JP4155080B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP4155080B2
JP4155080B2 JP2003097450A JP2003097450A JP4155080B2 JP 4155080 B2 JP4155080 B2 JP 4155080B2 JP 2003097450 A JP2003097450 A JP 2003097450A JP 2003097450 A JP2003097450 A JP 2003097450A JP 4155080 B2 JP4155080 B2 JP 4155080B2
Authority
JP
Japan
Prior art keywords
bump
semiconductor chip
electrode pattern
circuit board
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003097450A
Other languages
Japanese (ja)
Other versions
JP2004304082A (en
Inventor
隆雄 西村
光久 渡部
史彦 安藤
昌典 夏秋
晃 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003097450A priority Critical patent/JP4155080B2/en
Publication of JP2004304082A publication Critical patent/JP2004304082A/en
Application granted granted Critical
Publication of JP4155080B2 publication Critical patent/JP4155080B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body

Description

【0001】
【発明の属する技術分野】
本発明は半導体装置の製造方法に係り、特に半導体チップを回路基板上に高密度実装する方法に関する。
近年、携帯電話やデジタルカメラ等の携帯用電子機器の普及に伴って、それらに用いられる電子回路の小型化、低コスト化に対する要求が厳しくなっており、それに応えるため回路パターンの微細化・高集積化による部品数の低減は勿論のこと、回路パターンが形成された半導体チップを低コストで高密度実装する技術の一層の進展が求められている。
【0002】
【従来の技術】
半導体チップを回路基板に高密度で実装する方法としてフリップチップ方式が知られている。図4(a) 、(b) は従来のフリップチップ方式を説明する断面図である。同図において、半導体チップ1の表面には外部接続用の多数のバンプ2が形成されており、また、回路基板3には半導体チップ1のバンプ2とそれぞれ対応する位置に電極パターン4が形成されている。電子機器の低コスト化を優先させる場合、回路基板3としてはガラスエポキシ等の有機樹脂が用いられる。
【0003】
まず、図4(a) に示したように、電極パターン4が形成された回路基板3の表面に対し、バンプ2が形成された半導体チップ1の表面を下向きにして対向させ、この状態で半導体チップ1を水平方向に移動させることによりバンプ2と電極パターン4を位置合わせする。位置合わせに際しては、バンプ2と電極パターン4の接触面積が出来るだけ大きくなるように、バンプ2の中心と電極パターン4の中心を一致させる方向に半導体チップ1を移動させる。
【0004】
ついで、図4(b) に示したように、半導体チップ1に下向きの荷重を印加して矢印方向へ移動させ回路基板3に押圧する。下向きの荷重の他に、必要に応じて加熱、半導体チップ1への超音波印加を行う。これによりバンプ2が電極パターン4と接続されることになる。その後、バンプ2と電極パターン4の接続領域近傍を樹脂で覆った後加熱硬化させることによりバンプ2と電極パターン4との接続を安定なものにする。
【0005】
以上のように、フリップチップ方式は多数のバンプを電極パターンに一括接続することができるためワイヤボンディング方式に比べて少ない工数で実装可能であり且つ接続点での寄生インダクタンスを小さくすることができる等の利点があり広く用いられている。
半導体チップに形成されるバンプとしては、スタッドバンプあるいはめっきバンプが用いられる。スタッドバンプは半導体チップ上の電極パッドに金あるいは金合金からなるワイヤを用いてワイヤボンディングを行った後、このワイヤを加熱しながら引きちぎって形成される。同一半導体チップに形成されるバンプ数が少ない場合やバンプ間ピッチが比較的大きい場合に主として用いられる。また、めっきバンプは、電極パッド上にレジスト開口パターンを形成し、この開口部内をメッキ材により埋め込んでバンプとするものであり、バンプ径をパターニングにより決めることができるためスタッドバンプに比べて微細化が可能であり、主としてバンプ数が多い場合やバンプ間ピッチが小さい場合に用いられる。
【0006】
また、上述のフリップチップ方式を簡略化して実装工程の一層の低コスト化を図る試みも行われている( 例えば、特許文献1参照) 。図5(a) 、(b) は従来の簡略化されたフリップチップ方式を説明する断面図である。図5(a) に示したように、回路基板3上に電極パターン4を覆うように予め熱硬化性樹脂5を塗布し、この状態で回路基板3の表面と半導体チップ1の表面を対向させ、図4に述べた例と同様に電極パターン4とバンプ2の位置合わせを行う。そして、図5(b) に示したように、半導体チップ1に下向きの荷重を印加して回路基板3へ押圧すると、バンプ2は熱硬化性樹脂5を押し退けて電極パターン4と接続されることになる。その後、樹脂を加熱硬化させることによりバンプ2と電極パターン4の接続を安定化する。
【0007】
【特許文献1】
特開平9−97816号公報( 第4−5頁、第2図)
【0008】
【発明が解決しようとする課題】
以上述べたフリップチップ方式には、多数のバンプを有する半導体チップを少ない工数で実装することができる等の利点がある反面、回路基板材として軟質性のある樹脂を用いた場合に以下のような問題が生じる。
図6は従来のフリップチップ方式の問題点を説明する断面図である。半導体チップ1に下向きの荷重を印加して回路基板3に押圧したとき、押圧の際の応力により回路基板3に局所的なたわみが生じバンプ2が回路基板3へ沈み込む結果、半導体チップ1と回路基板3間のギャップが狭くなる。これにより、同図に見られるように半導体チップ1の表面が電極パターン4に直接接触する恐れが生じる。これは半導体チップ1の表面に形成されている回路パターンを傷つける原因となる。また、前述のように半導体チップ1と回路基板3間のギャップが狭くなると、ギャップ内での樹脂の流動性が低下するため、加熱硬化中樹脂に含まれているガスの排出が充分に行われずギャップ内の樹脂にボイドが残ることになる。あるいは、フリップチップ接続後に樹脂で覆ったとしてもギャップに充填される樹脂の量が少なくなるためバンプと電極パターンの接続強度が低下する。これらの現象は、いずれもフリップチップ方式の信頼性を低下させる原因となる。
【0009】
フリップチップ実装の際の半導体チップと基板の間のギャップを保持する上で、(1) 半導体チップに印加する下向きの荷重を小さくして回路基板のたわみを抑える方法、(2) 半導体チップに予め背の高いバンプを形成する方法、(3) 回路基板の材料としてたわみの生じ易いガラスエポキシ樹脂に代えて硬質の石英ガラス等を用いる方法が考えられる。しかし、(1) の方法ではバンプと電極パターンとの接触が不十分となって接続強度の低下をもたらす恐れがある。また、(2) の方法においてスタッドバンプを用いる場合、バンプ径をワイヤ径以上に大きくすることが難しいためバンプの微細化によりワイヤ径が小さくなると背の高いバンプを形成することは困難であり、めっきバンプを用いる場合にはめっきを厚くする必要があるため高コストになる。また、(3) の方法では基板コストが高くなるという問題がある。
【0010】
そこで、本発明は半導体チップを回路基板にフリップチップ接続する際に低コスト且つ簡単な方法で半導体チップと回路基板間のギャップを保持し、フリップチップ接続の信頼性を向上させることを目的とする。
【0011】
【課題を解決するための手段】
上記課題を解決するため本発明は、複数のバンプの形成された半導体チップを、各バンプに対応した電極パターンの形成された回路基板にフェイスダウンボンディングにより接続する半導体装置の製造方法において、該バンプと該電極パターンが向かい合うように該半導体チップと該回路基板を離間して対向させた状態で、上方から見て該バンプと該電極パターンが部分的に重なる範囲内で該バンプの中心と該電極パターンの中心を水平方向にずらして位置合わせし、ついで、該半導体チップを下方向に移動させて該回路基板に圧接し、該バンプと該電極パターンを接触させ、ついで、該半導体チップを、該バンプの中心と該電極パターンの中心が一致する方向へ向けて水平に移動させて、該電極パターンの側面に該バンプを押圧することにより、該バンプに塑性変形を生じさせながら該バンプを該電極パターンに接続する。
【0012】
また、上記構成において、該半導体チップを、該バンプの中心と該電極パターンの中心が一致する方向へ向けて斜め下方向へ移動させる。
また、上記構成において、該半導体チップを、該バンプの中心と該電極パターンの中心が一致する方向へ向けて超音波を印加しつつ移動させる。
また、上記構成において、該超音波の振動方向を、該半導体チップの移動方向に対し垂直な方向にする。
【0013】
また、上記構成において、該半導体チップと該回路基板間に予め樹脂を介在させた状態で、該バンプを該電極パターンに接続する。
【0014】
【発明の実施の形態】
図1(a) 〜(c) は本発明の実施例を説明する図であり、各図左側には半導体チップ1をガラスエポキシからなる回路基板3と対向して配置したときのAA断面図が示されている。半導体チップ1の表面には金あるいは金合金からなるバンプ2、回路基板3の表面には金めっきされた銅からなる電極パターン4がそれぞれ形成されている。また、各図右側には、上方から見たときのバンプ2と電極パターン4の配置位置を表す平面図が示されている。
【0015】
まず、図1(a) に見られるように、バンプ2と電極パターン4が向かい合うように半導体チップ1と回路基板3を離間して対向させ、この状態で上方から見てバンプ2と電極パターン4が部分的に重なる範囲内でバンプ2と電極パターン4の中心を水平方向にずらせて位置合わせする。ついで、図1(b) に示したように、半導体チップ1に下向きの荷重を印加して下方へ移動させ回路基板3に押圧する。バンプ2と電極パターン4の中心をずらせているため、押圧時におけるバンプ2と電極パターン4の接触面積は小さく、その結果、回路基板3へ加わる応力が小さくなる。そのため、回路基板3のたわみが小さくなり、従来に比べて半導体チップ1と回路基板3の間のギャップを広くすることができる。
【0016】
ついで、図1(c) に矢印6で示したように、バンプ2の中心と電極パターン4の中心が一致する方向へ向けて水平方向に半導体チップ1を移動させる。これによりバンプ2が電極パターン4の側面を押圧して塑性変形し電極パターン4との接触面積を増やしながら電極パターン4と接続する。この工程では、回路基板3に対して上方からの応力が殆ど加わらないため回路基板3のたわみが大きくなることはない。
【0017】
なお、バンプ2と電極パターン4との接続に際して、半導体チップ1と回路基板3の一方、あるいは双方を加熱することによりバンプ2の塑性変形をより容易にしバンプ2と電極パターン4の接続強度を強固にすることができる。
さらに、バンプと電極パターンとの接続強度をより強固にするため、バンプの中心と電極パターンの中心が一致する方向へ向けて水平方向に半導体チップを移動させる際、半導体チップに超音波を印加することができる。超音波振動の振幅は通常0.2μm から2μm 程度の大きさに設定される。径15μm 程度の微細バンプを有する半導体チップでは、この振動振幅はバンプ径に対して無視できない大きさとなり、バンプと電極パターンの接触面積に対しても大きな影響を与える場合が生じる。この問題は、微細バンプを有する半導体チップに対して図1(c) に矢印7で示したように、超音波振動の振動方向を半導体チップの移動方向6に対して垂直な方向へ設定することにより回避できる。
【0018】
次に、図2(a) 〜(c) は上述した実施例の変形例を説明する図であり、図1と同一のものには同一番号を付してある。まず、図2(a) に見られるように、バンプ2と電極パターン4が向かい合うように半導体チップ1と回路基板3を離間して対向させ、この状態で上方から見てバンプ2と電極パターン4が部分的に重なる範囲内でバンプ2と電極パターン4の中心を水平方向にずらせて位置合わせする。ついで、図2(b) に示したように、半導体チップ1に下向きの荷重を印加して下方へ移動させ回路基板3に押圧する。ついで、バンプ2の中心と電極パターン4の中心が一致する方向へ向けて斜め下方向に半導体チップ1を移動させバンプ2に塑性変形を生じさせることによりバンプ2と電極パターン4の接触面積を増やしてバンプ2と電極パターン4を接続する。これにより先の実施例と同様な効果を得ることができる。先の実施例と同様に、この実施例においても加熱処理、超音波処理あるいはその両方の処理を行うことにより接続強度をより強固にすることができる。
【0019】
また、上述したいずれの実施例においても、水平面内において半導体チップを移動させる方向は、以下のように半導体チップのバンプ配列に応じて異なる方向へ設定される。
図3は半導体チップ1と回路基板3を対向させた状態を示す平面図である。バンプ2及び電極パターン4の一部は半導体チップ1を上方から見て透視した状態で示されている。
【0020】
図3(a) は半導体チップ1の2辺にバンプ2が配列されている場合であり、半導体チップ1を図中示した矢印方向へ移動させることにより全てのバンプの中心をそれぞれ対応する電極パターンの中心に近づけることができる。図3(b) は半導体チップ1の4辺にバンプ2が配列されている場合であり、半導体チップ1を図中矢印で示した斜め上方へ移動させることにより全てのバンプの中心をそれぞれ対応する電極パターンの中心に近づけることができる。
【0021】
【発明の効果】
以上のように本発明によれば、フリップチップ実装に際してバンプと電極パターンとの接続強度を低下させることなく半導体チップと回路基板間のギャップを保持することができるので、フリップチップ実装の低コスト化を図り且つ信頼性を向上させる上で有益である。
【図面の簡単な説明】
【図1】 本発明の実施例を説明する図(その1) 。
【図2】 本発明の実施例を説明する図(その2)。
【図3】 本発明の実施例を説明する平面図。
【図4】 従来例を説明する断面図(その1) 。
【図5】 従来例を説明する断面図(その2) 。
【図6】 従来例の問題点を説明する断面図。
【符号の説明】
1 半導体チップ
2 バンプ
3 回路基板
4 電極パターン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for mounting a semiconductor chip on a circuit board at a high density.
In recent years, with the spread of portable electronic devices such as mobile phones and digital cameras, the demand for miniaturization and cost reduction of electronic circuits used in them has become strict. In addition to the reduction in the number of components due to integration, there is a need for further progress in technology for high-density mounting of semiconductor chips on which circuit patterns are formed at low cost.
[0002]
[Prior art]
A flip chip method is known as a method of mounting a semiconductor chip on a circuit board at a high density. 4 (a) and 4 (b) are cross-sectional views for explaining a conventional flip chip method. In the figure, a large number of bumps 2 for external connection are formed on the surface of the semiconductor chip 1, and electrode patterns 4 are formed on the circuit board 3 at positions corresponding to the bumps 2 of the semiconductor chip 1. ing. When giving priority to cost reduction of electronic equipment, an organic resin such as glass epoxy is used as the circuit board 3.
[0003]
First, as shown in FIG. 4A, the surface of the semiconductor chip 1 on which the bumps 2 are formed is opposed to the surface of the circuit board 3 on which the electrode pattern 4 is formed. The bump 2 and the electrode pattern 4 are aligned by moving the chip 1 in the horizontal direction. At the time of alignment, the semiconductor chip 1 is moved in a direction in which the center of the bump 2 and the center of the electrode pattern 4 are aligned so that the contact area between the bump 2 and the electrode pattern 4 is as large as possible.
[0004]
Next, as shown in FIG. 4B, a downward load is applied to the semiconductor chip 1 to move it in the direction of the arrow and press it against the circuit board 3. In addition to the downward load, heating and application of ultrasonic waves to the semiconductor chip 1 are performed as necessary. As a result, the bump 2 is connected to the electrode pattern 4. Then, the connection between the bump 2 and the electrode pattern 4 is stabilized by covering the vicinity of the connection region between the bump 2 and the electrode pattern 4 with a resin and then curing by heating.
[0005]
As described above, since the flip chip method can connect a large number of bumps to the electrode pattern at a time, it can be mounted with fewer man-hours than the wire bonding method, and the parasitic inductance at the connection point can be reduced. Is widely used.
As bumps formed on the semiconductor chip, stud bumps or plated bumps are used. The stud bump is formed by performing wire bonding using a wire made of gold or a gold alloy on an electrode pad on a semiconductor chip and then tearing the wire while heating. This is mainly used when the number of bumps formed on the same semiconductor chip is small or when the pitch between bumps is relatively large. Also, the plating bumps are formed by forming a resist opening pattern on the electrode pad and filling the opening with a plating material to form bumps, and the bump diameter can be determined by patterning, so it is finer than stud bumps. It is mainly used when the number of bumps is large or the pitch between bumps is small.
[0006]
In addition, attempts have been made to further reduce the cost of the mounting process by simplifying the flip chip method described above (see, for example, Patent Document 1). 5 (a) and 5 (b) are cross-sectional views illustrating a conventional simplified flip chip method. As shown in FIG. 5A, a thermosetting resin 5 is applied in advance so as to cover the electrode pattern 4 on the circuit board 3, and the surface of the circuit board 3 and the surface of the semiconductor chip 1 are made to face each other in this state. The electrode pattern 4 and the bump 2 are aligned as in the example described in FIG. Then, as shown in FIG. 5B, when a downward load is applied to the semiconductor chip 1 and pressed against the circuit board 3, the bump 2 pushes away the thermosetting resin 5 and is connected to the electrode pattern 4. become. Thereafter, the connection between the bump 2 and the electrode pattern 4 is stabilized by heat curing the resin.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 9-97816 (page 4-5, FIG. 2)
[0008]
[Problems to be solved by the invention]
The flip chip method described above has an advantage that a semiconductor chip having a large number of bumps can be mounted with a small number of man-hours, but the following is the case when a soft resin is used as a circuit board material. Problems arise.
FIG. 6 is a cross-sectional view for explaining the problems of the conventional flip chip method. When a downward load is applied to the semiconductor chip 1 and pressed against the circuit board 3, local stress occurs in the circuit board 3 due to the stress at the time of pressing, and the bump 2 sinks into the circuit board 3. The gap between the circuit boards 3 is narrowed. As a result, the surface of the semiconductor chip 1 may be in direct contact with the electrode pattern 4 as shown in FIG. This causes damage to the circuit pattern formed on the surface of the semiconductor chip 1. Further, as described above, when the gap between the semiconductor chip 1 and the circuit board 3 is narrowed, the fluidity of the resin in the gap is lowered, so that the gas contained in the resin is not sufficiently discharged during the heat curing. Voids remain in the resin in the gap. Or even if it covers with resin after flip chip connection, since the quantity of resin with which a gap is filled decreases, the connection strength of a bump and an electrode pattern falls. All of these phenomena cause a decrease in the reliability of the flip chip system.
[0009]
In maintaining the gap between the semiconductor chip and the substrate during flip chip mounting, (1) a method of reducing the downward load applied to the semiconductor chip to suppress the deflection of the circuit board, and (2) the semiconductor chip in advance. A method of forming a tall bump, and (3) a method of using hard quartz glass or the like instead of a glass epoxy resin that is easily bent as a material of a circuit board are conceivable. However, in the method (1), the contact between the bump and the electrode pattern is insufficient, and there is a possibility that the connection strength is lowered. In addition, when using stud bumps in the method of (2), it is difficult to make the bump diameter larger than the wire diameter, so it is difficult to form a tall bump when the wire diameter is reduced by miniaturization of the bump, When plating bumps are used, it is necessary to make the plating thicker, resulting in higher costs. Further, the method (3) has a problem that the substrate cost increases.
[0010]
SUMMARY OF THE INVENTION Accordingly, the present invention has an object to improve the reliability of flip chip connection by maintaining a gap between the semiconductor chip and the circuit board by a low-cost and simple method when the semiconductor chip is flip-chip connected to the circuit board. .
[0011]
[Means for Solving the Problems]
The present invention for solving the above problems, a semiconductor chip formed of a plurality of bumps, in the manufacturing method of a semiconductor device to be connected by face-down bonding the formed circuit board electrode pattern corresponding to the bumps, each said The bumps and the electrode patterns are located within a range in which the bumps and the electrode patterns partially overlap each other when viewed from above in a state where the semiconductor chip and the circuit board are spaced apart from each other so that the electrode patterns face each other. the center and the center of each said electrode pattern aligned shifted horizontally, then by moving the semiconductor chip downwardly pressed against the circuit board is brought into contact with each said bump and each said electrode patterns, then, the semiconductor chip, is moved horizontally toward the direction in which the center and the center of each said electrode pattern of each said bump is matched, each on a side surface of each said electrode pattern By pressing the bump, to connect each said bump while causing plastic deformation in each said bump to each said electrode pattern.
[0012]
In the above configuration, the semiconductor chip is moved obliquely downward in a direction in which the center of the bump and the center of the electrode pattern coincide.
In the above configuration, the semiconductor chip is moved while applying an ultrasonic wave in a direction in which the center of the bump and the center of the electrode pattern coincide.
Further, in the above configuration, the vibration direction of the ultrasonic wave is set to a direction perpendicular to the moving direction of the semiconductor chip.
[0013]
In the above configuration, the bump is connected to the electrode pattern in a state where a resin is previously interposed between the semiconductor chip and the circuit board.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
1 (a) to 1 (c) are diagrams for explaining an embodiment of the present invention. On the left side of each figure, there is a cross-sectional view taken along line AA when the semiconductor chip 1 is arranged facing a circuit board 3 made of glass epoxy. It is shown. Bumps 2 made of gold or a gold alloy are formed on the surface of the semiconductor chip 1, and electrode patterns 4 made of gold-plated copper are formed on the surface of the circuit board 3, respectively. Further, on the right side of each figure, a plan view showing the arrangement positions of the bumps 2 and the electrode patterns 4 when viewed from above is shown.
[0015]
First, as seen in FIG. 1 (a), the semiconductor chip 1 and the circuit board 3 are spaced apart from each other so that the bump 2 and the electrode pattern 4 face each other, and in this state, the bump 2 and the electrode pattern 4 are viewed from above. In the range where the two overlap, the centers of the bump 2 and the electrode pattern 4 are shifted in the horizontal direction and aligned. Next, as shown in FIG. 1B, a downward load is applied to the semiconductor chip 1 to move it downward and press it against the circuit board 3. Since the centers of the bump 2 and the electrode pattern 4 are shifted, the contact area between the bump 2 and the electrode pattern 4 at the time of pressing is small, and as a result, the stress applied to the circuit board 3 is small. Therefore, the deflection of the circuit board 3 is reduced, and the gap between the semiconductor chip 1 and the circuit board 3 can be widened as compared with the conventional case.
[0016]
Next, as indicated by an arrow 6 in FIG. 1C, the semiconductor chip 1 is moved in the horizontal direction in a direction in which the center of the bump 2 and the center of the electrode pattern 4 coincide. As a result, the bump 2 presses the side surface of the electrode pattern 4 and plastically deforms to increase the contact area with the electrode pattern 4 and connect to the electrode pattern 4. In this step, since the stress from above is hardly applied to the circuit board 3, the deflection of the circuit board 3 does not increase.
[0017]
When the bump 2 and the electrode pattern 4 are connected, one or both of the semiconductor chip 1 and the circuit board 3 are heated so that the plastic deformation of the bump 2 is facilitated and the connection strength between the bump 2 and the electrode pattern 4 is increased. Can be.
Furthermore, in order to further strengthen the connection strength between the bump and the electrode pattern, ultrasonic waves are applied to the semiconductor chip when the semiconductor chip is moved in the horizontal direction toward the direction in which the center of the bump and the center of the electrode pattern coincide. be able to. The amplitude of the ultrasonic vibration is usually set to about 0.2 μm to 2 μm. In a semiconductor chip having fine bumps with a diameter of about 15 μm, the vibration amplitude is not negligible with respect to the bump diameter, and the contact area between the bump and the electrode pattern may be greatly affected. This problem is that the vibration direction of ultrasonic vibration is set to a direction perpendicular to the moving direction 6 of the semiconductor chip as shown by an arrow 7 in FIG. Can be avoided.
[0018]
Next, FIGS. 2A to 2C are diagrams for explaining modifications of the above-described embodiment, and the same components as those in FIG. 1 are denoted by the same reference numerals. First, as shown in FIG. 2 (a), the semiconductor chip 1 and the circuit board 3 are spaced apart from each other so that the bump 2 and the electrode pattern 4 face each other. In this state, the bump 2 and the electrode pattern 4 are viewed from above. In the range where the two overlap, the centers of the bump 2 and the electrode pattern 4 are shifted in the horizontal direction and aligned. Next, as shown in FIG. 2B, a downward load is applied to the semiconductor chip 1 to move it downward and press it against the circuit board 3. Next, the contact area between the bump 2 and the electrode pattern 4 is increased by moving the semiconductor chip 1 obliquely downward in a direction in which the center of the bump 2 and the center of the electrode pattern 4 coincide with each other to cause plastic deformation of the bump 2. Then, the bump 2 and the electrode pattern 4 are connected. As a result, the same effect as in the previous embodiment can be obtained. As in the previous embodiment, the connection strength can be further strengthened in this embodiment by performing heat treatment, ultrasonic treatment, or both.
[0019]
In any of the above-described embodiments, the direction in which the semiconductor chip is moved in the horizontal plane is set to a different direction according to the bump arrangement of the semiconductor chip as follows.
FIG. 3 is a plan view showing a state in which the semiconductor chip 1 and the circuit board 3 are opposed to each other. A part of the bump 2 and the electrode pattern 4 is shown as seen through the semiconductor chip 1 when viewed from above.
[0020]
FIG. 3 (a) shows a case where bumps 2 are arranged on two sides of the semiconductor chip 1, and by moving the semiconductor chip 1 in the direction of the arrow shown in the figure, the electrode patterns corresponding to the centers of all the bumps are respectively shown. Can be close to the center of FIG. 3B shows a case where bumps 2 are arranged on four sides of the semiconductor chip 1, and the semiconductor chip 1 is moved obliquely upward as indicated by an arrow in the figure to correspond to the centers of all the bumps. It can be brought closer to the center of the electrode pattern.
[0021]
【The invention's effect】
As described above, according to the present invention, since the gap between the semiconductor chip and the circuit board can be maintained without lowering the connection strength between the bump and the electrode pattern in flip chip mounting, the cost of flip chip mounting can be reduced. This is useful for improving reliability and improving reliability.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining an embodiment of the present invention (part 1);
FIG. 2 is a diagram for explaining an embodiment of the present invention (part 2);
FIG. 3 is a plan view illustrating an embodiment of the present invention.
FIG. 4 is a cross-sectional view for explaining a conventional example (part 1).
FIG. 5 is a sectional view for explaining a conventional example (part 2).
FIG. 6 is a cross-sectional view illustrating a problem of a conventional example.
[Explanation of symbols]
1 Semiconductor chip 2 Bump 3 Circuit board 4 Electrode pattern

Claims (4)

複数のバンプの形成された半導体チップを、各バンプに対応した電極パターンの形成された回路基板にフェイスダウンボンディングにより接続する半導体装置の製造方法において、
該バンプと該電極パターンが向かい合うように該半導体チップと該回路基板を離間して対向させた状態で、上方から見て該バンプと該電極パターンが部分的に重なる範囲内で該バンプの中心と該電極パターンの中心を水平方向にずらして位置合わせし、
ついで、該半導体チップを下方向に移動させて該回路基板に押圧し、該バンプと該電極パターンを接触させ、
ついで、該半導体チップを、該バンプの中心と該電極パターンの中心が一致する方向へ向けて水平に移動させて、該電極パターンの側面に該バンプを押圧することにより、該バンプに塑性変形を生じさせながら該バンプを該電極パターンに接続することを特徴とする半導体装置の製造方法。
In a semiconductor device manufacturing method of connecting a semiconductor chip formed with a plurality of bumps to a circuit board on which an electrode pattern corresponding to each bump is formed by face-down bonding,
In a state where each of the bumps and the respective said electrode pattern are opposed spaced apart the semiconductor chip and the circuit board so as to face each in each said bump and each said electrode pattern as viewed from above in a range partially overlap The center of the bump and the center of each electrode pattern are shifted and aligned in the horizontal direction,
Then, by moving the semiconductor chip in a downward direction to press the circuit board is brought into contact with each said bump and each said electrode patterns,
Then, the semiconductor chip, by the center is moved horizontally toward the matching direction of the center and each of the electrode pattern of each said bump to press each said bump on the side surface of each of the electrode patterns, each said the method of manufacturing a semiconductor device characterized by connecting each said bump while causing plastic deformation to the bump on each said electrode pattern.
該半導体チップを、各該バンプの中心と各該電極パターンの中心が一致する方向へ向けて超音波を印加しつつ移動させることを特徴とする請求項1に記載の半導体装置の製造方法。2. The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor chip is moved while applying an ultrasonic wave in a direction in which the center of each bump and the center of each electrode pattern coincide with each other. 該超音波の振動方向を、該半導体チップの移動方向に対し垂直な方向にすることを特徴とする請求項2記載の半導体装置の製造方法。3. The method of manufacturing a semiconductor device according to claim 2, wherein the vibration direction of the ultrasonic wave is set to a direction perpendicular to the moving direction of the semiconductor chip. 該半導体チップと該回路基板間に予め樹脂を介在させた状態で、該バンプを該電極パターンに接続することを特徴とする請求項1乃至3のいずれかに記載の半導体装置の製造方法。4. The method of manufacturing a semiconductor device according to claim 1, wherein the bump is connected to the electrode pattern in a state where a resin is previously interposed between the semiconductor chip and the circuit board.
JP2003097450A 2003-03-31 2003-03-31 Manufacturing method of semiconductor device Expired - Fee Related JP4155080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003097450A JP4155080B2 (en) 2003-03-31 2003-03-31 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003097450A JP4155080B2 (en) 2003-03-31 2003-03-31 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2004304082A JP2004304082A (en) 2004-10-28
JP4155080B2 true JP4155080B2 (en) 2008-09-24

Family

ID=33409233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003097450A Expired - Fee Related JP4155080B2 (en) 2003-03-31 2003-03-31 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4155080B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465572A (en) * 2013-09-12 2015-03-25 日月光半导体制造股份有限公司 Packaging structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4636850B2 (en) * 2004-10-29 2011-02-23 富士通株式会社 Electronic component mounting method
JP2010118534A (en) * 2008-11-13 2010-05-27 Mitsubishi Electric Corp Semiconductor device and method of manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465572A (en) * 2013-09-12 2015-03-25 日月光半导体制造股份有限公司 Packaging structure
CN104465572B (en) * 2013-09-12 2017-06-06 日月光半导体制造股份有限公司 Encapsulating structure

Also Published As

Publication number Publication date
JP2004304082A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
US10297582B2 (en) BVA interposer
KR100625632B1 (en) Semiconductor device and method of manufacturing the semiconductor device
US7002254B2 (en) Integrated circuit package employing flip-chip technology and method of assembly
US7161242B2 (en) Semiconductor device, semiconductor device substrate, and manufacturing method thereof that can increase reliability in mounting a semiconductor element
JP3765952B2 (en) Semiconductor device
US20090071699A1 (en) Packaging substrate structure and method for manufacturing the same
US7262510B2 (en) Chip package structure
US20110115081A1 (en) Multilayer semiconductor device and electronic equipment
WO2007083351A1 (en) Semiconductor device and method for manufacturing same
JP2002093946A (en) Semiconductor device and mounting structure of semiconductor device
JP2001284381A (en) Semiconductor device and method of manufacture
US20090014852A1 (en) Flip-Chip Packaging with Stud Bumps
US20040156177A1 (en) Package of electronic components and method for producing the same
US7410827B2 (en) Semiconductor device and method of fabricating the same, circuit board, and electronic instrument
JP3654116B2 (en) Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus
US7276800B2 (en) Carrying structure of electronic components
US10276465B2 (en) Semiconductor package assembly
JP4155080B2 (en) Manufacturing method of semiconductor device
KR101141209B1 (en) Single layered printed circuit board and manufacturing method thereof
JP2005340393A (en) Small-sized mount module and manufacturing method thereof
JP3851585B2 (en) Connection method of bare chip semiconductor element to printed wiring board
EP1848029A1 (en) Carrying structure of electronic components
WO2007055263A1 (en) Semiconductor device
JP2020136624A (en) Semiconductor device
KR20240032441A (en) Semiconductor package and method of manufacturing the semiconductor package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees