JP4149836B2 - Dihydroxybenzoate derivative, process for producing the same and use thereof - Google Patents

Dihydroxybenzoate derivative, process for producing the same and use thereof Download PDF

Info

Publication number
JP4149836B2
JP4149836B2 JP2003050508A JP2003050508A JP4149836B2 JP 4149836 B2 JP4149836 B2 JP 4149836B2 JP 2003050508 A JP2003050508 A JP 2003050508A JP 2003050508 A JP2003050508 A JP 2003050508A JP 4149836 B2 JP4149836 B2 JP 4149836B2
Authority
JP
Japan
Prior art keywords
oregano
dihydroxybenzoate
dihydroxybenzoate derivative
derivative
antioxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003050508A
Other languages
Japanese (ja)
Other versions
JP2004256472A (en
Inventor
英征 知地
恵 松本
英幸 松浦
智香子 柳谷
みどり 天野
純也 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003050508A priority Critical patent/JP4149836B2/en
Publication of JP2004256472A publication Critical patent/JP2004256472A/en
Application granted granted Critical
Publication of JP4149836B2 publication Critical patent/JP4149836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Non-Alcoholic Beverages (AREA)
  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ジヒドロキシベンゾエート誘導体、その製造方法、およびその利用に関する。
【0002】
【従来の技術】
従来、食品や飲料などの酸化劣化を防止するために,抗酸化機能を有する種々の酸化防止剤が使用されている。酸化防止剤としては、例えば、アチルヒドロキシトルエン,エリソルビン酸,エリソルビン酸ナトリウムなどの化学合成抗酸化剤や、天然ビタミンEなどの食品由来の抗酸化剤(抗酸化物質)をあげることができるが、近年、食品由来の抗酸化物質に対する需要が増加している。
そこで、食品由来の抗酸化物質に関する様々な研究開発が試みられており、その結果、例えばブドウ種子抽出物、緑茶抽出物、シソ科に属する植物であるローズマリー、セージなどの粉末や抽出物が抗酸化物質として利用できることが明らかにされている(非特許文献1および特許文献1参照)。
【0003】
【非特許文献1】
Nakatani,N.,Kikuzake,H.,A new antioxidative glucoside isolated from oregano(Origanum vulgare),Agric.Biol.Chem.,51,2727-2732 (1987)
【特許文献1】
特開昭62−26293号公報
【0004】
また、生体内の活性酸素は、癌,炎症,胃潰瘍等、多くの症状の原因であることが解明されつつある。さらに、活性酸素は、血液の低密度リポ蛋白質(LDL)の酸化を促進し、上記の病気と共に心筋梗塞や虚血性心疾患、動脈硬化症などの病気を引き起こす原因でもあることが分かっている。
そこで、特に生体への安全性の点でも安心な植物由来物質において、生体内で抗酸化作用を発揮することにより,活性酸素を除去する(生体抗酸化作用を示す)成分の解明が進められている。
【0005】
しかしながら、これまでは、十分な生体抗酸化作用を示す物質が見出されていない。また、上述の食品由来の抗酸化物質が、生体抗酸化作用をも有するものであれば、食品、飲料、化粧品、医薬品などに含有させることにより、劣化防止と同時に病気を予防または治療する機能をも付与できるが、そのような物質の解明は現状では進んでいない。
【0006】
【発明が解決しようとする課題】
従って、本発明は、優れた抗酸化機能を有し、かつ、生体抗酸化作用をも有する植物由来物質を解明するとともに、当該植物由来物質を効率よく抽出する方法を解明し、さらに、当該植物由来物質を含むことにより成分劣化や生体抗酸化作用を発揮する食品や飲料を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、上述の目的を達成すべく鋭意研究を進める過程で、シソ科に属する植物で香辛料として用いられているオレガノ(Origanum Vulgare)に着目し、オレガノの地上部から新規のジヒドロキシベンゾエート誘導体を抽出分離することに成功した。このジヒドロキシベンゾエート誘導体は、オレガノという天然の植物に由来するので、取り扱いが平易であり、安全性が高く、副作用の心配もない。また、オレガノ葉1g中に約3.8mgとに比較的大量に含有されているので、工業的利用に適していることはもちろん、代表的な植物由来の抗酸化物質であるカテキン,ケルセチン,ルチン等とほぼ同程度の抗酸化活性を示し、しかも胃粘膜障害抑制作用、血清コレステロール上昇抑制作用等の高い生体抗酸化作用をも示すことを見出し、本発明に到達した。
【0008】
請求項1に記載の本発明は、オレガノ( Origanum Vulgare )の地上部から含水有機溶媒で抽出することを特徴とする下記化学式(A)で表されるジヒドロキシベンゾエート誘導体の製造方法である。
【0009】
【化2】

Figure 0004149836
Figure 0004149836
【0010】
請求項2に記載の本発明は、請求項1記載のジヒドロキシベンゾエート誘導体を有効成分として含有することを特徴とする胃粘膜障害抑制剤である。
請求項に記載の本発明は、請求項1記載のジヒドロキシベンゾエート誘導体を有効成分として含有することを特徴とする血清コレステロール上昇抑制剤である。
【0011】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明のジヒドロキシベンゾエート誘導体は、化学式(A)で表されるものであり、オレガノ(Origanum Vulgare)から抽出される成分の一つである。オレガノは、先述の通りシソ科に属する植物で香辛料として用いられている植物である。オレガノ,グリークオレガノ,シリアンオレガノ,ゴールデンオレガノまたは、オレガノ品種と多品種の交配種などの品種があるが、これらに限定されるものではなく、近縁種にも含まれている。
【0012】
本発明のジヒドロキシベンゾエート誘導体は、このようなオレガノの植物体の地上部、特に葉、花、茎、芽等に含まれている。例えば葉には、1g中に約3.8mgと比較的豊富に含まれている。
従って、本発明のジヒドロキシベンゾエート誘導体は、オレガノから抽出製造することができるが、上記化学式(A)で表されるものであれば由来や製造方法は限定されず、オレガノ以外の天然の植物、微生物、動物から抽出されたものであっても、また、合成であっても良い。
【0013】
オレガノの地上部から本発明のジヒドロキシベンゾエート誘導体を効率よく製造するには、オレガノの地上部から含水有機溶媒で抽出する方法が好ましい。
【0014】
請求項に係る本発明の製造方法は、オレガノの地上部から含水有機溶媒で抽出することを特徴とするものである。
ここで、オレガノの地上部とは、先述の通り葉、茎、芽等が例示されるが、乾燥による粉末化などの加工を施し、抽出を容易にすることができる点で、葉の使用が適している。
また、含水有機溶媒としては、アセトン,エタノール,ブタノール,アセトニトリル,テトラヒドロフランなど有機溶媒の含水物を用いることができる。
抽出の際の条件は、使用目的や使用濃度に応じて、所望の純度のジヒドロキシベンゾエート誘導体を得ることができるように適宜定めることができる。例えば室温(15〜30℃)にて1週間以上、通常は1週間〜10日間とすることができる、また、各種カラムを用いた吸着クロマトグラフィー、ゲル濾過クロマトグラフィー、逆相クロマトグラフィー等の各種クロマトグラフィーを単独で、または組み合わせて抽出することもできる。
【0015】
請求項に係る本発明の製造方法の具体的な例を示すと、例えば、オレガノの地上部(例えば、オレガノ乾燥葉)を含水有機溶媒(例えば、含水メタノール溶液)を用いて抽出後、抽出液と残渣を濾紙やガラスフィルター等で分離し,濾液を減圧濃縮する。必要に応じて、得られた濃縮液を有機溶媒可溶部と水可溶部に分配し、水可溶部を濃縮して適当な有機溶媒濃度(例えば、70〜95%)となるように調製する。得られた溶液を−40〜−10℃で静置し、沈殿が生じた場合は,濾紙やガラスフィルター等を用いて,除去する。
【0016】
こうして得られるオレガノの抽出物(濃縮液)は、本発明のジヒドロキシベンゾエート誘導体を含み、抗酸化活性および生体抗酸化作用を示すので、このまま食品や飲料に添加することができる。
しかし、使用目的や使用濃度によっては、さらに純度の高い高度に精製された化合物を得たい場合もある。その場合、例えば、上述の抽出を第一段階として、所望の純度に応じて以下の工程を続けて行うことにより、各工程を経るごとに純度の高い本発明のジヒドロキシベンゾエート誘導体を得ることができる。
【0017】
すなわち、第二段階としては、上述の第一段階で得られたオレガノ抽出物(濃縮液)を、活性炭やダイヤイオンHP−20(三菱化学)等を担体に用いた吸着カラムクロマトグラフィーに供する。吸着物質を含水有機溶剤(例えば、含水メタノール溶液)を用いて溶出し、抗酸化活性を指標として,活性の高い溶出分画を得る。
ここで、抗酸化活性の測定は、一般的な方法により行うことができるが、例えば、1,1-diphenyl-2-picrylhydrazyl(DPPH)ラジカルの消去能を指標にした方法(Yamaguchi,T.,Takamura,H.,Matoba,T.and Terao,J. ,HPLC method for evaluation of the free-radical scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl,Biosci.Biotechnol.Biochem.,62,1201-1204(1998))で行うことができる。
【0018】
第三段階として,第二段階で得られる溶出分画を、例えば、Sephadex LH-20(Amersham Biosciences社)等のカラムを用いたゲル濾過クロマトグラフィーに供して、含水有機溶媒(例えば、含水メタノール溶液)を用いて溶出し、抗酸化活性を指標として、活性の高い分画を得る。尚、抗酸化活性の測定については、上述したのと同様の方法を用いることができる。
【0019】
第四段階として,第二段階で得られる溶出分画を、逆相系中圧液体カラムクロマトグラフィーに供する。カラムは、例えば、Lobar LiChroprep RP-18 (Merk社)等を使用することができる。含水有機溶媒(例えば、メタノール:水:酢酸混液)を用いて溶出し、抗酸化活性を指標として、活性の高い分画を得る。尚、抗酸化活性の測定については、上述したのと同様の方法を用いることができる。
【0020】
さらに、第五段階として、第四段階で得られる溶出分画を濃縮し、逆相高圧液体カラムクロマトグラフィーに供する。カラムは、例えば、Inertsil ODS カラム(GL Science社)等を使用することができる。移動層として含水有機溶媒(例えば、メタノール:水:酢酸混液)を用いて溶出し、抗酸化活性を指標として、活性の高い溶出区を得る。尚、抗酸化活性の測定については、上述したのと同様の方法を用いることができる。
【0021】
第五段階終了後、得られる溶出分画を所望により濃縮すると、純度の高い、高度に精製された白色粉末状の本発明のジヒドロキシベンゾエート誘導体を得ることができる。
尚、所望の純度のオレガノ抽出物が得られた等の理由で第二、第三、第四および第五段階のいずれかで抽出を終了する場合も、各段階で得られる溶出分画を所望により濃縮して、オレガノ抽出物を得ることができる。
【0022】
このようにして、請求項に係る本発明の製造方法により得られる本発明のジヒドロキシベンゾエート誘導体や、当該化合物を含むオレガノの抽出物は、代表的な植物由来の抗酸化物質であるカテキン,ケルセチン,ルチン等とほぼ同程度の抗酸化活性を示す。従って、本発明のジヒドロキシベンゾエート誘導体、または当該化合物を含むオレガノの抽出物を含有することを特徴とする抗酸化剤として利用することができる。
【0023】
また、請求項に係る本発明の製造方法により得られる本発明のジヒドロキシベンゾエート誘導体や、当該化合物を含むオレガノの抽出物は、胃粘膜障害抑制作用、血清コレステロール上昇抑制作用等の高い生体抗酸化作用を示す。従って、本発明のジヒドロキシベンゾエート誘導体、または当該化合物を含むオレガノの抽出物を含有することを特徴とする胃粘膜障害抑制剤や、血清コレステロール上昇抑制剤としても利用することが可能である。
【0024】
さらに、本発明の抗酸化剤、胃粘膜障害抑制剤、または血清コレステロール上昇抑制剤を添加したことを特徴とする食品もしくは飲料として利用することが可能である。
【0025】
【実施例】
以下に実施例を示し、本発明を具体的に示す。しかし、本発明の範囲は、これらの実施例に限定されるものではない。
【0026】
実施例1〔ジヒドロキシベンゾエート誘導体の抽出分離〕
オレガノ乾燥葉(100g)を含水メタノール溶液(メタノール:水=7:3)を用いて抽出した。抽出液を濾紙を用い濾過し、濾液を減圧下、濃縮した。得られた濃緑色シラップを、有機溶媒(酢酸エチル)可溶部と水可溶部とに分配した。
有機溶媒(酢酸エチル)可溶部と水可溶部とについて、抗酸化活性を調べた。すなわち、所定の濃度の1,1-diphenyl-2-picrylhydrazyl(DPPH)ラジカルエタノール溶液に抽出物を加え、20分後の溶液の脱色の度合いを、吸光度を測定することで評価した。脱色能が高い分画に抗酸化物質が含まれていると判断した。尚、以下の工程における抗酸化活性の測定も、同様の方法により行った。
その結果、両可溶部に抗酸化活性が観察されたが、水可溶部において、より強い抗酸化活性が観察された。
【0027】
そこで、活性の強い水可溶部について再び精査した。すなわち、得られた水可溶部を濃縮し、80%エタノール溶液になるように調製し、−25℃の条件で静置した。この工程により沈殿が生じたので、濾紙を用いて沈殿を除去し、得られた濾液を濃縮した。
濃縮後、得られたシラップをダイヤイオンHP−20(三菱化学)を担体に用いたカラムクロマトグラフィーに供した。水および含水メタノール溶液(メタノール:水=7:3)を用いて溶出した。活性の確認された溶出区を濃縮し、シラップを得た。
【0028】
得られたシラップを、Sephadex LH-20(Amersham Biosciences社)を用いたカラムクロマトグラフィーに供した。含水メタノール溶液(メタノール:水=7:3)を用いて溶出し、抗酸化活性の確認された溶出区を濃縮しシラップを得た。このシラップを、Lobar LiChroprep RP-18(Merk社)を用いた中圧液体カラムクロマトグラフィーに供した。メタノール:水:酢酸=50:50:0.1の溶液を用い溶出し、抗酸化活性の確認された溶出区を濃縮しシラップを得た。
【0029】
続いて、このシラップを、高圧液体カラムクロマトグラフィー(HPLC)に供した。このとき、Inertsil ODS カラム(GL Science社)を使用し、UV吸収(210nm)を行い、移動層には、メタノール:水:酢酸=80:20:0.1溶液を用いた。
抗酸化活性の確認された溶出区を濃縮したところ、化学式(A)で表されるジヒドロキシベンゾエート誘導体が、白色粉末状で270mg得られた。得られた化合物の化学的性質は、以下の通りである。
【0030】
〔化学式(A)で表されるジヒドロキシベンゾエート誘導体の化学的性質〕
Mp 111-116 oC;
[α]D 25 40.2o (c 0.2, MeOH);
FABMS (positive, matrix: glycerol) m/z (rel. int.): 477 [M+K]+ (40);
FABMS (negative, matrix: TEA) m/z (rel. int.): 437 [M-H]- (1.8);
1H-NMR (500 MHz, CD3OD):δ 7.44 (2H, m, H-2, -6), 7.18 (1H, d, J= 8.3 Hz, H-5'), 6.94 (1H, d, J= 2.0 Hz, H-2'), 6.86 (1H, dd, J= 8.3, 2.0 Hz, H-6'), 6.79 (1H, d, J= 8.5 Hz, H-5), 5.18 (2H, s, H-7'), 4.77 (1H, d, J= 7.4 Hz, H-1''), 3.89 (1H, dd, J= 11.8, 1.5 Hz, H-6a''), 3.71 (1H, dd, J= 11.8, 5.0 Hz, H-6b''), 3.50-3.35 (4H, m);
1H-NMR (500 MHz, DMSO-d6):δ 7.40 (1H, br. s), 7.36 (1H, br. d, J= 8.1 Hz), 7.14 (1H, d, J= 8.2 Hz), 6.92 (1H, s), 6.84 (2H, d, J= 8.4 Hz), 5.16 (2H, s), 4.72 (1H, br. d, J= 6.9 Hz), 3.74 (1H, d, J= 11.5 Hz), 3.50 (1H, m), 3.42- 3.22 (4H, m);
13C-NMR (67.5 MHz, CD3OD):δ 167.8 (C-7), 151.6 (C-4), 148.2 (C-3'), 146.5 (C-4'), 146.0 (C-3), 133.3 (C-1'), 123.6 (C-6), 122.5 (C-1), 120.7 (C-6'), 118.6 (C-5'), 117.3 (C-2), 116.8 (C-2'), 115.8 (C-5), 104.1 (C-1''), 78.3 (C-3''), 77.5 (C-5''), 74.8 (C-2''), 71.2 (C-4''), 67.0 (C-7'), 62.4 (C-6'').
【0031】
実施例2〔ラジカル捕捉能〕
実施例1で得られたジヒドロキシベンゾエート誘導体のDPPH(1,1-diphenyl-2-picrylhydrazyl)ラジカル捕捉能(ラジカル消去活性)を測定し、抗酸化活性を評価した。
すなわち、一定量の試料を200μlのエタノールに溶解し、100mM Tris-HCl buffer (pH 7.0)溶液を800μl加え、さらに、この溶液に1mlの500μM DPPHエタノール溶液を加えた。この試験溶液を暗所、室温で20分間放置し、一定量を用いてHPLCによりDPPHの減少量を下記の式でDPPHラジカル捕捉活性を評価した。
【0032】
【数1】
DPPHラジカル捕捉能=[(A−B)/A]×100(%)
A:コントロール(被検試料を入れない溶液)のDPPHのエリア面積
B:被検試料を加えた溶液でのDPPHのエリア面積
【0033】
一方、ジヒドロキシベンゾエート誘導体の代わりに、抗酸化物質(ラジカル消去物質)として広く知られているルチン、ケルセチンおよびロスマリン酸を用いたほかは同様にしてラジカル捕捉能を測定し、抗酸化活性を比較した。結果を図1に示す。
【0034】
図1から、実施例1で得られたジヒドロキシベンゾエート誘導体は、抗酸化物質(ラジカル消去物質)として広く知られているルチン、ケルセチンおよびロスマリン酸と同等或いはそれ以上のラジカル捕捉能を有し、優れた抗酸化活性を持つことが明らかとなった。
【0035】
実施例3〔胃粘膜におけるラジカル消去能〕
図2に示す手順に従い、実施例1で得られたジヒドロキシベンゾエート誘導体のラット胃粘膜におけるラジカル消去能を測定し、抗酸化活性を評価した。
すなわち、7週齢のウィスター系雄ラットを各群8匹ずつ、3群に分けて用いた。10日間25%カゼイン食で予備飼育を行い、一夜絶食後、第一の群(100mg/kg添加食群)には実施例1で得られたジヒドロキシベンゾエート誘導体を100mg/kg含有させたこと以外は予備飼育の際の飼料を、第二の群(300mg/kg添加食群)にはジヒドロキシベンゾエート誘導体を300mg/kg含有させた他は予備飼育の際と同様の飼料を、第三の群(無添加対照群)には予備飼育の際と同様の飼料(すなわち、ジヒドロキシベンゾエート誘導体を含有しない飼料)を、それぞれ強制経口投与した。その30分後に、100%エタノール(5ml/kg体重)を強制経口投与して酸化障害を誘発させ、60分経過後に胃を摘出し、胃粘膜の障害面積から胃粘膜面の障害程度を比較した。
図3に各群の胃粘膜面の障害面積を示すグラフを示す。
【0036】
図3から明らかなように、ジヒドロキシベンゾエート誘導体を投与した100mg/kg体重添加食群および300mg/kg体重添加食群では、無添加対照群に比べて、エタノール誘発酸化障害による胃粘膜の障害面積が有意に小さかった。
このことから、ジヒドロキシベンゾエート誘導体は、エタノールによる惹起された酸化ストレスを強く抑制することが明らかになった。
【0037】
実施例4〔血清コレステロール上昇抑制効果〕
脂質低下作用を示すラットを用いて、実施例1で得られたジヒドロキシベンゾエート誘導体の血清コレステロール上昇抑制効果を評価した。
7週齢のウィスター系雄ラットを各群6匹ずつ、2群に分けて用いた。8日間25%カゼイン食で予備飼育を行った後、第一の群(ジヒドロキシベンゾエート誘導体添加群)には実施例1で得られたジヒドロキシベンゾエート誘導体を0.5%、コレステロールを1.0%含有させたほかは予備飼育の際の飼料と同様の組成のコレステロール食を、第二の群(無添加対照群)にはジヒドロキシベンゾエート誘導体を含有しないこと以外はジヒドロキシベンゾエート誘導体添加群と同様の飼料(すなわち、ジヒドロキシベンゾエート誘導体を含有しない飼料)をそれぞれ投与し、ペアフィーディング法により3週間飼育した。飼育開始時および飼育3週目の血液を採取して血清コレステロール濃度を測定し、血清コレステロール上昇抑制量を算出し、比較を行った。
結果を図4に示す。
【0038】
図4から明らかなように、ジヒドロキシベンゾエート誘導体添加群は、無添加対照群に比べ投与3週目の血清コレステロール値の上昇を有意に抑制した。このことから、ジヒドロキシベンゾエート誘導体は、脂質低下作用を示すラットにおいて、血清コレステロール上昇抑制効果があることが明らかとなった。
【0039】
実施例5〔血清コレステロール上昇抑制効果〕
コレステロール無添加餌を給餌した場合の、実施例1で得られたジヒドロキシベンゾエート誘導体の血清コレステロール上昇抑制効果を評価した。
7週齢のSD系雄ラットを各群6匹ずつ、2群に分けて用いた。1週間25%カゼイン食で予備飼育を行った後、第一の群(ジヒドロキシベンゾエート誘導体添加群)には実施例1で得られたジヒドロキシベンゾエート誘導体を0.5%含有させたほかは予備飼育の際の飼料と同様の飼料を、第二の群(オレガノ抽出物添加群)には実施例1で得たシロップの凍結乾燥物(以下、オレガノ抽出物という。)を0.5%含有させた他は予備飼育の際の飼料と同様の飼料を、第三の群(無添加対照群)には予備飼育の際と同様の飼料(すなわち、ジヒドロキシベンゾエート誘導体を含有しない飼料)を、それぞれ投与し、2週間飼育した。飼育開始時、飼育1週目および2週目の血液を採取して血清コレステロール濃度を測定し、比較を行った。血清コレステロール濃度の経時的変化を図5に示す。尚、図5中、▲、●、○は、それぞれジヒドロキシベンゾエート誘導体添加群、オレガノ抽出物添加群、無添加対照群の結果を示す。
【0040】
図5から明らかなように、ジヒドロキシベンゾエート誘導体添加群は、無添加対照群やオレガノ抽出物添加群に比べ投与後2週間で血清コレステロール値の上昇を有意に抑制した。
このことから、ジヒドロキシベンゾエート誘導体は、コレステロール無添加餌を給餌した場合においても、血清コレステロール上昇抑制効果があることが明らかとなった。
【0041】
【発明の効果】
本発明によれば、優れた抗酸化機能を有し、かつ、生体抗酸化作用を有するジヒドロキシベンゾエート誘導体が提供される。
本発明のジヒドロキシベンゾエート誘導体は、従来から香辛料として利用されてきた天然の植物であるオレガノに由来するので、取り扱いが平易で、安全性が高く、副作用の心配もない。
また、本発明のジヒドロキシベンゾエート誘導体は、オレガノに比較的大量に含有されているので、工業的利用にも適している。
【0042】
さらに、本発明によれば、オレガノから簡便な操作で効率よく、使用目的等に応じた純度のジヒドロキシベンゾエート誘導体を製造することができる。
さらにまた、本発明のジヒドロキシベンゾエート誘導体は、代表的な植物由来の抗酸化物質であるカテキン,ケルセチン,ルチン等とほぼ同程度の抗酸化活性を示すので、酸化防止剤として利用できる。また、胃粘膜障害抑制作用、血清コレステロール上昇抑制作用等の高い生体抗酸化作用をも示すことから、脂質代謝改善、胃粘膜保護および生体フリーラジカル生成抑制の機能を有する新規な素材として、様々な食品,医薬品等に広く適用され、生活習慣病の効果的な予防などに利用されることが期待できる。
【図面の簡単な説明】
【図1】 各抗酸化物質のラジカル捕捉能を示す図である。
【図2】 実施例3〔胃粘膜におけるラジカル消去能〕の手順を示す図である。
【図3】 胃粘膜面の障害面積を示すグラフである。
【図4】 ジヒドロキシベンゾエート誘導体の血清コレステロール上昇抑制効果を示す図である。
【図5】 コレステロール無添加餌を給餌した場合の血清コレステロール濃度の経時的変化を示す図である。
【符号の説明】
図5中、▲、●、○は、それぞれジヒドロキシベンゾエート誘導体添加群、オレガノ抽出物添加群、無添加対照群の結果を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dihydroxybenzoate derivative, a production method thereof, and use thereof.
[0002]
[Prior art]
Conventionally, various antioxidants having an antioxidant function have been used to prevent oxidative degradation of foods and beverages. Examples of the antioxidant include chemical synthetic antioxidants such as acylhydroxytoluene, erythorbic acid and sodium erythorbate, and food-derived antioxidants (antioxidants) such as natural vitamin E. In recent years, demand for food-derived antioxidants has increased.
Therefore, various research and development related to antioxidants derived from foods have been attempted. As a result, for example, grape seed extract, green tea extract, rosemary, sage, etc. It has been clarified that it can be used as an antioxidant (see Non-Patent Document 1 and Patent Document 1).
[0003]
[Non-Patent Document 1]
Nakatani, N., Kikuzake, H., A new antioxidative glucoside isolated from oregano (Origanum vulgare), Agric. Biol. Chem., 51 , 2727-2732 (1987)
[Patent Document 1]
Japanese Patent Laid-Open No. 62-26293 [0004]
Moreover, it is being elucidated that the active oxygen in a living body is the cause of many symptoms such as cancer, inflammation, and gastric ulcer. Furthermore, it has been found that active oxygen promotes oxidation of low-density lipoprotein (LDL) in blood and causes diseases such as myocardial infarction, ischemic heart disease and arteriosclerosis together with the above-mentioned diseases.
Therefore, elucidation of the component that removes active oxygen (shows biological antioxidant action) by exerting antioxidant action in vivo, especially in plant-derived substances that are safe from the viewpoint of safety to living organisms, has been promoted. Yes.
[0005]
However, until now, no substance exhibiting sufficient biological antioxidant activity has been found. In addition, if the above-mentioned antioxidants derived from foods also have a biological antioxidant effect, they can be included in foods, beverages, cosmetics, pharmaceuticals, etc., to prevent or treat diseases at the same time as preventing deterioration. However, the elucidation of such substances is not progressing at present.
[0006]
[Problems to be solved by the invention]
Therefore, the present invention elucidates a plant-derived substance having an excellent antioxidant function and also has a biological antioxidant action, and elucidates a method for efficiently extracting the plant-derived substance. An object of the present invention is to provide foods and beverages that exhibit component deterioration and biological antioxidant action by containing a derived substance.
[0007]
[Means for Solving the Problems]
The inventors of the present invention focused on origanum (uliganum vulgare), which is used as a spice in plants belonging to the family Lamiaceae, in the course of advancing research to achieve the above-mentioned object, and from the above-ground part of oregano a novel dihydroxybenzoate. The derivative was successfully extracted and separated. Since this dihydroxybenzoate derivative is derived from a natural plant called oregano, it is easy to handle, has high safety, and has no side effects. Moreover, since it is contained in a relatively large amount of about 3.8 mg in 1 g of oregano leaves, it is suitable for industrial use, and of course, catechin, quercetin, rutin, which are representative plant-derived antioxidants. It has been found that it has almost the same level of antioxidative activity as the above, and also exhibits high biological antioxidative activity such as gastric mucosal disorder inhibiting activity and serum cholesterol elevation inhibiting activity.
[0008]
The present invention according to claim 1 is a method for producing a dihydroxybenzoate derivative represented by the following chemical formula (A), characterized in that extraction is carried out from the above-ground part of oregano ( Origanum Vulgare ) with a water-containing organic solvent .
[0009]
[Chemical 2]
Figure 0004149836
Figure 0004149836
[0010]
The present invention according to claim 2 is a gastric mucosal disorder inhibitor comprising the dihydroxybenzoate derivative according to claim 1 as an active ingredient .
A third aspect of the present invention is a serum cholesterol elevation inhibitor comprising the dihydroxybenzoate derivative according to the first aspect as an active ingredient .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The dihydroxybenzoate derivative of the present invention is represented by the chemical formula (A), and is one of the components extracted from oregano (Origanum Vulgare). As described above, oregano is a plant used as a spice in plants belonging to the family Lamiaceae. There are varieties such as oregano, greek oregano, syrian oregano, golden oregano or hybrids of oregano varieties and multiple varieties, but are not limited to these and are also included in related species.
[0012]
The dihydroxybenzoate derivative of the present invention is contained in the above-ground parts of such oregano plants, particularly leaves, flowers, stems, buds and the like. For example, a leaf is relatively abundant at about 3.8 mg per gram.
Therefore , the dihydroxybenzoate derivative of the present invention can be extracted and produced from oregano, but the origin and production method are not limited as long as it is represented by the chemical formula (A), and natural plants and microorganisms other than oregano are not limited. They may be extracted from animals or synthesized.
[0013]
In order to efficiently produce the dihydroxybenzoate derivative of the present invention from the above-ground portion of oregano, a method of extracting from the above-ground portion of oregano with a water-containing organic solvent is preferable.
[0014]
The production method of the present invention according to claim 1 is characterized by extracting from the above-ground part of oregano with a water-containing organic solvent.
Here, the above-ground part of oregano is exemplified by leaves, stems, buds, etc. as described above, but the use of leaves is possible in that the powder can be processed by drying to facilitate extraction. Is suitable.
As the water-containing organic solvent, a water-containing organic solvent such as acetone, ethanol, butanol, acetonitrile, or tetrahydrofuran can be used.
The conditions for the extraction can be appropriately determined according to the purpose of use and the concentration used so that a dihydroxybenzoate derivative having a desired purity can be obtained. For example, at room temperature (15 to 30 ° C.), it can be 1 week or longer, usually 1 week to 10 days, and various types such as adsorption chromatography using various columns, gel filtration chromatography, reverse phase chromatography, etc. Chromatography can be extracted alone or in combination.
[0015]
When the specific example of the manufacturing method of this invention which concerns on Claim 1 is shown, for example, after extracting the above-ground part (for example, dried oregano leaf) of oregano using a water-containing organic solvent (for example, water-containing methanol solution), extraction Separate the liquid and residue with filter paper or glass filter, and concentrate the filtrate under reduced pressure. If necessary, the obtained concentrated liquid is distributed into an organic solvent soluble part and a water soluble part, and the water soluble part is concentrated so that an appropriate organic solvent concentration (for example, 70 to 95%) is obtained. Prepare. The obtained solution is allowed to stand at −40 to −10 ° C., and when precipitation occurs, it is removed using a filter paper or a glass filter.
[0016]
The oregano extract thus obtained (concentrated liquid) contains the dihydroxybenzoate derivative of the present invention and exhibits antioxidant activity and biological antioxidant action, so it can be added to foods and beverages as it is.
However, depending on the purpose of use and concentration, there may be a case where it is desired to obtain a highly purified compound with higher purity. In that case, for example, by performing the following steps according to the desired purity using the above extraction as the first stage, the dihydroxybenzoate derivative of the present invention having a high purity can be obtained with each step. .
[0017]
That is, as the second stage, the oregano extract (concentrated liquid) obtained in the first stage is subjected to adsorption column chromatography using activated carbon, Diaion HP-20 (Mitsubishi Chemical) or the like as a carrier. The adsorbed substance is eluted using a water-containing organic solvent (for example, water-containing methanol solution), and an elution fraction having high activity is obtained using the antioxidant activity as an index.
Here, the antioxidant activity can be measured by a general method. For example, a method based on the scavenging ability of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical (Yamaguchi, T., Takamura, H., Matoba, T. and Terao, J., HPLC method for evaluation of the free-radical scavenging activity of foods by using 1, 1-diphenyl-2-picrylhydrazyl, Biosci. Biotechnol. Biochem., 62 , 1201 -1204 (1998)).
[0018]
As the third stage, the elution fraction obtained in the second stage is subjected to gel filtration chromatography using a column such as Sephadex LH-20 (Amersham Biosciences), for example, and a water-containing organic solvent (for example, a water-containing methanol solution). ) To obtain a fraction with high activity using the antioxidant activity as an index. In addition, about the measurement of antioxidant activity, the method similar to the above-mentioned can be used.
[0019]
As the fourth stage, the elution fraction obtained in the second stage is subjected to reverse phase medium pressure liquid column chromatography. As the column, for example, Lobar LiChroprep RP-18 (Merk) can be used. Elution is performed using a water-containing organic solvent (for example, methanol: water: acetic acid mixed solution), and a fraction having high activity is obtained using antioxidant activity as an index. In addition, about the measurement of antioxidant activity, the method similar to the above-mentioned can be used.
[0020]
Furthermore, as the fifth stage, the elution fraction obtained in the fourth stage is concentrated and subjected to reverse phase high pressure liquid column chromatography. For example, an Inertsil ODS column (GL Science) can be used as the column. Elution is performed using a water-containing organic solvent (for example, methanol: water: acetic acid mixture) as the moving layer, and an elution zone having high activity is obtained using the antioxidant activity as an index. In addition, about the measurement of antioxidant activity, the method similar to the above-mentioned can be used.
[0021]
After completion of the fifth step, the obtained elution fraction can be concentrated as desired to obtain a highly purified, highly purified white powdery dihydroxybenzoate derivative of the present invention .
Even when extraction is completed in any of the second, third, fourth, and fifth stages because an oregano extract of the desired purity is obtained, the elution fraction obtained in each stage is desired. To obtain an oregano extract.
[0022]
Thus, the dihydroxybenzoate derivative of the present invention obtained by the production method of the present invention according to claim 1 and the extract of oregano containing the compound are catechin and quercetin, which are representative plant-derived antioxidants. It exhibits almost the same antioxidant activity as rutin. Therefore, it can be utilized as an antioxidant which is characterized by containing a dihydroxy benzoate derivative or oregano extract containing the compound, of the present invention.
[0023]
In addition, the dihydroxybenzoate derivative of the present invention obtained by the production method of the present invention according to claim 1 and the extract of oregano containing the compound have high biological antioxidants such as a gastric mucosal disorder inhibitory action and a serum cholesterol elevation inhibitory action. Shows the effect. Therefore, it can be used as a gastric mucosal disorder inhibitor or a serum cholesterol elevation inhibitor characterized by containing the dihydroxybenzoate derivative of the present invention or an extract of oregano containing the compound.
[0024]
Furthermore, it can be used as a food or beverage characterized by adding the antioxidant, gastric mucosal disorder inhibitor, or serum cholesterol elevation inhibitor of the present invention .
[0025]
【Example】
The following examples illustrate the present invention. However, the scope of the present invention is not limited to these examples.
[0026]
Example 1 Extraction and Separation of Dihydroxybenzoate Derivative
Oregano dry leaves (100 g) were extracted using a hydrous methanol solution (methanol: water = 7: 3). The extract was filtered using filter paper, and the filtrate was concentrated under reduced pressure. The obtained dark green syrup was distributed into an organic solvent (ethyl acetate) soluble part and a water soluble part.
Antioxidant activity was examined for the organic solvent (ethyl acetate) soluble part and the water soluble part. That is, the extract was added to a 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical ethanol solution having a predetermined concentration, and the degree of decolorization of the solution after 20 minutes was evaluated by measuring the absorbance. It was judged that the fraction containing high decolorization ability contained an antioxidant. The antioxidant activity in the following steps was also measured by the same method.
As a result, an antioxidant activity was observed in both soluble parts, but a stronger antioxidant activity was observed in the water-soluble part.
[0027]
Therefore, the water-soluble part having strong activity was examined again. That is, the obtained water-soluble part was concentrated, prepared to be an 80% ethanol solution, and allowed to stand at -25 ° C. Since precipitation occurred in this step, the precipitate was removed using filter paper, and the obtained filtrate was concentrated.
After concentration, the obtained syrup was subjected to column chromatography using Diaion HP-20 (Mitsubishi Chemical) as a carrier. Elution was performed using water and a water-containing methanol solution (methanol: water = 7: 3). The eluate with confirmed activity was concentrated to obtain syrup.
[0028]
The obtained syrup was subjected to column chromatography using Sephadex LH-20 (Amersham Biosciences). Elution was carried out using a water-containing methanol solution (methanol: water = 7: 3), and the elution zone in which the antioxidant activity was confirmed was concentrated to obtain syrup. This syrup was subjected to medium pressure liquid column chromatography using Lobar LiChroprep RP-18 (Merk). Elution was carried out using a solution of methanol: water: acetic acid = 50: 50: 0.1, and the elution zone in which the antioxidant activity was confirmed was concentrated to obtain syrup.
[0029]
Subsequently, this syrup was subjected to high pressure liquid column chromatography (HPLC). At this time, an Inertsil ODS column (GL Science) was used, UV absorption (210 nm) was performed, and a methanol: water: acetic acid = 80: 20: 0.1 solution was used for the moving layer.
When the elution zone in which the antioxidant activity was confirmed was concentrated, 270 mg of a dihydroxybenzoate derivative represented by the chemical formula (A) was obtained in the form of a white powder. The chemical properties of the obtained compound are as follows.
[0030]
[Chemical properties of dihydroxybenzoate derivative represented by chemical formula (A)]
Mp 111-116 o C;
[α] D 25 40.2 o (c 0.2, MeOH);
FABMS (positive, matrix: glycerol) m / z (rel. Int.): 477 [M + K] + (40);
FABMS (negative, matrix: TEA) m / z (rel. Int.): 437 [MH] - (1.8);
1 H-NMR (500 MHz, CD 3 OD): δ 7.44 (2H, m, H-2, -6), 7.18 (1H, d, J = 8.3 Hz, H-5 '), 6.94 (1H, d , J = 2.0 Hz, H-2 '), 6.86 (1H, dd, J = 8.3, 2.0 Hz, H-6'), 6.79 (1H, d, J = 8.5 Hz, H-5), 5.18 (2H , s, H-7 '), 4.77 (1H, d, J = 7.4 Hz, H-1``), 3.89 (1H, dd, J = 11.8, 1.5 Hz, H-6a''), 3.71 (1H , dd, J = 11.8, 5.0 Hz, H-6b ''), 3.50-3.35 (4H, m);
1 H-NMR (500 MHz, DMSO-d6): δ 7.40 (1H, br.s), 7.36 (1H, br. D, J = 8.1 Hz), 7.14 (1H, d, J = 8.2 Hz), 6.92 (1H, s), 6.84 (2H, d, J = 8.4 Hz), 5.16 (2H, s), 4.72 (1H, br.d, J = 6.9 Hz), 3.74 (1H, d, J = 11.5 Hz) , 3.50 (1H, m), 3.42- 3.22 (4H, m);
13 C-NMR (67.5 MHz, CD 3 OD): δ 167.8 (C-7), 151.6 (C-4), 148.2 (C-3 '), 146.5 (C-4'), 146.0 (C-3) , 133.3 (C-1 '), 123.6 (C-6), 122.5 (C-1), 120.7 (C-6'), 118.6 (C-5 '), 117.3 (C-2), 116.8 (C- 2 '), 115.8 (C-5), 104.1 (C-1``), 78.3 (C-3''), 77.5 (C-5``), 74.8 (C-2''), 71.2 (C -4``), 67.0 (C-7 '), 62.4 (C-6'').
[0031]
Example 2 [Radical scavenging ability]
DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging ability (radical scavenging activity) of the dihydroxybenzoate derivative obtained in Example 1 was measured to evaluate the antioxidant activity.
That is, a fixed amount of sample was dissolved in 200 μl of ethanol, 800 μl of 100 mM Tris-HCl buffer (pH 7.0) solution was added, and 1 ml of 500 μM DPPH ethanol solution was further added to this solution. The test solution was allowed to stand at room temperature for 20 minutes in the dark, and the DPPH radical scavenging activity was evaluated by HPLC using a certain amount and the decrease in DPPH by the following formula.
[0032]
[Expression 1]
DPPH radical scavenging ability = [(A−B) / A] × 100 (%)
A: DPPH area area of the control (solution without test sample) B: DPPH area area of the solution with the test sample added
On the other hand, instead of dihydroxybenzoate derivatives, radical scavenging ability was measured in the same manner except that rutin, quercetin and rosmarinic acid, which are widely known as antioxidants (radical scavenging substances), were used, and their antioxidant activities were compared. . The results are shown in FIG.
[0034]
From FIG. 1, the dihydroxybenzoate derivative obtained in Example 1 has a radical scavenging ability equivalent to or higher than rutin, quercetin and rosmarinic acid, which are widely known as antioxidant substances (radical scavenging substances). It was found to have antioxidative activity.
[0035]
Example 3 [Radical scavenging ability in gastric mucosa]
According to the procedure shown in FIG. 2, the radical scavenging ability of the dihydroxybenzoate derivative obtained in Example 1 in the rat gastric mucosa was measured to evaluate the antioxidant activity.
That is, 7-week-old Wistar male rats were used in 3 groups, each with 8 rats. Preliminary breeding with 25% casein diet for 10 days, after fasting overnight, the first group (100 mg / kg added diet group) contained 100 mg / kg of the dihydroxybenzoate derivative obtained in Example 1 except that The feed for pre-breeding was the same as that for pre-breeding except that the second group (300 mg / kg supplemented diet group) contained 300 mg / kg of the dihydroxybenzoate derivative. To the addition control group), the same feed (that is, a feed containing no dihydroxybenzoate derivative) as in the pre-feeding was forcibly orally administered. Thirty minutes later, 100% ethanol (5 ml / kg body weight) was forcibly administered orally to induce oxidative damage, and after 60 minutes, the stomach was removed and the degree of damage to the gastric mucosa surface was compared from the damaged area of the gastric mucosa. .
FIG. 3 shows a graph showing the damaged area of the gastric mucosa surface of each group.
[0036]
As apparent from FIG. 3, in the 100 mg / kg body weight-added diet group and the 300 mg / kg body weight-added diet group administered with the dihydroxybenzoate derivative, the damaged area of the gastric mucosa due to ethanol-induced oxidative damage was higher than that in the non-added control group. It was significantly smaller.
This indicates that the dihydroxybenzoate derivative strongly suppresses oxidative stress induced by ethanol.
[0037]
Example 4 [Serum cholesterol elevation-inhibiting effect]
Using rats showing a lipid lowering action, the serum cholesterol elevation inhibitory effect of the dihydroxybenzoate derivative obtained in Example 1 was evaluated.
Seven-week-old Wistar male rats were used in two groups of 6 rats each. After preliminary breeding with a 25% casein diet for 8 days, the first group (dihydroxybenzoate derivative added group) contains 0.5% of the dihydroxybenzoate derivative obtained in Example 1 and 1.0% of cholesterol. A cholesterol diet with the same composition as that of the pre-feeding feed, except that the second group (non-addition control group) does not contain a dihydroxybenzoate derivative. That is, the feed containing no dihydroxybenzoate derivative) was administered, and reared for 3 weeks by the pair feeding method. Blood was collected at the start of breeding and at the third week of breeding to measure serum cholesterol concentration, and the amount of suppression of serum cholesterol elevation was calculated and compared.
The results are shown in FIG.
[0038]
As apparent from FIG. 4, the dihydroxybenzoate derivative-added group significantly suppressed the increase in serum cholesterol level at 3 weeks after administration compared to the non-added control group. From this, it was clarified that the dihydroxybenzoate derivative has an inhibitory effect on serum cholesterol elevation in rats showing a lipid lowering action.
[0039]
Example 5 [Serum cholesterol elevation-inhibiting effect]
The serum cholesterol elevation inhibitory effect of the dihydroxybenzoate derivative obtained in Example 1 when fed with cholesterol-free food was evaluated.
Seven-week-old male SD rats were used in 6 groups, divided into 2 groups. After pre-breeding with a 25% casein diet for one week, the first group (dihydroxybenzoate derivative added group) was pre-bred except that 0.5% of the dihydroxybenzoate derivative obtained in Example 1 was contained. In the second group (oregano extract added group), 0.5% of the lyophilized product of the syrup obtained in Example 1 (hereinafter referred to as oregano extract) was contained in the second group (oregano extract added group). Others were administered the same feed as that used during pre-feeding, and the third group (additive control group) was administered the same feed used during pre-feeding (ie, feed containing no dihydroxybenzoate derivative). Reared for 2 weeks. At the start of breeding, blood was collected from the first and second weeks of the breeding, and the serum cholesterol concentration was measured for comparison. The time course of serum cholesterol concentration is shown in FIG. In FIG. 5, ▲, ●, and ◯ indicate the results of the dihydroxybenzoate derivative added group, the oregano extract added group, and the non-added control group, respectively.
[0040]
As is clear from FIG. 5, the dihydroxybenzoate derivative-added group significantly suppressed the increase in serum cholesterol level two weeks after administration compared to the non-added control group and the oregano extract added group.
From this, it has been clarified that the dihydroxybenzoate derivative has an effect of suppressing an increase in serum cholesterol even when fed with a cholesterol-free diet.
[0041]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the dihydroxybenzoate derivative which has the outstanding antioxidant function and has a biological antioxidant effect is provided.
Since the dihydroxybenzoate derivative of the present invention is derived from oregano, which is a natural plant that has been conventionally used as a spice, it is easy to handle, has high safety, and has no fear of side effects.
Further, since the dihydroxybenzoate derivative of the present invention is contained in a relatively large amount in oregano, it is also suitable for industrial use.
[0042]
Furthermore, according to the present invention, a dihydroxybenzoate derivative having a purity corresponding to the purpose of use can be efficiently produced from oregano by a simple operation.
Furthermore, since the dihydroxybenzoate derivative of the present invention exhibits almost the same antioxidant activity as catechin, quercetin, rutin and the like, which are representative plant-derived antioxidants, it can be used as an antioxidant. In addition, since it also shows high biological antioxidant action such as gastric mucosal disorder inhibitory action, serum cholesterol elevation inhibitory action, etc., as a novel material having functions of lipid metabolism improvement, gastric mucosal protection and biological free radical production suppression, It is widely applied to foods and pharmaceuticals and can be expected to be used for effective prevention of lifestyle-related diseases.
[Brief description of the drawings]
FIG. 1 is a diagram showing the radical scavenging ability of each antioxidant substance.
FIG. 2 shows the procedure of Example 3 [Radical scavenging ability in gastric mucosa].
FIG. 3 is a graph showing the damaged area of the gastric mucosa surface.
FIG. 4 is a graph showing an inhibitory effect on serum cholesterol elevation of a dihydroxybenzoate derivative.
FIG. 5 is a graph showing changes in serum cholesterol concentration over time when fed with cholesterol-free food.
[Explanation of symbols]
In FIG. 5, ▲, ●, and ◯ indicate the results of the dihydroxybenzoate derivative added group, the oregano extract added group, and the non-added control group, respectively.

Claims (3)

オレガノ(Origanum Vulgare)の地上部から含水有機溶媒で抽出することを特徴とする下記化学式(A)で表されるジヒドロキシベンゾエート誘導体の製造方法。
Figure 0004149836
Figure 0004149836
A method for producing a dihydroxybenzoate derivative represented by the following chemical formula (A), which comprises extracting from an above-ground part of origanum (Origanum Vulgare) with a water-containing organic solvent.
Figure 0004149836
Figure 0004149836
請求項1記載のジヒドロキシベンゾエート誘導体を有効成分として含有することを特徴とする胃粘膜障害抑制剤。A gastric mucosal disorder inhibitor comprising the dihydroxybenzoate derivative according to claim 1 as an active ingredient . 請求項1記載のジヒドロキシベンゾエート誘導体を有効成分として含有することを特徴とする血清コレステロール上昇抑制剤。A serum cholesterol elevation inhibitor comprising the dihydroxybenzoate derivative according to claim 1 as an active ingredient .
JP2003050508A 2003-02-27 2003-02-27 Dihydroxybenzoate derivative, process for producing the same and use thereof Expired - Fee Related JP4149836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003050508A JP4149836B2 (en) 2003-02-27 2003-02-27 Dihydroxybenzoate derivative, process for producing the same and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003050508A JP4149836B2 (en) 2003-02-27 2003-02-27 Dihydroxybenzoate derivative, process for producing the same and use thereof

Publications (2)

Publication Number Publication Date
JP2004256472A JP2004256472A (en) 2004-09-16
JP4149836B2 true JP4149836B2 (en) 2008-09-17

Family

ID=33115893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003050508A Expired - Fee Related JP4149836B2 (en) 2003-02-27 2003-02-27 Dihydroxybenzoate derivative, process for producing the same and use thereof

Country Status (1)

Country Link
JP (1) JP4149836B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005145866A (en) * 2003-11-14 2005-06-09 Japan Science & Technology Agency Sebum metabolism ameliorant
CN100576326C (en) * 2005-09-06 2009-12-30 东莞宏威数码机械有限公司 A kind of BD Blu-ray Disc and the system and method for making this BD Blu-ray Disc

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7939115B2 (en) * 2000-06-12 2011-05-10 Access Business Group International Llc Dietary supplement and related method
JP5441207B2 (en) * 2009-01-29 2014-03-12 曽田香料株式会社 New antioxidants, active oxygen scavengers, cosmetics
CN104262422B (en) * 2014-08-22 2016-06-29 青岛农业大学 A kind of chemosynthesis 4-(3,4-dihydroxybenzoyl oxygen methyl) method of-phenyl-O-β-D-pyranglucoside

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5674177A (en) * 1979-11-24 1981-06-19 Lion Corp Antioxidant
JPS56144078A (en) * 1980-04-08 1981-11-10 Lion Corp Preparation of preservative
JPS6226293A (en) * 1985-07-29 1987-02-04 T Hasegawa Co Ltd 4((3,4-dihydroxybenzoyloxy)methyl)phenylglucoside
JP2814567B2 (en) * 1989-06-06 1998-10-22 ライオン株式会社 Method for producing natural antioxidants
DE69104257T2 (en) * 1990-04-25 1995-05-24 Norac Technologies Inc Antioxidant composition obtained from Labiatae.
AU670378B2 (en) * 1993-05-11 1996-07-11 Otsuka Pharmaceutical Co., Ltd. Antioxidant food, antioxidant preparation and antioxidization method
JP3063818B2 (en) * 1994-04-01 2000-07-12 明治製菓株式会社 Food and drink for gastric ulcer prevention
JPH08119869A (en) * 1994-10-26 1996-05-14 Mikimoto Pharmaceut Co Ltd Active oxygen suppressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005145866A (en) * 2003-11-14 2005-06-09 Japan Science & Technology Agency Sebum metabolism ameliorant
CN100576326C (en) * 2005-09-06 2009-12-30 东莞宏威数码机械有限公司 A kind of BD Blu-ray Disc and the system and method for making this BD Blu-ray Disc

Also Published As

Publication number Publication date
JP2004256472A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
EP0810222B1 (en) Process for extraction of polyphenolic compounds of catechin type from plants, the so obtained extract and its use
JP2000044472A (en) Medicine for preventing or treating diabetic complication
JP4149836B2 (en) Dihydroxybenzoate derivative, process for producing the same and use thereof
JP7085262B2 (en) Manufacturing method of tomatidine
JP5561984B2 (en) New beverage
US20240115644A1 (en) Composition for preventing, improving or treating gastritis or peptic ulcer comprising extract of cinnamomum cassia, fraction of said extract, isolate of said fraction or compounds isolated therefrom
JP4720504B2 (en) Plant seed extract composition and method for producing the same
JP4295301B2 (en) Meat odor improving agent, meat odor improving method using the same, and meat product
WO2013081046A1 (en) Extract derived from grape rachis
JP3455436B2 (en) How to make antioxidants
KR20240017335A (en) New phenylpropanoid compounds
JP5159622B2 (en) Alpha-glucosidase inhibitor containing tricaffeoylaldaric acid, blood glucose level increase inhibitor, functional food, and method for producing tricaffeoylaldaric acid
KR102101662B1 (en) Antidiabetic and antioxidant compositions comprising Flavonoid 8-O-glucuronide compounds
JP2006056793A (en) Method for producing polyphenol-containing product, polyphenol-containing product, alpha amylase inhibitor, antioxidant, and edible composition
KR101550390B1 (en) Novel Compound Isolated from Quamoclit and Composition for Preventing or Treating Diabetes Containing thereof
KR101178500B1 (en) Compounds from Gloiopeltis furcata and Composition for the prevention and treatment of Alzheimer's disease
JP4789453B2 (en) Anthocyanin absorption promoter
JP5040016B2 (en) Cancer prevention agent
JP2004256467A (en) PROPANE-1,2,3-TRIOL DERIVATIVE, METHOD FOR PRODUCING THE SAME AND alpha-GLUCOSIDASE INHIBITOR CONTAINING THE SAME
JP2006008555A (en) alpha-GLYCOSIDASE INHIBITOR OF EXTRACT OF ORIGANUM VULGARE AND ITS UTILIZATION
JP7570615B2 (en) Antioxidant, method for producing antioxidant, and method for inhibiting the progress of oxidation reaction
KR102039578B1 (en) Composition for protecting kidney cells comprising compounds derived from artemisia extract
KR20130057145A (en) Composition having physiological activity comprising aster yomena extract
JPH11172246A (en) Anti-oxidant and manufacture thereof
KR101472120B1 (en) α-Glucosidase inhibiting compounds isolated from Vigna nakashimae, pharmaceutical composition for treatment or prevention of α-Glucosidase related diseases comprising the same, and food composition for improvement of α-Glucosidase related diseases comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040715

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees