JP4155785B2 - Method for controlling steady rest of suspended load - Google Patents

Method for controlling steady rest of suspended load Download PDF

Info

Publication number
JP4155785B2
JP4155785B2 JP2002295168A JP2002295168A JP4155785B2 JP 4155785 B2 JP4155785 B2 JP 4155785B2 JP 2002295168 A JP2002295168 A JP 2002295168A JP 2002295168 A JP2002295168 A JP 2002295168A JP 4155785 B2 JP4155785 B2 JP 4155785B2
Authority
JP
Japan
Prior art keywords
crane
suspended load
pendulum
time
deceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002295168A
Other languages
Japanese (ja)
Other versions
JP2004131205A (en
Inventor
孝之 安間
Original Assignee
石川島運搬機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島運搬機械株式会社 filed Critical 石川島運搬機械株式会社
Priority to JP2002295168A priority Critical patent/JP4155785B2/en
Publication of JP2004131205A publication Critical patent/JP2004131205A/en
Application granted granted Critical
Publication of JP4155785B2 publication Critical patent/JP4155785B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control And Safety Of Cranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は吊り荷の振れ止め制御方法に関し、更に詳しくは簡単な装置構成にてクレーンの吊り荷の振れを効果的に低減できるようにした吊り荷の振れ止め制御方法に関する。
【0002】
【従来の技術】
図7は、横行トロリにより吊り荷を吊り上げて走行する形式のクレーンを示しており、クレーン1は、走行モータM1により駆動される走行車輪2によりレール3に沿って走行するようになっており、クレーン1には、巻上げモータM2により駆動されてロープ4を介し吊り荷5を吊り上げ下げするためのウインチドラム6が設けられている。
【0003】
図7のクレーン1が吊り荷5を吊り下げた状態で矢印方向に走行を開始すると、吊り荷5は慣性によって破線で示すように後方に遅れ、このために吊り荷5は振れを発生する。また、所定の速度で走行しているクレーン1を減速させて停止する場合には、吊り荷5は慣性により二点鎖線で示すように前方に進み、このために吊り荷5は振れを発生する。この振れは、吊り荷5に慣性による重力バネが作用したために起こるものであり、こうした吊り荷5の振れはクレーン1の荷役作業における作業性や安全性を損なう要因となっている。
【0004】
このような吊り荷の振れを止めるために、従来より種々の方法が提案されている。例えば、クレーンの速度を段階的に加速或いは減速して吊り荷の振れ幅を緩和する方法、吊り荷の振れを検出しその振れを低減するようにクレーンの加速或いは減速を制御する方法、吊り荷の吊り下げ荷重に一定値以上の重力バネが作用したときにその重力バネをなくすように加速或いは減速を制御する方法等がある。そして、上記した吊り荷の振れ止めは、いずれもフィードバック制御によって行われている。
【0005】
このようなフィードバック制御による振れ止め方法は、特殊なセンサー類を必要とするために設備が高価になる問題があると共に、センサー類の検出精度が振れ止め効果に大きく影響するという問題がある。
【0006】
このため、近年では、吊り荷の振れ周期の一周期に同期してクレーンを停止状態から起動して所定速度まで定加速度で加速し、また、吊り荷の振れ周期の一周期でクレーンを移動状態から所定速度まで定減速するようにして、フィードフォワードで吊り荷の振れを防止するようにした方法が提案されている(例えば特許文献1)。
【0007】
【特許文献1】
特開2000−095477号公報
【0008】
【発明が解決しようとする課題】
しかし、上記公報に示された振れ止め方法は、クレーンの加速及び減速時に吊り荷が振れることを前提として制御するようにしたものである。しかし、このように振れが一旦生じてしまうと、振れの周期の一周期に同期してクレーンを加速或いは減速させるようにしても振れを確実に防止させることは難しいという問題がある。
【0009】
本発明は、上記したような従来の技術に存在する問題点に着目してなしたものであり、その目的とするところは、簡略な装置構成にてクレーンの加速及び減速時に吊り荷が振れないようにし、これによって簡略な振れ止めを可能にした吊り荷の振れ止め制御方法を提供することにある。
【0010】
【課題を解決するための手段】
以上の目的を達成するために、発明は、クレーンの加速時は走行開始点から設定した走行速度まで線形加速させるようにし、走行開始点を死点とする振り子が最下点まで移動するときの下向き変位距離と、該振り子の1/4周期とを予め演算して求めておき
一方、走行中のクレーンの停止時は走行速度の減速開始点から停止点まで線形減速させるようにし、減速開始点を最下点とする振り子が死点まで移動するときの上向き変位距離と、該振り子の1/4周期とを予め演算して求めておき
クレーンの加速時には、クレーンの線形加速時間を前記振り子の1/4周期の時間に一致させ且つ加速の開始と同時に振り子の1/4周期の時間内で前記下向き変位距離だけ吊り荷を巻き下げ
一方、クレーンの停止時には、クレーンの線形減速時間を前記振り子の1/4周期の時間に一致させ且つ減速の開始と同時に振り子の1/4周期の時間内で前記上向き変位距離だけ吊り荷を巻き上げることを特徴とする吊り荷の振れ止め制御方法、に係るものである。
【0012】
上記手段によれば、以下のように作用する。
【0013】
発明では、クレーンの加速時には、クレーンの線形加速時間を振り子の1/4周期の時間に一致させ且つ加速の開始と同時に振り子の1/4周期の時間内で下向き変位距離だけ吊り荷を巻き下げることによって吊り荷の重力バネを相殺し、一方、クレーンの停止時には、クレーンの線形減速時間を振り子の1/4周期の時間に一致させ且つ減速の開始と同時に振り子の1/4周期の時間内で上向き変位距離だけ吊り荷を巻き上げることによって吊り荷の重力バネを相殺するようにしたので、クレーンの加速時と停止時に吊り荷が揺れないようにすることができる。従って、フィードフォワード制御により簡単な装置構成にて効果的な吊り荷の振れ止めが可能になる。
【0015】
【発明の実施の形態】
以下、本発明の好適な実施の形態を図面に基づいて説明する。
【0016】
図1、図2は本発明の吊り荷の振れ止め制御方法を横行トロリに適用した場合の形態例を示したもので、図1はクレーンの加速時の作動を表わす説明図、図2はクレーンの停止時の作動を表わす説明図であり、図中、図7と同一の部分には同じ符号を付して詳細な説明は省略する。
【0017】
図1、図2示すように、クレーン1に備えた巻上げモータM2にはロータリエンコーダ等からなる巻上げ検出装置7が設けてあり、該巻上げ検出装置7により吊り荷5の吊り高さLを検出するようにしている。尚、吊り荷5の吊り高さLの検出には図示例以外の種々の方式も採用することができる。
【0018】
上記クレーン1の走行モータM1と巻上げモータM2は、制御装置8からの制御信号S1,S2によって駆動が制御されるようになっている。
【0019】
制御装置8は図3のブロック図に示す演算装置9を備えており、該演算装置9には、クレーン1の走行速度V1(設定した一定速度)と前記巻上げ検出装置7により検出した吊り荷5の吊り高さLとが入力されている。
【0020】
演算装置9は、図1(A)に示すように、クレーンの加速時に、走行開始点(速度V0)から走行速度V1までを線形加速(一定加速度)で制御するようにしており、更に、図1(B)に示すように、加速時における走行開始点の吊り荷5の位置を死点R0とする振り子が最下点R1まで移動するときの重力バネである下向き変位距離Δh1と、この振り子の周期Tの1/4周期、即ちT/4を予め演算して求めるようにしている。
【0021】
更に、前記重力バネである下向き変位距離Δh1を相殺するために前記線形加速時に吊り荷5を巻き下げるように制御し、この時の巻き下げ速度Vvm1を求めている。
【0022】
下向き変位距離Δh1は、吊り荷5が走行開始点を死点R0として振り子の最下点R1まで移動するときの位置エネルギUと運動エネルギKから求められる。即ち、
U=mGh
K=1/2mV1 2
であるので、U=Kとおくことにより、下向き変位距離Δh1
【数1】
Δh1=V1 2/2G・・・(1)
である。
【0023】
また、角速度ωは
【数2】
ω=√{G/(L+Δh1)}・・・(2)
であるので、周期Tは
【数3】
T=2π/ω・・・(3)
である。
【0024】
更に、重力バネである下向き変位距離Δh1を相殺するために線形加速時に吊り荷5を巻き下げる巻き下げ速度Vvm1
【数4】
Vvm1=8Δh1/T・・・(4)
である。また、この時の巻き下げ加速度αv1は、αv1=±64Δh1/T2である。+符号は下向きを、−符号は上向きをそれぞれ示す。
【0025】
この時の水平加速度αh
【数5】
αh=4V1/T・・・(5)
であり、よって線形加速時の速度vは
【数6】
v=αht・・・(6)
となる。
【0026】
一方、演算装置9は、図2(A)に示すように、走行中のクレーン1の停止時に、走行速度V1の減速開始点から停止点までを線形減速(一定減速度)で制御するようにしており、更に、図2(B)に示すように、上記停止時における減速開始点を吊り荷5の最下点F1として振り子がの死点F0まで移動するときの重力バネである上向き変位距離Δh2と、この振り子の周期Tの1/4周期、即ちT/4とを予め演算して求める。
【0027】
また、前記重力バネである上向き変位距離Δh2を相殺するために前記線形減速時に吊り荷5を巻き上げるようにし、この時の巻き上げ速度Vvm2を求める。
【0028】
上向き変位距離Δh2は、吊り荷5が減速開始点を最下点F1として振り子の死点F0まで移動するときの位置エネルギUと運動エネルギKから求められる。即ち、
U=mGh
K=1/2mV1 2
であるので、U=Kとおくことにより、上向き変位距離Δh2
【数7】
Δh2=V1 2/2G・・・(7)
である。
【0029】
また、角速度ωは
【数8】
ω=√(G/L)・・・(8)
であり、周期Tは
【数9】
T=2π/ω・・・(9)
である。
【0030】
更に、重力バネである上向き変位距離Δh2を相殺するために線形減速時に吊り荷5を巻き上げる巻き上げ速度Vvm2
【数10】
Vvm2=8Δh2/T・・・(10)
である。また、この時の巻き上げ加速度αv2は、αv2=±64Δh2/T2である。+符号は下向きを、−符号は上向きをそれぞれ示す。
【0031】
この時の水平減速度αh
【数11】
αh=4V1/T・・・(11)
であり、よって線形減速時の速度v’は
【数12】
v’=V1−αht・・・(12)
となる。
【0032】
図3の演算装置9は上記演算の結果を記憶しており、クレーン1の加速時及び停止時にインバータ装置10を介し制御信号S1を走行モータM1に出力してクレーン1の走行を制御し、同時に制御信号S2を巻上げモータM2に出力して吊り荷5の巻き上げ巻き下げを制御するようにしている。
【0033】
次に、上記クレーン1の加速時における振れ止め制御方法を図1、図4を参照して説明する。
【0034】
クレーン1の加速時は、図1(A)に示すように、走行開始点(速度=0)から設定した走行速度V1までを線形加速(一定変化率で加速)するように走行モータM1を制御し、この時、クレーン1の線形加速時間tが演算装置9で予め求めた振り子の周期Tの1/4の時間であるT/4に一致して加速されるように走行を制御する。
【0035】
更に、上記加速の開始と同時に、振り子の1/4周期の時間T/4内で、演算装置9で求めておいた下向き変位距離Δh1だけ吊り荷5を巻き下げる。この時、吊り荷5を巻き下げ速度Vvm1で巻き下げる。このように振り子の1/4周期の時間T/4内で下向き変位距離Δh1だけ吊り荷5を巻き下げると、吊り荷5は図1(B)に示す破線のように死点R0から最下点R1に移動することになるために重力バネが相殺され、これによって加速時に吊り荷5が振れる問題は生じなくなる。
【0036】
クレーン1の走行速度V1を1m/s、Lを10mとした場合における下向き変位距離Δh1と、周期Tと、下向き変位距離Δh1の時の巻き下げ速度Vvm1とを前記式(1)〜式(4)を用いて求めた。
下向き変位距離Δh1=1/(2×9.8)=0.051m
角速度ω=√{9.8/(10+0.051)}=0.987rad/s
周期T=2π/0.987=6.36s
巻き下げ速度Vvm1=8×0.051/6.36=0.064m/s
【0037】
上記したように、クレーン1の加速時、線形加速を振り子の1/4周期の時間に一致させて行い、且つ同時に振り子の1/4周期の時間内で下向き変位距離Δh1だけ吊り荷5を巻き下げることにより、加速によって生じる振り子の重力バネが相殺されて吊り荷5が振れなくなり、よって吊り荷5が振れないままクレーンは走行速度V1に移行することができる。
【0038】
次に、走行速度V1で走行しているクレーン1の停止時における振れ止め制御方法を図2、図5を参照して説明する。
【0039】
走行速度V1で走行しているクレーン1の停止時は、図2(A)に示すように、減速開始点(速度=V1)から停止点(速度=V0)までを線形減速(一定変化率で減速)するように走行モータM1を制御する。この時、クレーン1の線形減速時間tが演算装置9で予め求めた振り子の1/4周期の時間に一致して減速されるように制御する。
【0040】
更に、上記減速開始と同時に、振り子の1/4周期の時間内で、演算装置9で求めておいた上向き変位距離Δh2だけ吊り荷5を巻き上げる。このように振り子の1/4周期の時間T/4内で上向き変位距離Δh2だけ吊り荷5を巻き上げると、吊り荷5は図2(B)に示す破線のように最下点F1から死点F0に移動することになるために重力バネは相殺され、これによって減速時に吊り荷5が振れる問題は生じなくなる。
【0041】
クレーンの走行速度V1を1m/s、Lを10mとした場合における上向き変位距離Δh2と、周期Tと、上向き変位距離Δh2の時の巻き上げ速度Vvm2とを前記式(5)〜式(8)を用いて求めた。
上向き変位距離Δh2=1/(2×9.8)=0.051m
角速度ω=√(9.8/10)=0.990rad/s
周期T=2π/0.990=6.34s
巻き上げ速度Vvm2=8×0.051/6.34=0.064m/s
【0042】
上記したように、クレーン1の停止時、線形減速を振り子の1/4周期の時間に一致させて行い、且つ同時に振り子の1/4周期の時間内で上向き変位距離Δh2だけ吊り荷5を巻き上げることにより、減速によって生じる振り子の重力バネが相殺されて吊り荷5が振れなくなり、よって吊り荷5は停止点に正確に停止するようになる。
【0043】
次に、本発明の吊り荷の振れ止め制御方法の簡便な形態例を図6について説明する。
【0044】
クレーンの走行速度を予め設定しておき、クレーンの加速時は、走行開始点(速度V0=0)のクレーンがt時間後に最高速度の設定走行速度V1になるように線形加速(一定変化率加速)させる。また、設定した走行速度V1で走行しているクレーンの停止時は、予定した停止点で停止させるために、停止点よりt時間前の時点から線形減速(一定変化率減速)させる。そして、前記線形加速と線形減速の操作が、吊り荷の振れの周期T=π/2ωの1/4周期の時間で完了するようにする。
【0045】
このように、線形加速と線形減速の操作を、吊り荷の振れの1/4周期の時間内で完了させるという簡単な制御によっても、吊り荷の振れを低減することができる。
【0046】
尚、本発明は上記形態例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0047】
【発明の効果】
発明によれば、クレーンの加速時には、クレーンの線形加速時間を振り子の1/4周期の時間に一致させ且つ加速の開始と同時に振り子の1/4周期の時間内で下向き変位距離だけ吊り荷を巻き下げることによって吊り荷の重力バネを相殺し、一方、クレーンの停止時には、クレーンの線形減速時間を振り子の1/4周期の時間に一致させ且つ減速の開始と同時に振り子の1/4周期の時間内で上向き変位距離だけ吊り荷を巻き上げることによって吊り荷の重力バネを相殺するようにしたので、クレーンの加速時と停止時に吊り荷が揺れないようにすることができる。従って、フィードフォワード制御により簡単な装置構成にて効果的な吊り荷の振れ止めが可能になる。
【図面の簡単な説明】
【図1】(A)は本発明におけるクレーン加速時の速度制御方法を示す線図、(B)はクレーン加速時の吊り荷の振れ止め原理を示す線図である。
【図2】(A)は本発明におけるクレーン停止時の速度制御方法を示す線図、(B)はクレーン停止時の吊り荷の振れ止め原理を示す線図である。
【図3】本発明を実施する制御装置のブロック図である。
【図4】本発明におけるクレーン加速時の吊り荷の振れ止め制御を行うフローチャートである。
【図5】本発明におけるクレーン停止時の吊り荷の振れ止め制御を行うフローチャートである。
【図6】本発明の吊り荷の振れ止め制御方法の簡便な形態例を示す線図である。
【図7】吊り荷の振れの発生原理を示す説明図である。
【符号の説明】
1 クレーン
5 吊り荷
1 走行速度
Δh1 下向き変位距離
Δh2 上向き変位距離
0 死点
0 死点
1 最下点
T 周期
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a suspended load steadying control method, and more particularly to a suspended load steadying control method capable of effectively reducing the swing of a crane suspended load with a simple device configuration.
[0002]
[Prior art]
FIG. 7 shows a crane of a type that travels by lifting a suspended load with a traversing trolley, and the crane 1 travels along a rail 3 by a traveling wheel 2 driven by a traveling motor M1. The crane 1 is provided with a winch drum 6 that is driven by a hoisting motor M <b> 2 and lifts and lowers a suspended load 5 via a rope 4.
[0003]
When the crane 1 in FIG. 7 starts traveling in the direction of the arrow with the suspended load 5 suspended, the suspended load 5 is delayed backward as shown by the broken line due to inertia, and the suspended load 5 generates a swing. Further, when the crane 1 traveling at a predetermined speed is decelerated and stopped, the suspended load 5 moves forward as shown by a two-dot chain line due to inertia, and the suspended load 5 generates a swing due to this. . This swing is caused by a gravity spring due to inertia acting on the suspended load 5, and such a swing of the suspended load 5 is a factor that impairs workability and safety in the cargo handling operation of the crane 1.
[0004]
Conventionally, various methods have been proposed in order to stop such a swing of the suspended load. For example, a method of accelerating or decelerating the crane speed in steps to reduce the swing width of the suspended load, a method of detecting the swing of the suspended load and controlling the acceleration or deceleration of the crane to reduce the swing, There is a method of controlling acceleration or deceleration so that the gravity spring is eliminated when a gravity spring of a certain value or more acts on the suspension load. And all of the above-described suspension of the suspended load is performed by feedback control.
[0005]
Such an anti-swaying method using feedback control has a problem that equipment is expensive because special sensors are required, and there is a problem that the detection accuracy of the sensors greatly affects the anti-sway effect.
[0006]
For this reason, in recent years, the crane is started from a stopped state in synchronization with one cycle of the suspended load's swing cycle and accelerated at a constant acceleration to a predetermined speed, and the crane is moved in one cycle of the suspended load's swing cycle. A method has been proposed in which a constant deceleration to a predetermined speed is performed to prevent the swing of a suspended load from being fed forward (for example, Patent Document 1).
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-095477
[Problems to be solved by the invention]
However, the steadying method disclosed in the above publication is controlled on the assumption that the suspended load swings during acceleration and deceleration of the crane. However, once a shake occurs in this way, there is a problem that it is difficult to reliably prevent the shake even if the crane is accelerated or decelerated in synchronization with one cycle of the shake.
[0009]
The present invention has been made by paying attention to the problems existing in the prior art as described above, and the object is to prevent a suspended load from swinging during acceleration and deceleration of the crane with a simple device configuration. Thus, an object of the present invention is to provide a suspension control method for a suspended load that enables simple stabilization.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, when the crane is accelerated, linear acceleration is performed from the travel start point to the set travel speed, and the pendulum whose travel start point is the dead point moves to the lowest point. And calculating a downward displacement distance and a quarter period of the pendulum in advance ,
On the other hand, when the traveling crane stops, linear deceleration is performed from the deceleration start point of the traveling speed to the stop point, and the upward displacement distance when the pendulum with the deceleration start point as the lowest point moves to the dead point, Calculate the 1/4 period of the pendulum in advance ,
When accelerating the crane, the linear acceleration time of the crane is made to coincide with the time of a quarter cycle of the pendulum, and simultaneously with the start of acceleration, the suspended load is unwound by the downward displacement distance within the time of a quarter cycle of the pendulum ,
On the other hand, when stopping the crane, rolling up the upward displacement distance suspended load linear deceleration time of the crane in a time of 1/4 period of the start and at the same time pendulum matched allowed and deceleration time of 1/4 period of the pendulum The present invention relates to a steady-state control method for a suspended load.
[0012]
According to the above means, it operates as follows.
[0013]
In the present invention, when accelerating the crane, the linear acceleration time of the crane is made to coincide with the 1/4 period of the pendulum, and the suspended load is wound by the downward displacement distance within the 1/4 period of the pendulum simultaneously with the start of the acceleration. By lowering the gravity spring of the suspended load by lowering, when the crane is stopped, the linear deceleration time of the crane is made coincident with the time of 1/4 period of the pendulum, and at the same time as the start of deceleration, the time of 1/4 period of the pendulum Since the suspended load is lifted by the upward displacement distance in the interior, the gravity spring of the suspended load is offset, so that the suspended load can be prevented from shaking when the crane is accelerated and stopped. Therefore, effective suspension of suspended loads can be achieved with a simple apparatus configuration by feedforward control.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the drawings.
[0016]
FIG. 1 and FIG. 2 show an example of a case where the suspension load steadying control method of the present invention is applied to a traversing trolley. FIG. 1 is an explanatory view showing the operation of the crane during acceleration, and FIG. FIG. 8 is an explanatory diagram showing the operation at the time of stopping, in which the same parts as those in FIG.
[0017]
As shown in FIGS. 1 and 2, the hoisting motor M <b> 2 provided in the crane 1 is provided with a hoisting detection device 7 composed of a rotary encoder or the like, and the hoisting detection device 7 detects the lifting height L of the suspended load 5. I am doing so. Various methods other than the illustrated example can also be adopted for detecting the suspension height L of the suspended load 5.
[0018]
Driving of the traveling motor M1 and the hoisting motor M2 of the crane 1 is controlled by control signals S1 and S2 from the control device 8.
[0019]
The control device 8 includes an arithmetic device 9 shown in the block diagram of FIG. 3, and the arithmetic device 9 includes a traveling speed V 1 (set constant speed) of the crane 1 and a suspended load detected by the hoisting detection device 7. A suspension height L of 5 is input.
[0020]
As shown in FIG. 1A, the arithmetic unit 9 controls linear acceleration (constant acceleration) from the traveling start point (speed V 0 ) to the traveling speed V 1 during the acceleration of the crane. As shown in FIG. 1B, a downward displacement distance Δh that is a gravity spring when the pendulum whose dead center R 0 is the position of the suspended load 5 at the starting point of acceleration moves to the lowest point R 1 during acceleration. 1 and a quarter period of the pendulum period T, that is, T / 4 are calculated in advance.
[0021]
Further, in order to cancel the downward displacement distance Δh 1 that is the gravity spring, the suspended load 5 is controlled to be lowered during the linear acceleration, and the lowering speed Vvm 1 at this time is obtained.
[0022]
The downward displacement distance Δh 1 is obtained from the potential energy U and the kinetic energy K when the suspended load 5 moves to the lowest point R 1 of the pendulum with the travel start point as the dead point R 0 . That is,
U = mGh
K = 1 / 2mV 1 2
Therefore, by setting U = K, the downward displacement distance Δh 1 is given by
Δh 1 = V 1 2 / 2G (1)
It is.
[0023]
The angular velocity ω is given by
ω = √ {G / (L + Δh 1 )} (2)
Therefore, the period T is
T = 2π / ω (3)
It is.
[0024]
Furthermore, in order to cancel the downward displacement distance Δh 1 which is a gravity spring, the lowering speed Vvm 1 for lowering the suspended load 5 during linear acceleration is given by
Vvm 1 = 8Δh 1 / T (4)
It is. Further, the lowering acceleration αv 1 at this time is αv 1 = ± 64Δh 1 / T 2 . A + sign indicates downward, and a-sign indicates upward.
[0025]
The horizontal acceleration α h at this time is
α h = 4V 1 / T (5)
Therefore, the speed v during linear acceleration is
v = α h t (6)
It becomes.
[0026]
On the other hand, as shown in FIG. 2A, the arithmetic unit 9 controls linear deceleration (constant deceleration) from the deceleration start point to the stop point of the traveling speed V 1 when the traveling crane 1 is stopped. Further, as shown in FIG. 2 (B), it is a gravity spring when the pendulum moves to the dead point F 0 with the deceleration start point at the time of stop as the lowest point F 1 of the suspended load 5. An upward displacement distance Δh 2 and a quarter period of the pendulum period T, that is, T / 4 are calculated in advance.
[0027]
Further, in order to cancel the upward displacement distance Δh 2 that is the gravity spring, the suspended load 5 is hoisted during the linear deceleration, and the hoisting speed Vvm 2 at this time is obtained.
[0028]
The upward displacement distance Δh 2 is obtained from the potential energy U and kinetic energy K when the suspended load 5 moves to the pendulum dead center F 0 with the deceleration start point as the lowest point F 1 . That is,
U = mGh
K = 1 / 2mV 1 2
Therefore, by setting U = K, the upward displacement distance Δh 2 is given by
Δh 2 = V 1 2 / 2G (7)
It is.
[0029]
Also, the angular velocity ω is
ω = √ (G / L) (8)
And the period T is
T = 2π / ω (9)
It is.
[0030]
Furthermore, in order to cancel the upward displacement distance Δh 2 that is a gravity spring, the hoisting speed Vvm 2 for hoisting the suspended load 5 during linear deceleration is given by
Vvm 2 = 8Δh 2 / T (10)
It is. Further, the winding acceleration αv 2 at this time is αv 2 = ± 64Δh 2 / T 2 . A + sign indicates downward, and a-sign indicates upward.
[0031]
The horizontal deceleration rate α h at this time is
α h = 4V 1 / T (11)
Therefore, the speed v ′ at the time of linear deceleration is given by
v ′ = V 1 −α h t (12)
It becomes.
[0032]
The arithmetic unit 9 in FIG. 3 stores the result of the above arithmetic operation, and controls the traveling of the crane 1 by outputting a control signal S1 to the traveling motor M1 via the inverter device 10 when the crane 1 is accelerated and stopped. The control signal S2 is output to the hoisting motor M2, and the hoisting and lowering of the suspended load 5 is controlled.
[0033]
Next, a steady-state control method during acceleration of the crane 1 will be described with reference to FIGS.
[0034]
During acceleration of the crane 1, as shown in FIG. 1 (A), the traveling motors M1 to running start point to the traveling speed V 1 is set to (velocity = 0) (accelerated at a constant rate of change) linear accelerator At this time, the traveling is controlled so that the linear acceleration time t of the crane 1 is accelerated in accordance with T / 4, which is ¼ of the period T of the pendulum previously obtained by the arithmetic unit 9.
[0035]
Further, simultaneously with the start of the acceleration, the suspended load 5 is unwound by the downward displacement distance Δh 1 obtained by the arithmetic unit 9 within the time T / 4 of the quarter period of the pendulum. At this time, the suspended load 5 is lowered at the lowering speed Vvm 1 . In this way, when the suspended load 5 is lowered by the downward displacement distance Δh 1 within the time T / 4 of the quarter period of the pendulum, the suspended load 5 starts from the dead point R 0 as shown by the broken line in FIG. Since it moves to the lowest point R 1 , the gravity spring cancels out, thereby eliminating the problem that the suspended load 5 swings during acceleration.
[0036]
When the traveling speed V 1 of the crane 1 is 1 m / s and L is 10 m, the downward displacement distance Δh 1 , the period T, and the lowering speed Vvm 1 at the downward displacement distance Δh 1 are expressed by the above equation (1). -It calculated | required using Formula (4).
Downward displacement distance Δh 1 = 1 / (2 × 9.8) = 0.051 m
Angular velocity ω = √ {9.8 / (10 + 0.051)} = 0.987 rad / s
Period T = 2π / 0.987 = 6.36 s
Lowering speed Vvm 1 = 8 × 0.051 / 6.36 = 0.064 m / s
[0037]
As described above, when the crane 1 is accelerated, linear acceleration is performed in accordance with the time of a quarter period of the pendulum, and at the same time, the suspended load 5 is moved by the downward displacement distance Δh 1 within the time of the quarter period of the pendulum. By lowering, the gravity spring of the pendulum generated by acceleration cancels out and the suspended load 5 does not swing, so that the crane can move to the traveling speed V 1 without the suspended load 5 swinging.
[0038]
Next, a description will be given of a steady-state control method when the crane 1 traveling at the traveling speed V 1 is stopped with reference to FIGS.
[0039]
When the crane 1 traveling at the traveling speed V 1 is stopped, as shown in FIG. 2A, linear deceleration (constant) from the deceleration start point (speed = V 1 ) to the stop point (speed = V 0 ) is performed. The traveling motor M1 is controlled so as to decelerate at a change rate. At this time, control is performed so that the linear deceleration time t of the crane 1 is decelerated in accordance with the time of a quarter period of the pendulum previously obtained by the arithmetic unit 9.
[0040]
Further, simultaneously with the start of the deceleration, the suspended load 5 is wound up by the upward displacement distance Δh 2 obtained by the arithmetic unit 9 within the time of a quarter period of the pendulum. In this way, when the suspended load 5 is wound up by the upward displacement distance Δh 2 within the time T / 4 of the quarter period of the pendulum, the suspended load 5 starts from the lowest point F 1 as shown by the broken line in FIG. Since the gravity spring is moved to the dead point F 0 , the gravity spring cancels out, thereby preventing the problem that the suspended load 5 swings during deceleration.
[0041]
When the traveling speed V 1 of the crane is 1 m / s and L is 10 m, the upward displacement distance Δh 2 , the period T, and the hoisting speed Vvm 2 at the upward displacement distance Δh 2 are expressed by the above equations (5) to (5) It calculated | required using (8).
Upward displacement distance Δh 2 = 1 / (2 × 9.8) = 0.051 m
Angular velocity ω = √ (9.8 / 10) = 0.990 rad / s
Period T = 2π / 0.990 = 6.34 s
Winding speed Vvm 2 = 8 × 0.051 / 6.34 = 0.064 m / s
[0042]
As described above, when the crane 1 is stopped, linear deceleration is performed in accordance with the time of the quarter period of the pendulum, and at the same time, the suspended load 5 is moved by the upward displacement distance Δh 2 within the time of the quarter period of the pendulum. By winding up, the gravitational spring of the pendulum generated by the deceleration cancels out and the suspended load 5 does not swing, so that the suspended load 5 stops accurately at the stop point.
[0043]
Next, an example of a simple embodiment of the suspension load control method of the present invention will be described with reference to FIG.
[0044]
The crane traveling speed is set in advance, and when the crane is accelerated, linear acceleration (constant change) is performed so that the crane at the traveling start point (speed V 0 = 0) reaches the maximum traveling speed V 1 after t time. Rate acceleration). Further, when the crane traveling at the set traveling speed V 1 is stopped, linear deceleration (deceleration at a constant rate of change) is performed from the time point t before the stopping point in order to stop at the scheduled stopping point. The linear acceleration and linear deceleration operations are completed in a period of a quarter cycle of the suspended load swing cycle T = π / 2ω.
[0045]
As described above, the swing of the suspended load can be reduced by simple control in which the operations of the linear acceleration and the linear deceleration are completed within the time of a quarter cycle of the suspended load.
[0046]
It should be noted that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.
[0047]
【The invention's effect】
According to the present invention, during the acceleration of the crane, the linear acceleration time of the crane is made to coincide with the time of the quarter period of the pendulum, and at the same time as the acceleration starts , the crane is suspended by the downward displacement distance within the time of the quarter period of the pendulum. The gravity spring of the suspended load is canceled by lowering the crane. On the other hand, when the crane is stopped, the linear deceleration time of the crane is made to coincide with the 1/4 period of the pendulum and the 1/4 period of the pendulum simultaneously with the start of deceleration. The gravity spring of the suspended load is offset by hoisting the suspended load by the upward displacement distance within this time, so that the suspended load can be prevented from shaking when the crane is accelerated and stopped. Therefore, effective suspension of suspended loads can be achieved with a simple apparatus configuration by feedforward control.
[Brief description of the drawings]
FIG. 1A is a diagram illustrating a speed control method during acceleration of a crane according to the present invention, and FIG. 1B is a diagram illustrating a principle of steadying a suspended load during acceleration of the crane.
2A is a diagram showing a speed control method when a crane is stopped according to the present invention, and FIG. 2B is a diagram showing a principle of steadying a suspended load when the crane is stopped.
FIG. 3 is a block diagram of a control apparatus for carrying out the present invention.
FIG. 4 is a flowchart for performing suspension control of a suspended load during acceleration of the crane according to the present invention.
FIG. 5 is a flowchart for performing steadying control of a suspended load when the crane is stopped according to the present invention.
FIG. 6 is a diagram showing a simple form example of the hanging load steadying control method of the present invention.
FIG. 7 is an explanatory view showing the principle of occurrence of a swing of a suspended load.
[Explanation of symbols]
1 Crane 5 Hanging load V 1 Travel speed Δh 1 Downward displacement distance Δh 2 Upward displacement distance F 0 Dead point R 0 Dead point R 1 Bottom point T Period

Claims (1)

クレーンの加速時は走行開始点から設定した走行速度まで線形加速させるようにし、走行開始点を死点とする振り子が最下点まで移動するときの下向き変位距離と、該振り子の1/4周期とを予め演算して求めておき
一方、走行中のクレーンの停止時は走行速度の減速開始点から停止点まで線形減速させるようにし、減速開始点を最下点とする振り子が死点まで移動するときの上向き変位距離と、該振り子の1/4周期とを予め演算して求めておき
クレーンの加速時には、クレーンの線形加速時間を前記振り子の1/4周期の時間に一致させ且つ加速の開始と同時に振り子の1/4周期の時間内で前記下向き変位距離だけ吊り荷を巻き下げ
一方、クレーンの停止時には、クレーンの線形減速時間を前記振り子の1/4周期の時間に一致させ且つ減速の開始と同時に振り子の1/4周期の時間内で前記上向き変位距離だけ吊り荷を巻き上げることを特徴とする吊り荷の振れ止め制御方法。
When accelerating the crane, linear acceleration is performed from the travel start point to the set travel speed, the downward displacement distance when the pendulum with the travel start point as the dead point moves to the lowest point, and a quarter cycle of the pendulum And calculating in advance ,
On the other hand, when the traveling crane stops, linear deceleration is performed from the deceleration start point of the traveling speed to the stop point, and the upward displacement distance when the pendulum with the deceleration start point as the lowest point moves to the dead point, Calculate the 1/4 period of the pendulum in advance ,
When accelerating the crane, the linear acceleration time of the crane is made to coincide with the time of a quarter cycle of the pendulum, and simultaneously with the start of acceleration, the suspended load is unwound by the downward displacement distance within the time of a quarter cycle of the pendulum ,
On the other hand, when the crane is stopped, the linear deceleration time of the crane is made to coincide with the 1/4 period of the pendulum, and the suspended load is wound up by the upward displacement distance within the 1/4 period of the pendulum simultaneously with the start of the deceleration. A suspension control method for a suspended load.
JP2002295168A 2002-10-08 2002-10-08 Method for controlling steady rest of suspended load Expired - Fee Related JP4155785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002295168A JP4155785B2 (en) 2002-10-08 2002-10-08 Method for controlling steady rest of suspended load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002295168A JP4155785B2 (en) 2002-10-08 2002-10-08 Method for controlling steady rest of suspended load

Publications (2)

Publication Number Publication Date
JP2004131205A JP2004131205A (en) 2004-04-30
JP4155785B2 true JP4155785B2 (en) 2008-09-24

Family

ID=32285506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002295168A Expired - Fee Related JP4155785B2 (en) 2002-10-08 2002-10-08 Method for controlling steady rest of suspended load

Country Status (1)

Country Link
JP (1) JP4155785B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112607596B (en) * 2020-12-16 2023-05-09 中联恒通机械有限公司 Method and device for inhibiting swing of lifting hook of automobile crane
CN115258943A (en) * 2022-07-27 2022-11-01 重庆大学 Double-pendulum effect bridge crane preset time transportation control method based on backstepping method
CN117105096B (en) * 2023-09-25 2024-02-23 哈尔滨理工大学 Sliding mode control method suitable for rope-length-variable double-swing type ship crane

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5071051A (en) * 1973-10-23 1975-06-12
JPH06191789A (en) * 1992-08-28 1994-07-12 Tadano Ltd Swing damping device for hanging load in crane
JP3066424B2 (en) * 1998-09-22 2000-07-17 アイコン株式会社 Crane automatic control device
JP2001031369A (en) * 1999-07-27 2001-02-06 Ishikawajima Harima Heavy Ind Co Ltd Suspended load swing prevention method

Also Published As

Publication number Publication date
JP2004131205A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
JP3150636B2 (en) Crane lowering collision prevention device
KR100220202B1 (en) Method and apparatus of damping the sway of the hoisting rope of a crane
JP4883272B2 (en) Crane steady rest control method
JP2006321642A (en) Car inside load detecting device of elevator
JP4155785B2 (en) Method for controlling steady rest of suspended load
JP5554336B2 (en) Elevator control device
JP7017835B2 (en) Cargo collision avoidance system
JPH07300294A (en) Bracing control method for crane
JP3237557B2 (en) Sway control method for crane hanging load
JPS6131029B2 (en)
JP3066424B2 (en) Crane automatic control device
JP4167885B2 (en) Control method for swinging suspension of swing crane
JP3087616B2 (en) Sway control method for crane suspended load
JP2003192242A (en) Main rope vibration restraining device and main rope vibration restraining method for elevator
JP3019661B2 (en) Crane operation control method
JP2837314B2 (en) Crane steady rest control device
JP4183316B2 (en) Suspension control device for suspended loads
JP3325837B2 (en) Control method of dam crane
JP2007269450A (en) Conveying facility and its control method
JPH08157181A (en) Swing prevention control method of crane
JPH05270786A (en) Crane control method for stopping its swing
JP3321988B2 (en) Cable crane rest resting method and apparatus
JP3600593B2 (en) Crane suspended load damping device and damping method
JP2000313586A (en) Swing stopping controller for suspended cargo
JPH0356394A (en) Oscillation control method in ceiling crane

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050530

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050530

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees