JP4156713B2 - Piezoelectric transformer - Google Patents
Piezoelectric transformer Download PDFInfo
- Publication number
- JP4156713B2 JP4156713B2 JP22007198A JP22007198A JP4156713B2 JP 4156713 B2 JP4156713 B2 JP 4156713B2 JP 22007198 A JP22007198 A JP 22007198A JP 22007198 A JP22007198 A JP 22007198A JP 4156713 B2 JP4156713 B2 JP 4156713B2
- Authority
- JP
- Japan
- Prior art keywords
- rectangular plate
- length direction
- ceramic rectangular
- ceramic
- piezoelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000919 ceramic Substances 0.000 claims description 70
- 230000000694 effects Effects 0.000 claims description 21
- 238000010030 laminating Methods 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 229920001800 Shellac Polymers 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 2
- 229940113147 shellac Drugs 0.000 description 2
- 235000013874 shellac Nutrition 0.000 description 2
- 239000004208 shellac Substances 0.000 description 2
- HEZMWWAKWCSUCB-PHDIDXHHSA-N (3R,4R)-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylic acid Chemical compound O[C@@H]1C=CC(C(O)=O)=C[C@H]1O HEZMWWAKWCSUCB-PHDIDXHHSA-N 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
Images
Landscapes
- Dc-Dc Converters (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、圧電性セラミックスを用いた圧電トランスに関し、特に圧電セラミックス矩形板と内部電極を矩形板の厚み方向に積層し、矩形板の長さ方向の共振を利用した圧電トランスに関するものである。
【0002】
【従来の技術】
近年、ノート型パーソナルコンピュータや携帯ビデオカメラの普及に伴い画像表示システムとして液晶ユニットが普及し、液晶バックライトの点灯用にインバータが多用されている。このインバータには高電圧発生用に電磁式トランスが用いられているが、発生電磁ノイズの低減や低消費電力化、高効率化、機器の小型低背化などの要求により、電磁式卜ランスに代わつて圧電トランスの実用化が進みつつある。圧電トランスの電力伝送は双方2向性が有り、高電圧を入力し、降圧して低電圧を得る事も可能であり、圧電トランスを用いたDC/DCコンバータやACアダプターの研究がなされている。
【0003】
図7は従来のローゼンタイプλモード圧電トランスに用いられている圧電振動子の構造の概略斜視図である。図7において、圧電セラミックス矩形板31には、長さ方向のおよそ半分の部分に厚さ方向に対向する電極32、33が形成されている。また、圧電セラミックス矩形板31の電極32、33が形成された部分とは反対側の残り半分の部分は長さ方向の端面にに表面電極34が形成されている。圧電セラミックス矩形板31は、矢印で示すように、電極32、33の部分は矩形板厚さ方向に分極され、端面電極34の間の部分は、矢印で示すように、圧電セラミックス矩形板の長さ向に分極されている。電極32、33間に矩形板の共振周波数近傍の電圧が印加されると、圧電横効果により矩形板は励振され、この時、電極33と電極34の間には圧電縦効果により電圧が発生する。ここで、電極32、33に印加した入力電圧と電極34に発生した出力電圧について説明すると、電極32、33の対向電極の間隔は電極33、34の間隔に比べ十分に小さく、電極32、33の面積は電極34の面積より十分に大きいため、入力側の静電容量は出力側の静電容量に比べ十分大きな値となる。従つて、入力側に低い電圧を印加して振動子を励振した場合、出力側には入力側電極の間隔と出力側電極間の間隔の比に比例し、入出力側のそれぞれの静電容量の比に逆比例した大きな電圧が発生する。圧電トランスの双方向性から電極34に高電圧を印加して振動子を励振した場合、電極32、33では低電圧が得られる。
【0004】
【発明が解決しようとする課題】
ローゼン型圧電トランスを基本とする矩形板の長さ方向の共振を利用した圧電トランスは各種の構造が提案、実用化されているが、いずれの構造も矩形板の長さ方向を振動のモードに応じて入力部と出力部に分割した構造である。したがって、矩形板に長さ振動を励振する際、矩形板の全長と入力部の長さの比はローゼン型で1/2、1.5波長モードでも2/3となり、実際に振動する長さより励振部の長さが小さくなるので、見かけの電気機械結合係数が小さくなり、励振効率が低下するという問題がある。またローゼン型を基本とする圧電トランスは入力部が圧電横効果を利用しているが、圧電縦効果を利用する事で効率の改善が期待できる。
【0005】
また、出力部で効率よく機械振動エネルギーを電気エネルギーに変換するためには、負荷抵抗と出力部のインピーダンスマッチングが重要である。液晶バックライトの抵抗は100kΩ程度なので、インピーダンスマッチングを取るための圧電トランスの出力部の制動容量値は数10pF程度になり、矩形板の長さ方向両端面に電極を形成する事で構成が可能である。しかし、DC/DCコンバータやACアダプターでは負荷抵抗が数10Ω以下なのでインピーダンスマッチングを取るための圧電トランスの出力部の制動容量値は数10nFになる。この制動容量を実現するため圧電縦効果を利用した構造が用いられ、そのために出力部を長さ方向に分極する必要が有る。このように大きな制動容量を実現するには、出力部も内部電極の積層構造とする必要が有る。
【0006】
それ故に本発明の課題は、入力部に圧電縦効果を用いて電気的エネルギーと機械的エネルギーの変換効率を改善し、また負荷抵抗がIKΩ以下のときでも、圧電トランスの出力側の制動容量を容易に変化することが可能で、負荷抵抗とのマッチングが良好な構造の圧電トランスを提供することにある。
【0007】
【課題を解決するための手段】
本発明によれば、セラミック矩形板の長さ方向の振動モードを利用した圧電トランスにおいて、前記セラミック矩形板の厚さ方向のほぼ半分の部分には、圧電縦効果を利用して前記セラミック矩形板を前記長さ方向に励振するため、前記長さ方向に直交して前記セラミック矩形板の幅方向の寸法に一致するようにのびた複数の入力部帯状内部電極がセラミック層を介して積層され、該入力部帯状内部電極が前記長さ方向で対向電極になるように複数の入力部外部電極群に接続され、前記セラミック矩形板の厚さ方向の残りの部分には、前記セラミック矩形板から圧電縦効果を利用して電力を取り出すため、前記長さ方向に直交して前記セラミック矩形板の幅方向の寸法に一致するようにのびた複数の出力部帯状内部電極がセラミック層を介して積層され、該出力部帯状内部電極が前記長さ方向で対向電極になるように複数の出力部外部電極群に接続されていることを特徴とする圧電トランスが得られる。
【0008】
また、本発明によれば、セラミック矩形板の長さ方向の振動モードを利用した圧電トランスにおいて、前記セラミック矩形板の厚さ方向のほぼ半分の部分には、圧電縦効果を利用して前記セラミック矩形板を長さ方向に励振するため、前記長さ方向に直交してのびかつ前記長さ方向に繰り返す入力部交差指電極が複数積層され、該入力部交差指電極は前記セラミック矩形板の側面で第1及び第2の外部電極に接続され、前記セラミック矩形板の厚さ方向の残りの部分には、前記セラミック矩形板から圧電縦効果を利用して電力を取り出すため、前記長さ方向に直交してのびかつ前記長さ方向に繰り返す出力部交差指電極が複数積層され、該出力部交差指電極は前記セラミック矩形板の側面で第3及び第4の外部電極に接続されていることを特徴とする圧電トランスが得られる。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
【0010】
図1〜図3は本発明の第1の実施の形態に係る圧電トランスを示す。この圧電トランスは圧電セラミックスよりなるセラミック矩形板11の長さ方向の振動モードを利用したものである。
【0011】
セラミック矩形板11の厚さ方向のほぼ半分の部分、即ち、入力部には、圧電縦効果を利用してセラミック矩形板11を前記長さ方向に励振するため、前記長さ方向に直交してセラミック矩形板11の幅方向の寸法に一致するようにのびた複数の入力部帯状内部電極12がセラミック層を介して積層されている。これらの入力部帯状内部電極12は前記長さ方向で対向電極になるように複数の入力部外部電極13群に接続されている。
【0012】
セラミック矩形板11の厚さ方向の残りの部分、即ち、出力部には、セラミック矩形板11から圧電縦効果を利用して電力を取り出すため、前記長さ方向に直交してセラミック矩形板11の幅方向の寸法に一致するようにのびた複数の出力部帯状内部電極14がセラミック層を介して積層されている。これらの出力部帯状内部電極12は前記長さ方向で対向電極になるように複数の出力部外部電極15群に接続されている。
【0013】
さらに実施例1をもって説明する。圧電セラミックスとしてはPbTiO3 −PbZrO3 系材料を用い、長さ22mm、幅5mm、厚さ1.2mmの圧電トランスを試作した。入出力部である矩形板の圧電セラック層は厚さそれぞれ0.6mmである。入力部は矩形板の長さ方向に直交し幅方向に貫通する幅0.2mmの帯状内部電極を1mm間隔で18本形成した厚み0.1mmのセラミックス層を5層積層し、帯状内部電極が一本ずつ対向電極となるように対向する側面で複数の外部電極に接続した。出力部は長さ方向に直交し幅方向に貫通する幅0.1mmの帯状電極を0.25mm間隔で60本配置したセラミック層を矩形板厚さ方向で0.1mm間隔で5層積層した。該帯状電極は長さ方向で一本ずつ対向電極となるように一層おきに側面で外部電極に接続した。
【0014】
分極は温度150℃で、入力部印加電圧1kV−15分間、出力部印可電圧200V−15分間それぞれ処理した。1波長共振モードを使用し、入力電圧100Vpp、負荷抵抗50Ωの時の圧電トランス特性を測定した。測定結果を同一寸法の図7に示したローゼン構造からなる比較例と比較して表1に示した。
【0015】
【表1】
【0016】
図4〜図6は本発明の第2の実施の形態に係る圧電トランスを示す。この圧電トランスも、圧電セラミックスよりなるセラミック矩形板11の長さ方向の振動モードを利用したものである。
【0017】
セラミック矩形板21の厚さ方向のほぼ半分の部分、即ち、入力部には、圧電縦効果を利用してセラミック矩形板21を長さ方向に励振するため、前記長さ方向に直交してのびかつ前記長さ方向に繰り返す入力部交差指電極24が複数積層されている。これらの入力部交差指電極24はセラミック矩形板21の側面で第1及び第2の外部電極22に接続されている。
【0018】
セラミック矩形板21の厚さ方向の残りの部分、即ち、出力部には、セラミック矩形板21から圧電縦効果を利用して電力を取り出すため、前記長さ方向に直交してのびかつ前記長さ方向に繰り返す出力部交差指電極25が複数積層されている。これらの出力部交差指電極25はセラミック矩形板21の側面で第3及び第4の外部電23極に接続されている。
【0019】
さらに実施例2をもって説明する。圧電セラミックスとしてはPbTiO3 −PbZrO3 系材料を用い、長さ22mm、幅5mm、厚さ1.2mmの圧電トランスを試作した。入出力部である矩形板の圧電セラック層は厚さそれぞれ0.6mmである。入力部は矩形板の長さ方向に直交する長さ4mm、幅0.2mmの交差指内部電極を1mm間隔で18本形成した厚み0.1mmのセラミックス層を5層積層し、交差指電極が露出する二側面でそれぞれの外部電極に接続した。出力部は長さ方向に直交する長さ4mm、幅0.1mmの交差指内部電極を0.25mm間隔で60本配置したセラミック層を矩形板厚さ方向で0.1mm間隔で5層積層し、交差指電極が露出する二側面でそれぞれの外部電極に接続した。
【0020】
分極は温度150℃、で入力部印可電圧1kV一15分間、出力部印可電庄200V−15分間それぞれ処理した。1波長共振モードを使用し、入力電圧100Vpp、負荷抵抗200Ωの時の圧電トランス特性を測定した。測定結果を同一寸法の第7図に示したローゼン構造からなる比較例と比較して表1に示した。
【0021】
表1より分かるように、本発明の圧電トランスは降圧比は10倍程度であり、入力電圧が100Vの交流から7.5Vの交流に降圧するAC−ACコンバータが可能であり、更に、後段に整流回路を付加する事で5〜3Vの直流電圧を得るAC−DCコンバータを得る事が可能である。さらにインピーダンスのマッチングが良好のため98%以上の高効率が達成されている。従来構造ではインピーダンスのマッチングが得られずDCDCコンバータ用トランスとしての特性は得られないことが明らかである。
【0022】
【発明の効果】
以上説明したように、本発明における圧電トランスでは、セラミック矩形板に長さ方向の振動を励振するのに、セラミック矩形板に厚さ方向のほぼ半分の入力部に、帯状電極や交差指電極を形成し、圧電縦効果を利用してセラミック矩形板を励振するより、高効率で機械振動を励振する事が可能である。
【0023】
また、本発明の圧電トランスではセラミック矩形板に厚さ方向のほぼ半分の出力部に圧電縦効果を用い、長さ方向に帯状電極や交差指電極を複数配列し、出力部を長さ方向に分割した構造であるため、インピーダンスマッチングを得るための出力側制動容量の値の調整が可能である。
【0024】
したがって本発明よれば、100Ω程度の負荷に対して、10数倍の降圧比が得られ、効率が98%以上と優れた構造の圧電トランスを提供することが可能である。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る圧電トランスの斜視図である。
【図2】図1の圧電トランスの入力部の長さ方向に直交する帯状電極を含む断面図である。
【図3】図1の圧電トランスの出力部の長さ方向に直交する帯状電極を含む断面図である。
【図4】本発明の第2の実施の形態に係る圧電トランスの斜視図である。
【図5】図4の圧電トランスの入力部の長さ方向に直交する帯状電極を含む断面図である。
【図6】図4の圧電トランスの出力部の長さ方向に直交する帯状電極を含む断面図である。
【図7】従来の圧電トランスの斜視図である。
【符号の説明】
11 セラミック矩形板
12 入力部帯状内部電極
13 入力部外部電極
14 出力部帯状内部電極
15 出力部外部電極
21 セラミック矩形板
22 第1及び第2の外部電極
23 第3及び第4の外部電
24 入力部交差指電極
25 出力部交差指電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piezoelectric transformer using piezoelectric ceramics, and more particularly to a piezoelectric transformer in which piezoelectric ceramic rectangular plates and internal electrodes are laminated in the thickness direction of the rectangular plates and the resonance in the length direction of the rectangular plates is utilized.
[0002]
[Prior art]
In recent years, with the spread of notebook personal computers and portable video cameras, liquid crystal units have become widespread as image display systems, and inverters are frequently used for lighting liquid crystal backlights. This inverter uses an electromagnetic transformer to generate high voltage, but due to demands such as reduction of generated electromagnetic noise, low power consumption, high efficiency, and reduction in the size and height of equipment, the electromagnetic transformer lance is used. Instead, the practical use of piezoelectric transformers is progressing. Piezoelectric transformers have bi-directional power transmission, and high voltage can be input and stepped down to obtain low voltage. Research on DC / DC converters and AC adapters using piezoelectric transformers has been made. .
[0003]
FIG. 7 is a schematic perspective view of the structure of a piezoelectric vibrator used in a conventional Rosen-type λ mode piezoelectric transformer. In FIG. 7, the piezoelectric ceramic
[0004]
[Problems to be solved by the invention]
Various structures have been proposed and put to practical use for piezoelectric transformers that utilize resonance in the length direction of a rectangular plate based on a Rosen-type piezoelectric transformer, but each structure uses the length direction of the rectangular plate as a vibration mode. Accordingly, the structure is divided into an input unit and an output unit. Therefore, when exciting the length vibration to the rectangular plate, the ratio of the total length of the rectangular plate to the length of the input part is 1/2 for Rosen type and 2/3 for the 1.5 wavelength mode. Since the length of the excitation unit is reduced, there is a problem that the apparent electromechanical coupling coefficient is reduced and the excitation efficiency is lowered. In addition, in the piezoelectric transformer based on the Rosen type, the input portion uses the piezoelectric lateral effect. However, improvement in efficiency can be expected by using the piezoelectric longitudinal effect.
[0005]
Moreover, in order to efficiently convert mechanical vibration energy into electrical energy at the output section, impedance matching between the load resistance and the output section is important. Since the resistance of the liquid crystal backlight is about 100 kΩ, the braking capacitance value of the output part of the piezoelectric transformer for impedance matching is about several tens of pF, and it can be configured by forming electrodes on both end faces of the rectangular plate in the length direction. It is. However, since the load resistance of the DC / DC converter or the AC adapter is several tens of ohms or less, the braking capacity value of the output part of the piezoelectric transformer for impedance matching is several tens of nF. In order to realize this braking capacity, a structure using the piezoelectric longitudinal effect is used, and for this purpose, the output section needs to be polarized in the length direction. In order to realize such a large braking capacity, the output unit also needs to have a laminated structure of internal electrodes.
[0006]
Therefore, the object of the present invention is to improve the conversion efficiency of electrical energy and mechanical energy by using the piezoelectric longitudinal effect at the input section, and to reduce the braking capacity on the output side of the piezoelectric transformer even when the load resistance is IKΩ or less. It is an object of the present invention to provide a piezoelectric transformer that can be easily changed and has a good matching with a load resistance.
[0007]
[Means for Solving the Problems]
According to the present invention, in the piezoelectric transformer using the vibration mode in the length direction of the ceramic rectangular plate, the ceramic rectangular plate is formed on the almost half portion in the thickness direction of the ceramic rectangular plate using the piezoelectric longitudinal effect. A plurality of input portion strip-like internal electrodes extending in a direction perpendicular to the length direction so as to coincide with the dimension in the width direction of the ceramic rectangular plate are laminated via a ceramic layer, The input portion strip-like internal electrode is connected to a plurality of input portion external electrode groups so as to be counter electrodes in the length direction, and the remaining portion in the thickness direction of the ceramic rectangular plate is connected to the piezoelectric vertical plate from the ceramic rectangular plate. In order to take out electric power using the effect, a plurality of output band-like internal electrodes extending through the ceramic layer so as to coincide with the widthwise dimension of the ceramic rectangular plate perpendicular to the length direction. Laminated piezoelectric transformer is obtained, wherein a output unit strip internal electrodes are connected to a plurality of output portions external electrode group so that the counter electrode in the length direction.
[0008]
Further, according to the present invention, in the piezoelectric transformer using the vibration mode in the length direction of the ceramic rectangular plate, the ceramic rectangular plate is used for the half of the ceramic rectangular plate in the thickness direction by using the piezoelectric longitudinal effect. In order to excite the rectangular plate in the length direction, a plurality of input portion cross finger electrodes extending perpendicularly to the length direction and repeating in the length direction are laminated, and the input portion cross finger electrodes are arranged on the side surfaces of the ceramic rectangular plate. Connected to the first and second external electrodes, and the remaining portion in the thickness direction of the ceramic rectangular plate is used to extract electric power from the ceramic rectangular plate using the piezoelectric longitudinal effect. A plurality of output part cross finger electrodes extending perpendicularly and repeating in the length direction are stacked, and the output part cross finger electrodes are connected to the third and fourth external electrodes on the side surface of the ceramic rectangular plate. Special A piezoelectric transformer is obtained and.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0010]
1 to 3 show a piezoelectric transformer according to a first embodiment of the present invention. This piezoelectric transformer uses a vibration mode in the length direction of a ceramic
[0011]
In order to excite the ceramic
[0012]
In order to extract electric power from the ceramic
[0013]
Further description will be made with reference to the first embodiment. With PbTiO 3 -PbZrO 3 based material as the piezoelectric ceramic was fabricated a
[0014]
Polarization was performed at a temperature of 150 ° C., with an input portion applied voltage of 1 kV-15 minutes and an output portion applied voltage of 200 V-15 minutes. Using the one-wavelength resonance mode, the piezoelectric transformer characteristics were measured when the input voltage was 100 Vpp and the load resistance was 50Ω. The measurement results are shown in Table 1 in comparison with the comparative example having the Rosen structure shown in FIG.
[0015]
[Table 1]
[0016]
4 to 6 show a piezoelectric transformer according to a second embodiment of the present invention. This piezoelectric transformer also uses a vibration mode in the length direction of the ceramic
[0017]
In order to excite the ceramic
[0018]
In order to extract electric power from the ceramic
[0019]
Further, a second embodiment will be described. A piezoelectric transformer having a length of 22 mm, a width of 5 mm, and a thickness of 1.2 mm was prototyped using a PbTiO 3 —PbZrO 3 -based material as the piezoelectric ceramic. The piezoelectric shellac layers of the rectangular plate that is the input / output unit are each 0.6 mm in thickness. The input part is formed by laminating five ceramic layers each having a thickness of 0.1 mm, in which 18 cross-finger internal electrodes having a length of 4 mm and a width of 0.2 mm perpendicular to the length direction of the rectangular plate are formed at intervals of 1 mm. The two exposed side surfaces were connected to each external electrode. The output part was formed by laminating 5 ceramic layers each having a length of 4 mm perpendicular to the length direction and a width of 0.1 mm and having 60 crossed finger internal electrodes arranged at intervals of 0.25 mm at intervals of 0.1 mm in the thickness direction of the rectangular plate. , And connected to each external electrode on the two side surfaces where the interdigitated electrodes are exposed.
[0020]
Polarization was performed at a temperature of 150 ° C. for 1 minute at an input voltage of 1 kV and for 15 minutes at an output voltage of 200 V for 15 minutes. Using the one-wavelength resonance mode, the piezoelectric transformer characteristics at an input voltage of 100 Vpp and a load resistance of 200Ω were measured. The measurement results are shown in Table 1 in comparison with the comparative example having the Rosen structure shown in FIG. 7 having the same dimensions.
[0021]
As can be seen from Table 1, the step-down ratio of the piezoelectric transformer of the present invention is about 10 times, and an AC-AC converter that steps down the input voltage from an alternating current of 100 V to an alternating current of 7.5 V is possible. It is possible to obtain an AC-DC converter that obtains a DC voltage of 5 to 3 V by adding a rectifier circuit. Furthermore, since the impedance matching is good, a high efficiency of 98% or more is achieved. It is obvious that impedance matching cannot be obtained with the conventional structure, and characteristics as a DCDC converter transformer cannot be obtained.
[0022]
【The invention's effect】
As described above, in the piezoelectric transformer according to the present invention, in order to excite the vibration in the length direction on the ceramic rectangular plate, the strip-like electrode and the cross finger electrode are provided in the input portion of the ceramic rectangular plate in almost half the thickness direction. It is possible to excite mechanical vibration with higher efficiency than to form and excite a ceramic rectangular plate using the piezoelectric longitudinal effect.
[0023]
Further, in the piezoelectric transformer of the present invention, a piezoelectric rectangular effect is applied to the ceramic rectangular plate at the output portion that is almost half of the thickness direction, a plurality of strip electrodes and cross finger electrodes are arranged in the length direction, and the output portion is set in the length direction. Since the structure is divided, it is possible to adjust the value of the output side braking capacity to obtain impedance matching.
[0024]
Therefore, according to the present invention, it is possible to provide a piezoelectric transformer having an excellent structure in which a step-down ratio of a factor of 10 is obtained for a load of about 100Ω and efficiency is 98% or more.
[Brief description of the drawings]
FIG. 1 is a perspective view of a piezoelectric transformer according to a first embodiment of the present invention.
2 is a cross-sectional view including a strip electrode perpendicular to the length direction of the input portion of the piezoelectric transformer of FIG. 1;
3 is a cross-sectional view including a strip-shaped electrode orthogonal to the length direction of the output portion of the piezoelectric transformer of FIG. 1;
FIG. 4 is a perspective view of a piezoelectric transformer according to a second embodiment of the present invention.
5 is a cross-sectional view including a strip electrode perpendicular to the length direction of the input portion of the piezoelectric transformer of FIG. 4;
6 is a cross-sectional view including a strip electrode perpendicular to the length direction of the output portion of the piezoelectric transformer of FIG. 4;
FIG. 7 is a perspective view of a conventional piezoelectric transformer.
[Explanation of symbols]
DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22007198A JP4156713B2 (en) | 1998-08-04 | 1998-08-04 | Piezoelectric transformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22007198A JP4156713B2 (en) | 1998-08-04 | 1998-08-04 | Piezoelectric transformer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000058937A JP2000058937A (en) | 2000-02-25 |
JP4156713B2 true JP4156713B2 (en) | 2008-09-24 |
Family
ID=16745498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22007198A Expired - Fee Related JP4156713B2 (en) | 1998-08-04 | 1998-08-04 | Piezoelectric transformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4156713B2 (en) |
-
1998
- 1998-08-04 JP JP22007198A patent/JP4156713B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000058937A (en) | 2000-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3978471B2 (en) | Piezoelectric transformer | |
JP4156713B2 (en) | Piezoelectric transformer | |
JP3706509B2 (en) | Piezoelectric transformer | |
US20140265624A1 (en) | Piezoelectric transformer, piezoelectric transformer module, and wireless power transmission system | |
JP3401664B2 (en) | Piezoelectric transformer | |
JP3673433B2 (en) | Piezoelectric transformer | |
JP4422440B2 (en) | Piezoelectric transformer | |
JP2003008098A (en) | Laminated piezoelectric transformer | |
JPH11204851A (en) | Piezoelectric transducer | |
JP2001156353A (en) | Piezoelectric transformer | |
JP3659309B2 (en) | Piezoelectric transformer | |
JP3401663B2 (en) | Piezoelectric transformer | |
JP3709114B2 (en) | Piezoelectric transformer | |
JPH10223939A (en) | Piezoelectric transformer | |
JP4743935B2 (en) | Piezoelectric transformer and AD converter | |
JPH10229228A (en) | Piezoelectric transformer | |
JP2003086857A (en) | Piezoelectric transformer | |
JP3186046B2 (en) | Piezoelectric ceramic transformer and driving method thereof | |
JP4831859B2 (en) | Piezoelectric transformer | |
JP3353132B2 (en) | Piezoelectric transformer | |
JPH11204852A (en) | Piezoelectric transducer | |
JP2002289937A (en) | Piezoelectric transformer and power source device | |
JP2002141571A (en) | Piezoelectric transformer | |
JP2002232031A (en) | Piezoelectric transformer and a/d converter | |
JPH09214012A (en) | Piezoelectric transformer and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060628 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080618 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080710 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110718 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120718 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120718 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130718 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140718 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |