JP4422440B2 - Piezoelectric transformer - Google Patents

Piezoelectric transformer Download PDF

Info

Publication number
JP4422440B2
JP4422440B2 JP2003189120A JP2003189120A JP4422440B2 JP 4422440 B2 JP4422440 B2 JP 4422440B2 JP 2003189120 A JP2003189120 A JP 2003189120A JP 2003189120 A JP2003189120 A JP 2003189120A JP 4422440 B2 JP4422440 B2 JP 4422440B2
Authority
JP
Japan
Prior art keywords
piezoelectric
input
axis
electrode
piezoelectric transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003189120A
Other languages
Japanese (ja)
Other versions
JP2004253762A (en
Inventor
守 山城
義朗 富川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003189120A priority Critical patent/JP4422440B2/en
Publication of JP2004253762A publication Critical patent/JP2004253762A/en
Application granted granted Critical
Publication of JP4422440B2 publication Critical patent/JP4422440B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、蛍光灯等に用いられる熱陰極管のインバータ、大画面液晶テレビ、ノートパソコン、携帯用端末等に使用される液晶ディスプレイ用のバックライト冷陰極管のインバータ、各種高電圧発生装置、マイナスイオン発生装置、空気清浄機、その他各種電子機器などに用いられるACアダプタやDC−DCコンバータに用いられる圧電トランスに関する。
【0002】
【従来の技術】
上記のようなACアダプタやDC−DCコンバータに用いられる電圧変換用トランスなどには、数kV以上の高電圧を必要とする機器が多くある。現在、一般的には電磁トランスを使用しているが、小型、軽量でソリッドステートなデバイスとして圧電トランスが注目され、一部で具体的に提案されている。
【0003】
圧電トランスとしては、PZT磁器を使用したセラミック圧電トランスが一般的に使用されているが、機械的品質係数Qが3000〜4000と小さいため圧電トランス自体の発熱による特性変化および電力損失が大きく、5W以上の高電力用途では発熱による効率の低下が生じていた。
このため、PZT磁器を使用したセラミック圧電トランスは5W以下の用途にのみ採用されており、5W以上の用途で使用される冷陰極管点灯用インバータや5W以上の蛍光灯等に用いられる熱陰極管のインバータ、各種高圧発生装置、ACアダプタやDC−DCに用いられる電圧変換用トランスには巻き線トランスが採用されていた。
【0004】
また、PZT磁器を使用した単板の圧電トランスでは機械的品質係数Qが小さいため高昇圧比が実現不可能であるため、ドライブ側とピックアップ側の静電容量の差を大きくした積層型圧電トランスにする必要があった。ところが、積層型圧電トランスでは、積層構造のため圧電トランスの厚みが厚くなり低背化が不可能であり、圧電トランスのメリットである小型、軽量、低背化を十分満足出来るものではなかった。しかも、PZT磁器を使用した場合、環境に有害な物質のPbが含まれているため、Pbの管理が必要であった。
【0005】
また、5W以上の巻き線トランスでは、高昇圧比を得るために巻き線比を多く取る必要があり低背化、小型化が困難であり、かつ発熱や磁束漏洩のため効率が75%〜85%と低いという欠点がある。この他にも、出力電圧波形が歪波のため冷陰極管の発光効率を低下させ、冷陰極管寿命を低下させる原因にもなっていた。
【0006】
一方、下記特許文献1および2には、圧電振動板の長辺と短辺が整数倍となるように切り出されたラーメモード振動を利用した圧電トランスとしてニオブ酸リチウム単結晶を使用した圧電トランスが記載されている。また、下記特許文献3および4には、長辺方向に伝搬するλ/2モードやλモードを利用した、ニオブ酸リチウム単結晶を使用した圧電トランスが記載されている。
【0007】
ニオブ酸リチウム単結晶を使用した場合、PZT等のセラミック圧電トランスに比べて機械的品質係数Qが10000以上と大きく、高電力を入力した場合での発熱による特性劣化やQの低下が無く、高昇圧比と高効率を実現可能であると言われているが、Hi Power入力時の圧電トランスとしての効率の記載や圧電トランスの出力側に負荷を接続した場合での効率の測定結果がない。
【0008】
図9(a)に従来の圧電トランスの構成図を示す。図9(a)の圧電トランスにおいて、12は圧電振動板(基板)であり、例えばニオブ酸リチウム単結晶板でZ軸方向に一様に分極処理を行った単結晶から切り出された、例えば140°回転Yカット板である。この回転Y板は、短辺がX軸に平行に、かつ長辺がY軸投影線に平行になるように長方形に切り出されている。また、入力電極と出力電極はそれぞれ一箇所になるように形成されている
【0009】
図9(a)において、13は入力電極であり、圧電振動板12の中央から左側の半分の両面に設けられた、例えばAu/NiCrの2層膜からなる蒸着膜である。14は出力電極であり、圧電振動板12の中央から右側の半分の両面に、同様にAu/NiCrの2層膜からなる蒸着膜で形成されている。図中の矢印Pは分極方向を概念的に示したものである。
【0010】
いま、図示していない交流発振電極から入力電極13、グランド電極15a間に長さ方向の寸法で決まる共振周波数の入力電圧V1を印加すると、圧電材料の電歪効果により長さ方向の機械振動(基本振動)が発生する(圧電逆効果)。次に、この振動による歪みを2次側の圧電材料が電気エネルギーに変換することで(圧電正効果)、圧電トランスの構造に応じて変圧された出力電圧を得る。図2では圧電横効果を介して出力電極14、グランド電極15b間に高電圧V0が発生するので、例えばハイインピーダンスの交流電圧計でそれを測定すれば昇圧比(V0/V1)を求めることができる。
【0011】
この例では、入力部を圧電横効果(すなわち電界の方向と弾性波の伝搬方向とが直交している場合をいう)により駆動し、出力部も横効果を用いて出力を取り出している。
【0012】
このように圧電トランスは、電気→機械→電気とエネルギーを変換するデバイスである。圧電トランスの動作中は、長手方向に図9(b)に示すように印加電圧の周波数に応じた定在波21と、圧電振動によって生じた応力22が生じている。図中、20で示した箇所は変位最小点であり、圧電振動により生じた応力が最も集中する箇所で振動の節と呼ばれている。通常この節を支持することで、高効率、高信頼性を維持出来る。
【0013】
しかしながら、ニオブ酸リチウム単結晶を使用した従来の圧電トランスでは、入力側のインピーダンスが高いため、圧電トランスの前段にチョークコイルや巻き線トランスを置いて一旦昇圧する必要があり、圧電トランスのメリットである小型、軽量、低背化が困難であった。一方、蛍光灯等に用いられる熱陰極管のインバータ、大画面液晶テレビ、ノートパソコン、携帯用端末等に使用される液晶ディスプレイ用のバックライト冷陰極管のインバータ、各種高電圧発生装置、マイナスイオン発生装置、空気清浄機、各種電子機器に用いられるACアダプタやDC−DCコンバータに用いられる圧電トランスでは、機器の小型化を進める上で圧電トランスの小型、低背化は必要である。
【0014】
また、仮に前段に巻き線トランスを入れて高電力を入力出来たとしても、機械的振動により発生する応力が振動の節に集中し、振動の節で圧電トランスが割れることがあった。高電力用途でも、圧電トランスを割れにくくするためには、応力が集中する振動の節の厚みを厚くするか、基板の幅を広くして機械的強度を増やす必要がある。
しかし、圧電トランスの厚みを厚くした場合、動作インピーダンスが高くなるため圧電トランスの前段に巻き線トランス等を入れて昇圧する必要があり、小型、低背化が図れない。また、基板の幅を広くするとスプリアス振動が発生し、効率の低下を招く。
【0015】
高電力用途でも高効率で発熱による特性劣化を少なくするためには、機械結合係数kが大きく、かつ機械的品質係数Qが大きい適切な振動モードを選択することが望ましい。ここで、機械結合係数kとは電極間に電圧を印加し圧電体に与えたエネルギーを理想的に機械的エネルギーに変換するときの効率であり、また圧電体に与えた機械的エネルギーを理想的に電気エネルギーに変換するときの効率である。また、機械的品質係数Qが高いと、高電力で使用しても自己発熱による特性劣化や効率の悪化が少なくなる。
【0016】
【特許文献1】
特開平8-191161号公報
【特許文献2】
特開平7-106660号公報
【特許文献3】
特開平2-249574号公報
【特許文献4】
特開平4-124886号公報
【0017】
【発明が解決しようとする課題】
本発明は、高電力用途に用いる冷陰極管点灯用インバータユニットおよび各種高電力用ランプ点灯用のインバータユニットにおいて5W以上の大電力出力でも高効率な圧電トランスを実現し、かつ小型、低背の圧電トランスを提供することを主たる課題とする。
【0018】
また、本発明は、上記特性に基づいて低電圧入力でも大電力を出力可能な様に、機械結合係数kと機械的品質係数Qを向上させ圧電トランスの入力側インピーダンスを低減出来る圧電トランスを提供することを他の課題とする。
【0019】
【課題を解決するための手段】
本発明者らは上記課題を解決すべく鋭意研究を重ねた結果、ニオブ酸リチウム単結晶を短冊状に切り出す際の結晶のCUT面および圧電振動の伝搬軸を、圧電振動の振動モードに対して最適に選び、圧電振動板の片面に形成した2箇所以上の入力電極を並列に接続することで圧電振動板の結晶座標系のY軸投影方向にλ/2の定在波が生じる横効果振動モードを強制にして機械結合係数k、および機械的品質係数Qの向上を計り、圧電振動板の中央に取り付けた1箇所以上の出力電極から大電力を出力することで、圧電トランスの整合負荷付近において5W以上で使用した場合でも92%以上と高効率な圧電トランスを提供することができるという新たな知見を得るに至った。
【0020】
すなわち、ニオブ酸リチウム単結晶を使用した圧電トランスの場合、自発分極軸はZ軸と決まっており、かつ結晶の異方性のために結晶のCUT面および短冊状に切り出した場合の結晶のCUT軸によって、圧電振動の特性が変化する。
また、圧電トランスの効率は圧電振動の機械結合係数kと機械的品質係数Qに依存しており、機械結合係数kと機械的品質係数Qが高い程、大電力で使用した場合でも圧電トランスを高効率に出来る。
【0021】
本発明の圧電トランスは、自発分極軸をZ軸として有するニオブ酸リチウム単結晶板からなる圧電振動板を備え、この圧電振動板は、結晶の座標軸をX軸のまわりに10°〜60°もしくは105°〜170°の範囲内で回転した回転Y板を、長辺もしくは短辺が結晶のX軸に対して−40°〜40°の範囲内に回転させ、かつ短辺が長辺に対して垂直になるように長方形に切り出したものであり、望ましくは結晶のX軸のなす角度ψがψ=0°±10°の範囲内で長方形板に切り出して、さらに結晶のY軸投影線へλ/2の定在波が生じる横効果振動モードを利用することにより、高機械結合係数kおよび高機械的品質係数Qを実現することが可能となり、高電力入力でも高効率で機械的振動に対しても割れにくい圧電トランスを提供することができる。また、短辺をY軸に対して0°±40°以内に回転させ、長方形に切り出したものであってもよい。
【0022】
本発明によれば、ニオブ酸リチウム単結晶板を結晶のX軸を中心にθ=10°〜60°もしくはθ=105°〜170°の範囲内で回転させ圧電トランスの入力インピーダンスを低減出来るCUT面に切り出し、単結晶ウエハーを任意の厚さに加工することで、入力インピーダンスを制御することが可能で、低電圧入力でも高電力を出力することができる。
【0023】
すなわち、本発明の圧電トランスは、自発分極軸をZ軸として有するニオブ酸リチウム単結晶板からなる圧電振動板を備え、この圧電振動板は、結晶の座標軸をX軸のまわりに回転した回転Y板を、長辺もしくは短辺が結晶のX軸に平行に、かつ短辺もしくは長辺が結晶のY軸投影線に平行になるように長方形に切り出し、Y軸投影方向に伝搬するλ/2モードの横効果振動モードを利用するものである。ここで、「Y軸投影線」とは、結晶の(x、y、z)座標系のy軸から引いた投影線をいう。具体的には、任意の方位に切り出した結晶に対してY軸から引いた線をいう。
【0024】
ここで、上記圧電振動板の厚みは0.2〜3.0mm、好ましくは0.2〜0.6mmである。上記圧電振動板は、X軸のまわりに10°〜60°または105°〜170°、好ましくは125°〜145°回転させた高誘電率のニオブ酸リチウム単結晶板からなるのがよい。
【0025】
上記圧電振動板は片面に入力電極と出力電極とを備え、他面にグランド用電極を備える。
すなわち、上記圧電トランスは、上記圧電振動板の片側主面に形成された2個の分割電極を該圧電振動板の結晶座標系のX軸方向に配置し、他側主面にグランド電極が形成されたものであって、上記2個の分割電極のうち第一の分割電極を入力側分割電極とし、第2の分割電極を出力側分割電極とした圧電トランスであって、該他側主面に配置した全ての分割電極は電極の少なくとも一部分が該圧電振動板短辺もしくは長辺の中心線上の位置に形成されている。
【0026】
あるいは、上記圧電振動板は該圧電振動板の片側主面に形成されたグランド電極と、他側主面に形成された3個以上の分割電極を該圧電振動板の結晶座標系のY軸投影方向に配置するとともに、3個の分割電極のうち両側の分割電極を入力側分割電極又は出力側分割電極とし、中央の分割電極を出力側分割電極又は入力側分割電極とした方が良い。これにより入力電極面積と出力電極面積を調整することで昇圧比、入力インピーダンスおよび出力インピーダンスを任意に調整することが可能となる。
【0027】
また、上記圧電振動板の片側主面に形成された3個以上の分割電極を該圧電振動板の結晶座標系のX軸方向に配置し、他側主面にグランド電極が形成された圧電トランスの場合には、上記3個以上の分割電極は、圧電振動板の結晶座標系のX軸方向に対して交互に配置された入力側分割電極と出力側分割電極とからなるか、上記3個以上の分割電極のうち2個以上の分割電極を並列接続して入力側分割電極とするか、上記圧電振動板の3個以上の分割電極のうち1個以上の分割電極を並列接続して出力側分割電極とするのが好ましい。
【0028】
圧電振動板の他側主面に形成された全ての分割電極は電極の少なくとも一部分が該圧電振動板両短辺もしくは長辺の中心を結んだ線上に掛かる様に形成されているのが良い。これにより、圧電振動板のY軸投影方向へλ/2の定在波が生じる横効果振動モードを効率良く取り出せるようになる。
【0029】
上記圧電振動板の片面に備えた2箇所以上の入力電極は、並列接続する方が良い。これにより圧電振動板のY軸投影方向へλ/2の定在波が生じる横効果振動モードの機械結合係数kおよび機械的品質係数Qの向上と、共振インピーダンスの低減を行うことが出来る。これにより低電圧入力でも高電力を出力することができ高効率、高昇圧比、低入力インピーダンスの圧電トランスを実現することが可能となる。
【0030】
本発明の圧電トランスは、機械的品質係数Qが1000以上、好ましくは4000以上で、かつ機械結合係数kが0.2以上、好ましくは0.25以上であるため、単板でも高昇圧比を実現可能で、低背化と高昇圧比を実現することができ、5W以上の高電力入力でも発熱による電力損失が少なく圧電トランスでの効率を92%以上とすることができる。また、本発明の圧電トランスは、入力インピーダンスが300Ω以下であるのが好ましい。
【0031】
【実施例1】
図1(a)に示すように、自発分極軸をZ軸として有するニオブ酸リチウム単結晶をX軸のまわりに128°回転した回転Y板を、長辺方向と結晶のX軸が平行になるように長さ33mm×幅12.2mmの短冊状に切り出し、両面に研磨加工による鏡面仕上げを行い、厚み0.597mmの圧電振動板12を得た。この圧電振動板12の両面に長さ12mm×幅10mmの入力電極13a、13bと出力電極14a、14bとをそれぞれ銀蒸着にて形成し、圧電トランス(実施例1-128Y)を得た。なお、図中の矢印Pは分極方向を概念的に示している。
【0032】
【比較例1】
図9(a)に示すように、自発分極軸をZ軸として有するニオブ酸リチウム単結晶をX軸のまわりに128°回転した回転Y板を、短辺方向と結晶のX軸とが平行になるように長さ33mm×幅12.2mm に切り出し、両面に研磨加工による鏡面仕上げを行い、厚み0.612mmの圧電振動板12を得た。この圧電振動板12の両面に長さ12mm×幅10mm の入力電極13、15aと出力電極14、15bとを銀蒸着にて形成し、圧電トランス(比較例1-128Y)を得た。
【0033】
実施例1-128Yおよび比較例1-128Yの圧電トランスの周波数特性をADVANTEST NETWORK ANALYZERで測定すると、185kHz付近と235kHz付近に非常に鋭い共振があった。
【0034】
実施例1-128Yおよび比較例1-128Yの185kHz付近の共振点は圧電振動板の長辺方向に1波長(λ)の定在波が発生するλモードの圧電振動であり、振動の節は圧電振動板長辺の1/4の所にあった。また、235kHz付近の共振点は圧電振動板の短辺方向に1/2波長(λ/2)の定在波が発生するλ/2モードの圧電振動であり、圧電振動の節は圧電振動板短辺の1/2の所にあった。
なお、圧電トランスを支持する場合、固定方法や固定位置により機械的品質係数Qの値が大きく変わるため、測定の影響が無いようにバネ式プローブを使用して、最も共振が鋭くなる位置で比較検討した。
【0035】
実施例1-128Yおよび比較例1-128Yの圧電振動板の長辺方向に伝搬するλモード振動のLCR等価回路の測定結果を表1に示す。圧電振動子のLCR等価回路は図2のように表され、この等価回路のパラメータより機械的品質係数Qと機械結合係数kが求められる。なお、図2において、R1は直列抵抗を、C1は直列容量を、C2は並列容量を、L1は直列インダクタンスをそれぞれ表している。
【0036】
【表1】

Figure 0004422440
表1より、128回転Y板の基板で長辺方向に伝搬するλモード振動を利用する場合、実施例1-128Yの機械結合係数kは0.26と比較例1-128Yの0.29に比べて悪いが、機械的品質係数Qは実施例1-128Yの18386が比較例1-128Yの12407に比べて良いことがわかる。
【0037】
昇圧比は機械結合係数kと機械的品質係数Qとで決まるため、機械的品質係数Qと機械結合係数kが共に大きい方が望ましいが、128回転Y板の基板で長辺方向に伝搬するλモード振動を利用する場合はk、Q共に最高の値を得ることは出来ない。
【0038】
圧電トランスの効率は機械結合係数kに依存し、高電力での効率は機械的品質係数Qに依存するため、128回転Y板の圧電振動板で長辺方向に伝搬するλモードの振動を利用する場合は、実施例1、比較例1共に大差ないことが分かる。
【0039】
実施例1-128Yおよび比較例1-128Yの短辺方向に伝搬するλ/2モード振動のLCR等価回路の測定結果を表2に示す。
【表2】
Figure 0004422440
表2より、128回転Y板の基板で短辺方向に発生するλ/2モードを圧電トランスに利用する場合、実施例1-128Yの機械結合係数kは0.28と比較例1-128Yの0.16に比べて良く、機械的品質係数Qは実施例1-128Y、比較例1-128Y共大差ないことが分かる。故に、128回転Y板の基板で短辺方向に発生するλ/2モードを圧電トランスに利用する場合は、図1に示すように、結晶のX軸と平行に長辺を切り出すのが望ましいことがわかる。
【0040】
また、短辺方向に伝搬するλ/2モードの振動を利用するため、機械的振動で発生する応力を基板の長辺方向に分散することが可能で、高電力用途でも割れにくいことがわかる。
【0041】
これらの結果から、機械結合係数kおよび機械的品質係数Qが大きい128回転Y板を使用し、図1に示すように結晶のX軸と平行に圧電振動板の長辺を切り出し圧電振動板の短辺方向に伝搬するλ/2モードの振動を利用することで、高電力用途でも圧電トランスの発熱が少なく高効率でかつ高電力を入力しても機械的振動で割れることが少ない圧電トランスを作成することが出来る。
【0042】
【実施例2】
図3(a)に示すように、自発分極軸をZ軸として有するニオブ酸リチウム単結晶をX軸のまわりに128°回転した回転Y板をそれぞれ長辺方向と結晶のX軸が平行になるように長さ33.0mm×幅12.2mmの短冊状に切り出し、両面に研磨加工による鏡面仕上げを行い、厚み0.56mmの圧電振動板12を得た。この圧電振動板12の片面2箇所に長さ12mm×幅10mmの入力電極13a、13b、と片面1箇所に長さ5mm×幅10mmの出力電極14を、圧電振動板の裏面に長さ32mm×幅10mmのグランド共通電極15をそれぞれ銀蒸着にて形成し、圧電トランス(実施例1)を得た。なお、図中の矢印Pは分極方向を概念的に示している。
なお、図3(a)において、16は入力用リード線、17は出力用リード線、18はグランド共通リード線を示している。図3(b)において、20は振動の節、21は圧電振動の変位、22は圧電振動により生じる応力を示している。
【0043】
実施例2の圧電トランスの入力電極13aと入力電極13bを並列接続して合成入力電極とした場合と入力電極13aのみを入力電極とした場合での入力電極とグランド共通電極間の共振周波数fr、反共振周波数fa、共振周波数でのインピーダンスZr、機械的品質係数Qと機械結合係数kをインピーダンスアナライザで測定した結果を表3に示す。
表3の入力電極1端子は、入力電極13aとグランド共通電極15間の周波数特性の測定値であり、表3の入力電極並列接続は、入力電極13aと13bを並列に接続した合成電極とグランド電極15間の周波数特性を測定したものである。
【0044】
なお、測定した共振周波数は圧電振動板のY軸投影方向にλ/2の定在波が生じる横効果振動モードの周波数特性である。
表3より分かるように入力電極を並列接続することで共振点が低周波側にシフトし共振点と反共振点の帯域幅を広げ、共振点のインピーダンスも低下することを確認した。また入力電極を並列接続することで機械結合係数kの向上と機械的品質係数Qの向上が可能であることを確認した。
【表3】
Figure 0004422440
このように3個の分割電極のうち、少なくとも2個の分割電極を並列接続して合成入力電極とし、長方形板の短辺方向に伝搬するλ/2モードの振動を強制に駆動させることで、機械結合係数kおよび機械的品質係数Qの向上と入力インピーダンスの低減が可能であることが分かる。
【0045】
【実施例3】
図3(a)に示すように、自発分極軸をZ軸として有するニオブ酸リチウム単結晶をX軸のまわりに128°回転した回転Y板をそれぞれ長辺方向と結晶のX軸が平行になるように長さ33mm×幅12.2mmの短冊状に切り出し、両面に研磨加工による鏡面仕上げを行い、厚み0.56mmの圧電振動板12を得た。この圧電振動板12の片面2箇所に長さ12mm×幅10mmの入力電極13a、13b、と片面1箇所に長さ2mm×幅10mmの出力電極14を、圧電振動板の裏面に長さ32mm×幅10mmのグランド共通電極15をそれぞれ銀蒸着にて形成し、圧電トランス(実施例3)を得た。なお、図中の矢印Pは分極方向を概念的に示している。
【0046】
図3(a)に示すように、圧電トランスの入力側分割電極13a、13bを入力とし、出力側分割電極14を出力として、この出力分割電極14に5〜200kΩの負荷抵抗をそれぞれ接続した。圧電トランスへの入力電圧は関数発生器を用い振幅10Vの正弦波を入力側分割電極に印加し、入力電圧(V)、入力電流(mA)、入力電力力率を検出し、出力側分割電極からは出力電圧(V)を検出した。上記の測定結果より、入力インピーダンス、昇圧比、効率を求めた。また、比較のため、前述の比較例1-128Yを用いて同様にして試験した。それらの結果を表4に示す。
【表4】
Figure 0004422440
表4より分かる様に、従来の技術である長辺方向に伝搬するλモードを利用した比較例の圧電トランスの場合、その構造のため入力インピーダンスが高く低電圧入力で大電力を出力することが困難であり実用的でない。これに対して、実施例3は5kΩ〜100kΩの負荷において効率91%以上を達成出来、負荷との整合が取れている状態であれば、効率95%を達成出来ることを確認した。
【0047】
このように、圧電振動板の片側主面に形成されたグランド電極と、他側主面に形成された3個以上の分割電極を該圧電振動板の結晶座標系のX軸方向に交互に配置し、3個の分割電極のうち両側の分割電極を並列接続して入力側分割電極とし、中央の分割電極を出力側分割電極とする構造にすれば、圧電振動板のほぼ全面に入力電極を形成することが可能で、入力インピーダンスを低減することが可能となる。
【0048】
特に液晶バックライト用冷陰極管インバータの圧電トランスでは高昇圧比と低電圧入力が必要なため入力側電極面積を広くして出力電極面積を狭くすることで、高昇圧比と低電圧入力が実現出来、整合負荷もハイインピーダンス側にシフトし用途にあった圧電トランスを設計することが出来る。
また、各種照明用の熱陰極管点灯用インバータ等では整合負荷が数十Ωと低インピーダンスであるため、トランスの昇圧比は数倍で良い。このため出力電極を複数個並列に接続するか出力電極面積を広くすれば良い。
また、本発明では圧電振動板の幅方向に伝搬するλ/2モードの振動を利用するため、第一の入力電極および第2の入力電極は圧電振動板長辺の約半分まで形成して電極面積を広げることが出来、入力インピーダンスを低減することが可能である。
さらに、出力側分割電極の面積を変更することで容易に最大効率が得られる整合負荷を調整することが可能となる。
【0049】
【実施例4】
上記実施例3の圧電トランスの入力側分割電極(1次側電極)を入力とし、出力側電極(2次側電極)を出力として、この出力電極に50kΩの負荷を接続した。入力電圧は関数発生器を用い電力増幅器で所定の電圧に増幅した正弦波を入力側分割電極に印加し、入力電圧(V)、入力電流(mA)、入力電力力率を検出して入力電力を求め、出力側分割電極からは出力電圧(V)を検出して出力電力を求めた。
圧電トランスの駆動周波数は圧電トランスの昇圧比が最高となる周波数で測定した。上記の測定結果より、昇圧比、効率を求めた。その結果を表5を得た。
【表5】
Figure 0004422440
表5より分かる様に、入力電力を17.5W入力しても効率の低下が無いことが確認された。また、出力電力を16.9W取り出すための入力電圧も39.5Vrmsと低くすることが可能であり、低電圧入力でも大電力を出力出来ることが分かる。
【0050】
【実施例5】
また、圧電振動板を長方形に切り出す際の結晶のCUT軸と圧電振動の伝搬軸の影響を調査するために、図3(実施例3)と同じ形状の圧電トランスを用いて、自発分極軸をZ軸として有するニオブ酸リチウム単結晶をX軸のまわりに128°回転した回転Y板(0、38、0)からなる圧電トランスを、図4(b)に示すように圧電振動板の長辺と結晶のX軸のなす角度をψとして結晶のZ'軸に対して0〜180°の範囲内で回転させ、λ/2モードの機械結合係数kの影響を調査した。図6に結晶の座標系(x、y'、z')のz’軸に対して0〜180°回転させたλ/2モードの機械結合係数kの関係を示す。
図6より、ψ=0°の時すなわち結晶のY軸投影方向と圧電振動の伝搬方向が一致するCUT軸を選択すれば、結晶のY軸投影方向に伝搬するλ/2モードを強制に振動させることが可能で機械結合係数kが0.38と最高になり、高昇圧比と変換効率の向上が可能となることが分かる。
【0051】
また、自発分極軸をZ軸として有するニオブ酸リチウム単結晶のX軸と該圧電振動板の長辺とが平行になるように切り出した図1(実施例2)と同じ形状の圧電トランスを用いて、図4(a)に示すように結晶のX軸のまわりに0°~180°の範囲内で回転し、結晶のY軸投影方向に伝搬するλ/2モードの回転Y板の回転角と機械結合係数kの関係を求めたものを図5に示す。
図5より、ニオブ酸リチウム単結晶板を結晶のX軸を中心にθ=10°〜60°もしくはθ=105°〜170°の範囲内で回転させた圧電振動板を用い、ることで機械結合係数kを0.15以上にすることが可能であることが分かる。望ましくはθ=125°〜145°の範囲内で回転させた圧電振動板を用いることで、機械結合係数を最高とすることが可能となり高昇圧比と変換効率の向上が可能となることがわかる。
【0052】
【他の実施例】
図1(a)に示すように結晶のX軸と平行に圧電振動板の長辺を切り出すことで、機械結合係数k、及び機械的品質係数Qの大きな短辺に依存するλ/2モードの波を利用することが出来、高電力用途でも圧電トランスの発熱が少なく高効率でかつ高電力を入力しても機械的振動で割れることが少ない圧電トランスを作成することが出来る。
【0053】
更に、入力電極13a、13bと出力電極114aの面積比を変えることで圧電トランスの昇圧比を簡単に調整することが出来、使用する用途にあった特性の圧電トランスを簡単に作成することが可能となる。
図1の実施例の場合は、裏面にグランド電極15を設けることにより、グランド側のリード線を一箇所とすることが可能となり、リード線での振動の損失が軽減される。
【0054】
また、図7は、圧電振動板12の短辺長さと長辺長さを変化させて圧電振動板12の外形比を変化させた例(すなわち短辺をX軸とした場合)を示している。その他は図3と同様である。この場合でも、上記と同様の電極構造でニオブ酸リチウム単結晶を短冊状に切り出す際に、結晶のCUT面および圧電振動の伝搬軸を圧電振動の振動モードに対して最適に選び、圧電振動の伝搬方向と結晶のY軸投影線を一致させる構造にすれば、同様の効果が得られる。
【0055】
更に、図8に示すように圧電振動板12の片側主面に形成されたグランド電極15と、他側主面に形成された分割電極13a,13b,13cと分割電極14a,14bとを圧電振動板12の長辺方向に交互に配置し、3個の分割電極13a、13b、13cを入力側分割電極又は出力側分割電極とし、他の2個の分割電極14a、14bを出力側分割電極又は入力側分割電極とした多重平面構造とすることで、実施例2と同様に機械結合係数kと機械的品質係数Qの向上および低入力インピーダンスを実現出来、使用する負荷との整合も分割電極の面積を調整することで容易に実現することが可能となる。
【0056】
【発明の効果】
本発明によれば、自発分極軸をZ軸として有するニオブ酸リチウム単結晶の回転Y板を、圧電振動板の長辺もしくは短辺と結晶のX軸が平行になるように長方形に切り出した圧電振動板を使用し、該圧電振動板の片側主面に形成した2箇所以上の分割電極を並列接続して入力電極とし1箇所以上の分割電極を出力電極とすることでY軸投影方向(例えば圧電振動板の短辺方向)に伝搬するλ/2モードの機械結合係数kおよび機械的品質係数Qを向上させ、大画面液晶に使用される冷陰極管点灯用インバータや熱陰極管点灯用インバータ等の5W以上の高電力用途の昇圧用トランスとして使用することが可能であり、高効率な圧電トランスを提供することが出来る。このため消費電力の効率向上とインバータの低背化、小型を実現することが可能である。
また、圧電振動板にニオブ酸リチウム単結晶を利用するため環境に有害な物質が含まれておらず、管理が容易である。
その他にも、圧電トランスは正弦波を出力するためランプの寿命を向上することが可能でありランプ寿命の向上や不要な電磁ノイズの放射が削減できることが期待出来る。
【図面の簡単な説明】
【図1】(a)は実施例1にかかる圧電トランスの斜視図、(b)はその横断面図である。
【図2】圧電振動子のLCR等価回路を示す回路図である。
【図3】(a)は実施例1、2にかかる圧電トランスの斜視図、(b)はその横断面図である。
【図4】(a)は圧電振動板を結晶の座標軸X軸を中心に角度θ回転させた斜視図、(b)は圧電振動板を結晶の座標軸Z'軸を中心に角度ψ回転させた斜視図である。
【図5】図6(a)の圧電トランスを結晶の座標軸x軸を中心に回転させた回転角θと機械結合係数kとの関係を示すグラフである。
【図6】図6(b)の圧電トランスを結晶の座標軸z'軸を中心に回転させた回転角ψと機械結合係数kとの関係を示すグラフである。。
【図7】(a)は他の実施例にかかる圧電トランスの斜視図、(b)はその縦断面図である。
【図8】(a)は他の実施例にかかる圧電トランスの斜視図、(b)はその縦断面図である。
【図9】(a)は従来の圧電トランスの斜視図、(b)はその縦断面図である。
【符号の説明】
12:圧電振動板、13、13a、13b、13c:入力電極、14、14a、14b:出力電極、15、15a、15b:グランド電極、16:入力用リード線、17:出力用リード線、18、18a、18b:グランド用リード線、20:圧電振動の節、21:圧電振動の変位曲線、22:圧電振動によりに生じる応力曲線[0001]
[Industrial application fields]
The present invention relates to inverters for hot cathode tubes used in fluorescent lamps, large screen liquid crystal televisions, notebook computers, backlight cold cathode tube inverters for liquid crystal displays used for portable terminals, various high voltage generators, The present invention relates to a piezoelectric transformer used in an AC adapter and a DC-DC converter used in negative ion generators, air purifiers, and other various electronic devices.
[0002]
[Prior art]
There are many devices that require a high voltage of several kV or more in the voltage conversion transformer used in the AC adapter and the DC-DC converter as described above. At present, an electromagnetic transformer is generally used, but a piezoelectric transformer is attracting attention as a small, light and solid-state device, and a part of it is specifically proposed.
[0003]
As a piezoelectric transformer, a ceramic piezoelectric transformer using PZT porcelain is generally used. However, since the mechanical quality factor Q is as small as 3000 to 4000, characteristic change and power loss due to heat generation of the piezoelectric transformer itself are large. In the above high power applications, the efficiency is reduced due to heat generation.
Therefore, ceramic piezoelectric transformers using PZT porcelain are used only for applications of 5 W or less, and hot cathode tubes used for inverters for lighting cold cathode tubes used in applications of 5 W or more, fluorescent lamps of 5 W or more, and the like. Winding transformers have been used for inverters, various high voltage generators, voltage conversion transformers used in AC adapters and DC-DC.
[0004]
In addition, a single-plate piezoelectric transformer using PZT porcelain has a small mechanical quality factor Q, so a high step-up ratio cannot be realized. Therefore, a laminated piezoelectric transformer with a large difference in capacitance between the drive side and the pickup side. It was necessary to be. However, in the laminated piezoelectric transformer, the thickness of the piezoelectric transformer is increased due to the laminated structure and cannot be reduced in height, and the small size, light weight, and low height, which are the merits of the piezoelectric transformer, cannot be sufficiently satisfied. In addition, when PZT porcelain is used, Pb, which is harmful to the environment, is contained, so that management of Pb is necessary.
[0005]
Moreover, in a winding transformer of 5 W or more, it is necessary to increase a winding ratio in order to obtain a high step-up ratio, and it is difficult to reduce the height and size, and the efficiency is 75% to 85 because of heat generation and magnetic flux leakage. % Has the disadvantage of being low. In addition, since the output voltage waveform is distorted, the luminous efficiency of the cold-cathode tube is lowered, which is a cause of reducing the lifetime of the cold-cathode tube.
[0006]
On the other hand, in Patent Documents 1 and 2 below, there is a piezoelectric transformer using a lithium niobate single crystal as a piezoelectric transformer using a lame mode vibration cut out so that the long side and the short side of the piezoelectric diaphragm are an integral multiple. Are listed. Patent Documents 3 and 4 listed below describe a piezoelectric transformer using a lithium niobate single crystal using a λ / 2 mode or a λ mode propagating in the long side direction.
[0007]
When a lithium niobate single crystal is used, the mechanical quality factor Q is 10000 or greater compared to ceramic piezoelectric transformers such as PZT, and there is no deterioration in characteristics or Q due to heat generation when high power is input. Although it is said that a boost ratio and high efficiency can be realized, there is no description of efficiency as a piezoelectric transformer at the time of Hi Power input, and measurement results of efficiency when a load is connected to the output side of the piezoelectric transformer.
[0008]
FIG. 9A shows a configuration diagram of a conventional piezoelectric transformer. In the piezoelectric transformer of FIG. 9A, reference numeral 12 denotes a piezoelectric diaphragm (substrate), for example, 140 cut out from a single crystal that is uniformly polarized in the Z-axis direction with a lithium niobate single crystal plate, for example, 140 A rotating Y-cut plate. This rotating Y plate is cut into a rectangle so that the short side is parallel to the X-axis and the long side is parallel to the Y-axis projection line. Moreover, the input electrode and the output electrode are formed so as to be at one place respectively.
[0009]
In FIG. 9A, reference numeral 13 denotes an input electrode, which is a deposited film made of, for example, a two-layer film of Au / NiCr provided on both sides of the left half from the center of the piezoelectric diaphragm 12. Reference numeral 14 denotes an output electrode, which is similarly formed on the both sides of the right half from the center of the piezoelectric diaphragm 12 by a vapor deposition film composed of a two-layer film of Au / NiCr. An arrow P in the figure conceptually shows the polarization direction.
[0010]
Now, when an input voltage V1 having a resonance frequency determined by a dimension in the length direction is applied from an AC oscillation electrode (not shown) between the input electrode 13 and the ground electrode 15a, a mechanical vibration in the length direction (by the electrostrictive effect of the piezoelectric material ( Basic vibration) occurs (piezoelectric inverse effect). Next, the distortion caused by the vibration is converted into electric energy by the secondary piezoelectric material (piezoelectric positive effect), and an output voltage transformed according to the structure of the piezoelectric transformer is obtained. In FIG. 2, a high voltage V0 is generated between the output electrode 14 and the ground electrode 15b via the piezoelectric lateral effect, so that the step-up ratio (V0 / V1) can be obtained by measuring it with, for example, a high impedance AC voltmeter. it can.
[0011]
In this example, the input unit is driven by the piezoelectric lateral effect (that is, the direction of the electric field and the propagation direction of the elastic wave are orthogonal), and the output unit also takes out the output using the lateral effect.
[0012]
Thus, the piezoelectric transformer is a device that converts energy from electricity → machine → electricity. During the operation of the piezoelectric transformer, a standing wave 21 corresponding to the frequency of the applied voltage and a stress 22 generated by the piezoelectric vibration are generated in the longitudinal direction as shown in FIG. 9B. In the figure, a location indicated by 20 is a minimum displacement point, and a location where stress generated by piezoelectric vibration is most concentrated is called a vibration node. Usually, by supporting this section, high efficiency and high reliability can be maintained.
[0013]
However, the conventional piezoelectric transformer using lithium niobate single crystal has high impedance on the input side, so it is necessary to place a choke coil or winding transformer in front of the piezoelectric transformer and boost the voltage once. It was difficult to reduce the size, weight, and height. On the other hand, inverters for hot-cathode tubes used in fluorescent lamps, inverters for backlight cold-cathode tubes for liquid crystal displays used in large-screen LCD TVs, notebook computers, portable terminals, etc., various high-voltage generators, negative ions Piezoelectric transformers used in AC adapters and DC-DC converters used in generators, air purifiers, various electronic devices, and the like are required to be smaller and lower in height to reduce the size of the devices.
[0014]
Even if a winding transformer is inserted in the previous stage and high power can be input, stress generated by mechanical vibration concentrates on the vibration node, and the piezoelectric transformer may break at the vibration node. Even in high power applications, in order to make the piezoelectric transformer difficult to break, it is necessary to increase the mechanical strength by increasing the thickness of the vibration node where stress is concentrated or by increasing the width of the substrate.
However, when the thickness of the piezoelectric transformer is increased, the operating impedance is increased, so that it is necessary to increase the pressure by inserting a winding transformer or the like in the previous stage of the piezoelectric transformer, and the size and height cannot be reduced. Further, when the width of the substrate is widened, spurious vibrations are generated and the efficiency is lowered.
[0015]
In order to reduce the characteristic deterioration due to heat generation with high efficiency even in high power applications, it is desirable to select an appropriate vibration mode having a large mechanical coupling coefficient k and a large mechanical quality factor Q. Here, the mechanical coupling coefficient k is the efficiency when the voltage applied between the electrodes is applied to ideally convert the energy applied to the piezoelectric body into mechanical energy, and the mechanical energy applied to the piezoelectric body is ideal. It is the efficiency when converting to electrical energy. In addition, when the mechanical quality factor Q is high, deterioration of characteristics and efficiency due to self-heating are reduced even when used with high power.
[0016]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 8-11161
[Patent Document 2]
JP 7-106660 A
[Patent Document 3]
JP-A-2-249574
[Patent Document 4]
Japanese Patent Laid-Open No. 4-124886
[0017]
[Problems to be solved by the invention]
The present invention realizes a high-efficiency piezoelectric transformer with a large power output of 5 W or more in a cold cathode tube lighting inverter unit and various high power lamp lighting inverter units used for high power applications. The main problem is to provide a piezoelectric transformer.
[0018]
The present invention also provides a piezoelectric transformer capable of reducing the input impedance of the piezoelectric transformer by improving the mechanical coupling coefficient k and the mechanical quality factor Q so that large power can be output even at low voltage input based on the above characteristics. It is another task to do.
[0019]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have determined that the CUT plane of the crystal and the propagation axis of the piezoelectric vibration when the lithium niobate single crystal is cut into a strip shape are compared with the vibration mode of the piezoelectric vibration. A lateral effect vibration in which a standing wave of λ / 2 is generated in the Y-axis projection direction of the crystal coordinate system of the piezoelectric diaphragm by connecting two or more input electrodes formed on one side of the piezoelectric diaphragm in parallel. The mechanical coupling coefficient k and mechanical quality factor Q are improved by forcing the mode, and high power is output from one or more output electrodes attached to the center of the piezoelectric diaphragm, near the matching load of the piezoelectric transformer. In addition, the inventors have obtained new knowledge that a piezoelectric transformer having a high efficiency of 92% or more can be provided even when used at 5 W or more.
[0020]
That is, in the case of a piezoelectric transformer using a lithium niobate single crystal, the spontaneous polarization axis is determined to be the Z axis, and the CUT of the crystal when cut into the CUT plane and strip shape of the crystal due to crystal anisotropy Depending on the axis, the characteristics of piezoelectric vibration change.
In addition, the efficiency of the piezoelectric transformer depends on the mechanical coupling coefficient k and the mechanical quality factor Q of the piezoelectric vibration. The higher the mechanical coupling coefficient k and the mechanical quality factor Q, the more the piezoelectric transformer can be used even when it is used at high power. High efficiency can be achieved.
[0021]
The piezoelectric transformer of the present invention includes a piezoelectric diaphragm made of a lithium niobate single crystal plate having a spontaneous polarization axis as a Z axis, and the piezoelectric diaphragm has a crystal coordinate axis of 10 ° to 60 ° around the X axis or The rotating Y plate rotated within the range of 105 ° to 170 ° is rotated so that the long side or the short side is within the range of −40 ° to 40 ° with respect to the X axis of the crystal, and the short side is relative to the long side. Then, it is cut out into a rectangular shape so as to be vertical, and preferably cut out into a rectangular plate within the range where the angle ψ formed by the X axis of the crystal is ψ = 0 ° ± 10 °, and further into the Y axis projection line of the crystal By using the transverse effect vibration mode in which a standing wave of λ / 2 is generated, it is possible to realize a high mechanical coupling coefficient k and a high mechanical quality factor Q. It is possible to provide a piezoelectric transformer that is difficult to break. Moreover, the short side may be rotated within 0 ° ± 40 ° with respect to the Y axis and cut into a rectangle.
[0022]
According to the present invention, a CUT that can reduce the input impedance of a piezoelectric transformer by rotating a lithium niobate single crystal plate within the range of θ = 10 ° to 60 ° or θ = 105 ° to 170 ° around the X axis of the crystal. By cutting into a plane and processing a single crystal wafer to an arbitrary thickness, the input impedance can be controlled, and high power can be output even with a low voltage input.
[0023]
That is, the piezoelectric transformer of the present invention includes a piezoelectric diaphragm made of a lithium niobate single crystal plate having a spontaneous polarization axis as a Z-axis, and this piezoelectric diaphragm is rotated by rotating the coordinate axis of the crystal around the X axis. The plate is cut into a rectangle such that the long side or short side is parallel to the X axis of the crystal and the short side or long side is parallel to the Y axis projection line of the crystal, and propagates in the Y axis projection direction. The mode uses the lateral effect vibration mode. Here, the “Y-axis projection line” refers to a projection line drawn from the y-axis of the (x, y, z) coordinate system of the crystal. Specifically, it refers to a line drawn from the Y axis with respect to a crystal cut in an arbitrary orientation.
[0024]
Here, the piezoelectric diaphragm has a thickness of 0.2 to 3.0 mm, preferably 0.2 to 0.6 mm. The piezoelectric diaphragm may be made of a high dielectric constant lithium niobate single crystal plate rotated about 10 to 60 degrees or 105 to 170 degrees, preferably 125 to 145 degrees around the X axis.
[0025]
The piezoelectric diaphragm includes an input electrode and an output electrode on one side and a ground electrode on the other side.
That is, in the piezoelectric transformer, two divided electrodes formed on one principal surface of the piezoelectric diaphragm are arranged in the X-axis direction of the crystal coordinate system of the piezoelectric diaphragm, and a ground electrode is formed on the other principal surface. A piezoelectric transformer in which the first divided electrode of the two divided electrodes is an input-side divided electrode and the second divided electrode is an output-side divided electrode, and the other main surface In all the divided electrodes arranged in the above, at least a part of the electrode is formed at a position on the center line of the short side or the long side of the piezoelectric diaphragm.
[0026]
Alternatively, the piezoelectric diaphragm is composed of a ground electrode formed on one principal surface of the piezoelectric diaphragm and three or more divided electrodes formed on the other principal surface in the Y-axis projection of the crystal coordinate system of the piezoelectric diaphragm. It is preferable that the divided electrodes on both sides of the three divided electrodes be input side divided electrodes or output side divided electrodes, and the central divided electrode be output side divided electrodes or input side divided electrodes. As a result, the step-up ratio, input impedance, and output impedance can be arbitrarily adjusted by adjusting the input electrode area and the output electrode area.
[0027]
A piezoelectric transformer in which three or more divided electrodes formed on one main surface of the piezoelectric diaphragm are arranged in the X-axis direction of the crystal coordinate system of the piezoelectric diaphragm and a ground electrode is formed on the other main surface. In this case, the three or more divided electrodes are composed of input-side divided electrodes and output-side divided electrodes arranged alternately with respect to the X-axis direction of the crystal coordinate system of the piezoelectric diaphragm, or the three divided electrodes. Two or more divided electrodes among the above divided electrodes are connected in parallel to form an input-side divided electrode, or one or more divided electrodes among the three or more divided electrodes of the piezoelectric diaphragm are connected in parallel and output. A side-divided electrode is preferable.
[0028]
All of the divided electrodes formed on the other principal surface of the piezoelectric diaphragm are preferably formed such that at least a part of the electrode hangs on a line connecting the short sides or the long sides of the piezoelectric diaphragm. As a result, a transverse effect vibration mode in which a standing wave of λ / 2 is generated in the Y-axis projection direction of the piezoelectric diaphragm can be efficiently extracted.
[0029]
Two or more input electrodes provided on one side of the piezoelectric diaphragm are preferably connected in parallel. As a result, it is possible to improve the mechanical coupling coefficient k and the mechanical quality factor Q in the transverse effect vibration mode in which a standing wave of λ / 2 is generated in the Y-axis projection direction of the piezoelectric diaphragm, and to reduce the resonance impedance. As a result, high power can be output even with a low voltage input, and a piezoelectric transformer with high efficiency, high step-up ratio, and low input impedance can be realized.
[0030]
The piezoelectric transformer of the present invention has a mechanical quality factor Q of 1000 or more, preferably 4000 or more, and a mechanical coupling coefficient k of 0.2 or more, preferably 0.25 or more. It is possible to realize a low profile and a high step-up ratio, and even with a high power input of 5 W or more, there is little power loss due to heat generation, and the efficiency of the piezoelectric transformer can be 92% or more. The piezoelectric transformer of the present invention preferably has an input impedance of 300Ω or less.
[0031]
[Example 1]
As shown in FIG. 1 (a), a rotating Y plate obtained by rotating a lithium niobate single crystal having a spontaneous polarization axis as a Z-axis by 128 ° around the X-axis is parallel to the long-side direction and the X-axis of the crystal. In this way, a strip having a length of 33 mm and a width of 12.2 mm was cut out and mirror-finished by polishing on both sides to obtain a piezoelectric diaphragm 12 having a thickness of 0.597 mm. Input electrodes 13a and 13b and output electrodes 14a and 14b each having a length of 12 mm and a width of 10 mm were formed on both surfaces of the piezoelectric diaphragm 12 by silver vapor deposition to obtain a piezoelectric transformer (Example 1-128Y). In addition, the arrow P in a figure has shown the polarization direction notionally.
[0032]
[Comparative Example 1]
As shown in FIG. 9 (a), a rotating Y plate obtained by rotating a lithium niobate single crystal having a spontaneous polarization axis as the Z axis by 128 ° around the X axis has a short side direction parallel to the X axis of the crystal. Thus, the sample was cut into a length of 33 mm and a width of 12.2 mm, and both surfaces were mirror-finished by polishing to obtain a piezoelectric diaphragm 12 having a thickness of 0.612 mm. Input electrodes 13 and 15a and output electrodes 14 and 15b each having a length of 12 mm and a width of 10 mm were formed on both surfaces of the piezoelectric diaphragm 12 by silver vapor deposition to obtain a piezoelectric transformer (Comparative Example 1-128Y).
[0033]
When the frequency characteristics of the piezoelectric transformers of Example 1-128Y and Comparative Example 1-128Y were measured by ADVANTEST NETWORK ANALYZER, there were very sharp resonances around 185 kHz and 235 kHz.
[0034]
In Example 1-128Y and Comparative Example 1-128Y, the resonance point near 185 kHz is λ-mode piezoelectric vibration in which a standing wave of one wavelength (λ) is generated in the long-side direction of the piezoelectric diaphragm. It was at 1/4 of the long side of the piezoelectric diaphragm. The resonance point near 235 kHz is λ / 2 mode piezoelectric vibration in which a standing wave of 1/2 wavelength (λ / 2) is generated in the short side direction of the piezoelectric diaphragm. It was half the short side.
When supporting a piezoelectric transformer, the mechanical quality factor Q varies greatly depending on the fixing method and position. Use a spring-type probe so that there is no influence on the measurement. investigated.
[0035]
Table 1 shows the measurement results of the LCR equivalent circuit of λ mode vibration propagating in the long side direction of the piezoelectric diaphragms of Example 1-128Y and Comparative Example 1-128Y. An LCR equivalent circuit of the piezoelectric vibrator is expressed as shown in FIG. 2, and a mechanical quality factor Q and a mechanical coupling factor k are obtained from parameters of the equivalent circuit. In FIG. 2, R1 represents a series resistance, C1 represents a series capacitance, C2 represents a parallel capacitance, and L1 represents a series inductance.
[0036]
[Table 1]
Figure 0004422440
From Table 1, when using λ mode vibration propagating in the long side direction on a 128-rotation Y-plate substrate, mechanical coupling coefficient k of Example 1-128Y is 0.26, which is worse than 0.29 of Comparative Example 1-128Y. It can be seen that the mechanical quality factor Q is 18386 of Example 1-128Y better than 12407 of Comparative Example 1-128Y.
[0037]
Since the step-up ratio is determined by the mechanical coupling factor k and the mechanical quality factor Q, it is desirable that both the mechanical quality factor Q and the mechanical coupling factor k are large, but λ propagates in the long side direction on the substrate of the 128-rotation Y plate. When mode vibration is used, the highest values of k and Q cannot be obtained.
[0038]
Since the efficiency of the piezoelectric transformer depends on the mechanical coupling coefficient k and the efficiency at high power depends on the mechanical quality factor Q, use the vibration of λ mode propagating in the long side direction with the piezoelectric diaphragm of 128 rotation Y plate In this case, it can be seen that Example 1 and Comparative Example 1 are not significantly different.
[0039]
Table 2 shows the measurement results of the LCR equivalent circuit of λ / 2 mode vibration propagating in the short side direction of Example 1-128Y and Comparative Example 1-128Y.
[Table 2]
Figure 0004422440
From Table 2, when the λ / 2 mode generated in the short side direction on the 128-rotation Y-plate substrate is used for the piezoelectric transformer, the mechanical coupling coefficient k of Example 1-128Y is 0.28, which is 0.16 of Comparative Example 1-128Y. It can be seen that the mechanical quality factor Q is not significantly different between Example 1-128Y and Comparative Example 1-128Y. Therefore, when the λ / 2 mode generated in the short side direction on a 128-rotation Y-plate substrate is used for a piezoelectric transformer, it is desirable to cut the long side parallel to the X axis of the crystal as shown in FIG. I understand.
[0040]
In addition, since the λ / 2 mode vibration propagating in the short side direction is used, it is possible to disperse the stress generated by the mechanical vibration in the long side direction of the substrate.
[0041]
From these results, a 128-rotation Y plate having a large mechanical coupling coefficient k and mechanical quality factor Q is used, and the long side of the piezoelectric diaphragm is cut out parallel to the X axis of the crystal as shown in FIG. By using the vibration of λ / 2 mode propagating in the short side direction, a piezoelectric transformer that generates less heat and has high efficiency even in high power applications, and that does not break due to mechanical vibration even when high power is input. Can be created.
[0042]
[Example 2]
As shown in FIG. 3 (a), the long-side direction and the X-axis of the crystal are parallel to each other in a rotating Y plate obtained by rotating a lithium niobate single crystal having a spontaneous polarization axis as the Z-axis by 128 ° around the X-axis. In this way, a strip having a length of 33.0 mm and a width of 12.2 mm was cut out and mirror-finished by polishing on both sides to obtain a piezoelectric diaphragm 12 having a thickness of 0.56 mm. Input electrodes 13a and 13b each having a length of 12 mm and a width of 10 mm on one side of the piezoelectric diaphragm 12, an output electrode 14 having a length of 5 mm and a width of 10 mm on one side, and a length of 32 mm on the back surface of the piezoelectric diaphragm. A common ground electrode 15 having a width of 10 mm was formed by silver vapor deposition to obtain a piezoelectric transformer (Example 1). In addition, the arrow P in a figure has shown the polarization direction notionally.
In FIG. 3A, 16 is an input lead wire, 17 is an output lead wire, and 18 is a ground common lead wire. In FIG. 3B, 20 indicates a vibration node, 21 indicates displacement of piezoelectric vibration, and 22 indicates stress generated by the piezoelectric vibration.
[0043]
The resonant frequency fr between the input electrode and the ground common electrode when the input electrode 13a and the input electrode 13b of the piezoelectric transformer of Example 2 are connected in parallel to form a composite input electrode and when only the input electrode 13a is used as the input electrode. Table 3 shows the results of measuring the anti-resonance frequency fa, the impedance Zr at the resonance frequency, the mechanical quality factor Q, and the mechanical coupling factor k with an impedance analyzer.
The input electrode 1 terminal in Table 3 is a measured value of the frequency characteristic between the input electrode 13a and the ground common electrode 15, and the input electrode parallel connection in Table 3 is a composite electrode in which the input electrodes 13a and 13b are connected in parallel and the ground. The frequency characteristics between the electrodes 15 are measured.
[0044]
The measured resonance frequency is the frequency characteristic of the transverse effect vibration mode in which a standing wave of λ / 2 is generated in the Y-axis projection direction of the piezoelectric diaphragm.
As can be seen from Table 3, it was confirmed that by connecting the input electrodes in parallel, the resonance point shifted to the low frequency side, the bandwidth between the resonance point and the antiresonance point was widened, and the impedance at the resonance point also decreased. It was also confirmed that the mechanical coupling coefficient k and the mechanical quality factor Q can be improved by connecting the input electrodes in parallel.
[Table 3]
Figure 0004422440
In this way, by connecting at least two of the three divided electrodes in parallel to form a combined input electrode, and forcibly driving the vibration of λ / 2 mode propagating in the short side direction of the rectangular plate, It can be seen that the mechanical coupling coefficient k and the mechanical quality coefficient Q can be improved and the input impedance can be reduced.
[0045]
[Example 3]
As shown in FIG. 3 (a), the long-side direction and the X-axis of the crystal are parallel to each other in a rotating Y plate obtained by rotating a lithium niobate single crystal having a spontaneous polarization axis as the Z-axis by 128 ° around the X-axis. In this way, a strip having a length of 33 mm and a width of 12.2 mm was cut out and mirror-finished by polishing on both sides to obtain a piezoelectric diaphragm 12 having a thickness of 0.56 mm. Input electrodes 13a and 13b having a length of 12 mm and a width of 10 mm are provided at two locations on one side of the piezoelectric diaphragm 12, an output electrode 14 having a length of 2 mm and a width of 10 mm is provided on one side of the piezoelectric diaphragm 12, and a length of 32 mm is provided on the back surface of the piezoelectric diaphragm. A common ground electrode 15 having a width of 10 mm was formed by silver vapor deposition to obtain a piezoelectric transformer (Example 3). In addition, the arrow P in a figure has shown the polarization direction notionally.
[0046]
As shown in FIG. 3A, the input-side divided electrodes 13a and 13b of the piezoelectric transformer are used as inputs, the output-side divided electrode 14 is used as an output, and a load resistance of 5 to 200 kΩ is connected to the output divided electrode 14, respectively. The input voltage to the piezoelectric transformer is applied to a sine wave with an amplitude of 10V to the input side split electrode using a function generator, and the input voltage (V), input current (mA), and input power factor are detected, and the output side split electrode Output voltage (V) was detected. From the above measurement results, the input impedance, step-up ratio, and efficiency were obtained. For comparison, the same test was performed using the above-described Comparative Example 1-128Y. The results are shown in Table 4.
[Table 4]
Figure 0004422440
As can be seen from Table 4, in the case of the piezoelectric transformer of the comparative example using the λ mode propagating in the long side direction, which is a conventional technique, its structure has a high input impedance and can output a large power with a low voltage input. Difficult and impractical. On the other hand, Example 3 was able to achieve an efficiency of 91% or more at a load of 5 kΩ to 100 kΩ, and confirmed that an efficiency of 95% could be achieved if the load was matched.
[0047]
As described above, the ground electrode formed on one main surface of the piezoelectric diaphragm and three or more divided electrodes formed on the other main surface are alternately arranged in the X-axis direction of the crystal coordinate system of the piezoelectric diaphragm. If the divided electrodes on both sides of the three divided electrodes are connected in parallel to form the input-side divided electrode, and the central divided electrode is used as the output-side divided electrode, the input electrode is provided on almost the entire surface of the piezoelectric diaphragm. The input impedance can be reduced.
[0048]
In particular, a piezoelectric transformer for a cold cathode tube inverter for liquid crystal backlights requires a high step-up ratio and low voltage input. Therefore, a high step-up ratio and low voltage input are realized by widening the input electrode area and narrowing the output electrode area. The matching load is also shifted to the high impedance side, and a piezoelectric transformer suitable for the application can be designed.
In addition, in a hot cathode tube lighting inverter for various illuminations and the like, the matching load has a low impedance of several tens of ohms, so that the step-up ratio of the transformer may be several times. Therefore, a plurality of output electrodes may be connected in parallel or the output electrode area may be increased.
In the present invention, since the vibration of λ / 2 mode propagating in the width direction of the piezoelectric diaphragm is used, the first input electrode and the second input electrode are formed up to about half of the long side of the piezoelectric diaphragm. The area can be increased and the input impedance can be reduced.
Furthermore, it is possible to adjust the matching load that can easily obtain the maximum efficiency by changing the area of the output-side divided electrode.
[0049]
[Example 4]
The input side divided electrode (primary side electrode) of the piezoelectric transformer of Example 3 was used as an input, the output side electrode (secondary side electrode) was used as an output, and a 50 kΩ load was connected to the output electrode. Input voltage is applied to the input split electrode by applying a sine wave amplified by a power amplifier using a function generator to detect the input voltage (V), input current (mA), and input power power factor. From the output-side divided electrode, the output voltage (V) was detected to determine the output power.
The driving frequency of the piezoelectric transformer was measured at a frequency at which the step-up ratio of the piezoelectric transformer was the highest. From the above measurement results, the boost ratio and efficiency were determined. The results are shown in Table 5.
[Table 5]
Figure 0004422440
As can be seen from Table 5, it was confirmed that there was no decrease in efficiency even when 17.5 W of input power was input. Further, the input voltage for taking out the output power of 16.9 W can also be lowered to 39.5 Vrms, and it can be seen that large power can be output even with a low voltage input.
[0050]
[Example 5]
In addition, in order to investigate the influence of the CUT axis of the crystal and the propagation axis of the piezoelectric vibration when the piezoelectric diaphragm is cut into a rectangle, a piezoelectric transformer having the same shape as that of FIG. A piezoelectric transformer composed of a rotating Y plate (0, 38, 0) obtained by rotating a lithium niobate single crystal having a Z axis around the X axis by 128 °, as shown in FIG. The angle between the X axis of the crystal and ψ is rotated within the range of 0 to 180 ° with respect to the Z ′ axis of the crystal, and the influence of the mechanical coupling coefficient k in the λ / 2 mode was investigated. FIG. 6 shows the relationship of the mechanical coupling coefficient k in the λ / 2 mode rotated by 0 to 180 ° with respect to the z ′ axis of the crystal coordinate system (x, y ′, z ′).
From FIG. 6, when ψ = 0 °, that is, if the CUT axis whose crystal Y-axis projection direction matches the propagation direction of the piezoelectric vibration is selected, the λ / 2 mode propagating in the crystal Y-axis projection direction is forcibly vibrated. It can be seen that the mechanical coupling coefficient k is 0.38, the highest, and it is possible to improve the high step-up ratio and the conversion efficiency.
[0051]
In addition, a piezoelectric transformer having the same shape as that of FIG. 1 (Example 2) cut out so that the X axis of the lithium niobate single crystal having the spontaneous polarization axis as the Z axis and the long side of the piezoelectric vibration plate are parallel to each other is used. As shown in FIG. 4 (a), the rotation angle of the rotating Y plate in the λ / 2 mode that rotates in the range of 0 ° to 180 ° around the X axis of the crystal and propagates in the Y axis projection direction of the crystal. FIG. 5 shows the relationship between the relationship between the mechanical coupling coefficient k and the mechanical coupling coefficient k.
As shown in FIG. 5, by using a piezoelectric diaphragm obtained by rotating a lithium niobate single crystal plate within the range of θ = 10 ° to 60 ° or θ = 105 ° to 170 ° around the X axis of the crystal. It can be seen that the coupling coefficient k can be 0.15 or more. Desirably, by using a piezoelectric diaphragm rotated within the range of θ = 125 ° to 145 °, it is possible to maximize the mechanical coupling coefficient and to improve the high step-up ratio and the conversion efficiency. .
[0052]
[Other embodiments]
As shown in FIG. 1 (a), by cutting out the long side of the piezoelectric diaphragm parallel to the X axis of the crystal, the λ / 2 mode that depends on the short side with the large mechanical coupling coefficient k and mechanical quality factor Q is obtained. Waves can be used, and even in high power applications, a piezoelectric transformer can be produced with high efficiency with little heat generation and less cracking due to mechanical vibration even when high power is input.
[0053]
Furthermore, the step-up ratio of the piezoelectric transformer can be easily adjusted by changing the area ratio of the input electrodes 13a and 13b and the output electrode 114a, and a piezoelectric transformer having characteristics suitable for the intended use can be easily created. It becomes.
In the case of the embodiment of FIG. 1, by providing the ground electrode 15 on the back surface, the lead wire on the ground side can be provided in one place, and the loss of vibration on the lead wire is reduced.
[0054]
FIG. 7 shows an example of changing the external ratio of the piezoelectric diaphragm 12 by changing the short side length and the long side length of the piezoelectric diaphragm 12 (that is, when the short side is the X axis). . Others are the same as FIG. Even in this case, when the lithium niobate single crystal is cut into strips with the same electrode structure as described above, the CUT plane of the crystal and the propagation axis of the piezoelectric vibration are optimally selected for the vibration mode of the piezoelectric vibration. A similar effect can be obtained by making the propagation direction and the Y-axis projection line of the crystal coincide.
[0055]
Further, as shown in FIG. 8, the ground electrode 15 formed on one main surface of the piezoelectric diaphragm 12 and the divided electrodes 13a, 13b, 13c and the divided electrodes 14a, 14b formed on the other main surface are piezoelectrically vibrated. Alternatingly arranged in the long side direction of the plate 12, the three divided electrodes 13a, 13b, 13c are used as input-side divided electrodes or output-side divided electrodes, and the other two divided electrodes 14a, 14b are used as output-side divided electrodes or By adopting a multi-plane structure as the input side divided electrode, the mechanical coupling coefficient k and the mechanical quality factor Q can be improved and the low input impedance can be realized as in the second embodiment, and matching with the load to be used can be achieved. It can be easily realized by adjusting the area.
[0056]
【The invention's effect】
According to the present invention, a piezoelectric Y plate of a lithium niobate single crystal having a spontaneous polarization axis as a Z-axis is cut into a rectangle so that the long side or short side of the piezoelectric diaphragm is parallel to the X-axis of the crystal. Using a diaphragm, two or more divided electrodes formed on one main surface of the piezoelectric diaphragm are connected in parallel to serve as an input electrode, and one or more divided electrodes serve as an output electrode. The λ / 2 mode mechanical coupling coefficient k and mechanical quality factor Q propagating in the direction of the short side of the piezoelectric diaphragm are improved, and cold cathode tube lighting inverters and hot cathode tube lighting inverters used for large screen liquid crystals It can be used as a step-up transformer for high power applications such as 5 W or more, and a highly efficient piezoelectric transformer can be provided. For this reason, it is possible to improve the efficiency of power consumption and to reduce the height and size of the inverter.
In addition, since the piezoelectric diaphragm uses a lithium niobate single crystal, it does not contain environmentally harmful substances and is easy to manage.
In addition, since the piezoelectric transformer outputs a sine wave, it is possible to improve the life of the lamp, and it can be expected that the life of the lamp can be improved and the emission of unnecessary electromagnetic noise can be reduced.
[Brief description of the drawings]
FIG. 1A is a perspective view of a piezoelectric transformer according to a first embodiment, and FIG. 1B is a cross-sectional view thereof.
FIG. 2 is a circuit diagram showing an LCR equivalent circuit of a piezoelectric vibrator.
FIG. 3A is a perspective view of a piezoelectric transformer according to Examples 1 and 2, and FIG. 3B is a cross-sectional view thereof.
4A is a perspective view of a piezoelectric diaphragm rotated by an angle θ about the crystal coordinate axis X axis, and FIG. 4B is a piezoelectric diaphragm rotated by an angle ψ about the crystal coordinate axis Z ′ axis. It is a perspective view.
5 is a graph showing a relationship between a rotation angle θ obtained by rotating the piezoelectric transformer of FIG. 6A around the crystal coordinate axis x-axis and a mechanical coupling coefficient k. FIG.
6 is a graph showing a relationship between a rotation angle ψ obtained by rotating the piezoelectric transformer of FIG. 6B around the crystal coordinate axis z′-axis and a mechanical coupling coefficient k. FIG. .
7A is a perspective view of a piezoelectric transformer according to another embodiment, and FIG. 7B is a longitudinal sectional view thereof.
8A is a perspective view of a piezoelectric transformer according to another embodiment, and FIG. 8B is a longitudinal sectional view thereof.
9A is a perspective view of a conventional piezoelectric transformer, and FIG. 9B is a longitudinal sectional view thereof.
[Explanation of symbols]
12: Piezoelectric diaphragm, 13, 13a, 13b, 13c: Input electrode, 14, 14a, 14b: Output electrode, 15, 15a, 15b: Ground electrode, 16: Input lead wire, 17: Output lead wire, 18 18a, 18b: Ground lead wire, 20: Node of piezoelectric vibration, 21: Displacement curve of piezoelectric vibration, 22: Stress curve generated by piezoelectric vibration

Claims (9)

自発分極軸をZ軸として有するニオブ酸リチウム単結晶板からなる長方形状の圧電振動板と、上記圧電振動板の一方の主面に設けられた入力電極および出力電極と、上記圧電振動板の他方の主面に設けられたグランド電極とを備え、上記圧電振動板は、結晶の座標軸をX軸のまわりに回転した回転Y板からなり、上記圧電振動板を長方形板に切り出す際の長辺もしくは短辺と結晶のX軸のなす角度ψがψ=0±40°の範囲内であり、この範囲内で長方形板に切り出して該長方形板のY軸投影方向にλ/2の定在波が生じる横効果振動モードを利用し、
上記入力電極および上記出力電極は、上記圧電振動板の長辺又は短辺の方向に沿って配置されており、
上記配置の方向に垂直な方向において、上記出力電極の両端部が上記入力電極の両端部よりも内側に位置することを特徴とする圧電トランス。
A rectangular piezoelectric diaphragm made of a lithium niobate single crystal plate having a spontaneous polarization axis as the Z-axis, an input electrode and an output electrode provided on one main surface of the piezoelectric diaphragm, and the other of the piezoelectric diaphragm and a ground electrode provided on the principal surface, said piezoelectric diaphragm is made to the coordinate axes of the crystals from the rotated Y plate obtained by rotating about the X-axis or the long sides of when cutting the piezoelectric diaphragm to a rectangular plate The angle ψ between the short side and the X-axis of the crystal is within the range of ψ = 0 ± 40 °, and within this range, a rectangular plate is cut and a standing wave of λ / 2 is projected in the Y-axis projection direction of the rectangular plate Use the resulting lateral effect vibration mode ,
The input electrode and the output electrode are arranged along the direction of the long side or the short side of the piezoelectric diaphragm,
2. A piezoelectric transformer , wherein both ends of the output electrode are positioned more inside than both ends of the input electrode in a direction perpendicular to the arrangement direction .
上記圧電振動板の厚みが0.2〜3.0mmである請求項1または2記載の圧電トランス。The piezoelectric transformer according to claim 1 or 2, wherein the piezoelectric diaphragm has a thickness of 0.2 to 3.0 mm. 上記圧電振動板は、X軸のまわりに10°〜60°または105°〜170°回転させた高誘電率のニオブ酸リチウム単結晶板からなる請求項1または2に記載の圧電トランス。3. The piezoelectric transformer according to claim 1, wherein the piezoelectric diaphragm is a high dielectric constant lithium niobate single crystal plate rotated about 10 to 60 degrees or 105 to 170 degrees around the X axis. 上記圧電振動板の入力電極側の機械的品質係数Qが1000以上で、かつ機械結合係数kが0.2以上である請求項1〜3のいずれかに記載の圧電トランス。The piezoelectric transformer according to any one of claims 1 to 3, wherein a mechanical quality factor Q on the input electrode side of the piezoelectric diaphragm is 1000 or more and a mechanical coupling coefficient k is 0.2 or more. 上記出力電極の両側に上記入力電極が配置されており、全ての上記入力電極および出力電極は電極の少なくとも一部分が該圧電振動板の短辺または長辺の中心線上の位置に形成されていることを特徴とする請求項に記載の圧電トランス。 The input electrodes are arranged on both sides of the output electrode, and all the input electrodes and output electrodes are formed such that at least a part of the electrodes is located on the center line of the short side or the long side of the piezoelectric diaphragm. The piezoelectric transformer according to claim 1 . 上記入力電極および出力電極は、上記圧電振動板の長辺又は短辺の方向に沿って交互に配置されていることを特徴とする請求項に記載の圧電トランス。 2. The piezoelectric transformer according to claim 1 , wherein the input electrode and the output electrode are alternately arranged along a direction of a long side or a short side of the piezoelectric diaphragm . 上記入力電極は複数個存在し、2個以上の入力電極は並列接続されていることを特徴とする請求項に記載の圧電トランス。 2. The piezoelectric transformer according to claim 1 , wherein a plurality of the input electrodes are present, and two or more input electrodes are connected in parallel . 上記出力電極は複数個存在し、2個以上の上記出力電極は並列接続されていることを特徴とする請求項に記載の圧電トランス。 The piezoelectric transformer according to claim 1 , wherein a plurality of the output electrodes are present, and two or more of the output electrodes are connected in parallel . 入力インピーダンスが300Ω以下であることを特徴とする請求項1〜のいずれかに記載の圧電トランス。The piezoelectric transformer according to any one of claims 1 to 8, the input impedance is equal to or less than 300 [Omega.
JP2003189120A 2002-12-24 2003-06-30 Piezoelectric transformer Expired - Fee Related JP4422440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003189120A JP4422440B2 (en) 2002-12-24 2003-06-30 Piezoelectric transformer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002372837 2002-12-24
JP2003189120A JP4422440B2 (en) 2002-12-24 2003-06-30 Piezoelectric transformer

Publications (2)

Publication Number Publication Date
JP2004253762A JP2004253762A (en) 2004-09-09
JP4422440B2 true JP4422440B2 (en) 2010-02-24

Family

ID=33031759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003189120A Expired - Fee Related JP4422440B2 (en) 2002-12-24 2003-06-30 Piezoelectric transformer

Country Status (1)

Country Link
JP (1) JP4422440B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008023517B4 (en) 2008-05-15 2018-04-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Field effect transistor with piezoelectric charge generator
CN102130291A (en) * 2010-12-27 2011-07-20 广州金升阳科技有限公司 Piezoelectric ceramic wafer type isolating signal transformer and manufacturing method thereof
WO2013105507A1 (en) * 2012-01-13 2013-07-18 パナソニック株式会社 Actuator and method for driving same

Also Published As

Publication number Publication date
JP2004253762A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
JP3119154B2 (en) Piezoelectric transformer and power conversion device using the same
KR100550058B1 (en) Piezoelectric transformer
US9847472B2 (en) Piezoelectric transformer
JP4422440B2 (en) Piezoelectric transformer
US7202592B2 (en) Piezoelectric transformer, power supply circuit and lighting unit using the same
JP2001068752A (en) Piezoelectric transformer
JP3365248B2 (en) Piezoelectric transformer and power conversion device using the same
JP2000307166A (en) Piezoelectric transformer and drive stabilizing device thereof
JP3673433B2 (en) Piezoelectric transformer
US6320301B1 (en) Piezoelectric-transformer inverter
JP2003017772A (en) Piezoelectric ceramic transformer circuit
JP3580492B2 (en) Laminated piezoelectric transformer and power conversion device using the same
JP3616930B2 (en) Piezoelectric transformer and adjusting method of braking capacity value thereof
JP3361586B2 (en) Piezoelectric transformer
JP2000082853A (en) Piezoelectric transformer device and its driving method
JP2819493B2 (en) Piezo device
JP2005116694A (en) Piezoelectric transformer drive device and piezoelectric transformer driving method
JP2003086858A (en) Piezoelectric transformer
US20030102779A1 (en) Piezoelectric transformer
JPH07221359A (en) Piezoelectric transformer
JPH09214011A (en) Support structure of piezoelectric transformer
JP2001196655A (en) Piezoelectric transformer circuit
JPH11145528A (en) Piezoelectric transformer
JP2001148524A (en) Piezoelectric transformer and power conversion device
JP2002232031A (en) Piezoelectric transformer and a/d converter

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20030724

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees