for each wavelength range Therefore, snow, hail and rain can be clearly identified.

本発明の雪、霙、雨の判別装置によれば、水の吸収量が多い波長域及び水の吸収量が少ない波長域の2つの波長域の近赤外光のそれぞれを空中の降下物に向けて投光し、空中の降下物を透過した透過光を受光する第1光路部及び第2光路部を備え、それぞれの光路部における投光時の強度及び受光時の強度を比較するため、雪、霙、雨を明確に判別することができる。又、これらの光路部と、光路部からの強度に基づいて雪、霙、雨を判別する判別手段とからなる構成のため、簡単な構成とすることができ、操作、制御及び処理が簡単となる。 According to the snow, hail, and rain discriminating device of the present invention, each of near-infrared light in two wavelength regions, a wavelength region with a large amount of water absorption and a wavelength region with a small amount of water absorption, is used as a fallout in the air. In order to compare the intensity at the time of light projection and the intensity at the time of light reception in each of the optical path parts, the first optical path part and the second optical path part for receiving the transmitted light that has been projected toward and transmitted through the fallen object in the air , Snow, hail, and rain can be clearly identified. In addition, since the optical path unit and the discriminating means for discriminating snow, hail, and rain based on the intensity from the optical path unit, the configuration can be simplified, and the operation, control, and processing can be simplified. Become.

水の近赤外スペクトルを示す図である。It is a figure which shows the near-infrared spectrum of water. 本発明の一実施形態の判別装置を示すブロック図である。It is a block diagram which shows the discrimination | determination apparatus of one Embodiment of this invention. 一実施形態の第1光路部を示す断面図である。It is sectional drawing which shows the 1st optical path part of one Embodiment. (A)は波長945nmにおける雨の有効値を示すグラフ、(B)は波長1450nmにおける雨の有効値を示すグラフである。(A) is a graph which shows the effective value of rain in wavelength 945nm, (B) is a graph which shows the effective value of rain in wavelength 1450nm. (A)は波長945nmにおける雪の有効値を示すグラフ、(B)は波長1450nmにおける雪の有効値を示すグラフである。(A) is a graph which shows the effective value of snow in wavelength 945nm, (B) is a graph which shows the effective value of snow in wavelength 1450nm. (A)は波長945nmにおける霙の有効値を示すグラフ、(B)は波長1450nmにおける霙の有効値を示すグラフである。(A) is a graph showing the effective value of wrinkles at a wavelength of 945 nm, and (B) is a graph showing the effective values of wrinkles at a wavelength of 1450 nm. 参考例の判別装置における光学系を示す平面図である。It is a top view which shows the optical system in the discrimination device of a reference example .

本発明による雪、霙、雨の判別は、波長が異なっている2つの波長域の近赤外光を空中の降下物に向けて投光し、それぞれの波長域の近赤外光を空中の降下物から受光し、投光した近赤外光の強度と受光した近赤外光の強度とを波長域ごとに比較することによって雪、霙、雨の気象状態を判別するものである。このような本発明は、水による近赤外光の吸収量が近赤外光の波長域によって異なることを利用するものである。   According to the present invention, snow, hail, and rain are discriminated by projecting near-infrared light of two wavelength ranges having different wavelengths toward a falling object in the air and transmitting the near-infrared light of each wavelength region in the air. The weather conditions of snow, hail, and rain are discriminated by comparing the intensity of the near infrared light received from the falling object and the intensity of the received near infrared light for each wavelength range. The present invention utilizes the fact that the amount of absorption of near infrared light by water varies depending on the wavelength range of near infrared light.

図1は水の近赤外吸収スペクトルを示す。図1に示すように、水は1400nm〜1500nmの波長域の吸光度が大きく、この波長域の近赤外光の吸収量が多い一方、900nm〜1350nmの波長域の近赤外光の吸光度が小さく、この波長域の近赤外光の吸収量が少ない特性を有している。空から降る降下物のうち、雨は水であり、雪は結晶であるところから、雨は1400nm〜1500nmの波長域の近赤外光の吸収量が多く、900nm〜1350nmの波長域の近赤外光の吸収量が少なく、これらの2つの波長域での吸収量のばらつきが大きいのに対し、雪は波長の差異に関係なく近赤外光を反射するため2つの波長域での近赤外光の吸収量は左程ばらつくことがない。霙は雨と雪が混ざった気象現象であるから2つの波長域では雨と雪の中間の特性を示す。従って、以上の定性的な特性に基づくことにより、空中の降下物が雪、霙、雨のいずれかであることを判別することが可能となる。   Figure 1 shows the near-infrared absorption spectrum of water. As shown in FIG. 1, water has a large absorbance in the wavelength region of 1400 nm to 1500 nm and a large amount of absorption of near infrared light in this wavelength region, while the absorbance of near infrared light in the wavelength region of 900 nm to 1350 nm is small. The absorption amount of near-infrared light in this wavelength region is small. Among the fallouts falling from the sky, rain is water and snow is crystals, so rain has a large amount of absorption of near-infrared light in the wavelength range of 1400 nm to 1500 nm, and near red in the wavelength range of 900 nm to 1350 nm. While the amount of absorption of outside light is small and the variation in the amount of absorption in these two wavelength regions is large, snow reflects near infrared light regardless of the difference in wavelength, so near red in the two wavelength regions. The amount of external light absorbed does not vary as much as the left. The kite is a meteorological phenomenon in which rain and snow are mixed, so it shows characteristics between rain and snow in the two wavelength regions. Therefore, based on the above qualitative characteristics, it is possible to determine whether the fallout in the air is snow, hail or rain.

本発明において、空中の降下物に向けて投光した2つの近赤外光を受光する態様として、空中の降下物を透過した透過光を受光するものであり、以下、透過光を受光する実施形態について説明する。 In the present invention, as an aspect of receiving two near infrared lights projected toward a falling object in the air, the transmitted light that has passed through the falling object in the air is received . Hereinafter, the transmitted light is received. A form is demonstrated.

図2は透過光を受光する実施形態に適用される判別装置1を示す。判別装置1は、水による吸収量が多い波長域の近赤外光を空中の降下物2に向けて投光した後、空中の降下物2を透過した透過光を受光する第1光路部3と、水による吸収量が少ない波長域の近赤外光を空中の降下物2に向けて投光した後、空中の降下物2を透過した透過光を受光する第2光路部4と、空中の降下物2が雪、霙、雨のいずれかであることを判別する判別手段5とを備える。以下の説明において、水による吸収量が多い波長域を1450nmとし、水による吸収量が少ない波長域を945nmとするが、これらの2つの波長域としては上述した範囲内であれば適宜変更可能である。   FIG. 2 shows a discriminating apparatus 1 applied to an embodiment that receives transmitted light. The discriminating apparatus 1 projects first infrared light in a wavelength region with a large amount of absorption by water toward the falling object 2 in the air, and then receives the transmitted light transmitted through the falling object 2 in the air. A second optical path unit 4 that receives near-infrared light in a wavelength range in which the amount of absorption by water is small toward the falling object 2 in the air and then receives transmitted light that has passed through the falling object 2 in the air; And a discriminating means 5 for discriminating that the falling object 2 is any one of snow, hail and rain. In the following description, the wavelength region where the amount of water absorption is large is 1450 nm, and the wavelength region where the amount of water absorption is small is 945 nm. These two wavelength regions can be changed as appropriate within the above-mentioned ranges. is there.

第1光路部3は波長1450nmの近赤外光を発光する第1発光器31を備え、第2光路部4は波長945nmの近赤外光を発光する第2発光器41を備えている。これらの発光器31,41はLEDが用いられるものであり、1450nmの第1発光器31としては、例えば、商品名「L23888−01」(浜松ホトニクス(社)製)のLEDを用いることができ、945nmの第2発光器41としては、例えば、商品名「L10660−01」(浜松ホトニクス(社)製)のLEDを用いることができる。   The first optical path unit 3 includes a first light emitter 31 that emits near-infrared light having a wavelength of 1450 nm, and the second optical path unit 4 includes a second light emitter 41 that emits near-infrared light having a wavelength of 945 nm. The light emitters 31 and 41 use LEDs. As the first light emitter 31 having a wavelength of 1450 nm, for example, an LED having a trade name “L23888-01” (manufactured by Hamamatsu Photonics Co., Ltd.) can be used. As the second light emitter 41 of 945 nm, for example, an LED having a trade name “L10660-01” (manufactured by Hamamatsu Photonics Co., Ltd.) can be used.

第1発光器31及び第2発光器41はLED点滅回路8に接続されて発光する。LED点滅回路8は電源6及び発振器7に接続されることにより駆動する。LED点滅回路8は発振器7から信号が入力されることにより第1発光器31及び第2発光器41を同時に発光させる。又、発振器7はLED点滅回路8に信号を出力すると同時にその同期信号を参照信号としてロックインアンプ11,12に出力する。   The first light emitter 31 and the second light emitter 41 are connected to the LED blinking circuit 8 to emit light. The LED blinking circuit 8 is driven by being connected to a power source 6 and an oscillator 7. The LED blinking circuit 8 receives the signal from the oscillator 7 and causes the first light emitter 31 and the second light emitter 41 to emit light simultaneously. The oscillator 7 outputs a signal to the LED blinking circuit 8 and simultaneously outputs the synchronization signal to the lock-in amplifiers 11 and 12 as a reference signal.

第1光路部3及び第2光路部4は、降下物2を挟んで設けられて第1発光器31及び第2発光器41のそれぞれに対向する受光器32,42を有している。受光器32,42は対応した発光器31,41の発光によって降下物2に向けて投光されて降下物2を透過した透過光を受光する。受光器32,42としては、降下物の判別に用いられる範囲の波長域の近赤外光を受光可能なものが選択される。このため受光器32,42は900nm〜1500nmの範囲の近赤外光を受光可能なフォトダイオードが用いられる。この受光器32,42としては、例えば、商品名「G8370−81」(浜松ホトニクス(社)製)からなるInGaAsフォトダイオードを用いることができる。かかるInGaAsフォトダイオードは25℃において、約900nm〜1700nmの波長範囲の近赤外光を受光する波長感度特性を有している。   The first optical path unit 3 and the second optical path unit 4 include light receivers 32 and 42 that are provided with the fallen object 2 interposed therebetween and that face the first light emitter 31 and the second light emitter 41, respectively. The light receivers 32 and 42 receive the transmitted light that is projected toward the falling object 2 and transmitted through the falling object 2 by the light emission of the corresponding light emitters 31 and 41. As the light receivers 32 and 42, those capable of receiving near-infrared light in a wavelength range of a range used for determining a falling object are selected. For this reason, photodiodes capable of receiving near-infrared light in the range of 900 nm to 1500 nm are used for the light receivers 32 and 42. As the light receivers 32 and 42, for example, an InGaAs photodiode made of a trade name “G8370-81” (manufactured by Hamamatsu Photonics Co., Ltd.) can be used. Such InGaAs photodiodes have wavelength sensitivity characteristics that receive near-infrared light in the wavelength range of about 900 nm to 1700 nm at 25 ° C.

第1光路部3は第1発光器31の出射側に平凸レンズ33及び偏光板34を備え、受光器32の入射側に偏光板35及び平凸レンズ36を備えている。第2光路部4も同様であり、第2発光器41の出射側に平凸レンズ43及び偏光板44を備え、受光器42の入射側に偏光板45及び平凸レンズ46を備えている。出射側の平凸レンズ33,43はそれぞれの発光器31,41が発光する近赤外光を平行ビームとし、平凸レンズ33,43に続く偏光板34,44は近赤外光を直線偏光とする。入射側の偏光板35,45は出射側の偏光板34,44とスレットの向きが同じとなるように配置されることにより外乱光を遮断する。これにより降下物2を透過した透過光が平凸レンズ36,46を通過して集光され、それぞれの受光器32,42に入射して受光される。   The first optical path unit 3 includes a plano-convex lens 33 and a polarizing plate 34 on the emission side of the first light emitter 31, and a polarizing plate 35 and a plano-convex lens 36 on the incident side of the light receiver 32. The same applies to the second optical path section 4, which includes a plano-convex lens 43 and a polarizing plate 44 on the emission side of the second light emitter 41, and a polarizing plate 45 and a plano-convex lens 46 on the incident side of the light receiver 42. The plano-convex lenses 33 and 43 on the emission side use near-infrared light emitted from the light emitters 31 and 41 as parallel beams, and the polarizing plates 34 and 44 following the plano-convex lenses 33 and 43 use near-infrared light as linearly polarized light. . The incident-side polarizing plates 35 and 45 are arranged so that the direction of the threat is the same as that of the outgoing-side polarizing plates 34 and 44, thereby blocking ambient light. As a result, the transmitted light that has passed through the falling object 2 passes through the plano-convex lenses 36 and 46 and is collected and incident on the light receivers 32 and 42 to be received.

図3は第1光路部3における具体的な構造を示す。近赤外光の光路となる支持パイプ37及び支持パイプ38が降下物2を挟んで対向している。支持パイプ37,38は距離Dを有して離隔されており、離隔された支持パイプ37,38の間が降下物2の測定空間となっている。支持パイプ37内には第1発光器31、平凸レンズ33、偏光板34が配置され、支持パイプ38内には偏光板35、平凸レンズ36、受光器32が配置されている。支持パイプ37,38はポリプロピレン、ポリエチレン等の合成樹脂によって筒状に形成される。図3において、Lは第1発光器31と受光器32との間の光路長である。光路長Lとしては例えば500mm、測定空間となる距離Dとしては例えば300mmと設定することができる。なお、平凸レンズ33としては、例えば、商品名「SLSQ−30−50P」(シグマ光機(社)製)、偏光板34としては、通過波長900nm〜2000nmとなっている例えば商品名「NT48−889」(エドモンド(社)製)が用いられる。以上の図3に示す第1光路部3の構造は、第2光路部4に対しても同様となっている。   FIG. 3 shows a specific structure in the first optical path portion 3. A support pipe 37 and a support pipe 38 that are optical paths of near-infrared light are opposed to each other with the fallen object 2 interposed therebetween. The support pipes 37 and 38 are separated by a distance D, and the space between the separated support pipes 37 and 38 is a measurement space for the fallen object 2. A first light emitter 31, a plano-convex lens 33 and a polarizing plate 34 are arranged in the support pipe 37, and a polarizing plate 35, a plano-convex lens 36 and a light receiver 32 are arranged in the support pipe 38. The support pipes 37 and 38 are formed in a cylindrical shape from a synthetic resin such as polypropylene or polyethylene. In FIG. 3, L is the optical path length between the first light emitter 31 and the light receiver 32. The optical path length L can be set to 500 mm, for example, and the distance D to be a measurement space can be set to 300 mm, for example. As the plano-convex lens 33, for example, a trade name “SLSQ-30-50P” (manufactured by Sigma Koki Co., Ltd.), and as the polarizing plate 34, for example, a trade name “NT48-” having a pass wavelength of 900 nm to 2000 nm. 889 "(manufactured by Edmond Co.) is used. The structure of the first optical path unit 3 shown in FIG. 3 is the same as that of the second optical path unit 4.

判別手段5は2つの波長域のそれぞれに対応したロックインアンプ11,12と、ロックインアンプ11,12が接続される判別部9とを備えている。   The discriminating means 5 includes lock-in amplifiers 11 and 12 corresponding to the two wavelength ranges, and a discriminating unit 9 to which the lock-in amplifiers 11 and 12 are connected.

判別手段5のロックインアンプ11は第1光路部3の受光器32に接続され、ロックインアンプ12は第2光路部4の受光器42に接続されている。フォトダイオードからなる受光器32,42はそれぞれの波長(1450nm、945nm)の近赤外光を受光すると、その光信号を電気信号に変換した後、測定信号としてそれぞれのロックインアンプ11、12に出力する。かかるロックインアンプ11、12には、LED点滅回路8に出力される信号の同期信号が参照信号として入力されているからロックインアンプ11、12には発光器31,41から降下物2に向けて投光された近赤外光の強度(参照信号に同期)及び各受光器32、42が受光した降下物2の透過光の強度(測定信号)が各波長ごとに入力される。そして、各ロックインアンプ11、12は投光側の近赤外光の強度(参照信号に同期)に対する受光側の近赤外光の強度(測定信号)の変動に対応したロックイン出力を測定する。降下物2が降っていないときは、投光及び受光の間で近赤外光の強度が変化しないためロックイン出力が一定であるのに対し、降下物2が降っているときは透過光の強度が弱まるため、ロックイン出力が変動する。各ロックインアンプ11、12にはA/D変換器13、14が接続されており、各波長ごとのロックイン出力の変動値がA/D変換された後、パソコン等からなる判別部9に出力される。   The lock-in amplifier 11 of the determination unit 5 is connected to the light receiver 32 of the first optical path unit 3, and the lock-in amplifier 12 is connected to the light receiver 42 of the second optical path unit 4. Upon receiving near-infrared light having respective wavelengths (1450 nm and 945 nm), the light receivers 32 and 42 made of photodiodes convert the optical signals into electric signals, and then send them to the lock-in amplifiers 11 and 12 as measurement signals. Output. Since the lock-in amplifiers 11 and 12 receive the synchronization signal of the signal output to the LED blinking circuit 8 as a reference signal, the lock-in amplifiers 11 and 12 are directed from the light emitters 31 and 41 to the fallen object 2. The intensity of the near-infrared light projected in this way (synchronized with the reference signal) and the intensity of the transmitted light (measurement signal) of the falling object 2 received by each of the light receivers 32 and 42 are input for each wavelength. Each of the lock-in amplifiers 11 and 12 measures the lock-in output corresponding to the fluctuation of the intensity (measurement signal) of the near-infrared light on the light receiving side with respect to the intensity of the near-infrared light on the light emitting side (synchronized with the reference signal). To do. When the fallen object 2 is not falling, the lock-in output is constant because the intensity of near-infrared light does not change between light projection and reception, whereas when the fallen object 2 is falling, the transmitted light is not transmitted. Since the strength decreases, the lock-in output fluctuates. A / D converters 13 and 14 are connected to the lock-in amplifiers 11 and 12, and after the fluctuation value of the lock-in output for each wavelength is A / D-converted, the lock-in amplifiers 11 and 12 are connected to the discrimination unit 9 composed of a personal computer or the like. Is output.

判別部9は入力されたロックイン出力の変動値に基づいて降下物2が雪、霙、雨のいずれかであるかを判別する。判別手法としては、ロックインアンプ11、12からのそれぞれのロックイン出力の変動値に対して閾値を測定し、閾値以上の変動値を各波長(1450nm、945nm)における有効値とし、各波長における有効値を比較演算して判別値とし、この判別値を基準値と比較して雪、霙、雨のいずれかを判別する手法を採用することができる。   The determination unit 9 determines whether the fallout object 2 is snow, hail, or rain based on the input fluctuation value of the lock-in output. As a discrimination method, a threshold value is measured for each fluctuation value of the lock-in output from the lock-in amplifiers 11 and 12, and a fluctuation value equal to or larger than the threshold value is set as an effective value at each wavelength (1450 nm, 945 nm). A method can be employed in which the effective value is compared and calculated as a discriminant value, and the discriminant value is compared with a reference value to discriminate between snow, hail, and rain.

上記手法における閾値は、ロックイン出力の変動値が明確に変動しているか否かの区別を行うことが可能な値に設定されるものであり、入力されるロックイン出力の変動値のデータ数、変動値の分布状態、その他に応じて適宜設定される。上記手法における各波長における有効値の比較演算は、例えば波長1450nmの有効値と945nmの有効値との間の比率を得る演算によって行われ、例えば波長1450nmの有効値と945nmの有効値との除算を行って比較演算することができる。このような2つの波長の有効値の比較演算によって判別値が得られ、この判別値を基準値と比較して降下物2の判別を行う。基準値は実際の雪、霙、雨の気象状態を観察することにより経験的に設定されるものであり、基準値は気象観測を行う地域や時期、気温等に応じて適宜変更される。   The threshold value in the above method is set to a value that can distinguish whether or not the fluctuation value of the lock-in output fluctuates clearly, and the number of data of the fluctuation value of the input lock-in output It is set as appropriate according to the distribution state of the fluctuation value and others. The effective value comparison calculation at each wavelength in the above method is performed by, for example, calculating the ratio between the effective value at the wavelength of 1450 nm and the effective value at 945 nm. For example, the effective value at the wavelength of 1450 nm is divided by the effective value at 945 nm. To perform a comparison operation. A discriminant value is obtained by comparing the effective values of the two wavelengths, and the fallen object 2 is discriminated by comparing the discriminant value with a reference value. The reference value is set empirically by observing the actual weather conditions of snow, hail, and rain, and the reference value is appropriately changed according to the region, time, temperature, etc. where the weather observation is performed.

次に、この実施形態による降下物2の判別を具体的に説明する。   Next, the determination of the falling object 2 according to this embodiment will be specifically described.

図2に示す判別装置1を屋外に設置する。設置に際しては、光学長Lを500mm、支持パイプ37,38の距離Dを300mmとし、支持パイプ37,38の間に降下物2が降下するように設定する。この設置の後、実際の雨、雪又は霙の気象状態に対して判別装置1を駆動する。判別装置1は所定の時間(例えば10分間)を駆動して10000点のロックイン出力の変動値を得、このロックイン出力の変動値をデータ処理する。データ処理は10000点のロックイン出力の変動値の内、最大の変動値を「1」とし、他のロックイン出力の変動値を比例計算して規格化する。これにより図4〜図6のグラフを得る。図4〜図6のグラフは10000点における各点のロックイン出力の変動値を示している。図4〜図6のグラフから閾値を0.2と設定する。この閾値0.2以上の場合のロックイン出力の変動値が有効値となり、この有効値の数を計測する。   The discrimination device 1 shown in FIG. 2 is installed outdoors. At the time of installation, the optical length L is set to 500 mm, the distance D between the support pipes 37 and 38 is set to 300 mm, and the fallen object 2 is set to fall between the support pipes 37 and 38. After this installation, the discriminator 1 is driven with respect to actual rainy, snowy, or hail weather conditions. The discriminating apparatus 1 drives a predetermined time (for example, 10 minutes) to obtain a fluctuation value of 10000 points of lock-in output, and performs data processing on the fluctuation value of this lock-in output. In the data processing, the maximum fluctuation value among the fluctuation values of the 10,000 lock-in outputs is set to “1”, and fluctuation values of other lock-in outputs are proportionally calculated and normalized. Thereby, the graphs of FIGS. 4 to 6 are obtained. The graphs of FIGS. 4 to 6 show the fluctuation value of the lock-in output at each point at 10,000 points. The threshold is set to 0.2 from the graphs of FIGS. The fluctuation value of the lock-in output when the threshold value is 0.2 or more becomes an effective value, and the number of effective values is measured.

図4は気象状態が雨の時の測定グラフであり、(A)は波長945nm、(B)は波長1450nmのデータである。雨の場合には、波長945nmの近赤外光では有効値が3 個であるの対し、波長1450nmの近赤外光では有効値が422個となっている。これは波長1450nmの赤外光が雨粒に吸収されることにより降下物2を透過する透過光が弱まったためである。   FIG. 4 is a measurement graph when the weather condition is rain. FIG. 4A shows data with a wavelength of 945 nm, and FIG. 4B shows data with a wavelength of 1450 nm. In the case of rain, there are three effective values for near infrared light with a wavelength of 945 nm, whereas there are 422 effective values for near infrared light with a wavelength of 1450 nm. This is because the transmitted light transmitted through the fallout 2 is weakened by the infrared light having a wavelength of 1450 nm being absorbed by the raindrops.

図5は気象状態が雪の時の測定グラフであり、(A)は波長945nm、(B)は波長1450nmのデータである。図5(A)、(B)で示すように波長945nmの近赤外光では、有効値が107個、波長1450nmの近赤外光では有効値が222個となっており、2つの波長の近赤外光の有効値が多く発生している。これは雪の表面や内部で近赤外光の反射が起きたためである。雪の形状はいびつであり、空気を含んでいるため雪の内部や表面で反射しやすく、波長の差異に関係なく近赤外光が反射する。この反射により透過光が弱まって有効値が多く発生したものである。   FIG. 5 is a measurement graph when the weather condition is snow, (A) is data with a wavelength of 945 nm, and (B) is data with a wavelength of 1450 nm. As shown in FIGS. 5A and 5B, the near-infrared light with a wavelength of 945 nm has 107 effective values, and the near-infrared light with a wavelength of 1450 nm has 222 effective values. Many effective values of near-infrared light are generated. This is due to near-infrared light reflection on the snow surface and inside. The shape of the snow is irregular, and since it contains air, it is easily reflected inside and on the surface of the snow, and near infrared light is reflected regardless of the difference in wavelength. Due to this reflection, the transmitted light is weakened and many effective values are generated.

図6は気象状態が霙の時の測定グラフであり、(A)は波長945nm、(B)は波長1450nmのデータである。図6(A)で示すように、波長945nmの近赤外光では有効値が6個となっており、雨の場合よりも若干有効値が多く発生している。図6(B)で示すように波長1450nmの近赤外光では有効値が84個となっており、波長945nmの近赤外光よりも有効値が多くなっている。霙は雪と雨が混ざった気象現象であることから霙を透過する波長1450nmの近赤外光が吸収され、有効値が多くなったものである。このような霙における波長945nm及び波長1450nmの有効値は雪と雨の中間の値となる。   FIGS. 6A and 6B are measurement graphs when the weather condition is dredging. FIG. 6A shows data with a wavelength of 945 nm, and FIG. 6B shows data with a wavelength of 1450 nm. As shown in FIG. 6A, there are six effective values for near-infrared light having a wavelength of 945 nm, and slightly more effective values are generated than in the case of rain. As shown in FIG. 6B, there are 84 effective values for near-infrared light having a wavelength of 1450 nm, and there are more effective values than for near-infrared light having a wavelength of 945 nm. Since the kite is a meteorological phenomenon in which snow and rain are mixed, near infrared light having a wavelength of 1450 nm transmitted through the kite is absorbed, and the effective value increases. The effective values of the wavelength 945 nm and the wavelength 1450 nm in such a kite are intermediate values between snow and rain.

表1は以上の図4〜図6のグラフから有効値の数を定性的に示したものである。表1において、「○」は有効値が多くあるもの、「△」は有効値が若干あるもの、「×」は有効値がほとんどないものを示す。   Table 1 qualitatively shows the number of effective values from the graphs of FIGS. In Table 1, “◯” indicates that there are many effective values, “Δ” indicates that there are some effective values, and “×” indicates that there are almost no effective values.

Figure 0005881397
Figure 0005881397

表2は図4〜図6のグラフを定量的にまとめて示している。この場合、雪のデータは約6000点、霙のデータは約4000点が得られていることから雪の有効値の数を1.7倍し、霙の有効値の数を2.5倍することにより10000点に規格化してある。   Table 2 quantitatively summarizes the graphs of FIGS. In this case, about 6000 points of snow data and about 4000 points of hail data are obtained, so the number of effective snow values is multiplied by 1.7 and the number of hail effective values is multiplied by 2.5. Therefore, it is standardized to 10,000 points.

Figure 0005881397
Figure 0005881397

以上の表2の有効値では、雪、雨、霙が降っている量によって測定値が異なってくることから各気象状態における2つの波長の有効値を比例演算して判別値を算出する。比例演算は、2つの波長の有効値の除算によって行うものであり、判別値=(波長1450nmの有効値の個数)/(波長945nmの有効値の個数)により算出する。表3は比例演算した結果を示す。   With the effective values in Table 2 above, the measured value varies depending on the amount of snow, rain, and hailfall, so the effective value of the two wavelengths in each weather condition is proportionally calculated to calculate the discriminant value. The proportional calculation is performed by dividing the effective values of the two wavelengths, and is calculated by the discrimination value = (the number of effective values at the wavelength of 1450 nm) / (the number of effective values at the wavelength of 945 nm). Table 3 shows the result of proportional calculation.

Figure 0005881397
Figure 0005881397

表3で示すように、雨と雪の判別値は2桁の相違があり、霙の場合は雪の判別値よりも幾分多い判別値となっている。これは霙が雪と雨が混ざった気象現象によるものである。表3で示す判別値に対し基準値を以下のように設定する。基準値は雨、霙、雪の気象状態を区分けするように設定されるものであり、この実施形態においては、雨の場合の基準値は100以上、霙の基準値は6〜20程度の範囲、雪の基準値は2〜3の範囲と設定し、この基準値と判別値とを比較する。これにより降下物2が雪、霙、雨のいずれかであることを明確に判別することができる。   As shown in Table 3, there is a two-digit difference between rain and snow discriminant values. In the case of hail, the discriminant value is somewhat larger than the snow discriminant value. This is due to meteorological phenomena where snow and rain are mixed. The reference values are set as follows for the discriminant values shown in Table 3. The reference value is set so as to classify the weather conditions of rain, hail, and snow. In this embodiment, the reference value in the case of rain is 100 or more, and the reference value of hail is in the range of about 6-20. The snow reference value is set in the range of 2 to 3, and the reference value is compared with the discrimination value. This makes it possible to clearly determine whether the fallout 2 is snow, hail, or rain.

なお、この実施形態では光路長Lを500mmとしたが、1000mm等のように光路長Lを長くすることが可能である。これにより発光器31、41と受光器32、42との間の光路を通過する降下物の量が増えるため、雪と霙の判別をさらに明確にすることができる。又、本発明においては、変動値に対する閾値や基準値を適宜変更することができる。   In this embodiment, the optical path length L is set to 500 mm. However, the optical path length L can be increased to 1000 mm or the like. As a result, the amount of fallout passing through the optical path between the light emitters 31 and 41 and the light receivers 32 and 42 increases, so that the distinction between snow and hail can be further clarified. In the present invention, the threshold value and reference value for the variation value can be changed as appropriate.

このような実施形態によれば、1450nm及び945nmの2つの波長域の近赤外光を用いて空中の降下物2に投光し、投光した近赤外光の強度と降下物2を透過した近赤外光の強度を2つの波長域ごとに比較するため、雪、霙、雨を明確に判断することができる。   According to such an embodiment, the near-infrared light in the two wavelength regions of 1450 nm and 945 nm is used to project the falling object 2 in the air, and the intensity of the projected near-infrared light and the falling object 2 are transmitted. Since the intensity of the near-infrared light is compared for each of the two wavelength ranges, snow, hail and rain can be clearly determined.

又、この実施形態の判別装置によれば、1450nm及び945nmの2つの波長域の近赤外光を降下物2に投光して受光する2つの光路部と、これらの光路部からの強度に基づいて雪、霙、雨を判別する判別手段とによって構成されるため、簡単な構成であり、操作、制御、処理が簡単となる。   Further, according to the discriminating device of this embodiment, two optical path portions that project and receive near-infrared light in the two wavelength regions of 1450 nm and 945 nm on the fallout object 2 and the intensity from these optical path portions. Since it is comprised by the discrimination | determination means which discriminate | determines snow, hail, and rain based on it, it is a simple structure and operation, control, and a process become easy.

図7は、参考例における判別装置を示す。図7は判別装置における光学系を示し、図2と同一の部材には同一の符号を付して対応させてある。この参考例の光学系は空中の降下物2から反射した反射光を受光するものである。 FIG. 7 shows a discrimination device in a reference example . FIG. 7 shows an optical system in the discriminating apparatus, and the same members as those in FIG. The optical system of this reference example receives reflected light reflected from the falling object 2 in the air.

図7に示すように、光学系は第1光路部3及び第2光路部4を備えている。第1光路部3は、水による吸収量が多い波長域の近赤外光(例えば波長1450nm)を空中の降下物2に向けて投光した後、空中の降下物2から反射した反射光を受光する。このため、第1光路部3は、水による吸収量が多い波長域の近赤外光を発光する第1発光器31と第1発光器31の出射側に配置された平凸レンズ33及び偏光板34とによって投光側が形成され、降下物2によって反射された近赤外光を受光する受光器32と受光器32の入射側に配置された偏光板35及び平凸レンズ36とによって受光側が形成されている。第2光路部4は水による吸収量が少ない波長域の近赤外光(例えば波長945nm)を空中の降下物2に向けて投光した後、空中の降下物2を反射した反射光を受光する。第2光路部4は第1光路部3と同様な配置構造となっており、水による吸収量が少ない波長域の近赤外光を発光する第1発光器41と第1発光器41の出射側に配置された平凸レンズ43及び偏光板44とによって投光側が形成され、降下物2によって反射された近赤外光を受光する受光器42と受光器42の入射側に配置された偏光板45及び平凸レンズ46とによって受光側が形成されている。   As shown in FIG. 7, the optical system includes a first optical path unit 3 and a second optical path unit 4. The first optical path unit 3 projects near-infrared light (for example, wavelength 1450 nm) in a wavelength region having a large amount of absorption by water toward the falling object 2 in the air, and then reflects the reflected light reflected from the falling object 2 in the air. Receive light. For this reason, the first optical path unit 3 includes a first light emitter 31 that emits near-infrared light in a wavelength range in which the amount of absorption by water is large, and a plano-convex lens 33 and a polarizing plate that are disposed on the emission side of the first light emitter 31. 34 forms a light projecting side, and a light receiving side is formed by a light receiving device 32 that receives near-infrared light reflected by the falling object 2, and a polarizing plate 35 and a plano-convex lens 36 arranged on the incident side of the light receiving device 32. ing. The second optical path unit 4 projects near-infrared light (for example, wavelength 945 nm) in a wavelength region with a small amount of absorption by water toward the falling object 2 in the air, and then receives reflected light reflected from the falling object 2 in the air. To do. The second optical path unit 4 has the same arrangement structure as the first optical path unit 3, and emits near-infrared light in a wavelength region in which the amount of absorption by water is small and emission from the first light emitter 41. A light projection side is formed by the plano-convex lens 43 and the polarizing plate 44 arranged on the side, and a light receiving device 42 that receives near-infrared light reflected by the falling object 2 and a polarizing plate arranged on the incident side of the light receiving device 42. The light receiving side is formed by 45 and the plano-convex lens 46.

第1光路部3及び第2光路部4においては、投光側の光路に対し、受光側の光路が直交した位置に配置される。従って降下物2を透過した後、投光側の光路に沿って直進する近赤外光は受光側に達することがなく、投光側から投光され降下物2で受光側に反射された近赤外光だけが受光側で受光される。   In the 1st optical path part 3 and the 2nd optical path part 4, it arrange | positions in the position where the optical path of the light reception side orthogonally crossed with respect to the optical path of the light projection side. Therefore, after passing through the fallen object 2, the near infrared light traveling straight along the light path on the light projecting side does not reach the light receiving side, but is projected from the light projecting side and is reflected from the light falling object 2 to the light receiving side. Only infrared light is received on the light receiving side.

かかる降下物2における反射において、2つの波長の近赤外光が雪に当たると、双方の波長の近赤外光はいずれも雪の表面で反射して受光側に屈折する。従って雪の場合は、波長の差異に関係なく近赤外光を反射するため、2つの波長の近赤外光の吸収量に生じるばらつきが少ない。雨の場合は、その外表面で反射する近赤外光と、雨の内部に侵入した後、内表面で反射する近赤外光とが発生する。雨の外表面で反射する近赤外光は吸収されることなく受光側に反射するが、雨の内表面で反射する近赤外光は雨の内部で吸収される。このため雨の場合は、水による吸収量が多い波長域の近赤外光と、水による吸収量が少ない近赤外光ととの間で吸収量に大きな差が発生する。霙は雨と雪が混ざった気象現象であるから、2つの波長域の近赤外光で雨と雪の中間の特性を示す。従って、空中の降下物2からの反射光の場合においても、上述した透過光と同様な条件で雪、霙、雨の判別を明確に行うことができる。   In the reflection at the falling object 2, when near-infrared light having two wavelengths hits snow, both near-infrared light having both wavelengths are reflected by the snow surface and refracted to the light receiving side. Therefore, in the case of snow, near-infrared light is reflected regardless of the difference in wavelength, so that there is little variation in the amount of absorption of near-infrared light having two wavelengths. In the case of rain, near infrared light reflected on the outer surface and near infrared light reflected on the inner surface after entering the rain are generated. Near-infrared light reflected on the outer surface of the rain is reflected to the light receiving side without being absorbed, but near-infrared light reflected on the inner surface of the rain is absorbed inside the rain. For this reason, in the case of rain, there is a large difference in the amount of absorption between near infrared light in a wavelength region where the amount of absorption by water is large and near infrared light where the amount of absorption by water is small. The kite is a meteorological phenomenon in which rain and snow are mixed, so it shows characteristics between rain and snow with near-infrared light in two wavelength ranges. Accordingly, even in the case of reflected light from the falling object 2 in the air, it is possible to clearly determine whether snow, hail, or rain is the same as the above-described transmitted light.

Claims (6)

水による吸収量が多い波長域の近赤外光及び水による吸収量が少ない波長域の近赤外光のそれぞれを空中の降下物に向けて投光する投光段階と、
前記それぞれの波長域の近赤外光を前記空中の降下物から受光する受光段階と、
前記投光した近赤外光の強度に対する前記受光した近赤外光の強度の変動値を前記各波長域ごとに測定し、測定した変動値に基づいた値を所定の基準値と比較して雪、霙、雨のいずれかを判別する判別段階とを備え
前記前記受光段階は、前記投光段階で投光した近赤外光が空中の降下物を透過した透過光を受光することを特徴とする雪、霙、雨の判別方法。
A projecting stage for projecting near-infrared light in a wavelength region with a large amount of absorption by water and near-infrared light in a wavelength region with a small amount of absorption by water toward a falling object in the air,
A light receiving step for receiving near-infrared light in the respective wavelength ranges from the falling objects in the air;
A variation value of the intensity of the received near infrared light with respect to the intensity of the projected near infrared light is measured for each wavelength region, and a value based on the measured variation value is compared with a predetermined reference value. And a discrimination stage for discriminating between snow, hail and rain ,
In the light receiving step, the near infrared light projected in the light projecting step receives the transmitted light transmitted through the falling object in the air .
前記判別段階は、前記各波長域ごとの近赤外光の強度の変動値に対して所定の閾値を設定し、閾値以上の変動値を各波長域の有効値とし、双方の波長域の有効値の比較演算によって判別値を得、この判別値を前記所定の基準値と比較して雪、霙、雨のいずれかを判別することを特徴とする請求項1記載の雪、霙、雨の判別方法。In the determination step, a predetermined threshold value is set for the fluctuation value of the near-infrared light intensity for each wavelength region, and a variation value equal to or greater than the threshold value is set as an effective value for each wavelength region. 2. The snow, hail, and rain of claim 1, wherein a discriminant value is obtained by a value comparison operation, and the discriminant value is compared with the predetermined reference value to discriminate between snow, hail, and rain. How to determine. 前記水による吸収量が多い波長域の近赤外光は1400nm〜1500nmの波長域であり、前記水による吸収量が少ない波長域の近赤外光は900nm〜1350nmの波長域であることを特徴とする請求項1記載の雪、霙、雨の判別方法。The near-infrared light in a wavelength range where the amount of absorption by water is large is a wavelength range of 1400 nm to 1500 nm, and the near-infrared light in a wavelength range where the amount of absorption by water is small is a wavelength range of 900 nm to 1350 nm. The snow, hail, and rain discrimination method according to claim 1. 水による吸収量が多い波長域の近赤外光を空中の降下物に向けて投光した後、前記近赤外光を前記空中の降下物から受光する第1光路部と、A first optical path portion that receives near infrared light in a wavelength region having a large amount of absorption by water toward a falling object in the air, and then receives the near infrared light from the falling object in the air;
水による吸収量が少ない波長域の近赤外光を空中の降下物に向けて投光した後、前記近赤外光を前記空中の降下物から受光する第2光路部と、  A second optical path portion that receives near infrared light in a wavelength region with a small amount of absorption by water toward a falling object in the air, and then receives the near infrared light from the falling object in the air;
前記投光した近赤外光の強度に対する受光した近赤外光の強度の変動値を前記第1光路部及び第2光路部ごとに測定し、測定した変動値に基づいた値を所定の基準値と比較して雪、霙、雨のいずれかを判別する判別手段とを備え、  A variation value of the intensity of the received near infrared light with respect to the intensity of the projected near infrared light is measured for each of the first optical path portion and the second optical path portion, and a value based on the measured variation value is set as a predetermined reference. And a discriminating means for discriminating between snow, hail and rain in comparison with the value,
前記第1光路部及び第2光路部は、前記空中の降下物を透過した透過光を受光することを特徴とする雪、霙、雨の判別装置。  The first optical path section and the second optical path section receive transmitted light that has passed through the fallen object in the air, and a snow, hail, and rain discrimination device.
前記判別手段は、前記近赤外光の強度の変動値に対して所定の閾値以上のときに有効値とし、前記第1光路部側の有効値及び第2光路部側の有効値の比較演算によって判別値を得、この判別値を前記所定の基準値と比較して雪、霙、雨のいずれかを判別することを特徴とする請求項4記載の雪、霙、雨の判別装置。The determination means sets an effective value when the fluctuation value of the intensity of near infrared light is equal to or greater than a predetermined threshold, and compares the effective value on the first optical path side and the effective value on the second optical path side 5. The apparatus for discriminating snow, hail and rain according to claim 4, wherein a discriminant value is obtained by comparing the discriminant value with the predetermined reference value to discriminate between snow, hail and rain. 前記第1光路部は1400nm〜1500nmの波長域の近赤外光を発光する第1発光器とを備え、前記第2光路部は900nm〜1350nmの波長域の赤外光を発光する第2発光器を備えていることを特徴とする請求項4記載の雪、霙、雨の判別装置。The first optical path unit includes a first light emitter that emits near infrared light in a wavelength range of 1400 nm to 1500 nm, and the second optical path unit emits infrared light in a wavelength range of 900 nm to 1350 nm. The apparatus for discriminating snow, hail and rain according to claim 4, further comprising a vessel.
JP2011270971A 2011-12-12 2011-12-12 Snow, hail, rain discrimination method and discrimination device Expired - Fee Related JP5881397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011270971A JP5881397B2 (en) 2011-12-12 2011-12-12 Snow, hail, rain discrimination method and discrimination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011270971A JP5881397B2 (en) 2011-12-12 2011-12-12 Snow, hail, rain discrimination method and discrimination device

Publications (2)

Publication Number Publication Date
JP2013122413A JP2013122413A (en) 2013-06-20
JP5881397B2 true JP5881397B2 (en) 2016-03-09

Family

ID=48774444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011270971A Expired - Fee Related JP5881397B2 (en) 2011-12-12 2011-12-12 Snow, hail, rain discrimination method and discrimination device

Country Status (1)

Country Link
JP (1) JP5881397B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6708886B2 (en) * 2018-04-04 2020-06-10 株式会社E・C・R Wind and rain information provision system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254193A (en) * 1988-08-18 1990-02-23 Japan Radio Co Ltd Discriminating method of rain from snow and apparatus therefor
JP4157078B2 (en) * 2004-07-30 2008-09-24 シャープ株式会社 Road surface state measuring method and road surface state measuring device

Also Published As

Publication number Publication date
JP2013122413A (en) 2013-06-20

Similar Documents

Publication Publication Date Title
KR101961776B1 (en) Apparatus and method for scanning the road surface with line type
US7270442B2 (en) System and method for monitoring status of a visual signal device
CN108151799B (en) Multispectral multi-angle non-contact type pavement state monitoring device and method
CN107564234B (en) A kind of equalizer response is black, white cigarette fire detecting method and system
JP2000097841A5 (en)
US10895529B2 (en) Detecting system and detecting method
WO2020026589A1 (en) Receiver, fire detection system, and fire detection method
JP7273505B2 (en) ROAD CONDITION DETECTION SYSTEM AND ROAD CONDITION DETECTION METHOD
JP7201003B2 (en) Fire detection system and fire detection method
JP2013529775A (en) Sensor for detecting the roadway condition without contact and use thereof
JP6954373B2 (en) In-tunnel fire control system
KR101731884B1 (en) Integrated multi-wavelength remote visibility monitor
JP5881397B2 (en) Snow, hail, rain discrimination method and discrimination device
JP2003035670A (en) Method for decision of visual range, amount of precipitation and kind of precipitation and apparatus for executing the same by combining visual-range measuring device with amount-of-precipitation measuring device
Ruiz-Llata et al. LiDAR design for road condition measurement ahead of a moving vehicle
JP6739074B2 (en) Distance measuring device
KR20190139858A (en) Device for detecting water on the road surface
CN207816818U (en) The mist sensor and motor vehicle of a kind of motor vehicle for being moved on road surface
JP2021018084A (en) Road surface condition detection device, and road surface information distribution system
JPH09318766A (en) Freeze sensing system
RU169314U1 (en) Lidar for remote measurement of temperature and humidity
KR20160114445A (en) Lidar system
JP2023127897A (en) Information processing device, information processing system, information processing method and program
JP7308432B2 (en) Moisture detector
KR20180085336A (en) Integrated weather detector

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160202

R150 Certificate of patent or registration of utility model

Ref document number: 5881397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees