JP4156882B2 - Mark recognition apparatus and method - Google Patents

Mark recognition apparatus and method Download PDF

Info

Publication number
JP4156882B2
JP4156882B2 JP2002241322A JP2002241322A JP4156882B2 JP 4156882 B2 JP4156882 B2 JP 4156882B2 JP 2002241322 A JP2002241322 A JP 2002241322A JP 2002241322 A JP2002241322 A JP 2002241322A JP 4156882 B2 JP4156882 B2 JP 4156882B2
Authority
JP
Japan
Prior art keywords
substrate
mark
component
data
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002241322A
Other languages
Japanese (ja)
Other versions
JP2004079925A (en
Inventor
正人 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Juki Corp
Original Assignee
Juki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juki Corp filed Critical Juki Corp
Priority to JP2002241322A priority Critical patent/JP4156882B2/en
Publication of JP2004079925A publication Critical patent/JP2004079925A/en
Application granted granted Critical
Publication of JP4156882B2 publication Critical patent/JP4156882B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、電子部品実装機、印刷機、ディスペンサなどに搬送されてくる基板などの対象物上のマークを高速に、かつ高精度に位置認識し、電子部品を基板に実装する部品実装装置の実装タクト時間、実装精度を向上するためのマーク認識装置及び方法に関するものである。
【0002】
【従来の技術】
近年、電子回路基板は電子部品を正確に実装し、実装品質を向上する事、及び実装タクトの高速化の要求が日々叫ばれている。
図1には、部品実装機が図示されており、吸着ヘッド1の吸着ノズル1aは、XY駆動機構(不図示)により駆動されて、フィーダ2の位置に移動し、フィーダから供給される部品3を吸着した後認識カメラ6上に移動する。そこで、部品が撮像され、その画像が処理されて部品の吸着位置ずれが補正され、搬送路11を介して搬送されてくる基板10上の所定位置に部品が実装される。部品の正確な実装には、基板10が基準位置にあることが前提となるので、基板10の所定位置に基板マーク10a、10b、10cを形成し、これを吸着ヘッド1が取り付けてあるXY駆動機構(不図示)により駆動されて、基板マーク10a、10b、10cの位置上に移動し、各々の位置に停止後吸着ヘッド1に取り付けたCCDカメラ(画像読み取り手段)12で撮影して画像認識し、基板の基準位置からのずれを求め、これを補正して部品搭載が行なわれている。
【0003】
このような部品実装機では図2の流れに従って部品が実装される。まず基板10は搬送路11により実装位置に搬入され、XY駆動機構(不図示)はCCDカメラ12を基板10上に移動し、停止した後基板上の基板マーク10a〜10cを計測し実装すべき基板位置を調べる(ステップS1)。次に、実装する部品データが読み出され(ステップS2)、XY駆動機構(不図示)は、その部品データに従って吸着ノズル1aをフィーダ2上に移動させる。そこで、吸着ノズル1aは電子部品3を吸着する(ステップS3)。続いてXY駆動機構(不図示)は、吸着ノズル1aを認識カメラ6上の位置に移動させ、吸着した部品の吸着姿勢が認識カメラ6により認識される(ステップS4)。続いて、ステップS5で吸着した部品がチップ部品などの部品であることが判断されたときは、ステップS6に進んで基板マーク10a〜10cのみで位置補正し、ステップS1で求められた基板マーク計測に基づく位置補正データと、ステップS4で求められた部品認識に基づく位置補正データにより部品の正確な実装位置データを演算し、XY駆動機構(不図示)をその位置に移動させて部品を実装する(ステップS8)。
【0004】
一方、ステップS5で吸着した部品が高精度部品の時には、XY駆動機構(不図示)はCCDカメラ12を基板10上に移動し、停止した後ICマーク10d、10eを各々計測し、ICマーク計測による位置補正データと、部品認識に基づく位置補正データにより部品の正確な実装位置データを演算し(ステップS7)、XY駆動機構(不図示)をその位置に移動させて部品を実装する(ステップS8)。上記の過程は、実装すべきすべての部品が終了するまで繰り返される(ステップS9)。
【0005】
【発明が解決しようとする課題】
このような従来の部品実装機では、チップ部品などの電子部品は、基板マークのみの位置補正で部品実装できるが、QFP部品などの高精度実装部品の場合には、上述したように、部品実装位置近傍にあるICマーク10d、10eを認識し、実装位置を求め部品実装するため、その部品毎にICマークの計測が必要になる。特に基板マークやICマーク認識時にマーク上でカメラを一旦停止させ撮像する方法のために、チップ部品、QFP部品などの電子部品の実装に時間がかかるという問題点があった。
【0006】
【課題を解決するための手段】
電子部品を基板に実装する電子部品実装方法及び装置において、基板に形成された基板マークもしくはICマークを認識してその位置データを求める場合、マーク上で一旦停止することなく撮像し位置認識するため、各種マーク認識に費やす計測時間の短縮が図れる。精度を確保するため、前もって決められたマークを定速移動(固定速度)及び決められた移動方向(0、90、180、270度)により取得した認識位置データ(動的撮像位置データと呼ぶ)と、決められたマーク上で停止した状態で取得した認識位置データ(静的撮像位置データと呼ぶ)の差分を手法補正データとして格納する。(各々の装置により決まる)実装時基板に形成された基板マークもしくはICマークを認識してその位置データを求める場合、該位置データと手法補正データ(移動方向成分を加味してあるデータ)から演算処理し、データ変換することにより、各々のマーク位置データをCCDカメラを停止させること無く高精度に求めることが出来る。
よってこの構成によりマーク認識時にCCDカメラが停止することなく部品搭載準備をすることが出来るため、多品種の部品を高速、かつ高精度に実装できる。
【0007】
【発明の実施の形態】
以下、本発明の一実施例を図1〜図6を参照しながら説明する。
実施の形態に基づき本発明の動作を説明する。
本発明の部品実装機は、図1で示した従来使用している部品実装機と同じ機構で構成されており制御方法が異なる、基板10は搬送路11を介して、部品実装機に搬入、搬出される。部品実装機には、基板10のICマーク、基板マーク位置を認識する吸着ノズル1aを含むCCDカメラ12を保有した吸着ヘッド1を搭載した任意の位置に位置決め可能なXY駆動機構(不図示)が設けられている。
【0008】
基板10の所定位置に基板マーク10a、10b、10cを形成し、これを吸着ヘッド1が取り付けてあるXY駆動機構(不図示)により駆動されて、基板マーク10a、10b、10cの位置上を移動し、各々の位置に停止すること無しに吸着ヘッド1に取り付けたCCDカメラ(画像読み取り手段)12で撮影して画像認識し求めた各マークの位置データと、あらかじめ取得した各部品実装機固有な補正データ(手法補正データ)を演算処理し、基板の基準位置からのずれを求める。
【0009】
次に、このXY駆動機構(不図示)により吸着ヘッド1がフィーダ2に移動し、ここから供給される部品3が吸着ノズル1aで吸着される。また、部品実装機には、吸着ノズル1aで吸着された部品3の吸着姿勢を撮像計測する認識カメラ6が設けられている。そこで、部品3がこのXY駆動機構(不図示)により認識カメラ6上に移動し撮像され、その画像が処理されて部品3の吸着位置ずれが求められ、概求められた基板の基準位置からのずれデータと吸着位置ずれデータからXY駆動機構(不図示)の補正データを求め部品搭載が行われる。
各部品実装機でパラメータ取得時に行う手法補正データ取得について詳細に説明する。
【0010】
図3 に示すように図1 で示した部品実装機にパラメータ取得用基板1 9 を用い手法補正データの取得方法( 図4 参照) を示す。搬送路1 1 により部品実装機の実装位置に搬入され固定される( ステップs 1 1 ) 。X Y 駆動機構( 不図示) はC C D カメラ1 2 を保有した吸着ヘッド( 不図示) をパラメータ取得用基板1 9 上に移動させる。図5で示すようにパラメータ取得用基板1 上に形成された複数の基板マークT 、2 、3 )上を、C C D カメラ1 2 を保有した吸着ヘッド( 不図示) は、この基板マークT M 1〜 T M 3 の各所定位置に停止後、基板マークを撮像し画像処理装置2 0 にてその位置を計測し、基板マーク3 点の静的撮像位置データを画像処理装置2 0 のメモリ2 0 g に格納する( ステップs 1 2 ) 。
【0011】
続いてCCDカメラ12を保有した吸着ヘッド(不図示)はこの基板マークTM1〜TM3を各所定位置上を設定定速で決められた方向移動中にモータ等のエンコーダ(不図示)で監視し静的撮像位置データと同等な位置データに成ったとき、基板マークを撮像し画像処理装置20にてその位置を計測し基板マーク3点の動的撮像位置データを画像処理装置20のメモリ20gに格納する(ステップS13)。動的撮像位置データ計測は最低でも3個のマークで4方向移動(0、90、180、270度)のデータを1回計測しメモリ20gに格納、あるいは各マークで4方向移動データを計測し算術平均した結果を画像処理装置20のメモリ20gに格納する。
【0012】
概求めたステップs12,13の結果から、各移動方向の動的撮像位置データと静的撮像位置データとの差分を手法補正データとして画像処理装置20のメモリ20gに格納し(ステップs14)フォーマットとしては図6に示す手法補正データ変換テーブルである。
次に上記部品実装機は図3、図5の部品実装機であり、パラメータ取得用基板19の代わりに図7の実装用基板18と図8のフローチャートに従い部品実装動作の説明を始める。
【0013】
実装用基板18は搬送路11により部品実装機の実装位置に搬入される(ステップs20)。XY駆動機構(不図示)は基板マークを認識するため、CCDカメラ12を保有した吸着ヘッド1を実装用基板18上に移動させる。実装用基板18上には、図7に示したように、複数の基板マークPMn(n=1、2、3)が形成されており、CCDカメラ12を保有した吸着ヘッド1はこの基板マークPM1〜PM3上を定速で決められた方向(例えばPM1:右から、PM2:下から、PM3:左から)に移動しながらを撮像してその位置を計測した3点の基板マーク位置データ「PM1(x1+Δx1、y1+Δy1)、PM2(x2+Δx2、y2+Δy2)、PM3(x3+Δx3、y3+Δy3)」(ステップs21)と、前もって取得した手法補正データを演算し、3点の基板マーク位置データ「PM1(x1+Δx1−0.4、y1+Δy1)右から移動時の基板マーク位置データ、PM2(x2+Δx2、y2+Δy2−0.3)下から移動時の基板マーク位置データ、PM3(x3+Δx3+0.5、y3+Δy3)左から移動時の基板マーク位置データ」を取得し、基板マーク位置補正データを求める(ステップs22)。
【0014】
次に、図9の部品データテーブルの部品データを実装順序に従い読み出し、部品データによりXY駆動機構(不図示)をフィーダ2へ移動開始させ、そして吸着ノズル1aで目的の部品3を吸着する(s23)。部品吸着後XY駆動機構(不図示)はき認識カメラ6の計測位置に移動後、吸着ノズル1aは部品3を認識カメラ6のフォーカス面まで下降する。この時点で認識カメラ6にて撮像され部品3の位置ずれデータ(Δx21、Δy21、ΔΘ21)を求める(s24)。実装すべき部品3の位置ずれデータを求めた後、搭載精度をあまり要求しない部品(Chip部品等)などは前記求めた基板10の3点の基板マーク位置データを基に演算した基板マーク位置補正データ(Δx10、Δy10、ΔΘ10)と、吸着ノズル1aで吸着した部品3の位置ずれデータ(Δx2n、Δy2n、ΔΘ2n)とで、部品装着位置データ(xn、yn)を求め(s25)、XY駆動機構(不図示)を制御して所定位置に部品実装する(s26)。
【0015】
搭載精度の要求が非常に高いQFP部品などは、基板マークによる基板マーク位置補正データを参照し、XY駆動機構(不図示)で吸着ヘッド1を基板10上に移動させ、CCDカメラ12が定速で一定方向移動中にICマーク10a・10bを計測し、求めたICマーク位置データを前記基板マーク位置データ取得と同様にICマーク位置データを手法補正データを加味して演算した、基板10上のICマーク位置補正データ(Δx11、Δy11、ΔΘ11)と、部品3の位置ずれデータ(Δx2、Δy2、ΔΘ2)とで、部品実装位置データ(xn、yn)を求め(s27)、XY駆動機構(不図示)を制御して基板10上の所定位置に移動し部品実装する(s26)。
【0016】
部品実装後、最終部品データかどうかの確認をする(s28)。最終部品データなら実装終了となり、基板10は搬送路11により排出位置に搬送される。
部品装着終了でないならば、読み出した部品データによりXY駆動機構(不図示)はフィーダ2へ移動開始(s23)し対応するフィーダから部品を吸着する。この繰り返しを部品データが終了するまで行なう。以上のように基板マーク認識方法、手段およびICマーク認識方法、手段以外は従来実施している技術である。
【0017】
【発明の効果】
以上のように本発明によれば、基板マークやICマークの撮像が今までのようにCCDカメラが停止するまでの時間を待つ事なしにマーク撮像できるため、マーク認識のトータル時間の短縮が可能となりタクトタイムの向上に貢献できる、また認識精度は静的撮像位置データと動的撮像位置データから撮像法による補正データを持つため従来技術でマーク認識した結果と同等の精度を保証できる。
【図面の簡単な説明】
【図1】従来の部品実装機の概略構成を示した概略斜視図である。
【図2】従来の部品実装機の部品装着の流れを示したフローチャートである。
【図3】本発明のパラメータ取得時の構成を示した概略斜視図である。
【図4】本発明のパラメータ取得時の流れを示したフローチャートである。
【図5】本発明の部品実装機の概略構成を示した構成図である。
【図6】本発明の手法補正データ変換テーブルを示す表図である。
【図7】本発明の説明に使用する実装用基板図である。
【図8】本発明の部品実装機の部品装着の流れを示したフローチャートである。
【図9】本発明の説明に使用する部品データテーブルを示す表図である。
【符号の説明】
1 吸着ヘッド
1a 吸着ノズル
2 フィーダ
3 部品
6 認識カメラ
10 基板
10a、10b、10c 基板マーク
10d、10 ICマーク
11 搬送路
12 CCDカメラ
18 実装用基板
18a、18b、18c 実装用基板マーク
19 パラメータ取得用基板
19a、19b、19c パラメータ取得用基板マーク
20 画像処理装置
21 モニタ
22 コントローラ
[0001]
[Industrial application fields]
The present invention relates to a component mounting apparatus that mounts an electronic component on a substrate by recognizing a mark on an object such as a substrate conveyed to an electronic component mounting machine, a printing machine, a dispenser, etc. at high speed and with high accuracy. The present invention relates to a mark recognition apparatus and method for improving mounting tact time and mounting accuracy.
[0002]
[Prior art]
In recent years, electronic circuit boards have been screamed every day to mount electronic components accurately, improve mounting quality, and increase the mounting tact time.
FIG. 1 shows a component mounting machine. A suction nozzle 1a of a suction head 1 is driven by an XY drive mechanism (not shown), moves to a position of a feeder 2, and a component 3 supplied from the feeder. Is moved onto the recognition camera 6. Therefore, the component is imaged, the image is processed to correct the component adsorption position shift, and the component is mounted at a predetermined position on the substrate 10 conveyed through the conveyance path 11. Since accurate mounting of components is based on the premise that the substrate 10 is at a reference position, substrate marks 10a, 10b, and 10c are formed at predetermined positions on the substrate 10, and this is an XY drive to which the suction head 1 is attached. Driven by a mechanism (not shown), moves to the position of the substrate marks 10a, 10b, 10c, stops at each position, and then takes a picture with a CCD camera (image reading means) 12 attached to the suction head 1 and recognizes the image. Then, the deviation from the reference position of the board is obtained, and this is corrected to mount components.
[0003]
In such a component mounter, components are mounted according to the flow of FIG. First, the substrate 10 is carried into the mounting position by the transport path 11, and the XY drive mechanism (not shown) moves the CCD camera 12 onto the substrate 10 and stops and measures the substrate marks 10a to 10c on the substrate to be mounted. The substrate position is checked (step S1). Next, component data to be mounted is read (step S2), and the XY drive mechanism (not shown) moves the suction nozzle 1a onto the feeder 2 according to the component data. Therefore, the suction nozzle 1a sucks the electronic component 3 (step S3). Subsequently, the XY drive mechanism (not shown) moves the suction nozzle 1a to a position on the recognition camera 6, and the suction posture of the sucked part is recognized by the recognition camera 6 (step S4). Subsequently, when it is determined in step S5 that the picked-up component is a component such as a chip component, the process proceeds to step S6, the position is corrected only by the substrate marks 10a to 10c, and the substrate mark measurement obtained in step S1 is performed. Based on the position correction data based on the above and the position correction data based on the component recognition obtained in step S4, the correct mounting position data of the component is calculated, and the XY drive mechanism (not shown) is moved to that position to mount the component. (Step S8).
[0004]
On the other hand, when the component picked up in step S5 is a high-precision component, the XY drive mechanism (not shown) moves the CCD camera 12 onto the substrate 10, stops, and then measures the IC marks 10d and 10e. The correct mounting position data of the component is calculated from the position correction data based on the above and the position correction data based on the component recognition (step S7), and the XY drive mechanism (not shown) is moved to that position to mount the component (step S8). ). The above process is repeated until all components to be mounted are completed (step S9).
[0005]
[Problems to be solved by the invention]
In such a conventional component mounting machine, electronic components such as chip components can be mounted by correcting the position of only the board mark, but in the case of high-precision mounting components such as QFP components, as described above, component mounting Since the IC marks 10d and 10e in the vicinity of the position are recognized and the mounting position is obtained and the component is mounted, it is necessary to measure the IC mark for each component. In particular, there is a problem that it takes time to mount electronic components such as a chip component and a QFP component because of the method of temporarily stopping the camera on the mark when recognizing the substrate mark or the IC mark.
[0006]
[Means for Solving the Problems]
In an electronic component mounting method and apparatus for mounting an electronic component on a substrate, when recognizing a substrate mark or IC mark formed on the substrate and obtaining its position data, the image is recognized and the position is recognized without stopping on the mark. The measurement time spent for recognizing various marks can be shortened. In order to ensure accuracy, recognition position data (referred to as dynamic imaging position data) obtained by moving a predetermined mark at a constant speed (fixed speed) and a determined moving direction (0, 90, 180, 270 degrees). And the difference of the recognition position data (called static imaging position data) acquired in the state stopped on the determined mark is stored as method correction data. When recognizing the board mark or IC mark formed on the board when mounted (determined by each device) and obtaining its position data, it is calculated from the position data and method correction data (data taking the movement direction component into account). By processing and data conversion, each mark position data can be obtained with high accuracy without stopping the CCD camera.
Therefore, with this configuration, it is possible to prepare for component mounting without stopping the CCD camera at the time of mark recognition, so that various types of components can be mounted at high speed and with high accuracy.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
The operation of the present invention will be described based on the embodiment.
The component mounter of the present invention is configured by the same mechanism as the conventionally used component mounter shown in FIG. 1 and has a different control method. The substrate 10 is carried into the component mounter via the transport path 11, It is carried out. The component mounter has an XY drive mechanism (not shown) that can be positioned at any position on which the suction head 1 having the CCD camera 12 including the IC nozzle of the substrate 10 and the suction nozzle 1a for recognizing the position of the board mark is mounted. Is provided.
[0008]
Substrate marks 10a, 10b, and 10c are formed at predetermined positions on the substrate 10, and are driven by an XY drive mechanism (not shown) to which the suction head 1 is attached to move over the positions of the substrate marks 10a, 10b, and 10c. Then, the position data of each mark obtained by image recognition by photographing with a CCD camera (image reading means) 12 attached to the suction head 1 without stopping at each position, and each component mounting machine specific acquired in advance. The correction data (method correction data) is processed to obtain a deviation from the reference position of the substrate.
[0009]
Next, the suction head 1 is moved to the feeder 2 by this XY drive mechanism (not shown), and the component 3 supplied therefrom is sucked by the suction nozzle 1a. In addition, the component mounting machine is provided with a recognition camera 6 for imaging and measuring the suction posture of the component 3 sucked by the suction nozzle 1a. Therefore, the component 3 is moved onto the recognition camera 6 by the XY drive mechanism (not shown) and picked up, and the image is processed to determine the displacement position of the component 3, and the approximate position from the reference position of the board is obtained. The correction data of the XY drive mechanism (not shown) is obtained from the deviation data and the suction position deviation data, and the parts are mounted.
The method correction data acquisition performed at the time of parameter acquisition by each component mounter will be described in detail.
[0010]
As shown in FIG. 3, a method of acquiring method correction data (see FIG. 4) using the parameter acquisition board 1 9 in the component mounter shown in FIG. It is carried and fixed to the mounting position of the component mounting machine by the transport path 1 1 (step s 1 1). An XY drive mechanism (not shown) moves a suction head (not shown) holding the C CD camera 1 2 onto the parameter acquisition substrate 1 9. Parameter acquisition board 1 as shown in FIG. 9 A plurality of substrate marks T formed thereon M n ( n = 1 2 3 ) Above , the suction head (not shown) having the CCD camera 1 2 stops at each predetermined position of the substrate marks T M1 to T M3, picks up an image of the substrate mark, and transfers it to the image processing device 2 0. The position is measured and the static imaging position data of the three board marks is stored in the memory 2 0 g of the image processing device 2 0 (step s 1 2).
[0011]
Subsequently, a suction head (not shown) having a CCD camera 12 monitors the substrate marks TM1 to TM3 with an encoder (not shown) such as a motor while moving the substrate marks TM1 to TM3 on each predetermined position at a set constant speed. When the position data is equivalent to the target imaging position data, the board mark is imaged, the position is measured by the image processing apparatus 20, and the dynamic imaging position data of the three board marks is stored in the memory 20g of the image processing apparatus 20. (Step S13). In the dynamic imaging position data measurement, data of four-direction movement (0, 90, 180, 270 degrees) is measured once with at least three marks and stored in the memory 20g, or four-direction movement data is measured for each mark. The result of arithmetic averaging is stored in the memory 20g of the image processing apparatus 20.
[0012]
From the results of the roughly determined steps s12 and 13, the difference between the dynamic imaging position data and the static imaging position data in each moving direction is stored as technique correction data in the memory 20g of the image processing apparatus 20 (step s14) as a format. Is a method correction data conversion table shown in FIG.
Next, the component mounter is the component mounter shown in FIGS. 3 and 5, and description of the component mounting operation is started according to the mounting substrate 18 of FIG. 7 and the flowchart of FIG. 8 instead of the parameter acquisition substrate 19.
[0013]
The mounting board 18 is carried into the mounting position of the component mounting machine by the transport path 11 (step s20). An XY drive mechanism (not shown) moves the suction head 1 holding the CCD camera 12 onto the mounting substrate 18 in order to recognize the substrate mark. As shown in FIG. 7, a plurality of substrate marks PMn (n = 1, 2, 3) are formed on the mounting substrate 18, and the suction head 1 having the CCD camera 12 is connected to the substrate mark PM1. ~ PM3 substrate mark position data “PM1” obtained by imaging while moving in a direction determined at a constant speed on PM3 (for example, PM1: from right, PM2: from below, PM3: from left) and measuring the position thereof (X1 + Δx1, y1 + Δy1), PM2 (x2 + Δx2, y2 + Δy2), PM3 (x3 + Δx3, y3 + Δy3) ”(step s21) and the previously obtained technique correction data are calculated, and the three-point substrate mark position data“ PM1 (x1 + Δx1-0. 4, y1 + Δy1) Substrate mark position data when moving from the right, PM2 (x2 + Δx2, y2 + Δy2-0.3) Substrate mark position when moving from below Data, PM3 (x3 + Δx3 + 0.5, y3 + Δy3) Get the substrate mark position data "at the time of moving from the left to obtain the substrate mark position correction data (step s22).
[0014]
Next, the component data in the component data table of FIG. 9 is read in accordance with the mounting order, the movement of the XY drive mechanism (not shown) to the feeder 2 is started by the component data, and the target component 3 is sucked by the suction nozzle 1a (s23). ). After moving to the XY drive mechanism (not shown) of the post recognition camera 6 after picking up the parts, the suction nozzle 1 a lowers the part 3 to the focus surface of the recognition camera 6. At this time, the positional deviation data (Δx21, Δy21, ΔΘ21) of the component 3 imaged by the recognition camera 6 is obtained (s24). After obtaining the positional deviation data of the component 3 to be mounted, a component (such as a Chip component) that does not require much mounting accuracy is corrected based on the obtained substrate mark position data of the three points of the substrate 10. The component mounting position data (xn, yn) is obtained from the data (Δx10, Δy10, ΔΘ10) and the positional deviation data (Δx2n, Δy2n, ΔΘ2n) of the component 3 sucked by the suction nozzle 1a (s25), and the XY drive mechanism. (Not shown) is controlled to mount a component at a predetermined position (s26).
[0015]
For QFP components that require extremely high mounting accuracy, the suction mark 1 is moved onto the substrate 10 by an XY drive mechanism (not shown) by referring to the substrate mark position correction data by the substrate mark, and the CCD camera 12 is driven at a constant speed. The IC marks 10a and 10b are measured while moving in a certain direction, and the obtained IC mark position data is calculated by adding the method correction data to the IC mark position data in the same manner as the acquisition of the substrate mark position data. The component mounting position data (xn, yn) is obtained from the IC mark position correction data (Δx11, Δy11, ΔΘ11) and the positional deviation data (Δx2, Δy2, ΔΘ2) of the component 3 (s27), and the XY drive mechanism (not shown). The device is controlled to move to a predetermined position on the substrate 10 to mount a component (s26).
[0016]
After component mounting, it is confirmed whether it is final component data (s28). If it is the final component data, the mounting is completed, and the substrate 10 is transferred to the discharge position by the transfer path 11.
If the component mounting is not completed, the XY drive mechanism (not shown) starts moving to the feeder 2 based on the read component data (s23) and sucks the component from the corresponding feeder. This process is repeated until the part data is completed. As described above, the technology other than the substrate mark recognition method and means and the IC mark recognition method and means is a conventional technique.
[0017]
【The invention's effect】
As described above, according to the present invention, since the mark imaging can be performed without waiting for the CCD camera to stop as before, the total time for mark recognition can be shortened. Therefore, it can contribute to the improvement of the tact time, and since the recognition accuracy has correction data based on the imaging method from the static imaging position data and the dynamic imaging position data, the accuracy equivalent to the result of mark recognition by the conventional technique can be guaranteed.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing a schematic configuration of a conventional component mounter.
FIG. 2 is a flowchart showing a component mounting flow of a conventional component mounter.
FIG. 3 is a schematic perspective view showing a configuration at the time of parameter acquisition according to the present invention.
FIG. 4 is a flowchart showing a flow at the time of parameter acquisition according to the present invention.
FIG. 5 is a configuration diagram showing a schematic configuration of a component mounter of the present invention.
FIG. 6 is a table showing a method correction data conversion table of the present invention.
FIG. 7 is a mounting board diagram used for explaining the present invention.
FIG. 8 is a flowchart showing a component mounting flow of the component mounter of the present invention.
FIG. 9 is a table showing a component data table used for explaining the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Adsorption head 1a Adsorption nozzle 2 Feeder 3 Component 6 Recognition camera 10 Substrate 10a, 10b, 10c Substrate mark 10d, 10 IC mark 11 Conveyance path 12 CCD camera 18 Mounting substrate 18a, 18b, 18c Mounting substrate mark 19 For parameter acquisition Substrate 19a, 19b, 19c Parameter acquisition substrate mark 20 Image processing device 21 Monitor 22 Controller

Claims (2)

電子部品実装機、印刷機、ディスペンサなどに搬送されてくる基板などの対象物上のマーク認識するマーク位置認識方法において、
前もってパラメータ取得用基板上に形成されたマーク上で、カメラを停止させて取得する静的撮像位置データとカメラを移動させながら取得する動的撮像位置データから撮像法による手法補正データを求め、
部品搭載時に対象物上をカメラ移動しながら画像を読み取る動的撮像手段で得たマーク位置データに、
前もって得た手法補正データを読み出して該マーク位置データと演算処理を行い、
基板の位置補正データを求めることを特徴とするマーク位置認識方法。
In a mark position recognition method for recognizing a mark on an object such as a substrate conveyed to an electronic component mounting machine, a printing machine, a dispenser, etc.
On the mark formed on the parameter acquisition substrate in advance, obtain the method correction data by the imaging method from the static imaging position data acquired by stopping the camera and the dynamic imaging position data acquired while moving the camera,
In the mark position data obtained by the dynamic imaging means that reads the image while moving the camera over the object when mounting the part,
Read out the method correction data obtained in advance and perform calculation processing with the mark position data,
A method for recognizing a mark position, comprising: obtaining position correction data of a substrate.
電子部品実装機、印刷機、ディスペンサなどに搬送されてくる基板などの対象物上のマーク認識するマーク位置認識装置において、
前もってパラメータ取得用基板上に形成されたマーク上で、カメラを停止させて取得する静的撮像位置データとカメラを移動させながら取得する動的撮像位置データから撮像法による手法補正データを求める手段と、
部品搭載時に対象物上をカメラ移動しながら画像を読み取る動的撮像手段で得た対象物のマーク位置データを求める手段と、
前もって得た手法補正データを読み出してマーク位置データと演算処理を行う演算手段とを有し、
基板の位置補正データを求めることを特徴とするマーク位置認識装置
In a mark position recognition device for recognizing marks on an object such as a substrate conveyed to an electronic component mounting machine, a printing machine, a dispenser, etc.
Means for obtaining technique correction data by an imaging method from static imaging position data acquired by stopping the camera and dynamic imaging position data acquired while moving the camera on a mark formed on the parameter acquisition substrate in advance; ,
Means for obtaining mark position data of an object obtained by a dynamic imaging means for reading an image while moving the camera on the object at the time of component mounting;
And an arithmetic means for performing arithmetic processing and the mark position data by reading the previously obtained technique correction data,
Mark position recognizing device characterized by obtaining position correction data of substrate
JP2002241322A 2002-08-22 2002-08-22 Mark recognition apparatus and method Expired - Fee Related JP4156882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002241322A JP4156882B2 (en) 2002-08-22 2002-08-22 Mark recognition apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002241322A JP4156882B2 (en) 2002-08-22 2002-08-22 Mark recognition apparatus and method

Publications (2)

Publication Number Publication Date
JP2004079925A JP2004079925A (en) 2004-03-11
JP4156882B2 true JP4156882B2 (en) 2008-09-24

Family

ID=32023837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002241322A Expired - Fee Related JP4156882B2 (en) 2002-08-22 2002-08-22 Mark recognition apparatus and method

Country Status (1)

Country Link
JP (1) JP4156882B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4870054B2 (en) * 2007-09-20 2012-02-08 ヤマハ発動機株式会社 Substrate processing apparatus, surface mounting machine, printing machine, inspection machine, and coating machine
JP4904237B2 (en) * 2007-09-25 2012-03-28 ヤマハ発動機株式会社 Substrate processing apparatus, surface mounting machine, printing machine, inspection machine, and coating machine
JP2011009665A (en) * 2009-06-29 2011-01-13 Hitachi High-Tech Instruments Co Ltd Electronic component mounter
WO2014174598A1 (en) * 2013-04-24 2014-10-30 株式会社日立製作所 Component mounting device, mounting head, and control device
WO2014188564A1 (en) * 2013-05-23 2014-11-27 株式会社日立製作所 Component mounting device

Also Published As

Publication number Publication date
JP2004079925A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
JP4828298B2 (en) Component mounting method and component mounting apparatus
JP4629584B2 (en) Mounting system and electronic component mounting method
JP2006339392A (en) Component mounting apparatus
JP3744251B2 (en) Electronic component mounting method
JP4416899B2 (en) Component mounting position correction method and surface mounter
JP4156882B2 (en) Mark recognition apparatus and method
JP3273697B2 (en) Positioning method and device for mounting machine
JP4122170B2 (en) Component mounting method and component mounting apparatus
JP4364333B2 (en) Screen printing method
JPH0590799A (en) Method and apparatus for applying adhesive to printed board
JP3253218B2 (en) Mounting machine position correction device
JP4091950B2 (en) Component mounting position correction method and surface mounter
JP3613055B2 (en) Substrate alignment method in screen printing
JP3564191B2 (en) Positioning method and device for mounting machine
JP3928381B2 (en) Electronic component mounting apparatus and electronic component mounting method
JP3661468B2 (en) Screen mask alignment method in screen printing
JP3499316B2 (en) Calibration data detection method for mounting machine and mounting machine
JP4381568B2 (en) Board recognition method and apparatus for component mounting system
JP3445681B2 (en) Chip mounter
JPH10326997A (en) Electronic component mounting device and method of correcting position by electronic component mounting device
JP2801331B2 (en) Electronic component mounting method
JP3142720B2 (en) Positioning method and device for mounting machine
JP3793387B2 (en) Surface mount machine
JP4145580B2 (en) Electronic component mounting method
JP3112574B2 (en) Scale adjustment method for component mounting device and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4156882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees