JP4147730B2 - 波長多重伝送システム - Google Patents

波長多重伝送システム Download PDF

Info

Publication number
JP4147730B2
JP4147730B2 JP2000211326A JP2000211326A JP4147730B2 JP 4147730 B2 JP4147730 B2 JP 4147730B2 JP 2000211326 A JP2000211326 A JP 2000211326A JP 2000211326 A JP2000211326 A JP 2000211326A JP 4147730 B2 JP4147730 B2 JP 4147730B2
Authority
JP
Japan
Prior art keywords
transmission
optical
signal
wavelength
route
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000211326A
Other languages
English (en)
Other versions
JP2002026822A (ja
Inventor
幹哉 鈴木
克宏 石村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2000211326A priority Critical patent/JP4147730B2/ja
Priority to US09/824,643 priority patent/US7139482B2/en
Publication of JP2002026822A publication Critical patent/JP2002026822A/ja
Application granted granted Critical
Publication of JP4147730B2 publication Critical patent/JP4147730B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0289Optical multiplex section protection
    • H04J14/029Dedicated protection at the optical multiplex section (1+1)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0293Optical channel protection
    • H04J14/0295Shared protection at the optical channel (1:1, n:m)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0297Optical equipment protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/14Monitoring arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0284WDM mesh architectures

Description

【0001】
【発明の属する技術分野】
本発明は波長多重伝送システムに関し、特に、ルーティング制御や障害処理に関するものである。
【0002】
【従来の技術】
現在、光通信システムの大容量化に対する技術の流れは、時分割多重方式(TDM方式)と、波長多重方式(WDM)とに大別される。
【0003】
ここで、WDM方式は、大容量化に際し、例えば1チャネル当り2.5Gbpsで変調された波長の異なる信号を4チャネルWDM光カプラ(WDM多重部)で重畳し、1本の光ファイバに伝送することにより10Gbpsの伝送を実現でき、TDM方式に比べ、アップグレード容易性、パワー分割コスト、保安性、サービスの柔軟性などの観点から、優位性が指摘されている。
【0004】
WDM方式を用いた従来のシステムでは、波長多重された信号(WDM信号)は受信端に至るまで、全ての波長成分が同一ルートを経由して伝送されていた。ところで、近年では、WDM伝送路中にアッド/ドロップ回路(ADM:Add/Drop MUX)やクロスコネクト回路(XC:Cross Connect)などを設けたメッシュ状やリング状のネットワークの実用化も盛んである。この場合、送信端から受信端までのルート選択は無数に想定できるが、各ルートの状態は、中間に介在する中継器数や、伝送距離や、トラフィックの混み具合などで全てのルートで異なる。
【0005】
一方、伝送信号のルート選択方法は大別して2種類の方法がある。例えば、End−to−Endでのシグナリングベースで制御する場合には、伝送距離(伝送路距離)によってルートが割り当てられ、また例えば、IPべースでのルーティング制御の場合には、伝送距離とは無関係に受信端までのホップ数によってルートが割り当てられる。例えば、図2に示すように、中継ノードN1から中継ノードN2へのルートとして、ホップ数が多く伝送距離が短いルートRT1と、ホップ数が少なく伝送距離が長いルートRT2とがある場合において、伝送距離からルートを選択する場合にはルートRT1が選択され、ホップ数からルートを選択する場合にはルートRT2が選択される。いずれにせよ、全ての波長成分について、同じルートRT1又はRT2が選択されている。
【0006】
【発明が解決しようとする課題】
しかしながら、従来のWDM方式についてのルート選択方法は、中継器数やトラフィックの混み具合など、選択の基準が伝送品質に影響する重要な項目に関しては、何も反映されないルート選択方法であった。
【0007】
例えば、伝送距離(伝送路距離)によってルートを選択する方法の場合、中継するスイッチ数や帯域内の混み具合に無関係に伝送距離だけによってルートが割り当てられ、伝送距離が短ければ、そのルート(伝送路)内に存在するネットワークエレメント(NE)がいかに多くても、あるいは特性が悪くても、そのルートが選択されてしまう。なお、ネットワーク内に存在する光アンプ、光スイッチ、光フィルタなどのNEは、部品単体としては僅かの波長依存性しかなくても、NEの数量が増えれば増えるほど、波長依存性が累積されていき、ルート全体からは、無視できなくなる。
【0008】
また、ホップ数を基にルートを選択する方法の場合にも、光のSN比や使用帯域などは考慮されていない。従って、この場合、選択されたルートは必ずしも光信号の伝送特性に対しては最適ではなく、純粋にコスト面だけによってルートが選択されてしまう。
【0009】
さらに、いずれのルート選択方法においても、いくつものデータに対して同じルートが選択された場合には、あるルートに対して多くのデータが集中して輻輳することで回線断になるなどの問題もあった。その上、伝送ルート上のNEに障害が生じた場合は、その伝送ルートに代えて他のルートが使用され、その結果、WDM伝送網において輻輳する傾向が強くなり、回線断になる確率が高くなるといった問題もあった。
【0010】
以上のように、従来のルート選択方法は、伝送品質を確保するといった観点からは適していない。
【0011】
特に、障害が生じてルートを再割当する際において、極端な場合、あるルートに空き帯域が多くあったとしても、上述した従来のルート選択方法ではそのルートが選択されないことも生じ、特定の1又は複数のルートにデータが集中することもあった。すなわち、空きルートの伝送距離が長かったりホップ数が多かったりして、その空きルートが選択されない可能性があった。
【0012】
また、あるルートに対しデータが集中する従来のルート選択方法では、現在運用されているルートが断になった場合、一度に多くのデータのルート切換えが必要となり、輻輳する確率が高くなる。
【0013】
仮に、WDM信号を送信する光送信装置や、WDM信号を受信する光受信装置を、運用系及び待機系で構成したとしても、運用系及び待機系で同一ルートを適用するので、ルート選択方法での上述した課題を解決できず、光送信装置や光受信装置での運用系の障害にのみ対応できるものであった。
【0014】
本発明は、以上の点を考慮してなされたものであり、伝送特性が良好であり、しかも、障害に対する回避機能が充実した波長多重伝送システムを提供しようとしたものである。
【0015】
【課題を解決するための手段】
かかる課題を解決するため、本発明は、光送信装置が送信しようとする伝送信号を複数の波長成分に振り分けてWDM信号に変換してWDM伝送網に送信し、WDM伝送網からのWDM信号を光受信装置が上記伝送信号に戻す波長多重伝送システムにおいて、上記波長成分毎に上記WDM伝送網を伝送するルートを設定する波長成分別ルート設定装置を有することを特徴とする。
【0016】
【発明の実施の形態】
(A)第1の実施形態
以下、本発明による波長多重伝送システムの第1の実施形態を図面を参照しながら詳述する。
【0017】
(A−1)第1の実施形態の構成
第1の実施形態の波長多重伝送システムは、図1に示すように、WDM伝送網1と、送信端末2からの伝送信号(電気信号)を光信号(WDM信号)に変換してWDM伝送網1に送信する光送信装置3と、WDM伝送網1からの受信WDM信号を電気信号に変化して受信端末5に与える光受信装置4と、WDM伝送網1、光送信装置3及び光受信装置4などの管理機能を担っているネットワーク管理装置6とを有する。
【0018】
(A−1−1)WDM伝送網1
WDM伝送網1は、複数のノードNが、例えば、メッシュ状やマトリクス状などで接続されている。ここで、このWDM伝送網1が取扱う波長成分は、λ1〜λnとする。この第1の実施形態の場合、各ノードNは、内部構成の図示は省略するが、あるノードから入力されたWDM信号を、各波長成分毎に交換して出力し得るものである。
【0019】
図3は、波長成分によって異なるルートで伝送されているイメージを示す説明図である。
【0020】
図3において、ノードN1は、あるノードNS(図示せず:光送信装置でも良い)から全ての波長成分λ1〜λnを含むWDM信号が与えられた場合には、波長成分λ1及びλ2を含むWDM信号をノードN3に与え、波長成分λ3〜λnを含むWDM信号をノードN4に与えている。
【0021】
ノードN3は、ノードN1からの波長成分λ1及びλ2を含むWDM信号が与えられた場合には、波長成分λ1及びλ2を含むWDM信号をノードN2に与える。なお、ノードN3は、ノードN1以外のノード(図示せず)からの波長成分λ1及びλ2を含むWDM信号が与えられた場合には、その波長成分λ1及び又はλ2を含むWDM信号をノードN2以外のノード(図示せず)に与えることもできる。ノードN3の他の波長成分λ3〜λnの交換機能については説明を省略する。
【0022】
同様に、ノードN4やノードN5も、波長成分λ3〜λnを含むWDM信号については、少なくとも図3に示す交換機能を有している。
【0023】
ノードN2は、ノードN3からの波長成分λ1及びλ2を含むWDM信号が与えられた場合には、その波長成分λ1及びλ2を含むWDM信号をノードND(図示せず:光受信装置でも良い)に与え、ノードN5からの波長成分λ3〜λnを含むWDM信号が与えられた場合には、その波長成分λ3〜λnを含むWDM信号をノードNDに与える。
【0024】
すなわち、図3は、ノードNSからの全ての波長成分λ1〜λnを含むWDM信号を、ノードNDに送信するにつき、WDM伝送網1のルート交換機能(波長成分毎の交換機能)により、波長成分λ1及びλ2は、ルートRT2を介して伝送され、波長成分λ3〜λnは、ルートRT1を介して伝送される例を示している。
【0025】
上述した各ノードでの波長成分毎の交換処理は、例えば、各波長成分の光信号(例えばヘッダ部分)に挿入されているルートを示すラベリング情報による。又は、ネットワーク管理装置6からの制御信号による。
【0026】
(A−1−2)光送信装置3
図4は、光送信装置3の詳細構成を示すブロック図である。なお、図4において、電気信号の信号線は太線で、光信号の信号線は細線で示している。
【0027】
図4において、光送信装置3は、物理インターフェース部10、フレーム終端部11、信号振分け器12、光チャネル板13−1〜13−n、WDM多重部15、送信側制御信号処理部17などを有する。
【0028】
物理インターフェース部10は、送信端末6との物理的なインターフェース機能を担っている。また、フレーム終端部11は、送信端末6からの伝送信号(伝送フレーム)の終端処理を行うものである。
【0029】
なお、図4は、当該光送信装置3に接続されている送信端末6が1個の場合を示している。なお、送信端末6が複数の場合には、送信端末6毎に物理インターフェース部10やフレーム終端部11が設けられる。各送信端末6からの伝送信号の選択は、選択スイッチを設けて行うようにしても良く、信号振分け器12にその機能を持たせるようにしても良い。ここで、送信端末6は、一般的な通信端末だけでなく、ルータなどであっても良い。
【0030】
信号振分け器12は、送信端末6からの伝送信号を、光チャネル板13−1〜13−nに振り分けるものである。信号振分け器12は、例えば、送信端末6からの伝送信号がn個のパケット信号P1〜Pnの系列の場合、信号振分け器12は、パケット信号P1を光チャネル板13−1に振り分け、パケット信号P2を光チャネル板13−2に振り分け、パケット信号P3を光チャネル板13−3に振り分け、…、パケット信号Pnを光チャネル板13−nに振り分けたりする。なお、複数のパケット信号を同一のチャネル板に振り分けることもある。このような振分け方法は、送信側制御信号処理部17からの制御情報による。
【0031】
信号振分け器12は、例えば、パケット用のインバースマックス:IMP(Inverse MUX for Packet(over SONET/SDH))方式に従っているものである。
【0032】
信号振分け器12は、信号の振分けを実際に実行する振分け部12aと、送信側制御信号処理部17からの振分け制御信号を受信して振分け部12aに与える振分け制御信号受信部(図4では省略)とでなり、これにより、信号振分け器12は、送信側制御信号処理部17からの振分け制御信号に従って、送信端末6からの伝送信号を光チャネル板13−1〜13−nに振り分けて与えるものである。
【0033】
各光チャネル板13−1、…、13−nは、第1の主たる機能が電気/光変換機能である。各光チャネル板13−1、…、13−nはそれぞれ、異なる波長λ1、…、λnが割り当てられている。各光チャネル板13−1、…、13−nはそれぞれ、信号振分け器12から与えられた電気信号(振分伝送信号)を、自己に割り当てられている波長成分λ1、…、λnの光信号に変換して、対応する光ファイバ14−1、…、14−nを介して、WDM多重部15に与える。
【0034】
WDM多重部15は、例えば、n:1光カプラでなり、到来した各種波長成分λ1〜λnの光信号を波長多重し、そのWDM信号をWDM伝送網1への光ファイバ16に送出するものである。
【0035】
WDM伝送網1は、上述したように、波長成分λ1、…、λnによってルートが変え得るものである。
【0036】
各光チャネル板13−1、…、13−nは、第2の主たる機能が、WDM伝送網1での波長成分毎のルートを評価するための評価信号を送出する機能である。各光チャネル板13−1、…、13−nは、送信側制御信号処理部17の制御下で、評価信号を送出したり、評価信号を送出したタイミングなどを送信側制御信号処理部17に通知したりなどするものである。
【0037】
送信側制御信号処理部17は、ネットワーク管理装置6に接続されており、例えば、信号振分け器12での振分け内容を指示したり、各光チャネル板13−1、…、13−nからの評価信号の送出を制御したりするものである。なお、詳述は避けるが、送信側制御信号処理部17は、各光チャネル板13−1、…、13−nの監視機能をも担っており、いずれかの光チャネル板に故障が生じたときに、そのことをネットワーク管理装置6などに通知するものである。
【0038】
図5は、光チャネル板13(13−1、…、13−n)の詳細構成を示すブロック図である。なお、図5においても、電気信号の信号線は太線で、光信号の信号線は細線で示している。
【0039】
光チャネル板13は、LD(レーザダイオード)光源20、光変調器21、変調器駆動回路(図5では駆動回路と表記)22、クロック制御回路23、信号選択部24及び評価信号発生部25を有する。
【0040】
ここで、LD光源20、光変調器21及び変調器駆動回路22は、一般的な電気信号を光信号に変換するための構成である。すなわち、変調器駆動回路22が伝送しようとする電気信号に応じ、かつ、クロック制御回路23によって指示されたクロック周波数に基づいて、光変調器21を駆動して、LD光源20からの光信号(波長は当該光チャネル板13に割り当てられたもの)を変調(例えば強度変調)して、変調された光信号を出力するものである。なお、光源を直接制御して変調させる変調光源を適用しても良いことは勿論である。
【0041】
この第1の実施形態の場合、光チャネル板13が、クロック制御回路23、信号選択部24及び評価信号発生部25を有していることが特徴となっている。
【0042】
評価信号発生部25は、信号選択部24の制御下で、WDM伝送網1での当該光チャネル板13の波長成分のルートやその伝送特性などを評価したりするための評価信号(電気信号)を発生するものである。なお、評価信号のデータパターンは、振分伝送信号と区別できるものとなっている。また、ここでは、評価信号と振分伝送信号との送信タイミングが時間的に区別されているものを意識している。
【0043】
信号選択部24には、信号振分け器12からの振分伝送信号(電気信号)が与えられると共に、評価信号発生部25が接続されている。信号選択部24は、送信側制御信号処理部17からの制御信号に応じ、信号振分け器12からの振分伝送信号が与えられているときにはその振分伝送信号を選択して変調器駆動回路22に与え、また、信号振分け器12からの振分伝送信号が与えられていない期間で、評価信号発生器25に評価信号を発生させて変調器駆動回路22に与えるものである。
【0044】
すなわち、当該光チャネル板13からは、割り当てられた波長成分を有する振分伝送信号(光信号)が送出されることもあれば、割り当てられた波長成分を有する評価信号(光信号)が送出されることもある。
【0045】
また、この第1の実施形態の場合、光チャネル板13の上述したクロック制御回路23が出力するクロック信号の周期が、ネットワーク管理装置6(直接的には制御信号処理部17)によって、可変できることも特徴をなしている。すなわち、伝送速度を切り替え可能になされている。
【0046】
(A−1−3)光受信装置4
図6は、光受信装置4の詳細構成を示すブロック図である。なお、図6において、電気信号の信号線は太線で、光信号の信号線は細線で示している。
【0047】
図6において、光受信装置4は、WDM多重分離部30、光受信板32−1〜32−n、遅延補償部33、多重部34及び受信側制御信号処理部35などを有する。
【0048】
WDM伝送網1から光ファイバ36を介して到来したWDM信号は、当該光受信装置4のWDM多重分離部30に入力される。WDM多重分離部30は、到来したWDM信号を波長成分λ1、…、λn毎に分離し、各波長成分λ1、…、λnの光信号を光ファイバ31−1、…、31−nを介して対応する光受信板32−1、…、32−nに与えるものである。
【0049】
各光受信板32−1、…、32−nは、詳細構成の図示は省略するが、自己に割り当てられている波長成分λ1、…、λnの光信号を電気信号に変換した後、その電気信号が振分伝送信号か評価信号かを判別するものである。また、各光受信板32−1、…、32−nは、到来信号が振分伝送信号の場合には、その振分伝送信号を遅延補償部33に与えるものである。さらに、各光受信板32−1、…、32−nは、到来信号が評価信号の場合には、評価情報を得て受信側制御信号処理部35に与えるものである。評価情報としては、例えば、ビットエラーレート(EBR)を適用できる。なお、ビットエラーレートは、WDM伝送網の光学的SNRを間接的に反映したものとなっている。また、評価信号を光信号の状態で波形分析して光学的SNRを直接得るものであっても良い。
【0050】
なお、各光受信板32−1、…、32−nが評価信号そのものを受信側制御信号処理部35に与え、受信側制御信号処理部35が評価情報を得るようにしても良い。
【0051】
遅延補償部33は、入力された各振分伝送信号(電気信号)に対し、波長成分λ1、…、λn毎のWDM伝送網1での伝送ルートの相違に基づく伝搬遅延を補償して多重部34に与えるものである。補償する伝搬遅延時間の情報は、受信側制御信号処理部35から得るものであっても良く、また、遅延補償部33がヘッダ情報などに応じて自律的に得るものであっても良い。
【0052】
多重部34は、入力された複数の振分伝送信号を多重して、対向する光送信装置3が送信しようとした伝送信号に戻すものである。この後、図示しない受信端末5とのインターフェース回路などにより、その伝送信号が受信端末5に向けて送出される。
【0053】
受信側制御信号処理部35は、ネットワーク管理装置6と接続されているものであり、評価情報をネットワーク管理装置6に与えたり、ネットワーク管理装置6からのルート設定情報に基づき、遅延補償部33での波長成分λ1、…、λn毎の遅延補償量を制御したり、多重部34での多重方法(光送信装置3側での信号振分けに対応)を制御したりなどするものである。なお、今回の通信で利用していない波長成分があるのならば、それに係る光受信板の動作を禁止させ、無駄な電力消費を押さえさせるようにしても良い。
【0054】
また、受信側制御信号処理部35は、各光受信板32−1、…、32−nの障害発生をも監視しており、いずれかの光受信板に障害が生じたときに、そのことをネットワーク管理装置6に通知するものである。
【0055】
(A−1−4)ネットワーク管理装置6
図7は、ネットワーク管理装置6の機能的構成を示すブロック図である。すなわち、ネットワーク管理装置6は、例えば、ソフトウェア処理を実行するCPUを中心とした情報処理装置で構成されているが、初期時やNEの故障などに基づく再度のルーティングの機能からは、図7で表すことができる。なお、各部の機能については、動作説明でもあきらかになるので、ここでは簡単に説明する。
【0056】
図7において、ネットワーク管理装置6は、大きくは、情報記憶手段40、最適ルート選択手段41、伝送効率最適化手段42、ルート伝送品質調整手段43及び通信手段44などを有する。
【0057】
情報記憶手段40は、伝送網構成記憶部40a、ルート使用状況記憶部40b、伝送品質情報記憶部40c、障害情報記憶部40dなどを有する。
【0058】
伝送網構成記憶部40aは、WDM伝送網1の網構成そのものの情報を記憶しているものである。網を構成するノードの情報(波長成分λ1、…、λn毎の交換機能の情報を含む)や、ノード間を結ぶ光ファイバ(物理的パス)の情報などを記憶している。
【0059】
ルート使用状況記憶部40bは、WDM伝送網1の網構成に関連付けられて、現在、使用されている各波長成分λ1、…、λn毎のルートの情報や、各波長成分λ1、…、λn毎のルートでの空き帯域などを記憶している。
【0060】
伝送品質情報記憶部40cは、上述したルート別の評価情報などの伝送品質の情報を記憶している。
【0061】
障害情報記憶部40dは、WDM伝送網1における中継ノードや光ファイバなどのネットワークエレメント(NE)の障害情報や、光送信装置3における光チャネル板13や光受信装置4における光受信板32(32−1〜32−n)の故障情報などを記憶している。
【0062】
最適ルート選択手段41は、空きルート検索部41aと空きルート評価部41bとを有する。
【0063】
空きルート検索部41aは、ルーティング対象の光送信装置3及び光受信装置4間を結ぶ、波長成分λ1、…、λn毎の空きルート(実際上複数生じることが多い)を検索するものである。ここでは、伝送網構成記憶部40aやルート使用状況記憶部40bの記憶情報などが参照される。また、障害情報記憶部40dに障害が記憶されているNEを要素とするルートは、検索から除外される。
【0064】
空きルート評価部41bは、空きルートが1個も検索されなかった波長成分に対しては最適ルートなしを伝送効率最適化手段42に通知し、空きルートが1個だけ検索された波長成分に対してはその空きルートを最適ルートとして伝送効率最適化手段42に通知し、空きルートが2個以上検索された波長成分に対してはそれら空きルートを評価して最適ルートを定めて伝送効率最適化手段42に通知するものである。
【0065】
また、空きルート評価部41bは、必要に応じて、波長成分毎の最適ルート同士の評価をも行うものである。
【0066】
ここで、複数の空きルートから最適ルートを定めるには、対象となっている各空きルートを介して評価信号を伝送させ、光受信装置4から取り込んだ評価値や伝搬時間などの伝送特性が最も良いものに決定する。なお、後述する動作説明とは異なるが、過去(できるだけ直前)に取り込んだ評価値や伝搬時間などの情報に基づいて決定するようにしても良い。また、検索された空きルートが多数の場合には、伝送距離やホップ数などで候補をある程度絞り込んだ後に、評価値や伝搬時間などの情報に基づいて決定を行っても良い(すなわち、空きルートの検索時に伝送距離やホップ数などの許容条件を設けて予め絞り込むようにしても良い)。最良の空きルートが複数ある場合には、伝送距離やホップ数などに基づいて、最適ルートを決定するようにしても良い。
【0067】
伝送効率最適化手段42は、帯域・伝送効率評価部42a及び信号振分け決定部42bなどを有する。帯域・伝送効率評価部42a及び信号振分け決定部42bは協調し合って、各光チャネル板13−1、…、13−nへの伝送信号の振分け内容を常時見直すものである。この実施形態では、動作の項で後述するように、伝送効率最適化手段42は、伝送信号の伝送中に機能するものである。なお、伝送信号の伝送開始前にも、伝送効率最適化手段42が、使用帯域や伝送効率を評価して伝送信号の振分け方を定めるようにしても良い。なお、伝送効率は、例えば、各ルートでの使用帯域が均衡している場合を良く捉え、各ルートでの使用帯域が不均衡なほど悪く捉えるようなパラメータであって良い。
【0068】
この第1の実施形態の場合、基本的には、インバースマックス方式を意識しているので、伝送効率最適化手段42は、必要チャネル数(pとするp≦n)以上の波長成分について最適ルートが得られたときには、伝送信号を、p個の光チャネル板に振り分けるように決定する。この決定は、空き帯域が多い波長成分の方から伝搬遅延を考慮して選択していくことが伝送効率から好ましい。
【0069】
なお、必要チャネル数pとは、例えば、伝送信号のデータ量を、各光チャネル板13−1、…、13−nが1回の送信動作で取扱うことができるデータ量(光チャネル板内のバッファ(図示せず)に蓄積できるデータ量)で割ったガウス関数値である。
【0070】
ルート伝送品質調整手段43は、主として、伝送信号の送信中における各ルートの伝送品質(例えば、上述した評価情報など)を監視し、伝送品質が低下した場合には、光チャネル板13−1、…、13−nでのクロック信号周期を長くしたりし、伝送品質を最低限確保しようとするものである。このような伝送品質の監視対象は、例えば空き帯域が少ない波長成分である。
【0071】
通信手段44は、光送信装置3や光受信装置4などとの制御情報の通信を実行するものである。
【0072】
(A−2)第1の実施形態の動作
次に、以上のような構成を有する、第1の実施形態の波長多重伝送システムの各種動作を説明する。
【0073】
(A−2−1)基本的な伝送動作
光送信装置3において、送信端末2から伝送信号が入力されると、信号振分け器12が設定されている振分け内容(振分け方法)に従って、各波長成分λ1、…、λnにその伝送信号を振り分ける。振り分けられた振分伝送信号(電気信号)はそれぞれ、各光チャネル板13−1、…、13−nにおいて、所定波長λ1、…、λnの光信号に変換され、その後、WDM多重部15において、波長多重されてWDM信号がWDM伝送網1に送出される。
【0074】
WDM伝送網1において、光送信装置3から出力されたWDM信号は波長成分λ1、…、λn毎に設定されたルートを経由し、対向する光受信装置4に到達する。
【0075】
光受信装置4においては、到来したWDM信号を、WDM多重分離部30が波長成分λ1、…、λn毎の光信号に多重分離して、各波長成分λ1、…、λnに対応した光受信板32−1、…、32−nに与え、各光受信板32−1、…、32−nは、自己に割り当てられている波長成分λ1、…、λnの光信号を電気信号に変換する。変換後の各波長成分対応の電気信号は、遅延補償部33によって、波長成分λ1、…、λn毎のルートの相違による伝搬遅延が補償された後、電気的な多重部34によって多重され、光送信装置3が伝送しようとした伝送信号が再生され、受信端末5に向けて送出される。
【0076】
(A−2−2)初期のルート選択動作
次に、光送信装置3及び光受信装置4が伝送信号の通信を開始する前に実行される、どのルートを選択するかを決定する初期のルート選択動作について、図8のフローチャートを参照しながら説明する。
【0077】
なお、光送信装置3の通信相手の光受信装置4が固定され、通信毎に変化しないものであれば、光送信装置3及び光受信装置4をシステムに導入する際に、図8の処理が実行される。
【0078】
光送信装置3において、信号振分け器12は、送信端末2側から伝送信号が与えられ、新たな通信を開始する必要が生じたときには、その伝送信号を、各光チャネル板13−1、…、13−nが1回の送信動作で取扱うことができる単位データ量(接続される既存のWDM伝送網1に対応した伝送速度で有限のデータ量)毎に分割して内部蓄積すると共に、ネットワーク管理装置6に、新たな通信の開始の必要性を通知する(ステップS1)。
【0079】
このとき、ネットワーク管理装置6は、対象となっている光送信装置3及び光受信装置4間を結ぶ各波長成分λ1、…、λn毎の空きルートを検索し、その空きルートの情報を光送信装置3に通知する(ステップS2)。
【0080】
この通知を受けた光送信装置3の制御信号処理部17は、各波長成分λ1、…、λn毎の空きルートの情報を、対応する光チャネル板13−1、…13−nに与え、各光チャネル板13−1、…13−nは、その空きルート(1又は複数)を当該波長成分を有する評価信号(光信号)が伝送していくようにラベリングした後、各光チャネル板13−1、…13−nは、WDM伝送網1に向けて評価信号を送信する(ステップS3)。
【0081】
WDM伝送網1から空きルートを介した評価信号が与えられた光受信装置4において、各光受信板32−1、…、32−nは、自己に係る波長成分の評価信号に基づいて、その波長成分の1又は複数の空きルートの中から最適ルートを決定し、その最適ルート及び伝送品質情報(この第1の実施形態では上述した評価情報)を、受信側制御信号処理部35を介してネットワーク管理装置6に通知する(ステップS4)。なお、同一の波長成分に係る1又は複数の空きルートの中から最適ルートを決定することも、ネットワーク管理装置6が行うようにしても良い。
【0082】
ネットワーク管理装置6は、各波長成分毎の最適ルートの伝送品質情報を比較し、伝送に使用する必要数の波長成分(の最適ルート)を決定し、その決定された複数の波長成分に係る光チャネル板に最適ルートを通知すると共に、評価信号の伝送状態から最適ルートへ振分伝送信号の送出状態に切り替える(ステップS5、S6)。なお、振分伝送信号の送出状態への切換ではなく、振分伝送信号の送出し得る状態への切換を行い、振分伝送信号の送出は、振分け方法が決定された後に行うようにしても良い。この最適ルートの選択決定時において、その候補の空きルートに信号振分け量を加えた場合の帯域を考慮する。例えば、q個の波長成分を同じ空きルートに設定した場合には、その空きルートの帯域をオーバーする場合であれば、q−1個以下の波長成分での最適ルートにする。
【0083】
評価信号の伝送状態から最適ルートへ振分伝送信号の送出状態に切り替えが終了した光チャネル板は、ネットワーク管理装置6にその旨を通知し(ステップS7)、ネットワーク管理装置6は、切り替えを指示した全ての光チャネル板から切り替えの終了通知を待ち受ける(ステップS8)。
【0084】
全ての光チャネル板から切り替えの終了通知が与えられたネットワーク管理装置6などは、図9に示す信号振分け処理に移行する。
【0085】
以上のような初期時のルート選択動作が終了したときには、伝送に用いられる複数の波長成分(光チャネル板)には、例えば、伝送信号が等分に振り分けられる。
【0086】
(A−2−3)信号振分け動作
次に、信号振分け動作(信号振分け調整動作)を図9のフローチャートを参照しながら説明する。信号振分け動作は、上述したような通信開始時において、使用する波長成分かつその最適ルートが決定された初期のルート選択動作が終了したときだけでなく、後述するNE障害発生時のルートの見直し動作が終了したときにも実行される。また、周期的にも、この信号振分け動作が実行される。
【0087】
ネットワーク管理装置6は、振分伝送信号を伝送している全ての波長成分(のルート)に対し、使用帯域(言い換えると空き帯域)や伝送効率を評価する(ステップS10)。
【0088】
ここで、ルートに存在する全てのNE(ネットワークエレメント)情報はネットワーク管理装置6が管理しているため、各ルートの現在のトラフィック状態を評価し、そのルートに割当てられている帯域と比較することにより、空き帯域を把握することが可能である。
【0089】
ネットワーク管理装置6は、伝送中の全ての波長成分に対し、常時空き帯域を評価し、使用帯域、伝送効率の最適化を図れるように、信号振分け器12に情報を送り、現在伝送している全波長成分に対して信号を振り分け直させる(ステップS11)。例えば、伝送帯域が等価なルート(伝送路)に対しては、全て同じ情報量を送るというような、ネットワークの情報伝送効率を考慮し、各波長成分に信号を割振る。
【0090】
その後、ネットワーク管理装置6は、振分け見直し後において空き帯域が十分ある(閾値以上ある)波長成分についてはそのことを保持する(ステップS12)。このような波長成分は、後述する光チャネル板の障害発生時に切換先の波長成分として利用される。
【0091】
また、ネットワーク管理装置6は、振分け見直し後において、空き帯域がない、あるいは空き帯域が閾値以下の波長成分に対しては、伝送品質の管理対象として設定する(ステップS13)。
【0092】
なお、このような伝送品質の管理対象に設定された波長成分については、後述する図10に示すように、所定周期で伝送品質が評価され、伝送速度が制御される。
【0093】
(A−2−4)伝送品質の評価、制御動作
次に、伝送品質の管理対象として設定された波長成分について、伝送品質を評価して、それに応じた制御を行う動作を、図10のフローチャートを参照しながら説明する。
【0094】
ここで、所定の波長成分を、伝送品質の管理対象として設定する場合は、上述した図9のステップS13による場合である。
【0095】
ネットワーク管理装置6は、所定周期毎に、又は、後述する光チャネル板の障害発生時の動作でのステップS23による処理が終了したときには、図10の処理を開始し、伝送品質の管理対象の波長成分について、光受信装置4の光受信板から伝送品質情報を取込み(ステップS15)、その伝送品質の状態の良否を判断する(ステップS16)。
【0096】
例えば、振分伝送信号には、CRCなどの誤り検出符号などを挿入して送信し(信号振分け器12などの処理による)、それに基づいて、ビットエラーレート(BER)を得て伝送品質情報としても良く、また、振分伝送信号の前又は後に、評価信号を付加して送信するようにしておいて、その評価信号の受信結果に基づいてBERを得て伝送品質情報としても良い。なお、後述する第1の実施形態の変形実施形態のような形態によって、直接、光学的に伝送品質情報を捉えるようにしても良い。
【0097】
そして、ネットワーク管理装置6は、伝送品質の管理対象の波長成分について、伝送品質に余裕があれば、光送信装置3のその波長成分に係る光チャネル板に対し、クロック周波数を高めることを指示し、伝送品質が劣化していれば、光送信装置3のその波長成分に係る光チャネル板に対し、クロック周波数を低めることを指示し、伝送品質が標準的であれば、光送信装置3のその波長成分に係る光チャネル板に対し、クロック周波数を維持することを指示する(ステップS17)。すなわち、伝送品質に応じて、伝送速度(クロック周波数)の見直しを実行し、光チャネル板をその伝送速度を達成するように制御する。
【0098】
(A−2−5)光チャネル板(光受信板)の障害発生時動作
次に、振分伝送信号の伝送に用いられている、光送信装置3のいずれかの光チャネル板に障害が発生したときの振分伝送信号の振分けの見直し動作(再ルーティング動作)を、図11のフローチャートを参照しながら説明する。
【0099】
なお、光受信装置4のいずれかの光受信板に障害が発生した場合にも、この図11に示す動作が実行される。
【0100】
ネットワーク管理装置6は、光送信装置3からいずれかの光チャネル板に障害が発生したことを通知されると、又は、光送信装置3のいずれかの光チャネル板に障害が発生したことを認識すると、自己が記憶している情報に基づき(図9のステップS12参照)、現時点で、振分伝送信号の伝送に供している波長成分の中に空き帯域を有するものを検索した後、空き帯域を有する波長成分があるか否かを判別する(ステップS20、S21)。
【0101】
そして、ネットワーク管理装置6は、空き帯域を有する波長成分が1個でもあれば、障害が発生した光チャネル板に振り分けていた伝送信号量(データ量)を、空き帯域を有する全ての波長成分に振り向けるように、信号振分け器12に指示し、信号振分け器12における伝送信号の振分け方を変更させる(ステップS22)。
【0102】
なお、この図11の処理の終了後において、上述した図9の処理に入ったときに、帯域(データ量)が追加された波長成分について空き帯域が有するか否かが確認され、必要に応じて、伝送品質の管理対象の波長成分として設定される。そして、伝送品質の管理対象の波長成分として設定された場合には、上述した図10に示す処理が実行される。
【0103】
これに対して、ネットワーク管理装置6は、空き帯域を有する波長成分が存在しない場合には、障害が発生した光チャネル板(波長成分)に振り分けていた伝送信号量(データ量)を、障害が発生した光チャネル板に係る波長成分以外の、現在伝送に用いている全ての波長成分に振り向けるように、信号振分け器12に指示し、信号振分け器12における伝送信号の振分け方を変更させると共に、データ量の追加に合わせてクロック周波数を低下させる(ステップS23)。この処理の後は、メインルーチンに戻るのではなく、直ちに、上述した図10の処理(伝送品質に応じた伝送速度の制御処理)に移行する。
【0104】
上述したクロック周波数の低下は、空き帯域がない状態でのデータ量の追加であるのでそのままでは伝送品質が確保できない恐れがあり、これを未然に防止するためである。
【0105】
(A−2−6)ネットワークエレメント(NE)の障害発生時動作
次に、ネットワークエレメント(NE)に障害が発生したときにの振分伝送信号の振分けの見直し動作(再ルーティング動作)を、図12のフローチャートを参照しながら説明する。
【0106】
ネットワーク管理装置6は、WDM伝送網1からいずれかのNE障害が発生したことを通知されると、又は、いずれかのNEに障害が発生したことを認識すると、障害が発生したNEをルート上の要素として全ての波長成分のそれぞれについて空きルートを検索し、その空きルートの情報を光送信装置3に通知する(ステップS25)。
【0107】
この通知を受けた光送信装置3の送信側制御信号処理部17は、それらの各波長成分毎の空きルートの情報を、対応する光チャネル板に与え、各光チャネル板は、その空きルート(1又は複数)を当該波長成分を有する評価信号(光信号)が伝送していくようにラベリングした後、各光チャネル板は、WDM伝送網1に向けて評価信号を送信する(ステップS26)。
【0108】
WDM伝送網1から空きルートを介した評価信号が与えられた光受信装置4において、各光受信板は、自己に係る波長成分の評価信号に基づいて、その波長成分の1又は複数の空きルートの中から最適ルートを決定し、その最適ルート及び伝送品質情報を、受信側制御信号処理部35を介してネットワーク管理装置6に通知する(ステップS27)。
【0109】
ネットワーク管理装置6は、各波長成分毎の最適ルートの伝送品質情報を比較し、各波長成分について、今まで使用していたルートに置き換える最適ルートを決定し、その決定された最適ルートを担当する波長成分に係る光チャネル板に通知すると共に、評価信号の伝送状態から最適ルートへ振分伝送信号の送出状態に切り替える(ステップS28、S29)。
【0110】
評価信号の伝送状態から、新たな最適ルートへ振分伝送信号を送出し得る状態に切り替えが終了した光チャネル板は、ネットワーク管理装置6にその旨を通知し(ステップS30)、ネットワーク管理装置6は、切り替えを指示した全ての光チャネル板から切り替えの終了通知を待ち受ける(ステップS31)。
【0111】
全ての光チャネル板から切り替えの終了通知が与えられたネットワーク管理装置6などは、上述した図9に示す信号振分けルーチンに移行する。
【0112】
上述した図9の処理に移行したときには、障害が発生したNEを通過する最適ルートから新たな最適ルートに切り替えられた波長成分(他の波長成分も含む)について空き帯域が有するか否かが確認され、必要に応じて、伝送品質の管理対象の波長成分として設定される。伝送品質の管理対象の波長成分として設定された場合には、上述した図10に示す処理が実行され、適宜、伝送速度が制御される。
【0113】
(A−3)第1の実施形態の効果
第1の実施形態の波長多重伝送システムによれば、波長成分毎に、伝送特性などを考慮して最適ルートを選択するので、従来の構成に比べ、良好な伝送特性を達成することができる。
【0114】
また、第1の実施形態によれば、各波長成分毎の使用帯域や伝送効率を判断して各波長成分にデータ量をダイナミックに振り分けるため、使用されるルートの伝送効率が適切に分割され、あるルートに対してデータが集中することを防ぐことができる。
【0115】
さらに、第1の実施形態によれば、空き帯域がない又は少ない波長成分については、伝送品質を監視し、伝送品質に応じて、クロック周波数を変更するようにしたので、そのような波長成分についても、最小限、ある程度の伝送品質を確保することができる。
【0116】
さらにまた、第1の実施形態によれば、ネットワークエレメントに障害が発生した場合にも、そのエレメントを要素とするルートに係る波長成分については、波長成分毎に、光学的な伝送特性を考慮して最適ルートを選択し直して、それら各波長成分にデータ量を振り分け直すようにしたので、輻輳を防ぐことができ、従来の構成に比べ、ネットワークエレメントに障害が発生した場合によって生じる回線断の確率を低くできる。
【0117】
また、第1の実施形態によれば、光チャネル板や光受信板の障害発生時には、他の波長成分に、障害に係る波長成分のデータ量を、空き帯域に応じて単純に振分け直すので、迅速に対応することができる。このような振分け直しで、帯域が厳しくなった波長成分については、適宜クロック周波数を変更するようにしたので、ある程度以上の伝送品質を確保することができる。
【0118】
(A−4)第1の実施形態の変形実施形態
上記第1の実施形態の説明においても、種々、変形した実施形態について言及したが、さらに、以下に例示するような変形実施形態を挙げることができる。
【0119】
伝送品質を捉えたりルートを評価したりするための情報を得る方法は、上記第1の実施形態で説明したものに限らない。
【0120】
例えば、伝送品質を捉えたりルートを評価したりするために、光送信装置3における各波長成分毎の光パワー情報などの光信号段階でのパラメータが必要ならば、図13に示すように、各光チャネル板13−1、…、13−nから出力された出射光を分岐する光カプラ18−1、…、18−nを設け、分岐モニタ光を送信側制御信号処理部17に入力するようにしても良い。この場合、送信側制御信号処理部17の内部に光電変換器を有することを要する。
【0121】
また例えば、伝送品質を捉えたりルートを評価したりするために、光送信装置3からの出力光のパワー情報などのWDM信号段階でのパラメータが必要ならば、図14に示すように、WDM多重部15の後段側に、出力光を分岐する光カプラ18を設け、分岐モニタ光を送信側制御信号処理部17に入力するようにしても良い。この場合にも、送信側制御信号処理部17の内部に光電変換器を有することを要する。
【0122】
さらに例えば、伝送品質を捉えたりルートを評価したりするために、光チャネル板13−1〜13−nから評価信号(光信号)を出力させる指令信号などは、図15に示すように、送信側制御信号処理部17から信号振分け器12を介して光チャネル板13−1〜13−nに与えるようにしても良い。
【0123】
図13〜図15に示した光送信装置3の変形実施形態は、これらを組み合わせても良いことは勿論である。
【0124】
例えば、伝送品質を捉えたりルートを評価したりするために、光受信装置4において各波長成分毎の受信光の光パワー情報などの光信号段階でのパラメータが必要ならば、図16に示すように、各光受信板32−1、…、32−nへの入射光を分岐する光カプラ37−1、…、37−nを設け、分岐モニタ光を受信側制御信号処理部35に入力するようにしても良い。この場合、受信側制御信号処理部35の内部に光電変換器を有することを要する。
【0125】
また例えば、伝送品質を捉えたりルートを評価したりするために、光受信装置4への入力光のパワー情報などのWDM信号段階でのパラメータが必要ならば、図17に示すように、WDM多重分離部30の前段側に、出力光を分岐する光カプラ37を設け、分岐モニタ光を受信側制御信号処理部35に入力するようにしても良い。この場合も、受信側制御信号処理部35の内部に光電変換器を有することを要する。
【0126】
さらに例えば、伝送品質を捉えたりルートを評価したりするために、光受信板32−1〜32−nからの評価情報などを受信側制御信号処理部35が取り込む方法は、図18に示すように、遅延補償部33を介して取り込む方法であっても良い。
【0127】
図16〜図18に示した光受信装置4の変形実施形態は、これらを組み合わせても良いことは勿論である。
【0128】
なお、送信側制御信号処理部17や受信側制御信号処理部35は、信号を経由する機能であるため、場合によっては省略しても良い。
【0129】
評価信号は、初期ルートの設定時以外でも伝送されるものである。この方法としては、振分伝送信号の送信時間と評価信号の伝送時間とを分割する方法の他、振分伝送信号に評価信号を混入される方法でも良く、振分伝送信号と評価信号とで電気的な変調方法を変えて変調させた後、それを重畳して光信号に変換して同時に伝送する方法であっても良い。
【0130】
(B)第2の実施形態
次に、本発明による波長多重伝送システムの第2の実施形態を図面を参照しながら詳述する。
【0131】
(B−1)第2の実施形態の構成
図19は、第2の実施形態の光送信装置3Xの要部構成を示すブロック図であり、第1の実施形態に係る図4との同一、対応部分には同一、対応符号を付して示している。
【0132】
この第2の実施形態の光送信装置3Xには、第1の実施形態の構成に加えて、予備の光チャネル板13−sが設けられている。予備の光チャネル板13−sは、光チャネル板13−1〜13−nのいずれか、又は、対向する光受信装置4X(図20参照)の光受信板32−1〜32−nのいずれかに障害が発生したときに機能するものである。予備の光チャネル板13−sは、光チャネル板13−1〜13−nに係る波長成分λ1〜λnとは異なる波長成分λsが割り当てられているものであり、この点を除けば、その内部構成は、光チャネル板13−1〜13−nと同様である。
【0133】
図20は、第2の実施形態の光受信装置4Xの要部構成を示すブロック図であり、第1の実施形態に係る図6との同一、対応部分には同一、対応符号を付して示している。
【0134】
この第2の実施形態の光受信装置4Xには、第1の実施形態の構成に加えて、予備の光受信板32−sが設けられている。予備の光受信板32−sは、対向する光送信装置3Xの予備の光チャネル板13−sが機能しているときに機能するものである。予備の光受信板32−sは、当然に、波長成分λsの光信号に対する受信処理を行うものであり、この点を除けば、光受信板32−1〜32−nと同様である。
【0135】
なお、この第2の実施形態の場合、WDM伝送網1は、波長成分λsの光信号に対応できるものである。
【0136】
(B−2)第2の実施形態の動作
次に、第2の実施形態の波長多重伝送システムの各種動作を説明する。なお、いずれかの光チャネル板に障害が発生した場合の動作を除いた動作は、第1の実施形態と同様であるので、その説明は省略する。
【0137】
図21は、いずれかの光チャネル板に障害が発生した場合の動作を示すフローチャートである。なお、いずれかの光受信板に障害が発生した場合にも、図21の動作が実行される。
【0138】
ネットワーク管理装置6は、光送信装置3からいずれかの光チャネル板に障害が発生したことを通知されると、又は、光送信装置3のいずれかの光チャネル板に障害が発生したことを認識すると、障害が発生した光チャネル板の各種パラメータ(例えばルート、パワー、伝送速度等)を予備の光チャネル板13−sに送付し、予備の光チャネル板13−sは、その各種パラメータに従った伝送を行い得る状態に設定される(ステップS35)。
【0139】
次に、ネットワーク管理装置6は、設定が完了したことを確認すると、信号振分け器12に対し、障害が発生した光チャネル板に振り分けていた振分伝送信号を、予備の光チャネル板13−sに与えるように指示する(ステップS36)。これにより、予備の光チャネル板13−sが、障害が発生した光チャネル板に代わって振分伝送信号の送信を行う(ステップS37)。
【0140】
なお、既に、予備の光チャネル板13−s及び予備の光受信板32−sが使用されている状態で、いずれかの光チャネル板又は光受信板に障害が発生した場合には、上述した図11に示した第1の実施形態での動作と同様な動作が実行される。
【0141】
(B−3)第2の実施形態の効果
第2の実施形態の波長多重伝送システムによっても、第1の実施形態と同様な効果を奏することができる。
【0142】
さらに、第2の実施形態によれば、送信側及び受信側のそれぞれに、予備の光チャネル板13−sと光受信板32−sとを設けたことにより、本来伝送に使用されている光チャネル板や光受信板のいずれかに障害が発生した場合でも、伝送信号のチャネル数(波長成分数)を減らすことなく伝送すること(障害回避)ができる。従って、第1の実施形態よりも輻輳に対して耐力のあるシステムを実現できる。
【0143】
(B−4)第2の実施形態の変形実施形態
なお、第1の実施形態の変形実施形態として挙げたものは、第2の実施形態の変形実施形態にもなっている。
【0144】
上記説明では、予備の波長成分(光チャネル板及び光受信板)が1個のものを示したが、複数用意しておくようにしても良い。
【0145】
また、上記説明では、予備の波長成分のルートが、障害が発生した光チャネル板又は光受信板に係るルートと同じものであったが、予備の波長成分についても、最適ルートの探索を行うようにしても良い。この探索を、いずれかの光チャネル板又は光受信板に障害が発生してから行っても良い。また、全ての波長成分の最適ルートを決定する際に予備の波長成分についても最適ルートを予め決定しておいても良い。
【0146】
さらに、上記説明では、予備の波長成分が固定のものを示したが、例えば、全ての波長成分の最適ルートを決定する際に最も評価が低かった波長成分を予備の波長成分にするように、予備の波長成分を選択可能としても良い。
【0147】
(C)第3の実施形態
次に、本発明による波長多重伝送システムの第3の実施形態を図面を参照しながら詳述する。
【0148】
(C−1)第3の実施形態の構成
図22は、第2の実施形態の光送信装置3Yの要部構成を示すブロック図であり、第1の実施形態に係る図4との同一、対応部分には同一、対応符号を付して示している。
【0149】
この第3の実施形態の光送信装置3Yには、第1の実施形態の構成に加えて、予備の光チャネル板13−t及び光スイッチ(光SW)19が設けられている。
【0150】
予備の光チャネル板13−tは、光チャネル板13−1〜13−nのいずれかに障害が発生したときに機能するものである。この第3の実施形態の予備の光チャネル板13−tは、全ての光チャネル板13−1〜13−nに係る波長成分λ1〜λnの範囲内の波長を、外部からの指令によりとり得るものである。すなわち、予備の光チャネル板13−tは、可変波長の光チャネル板となっている。
【0151】
図23は、第3の実施形態の予備の光チャネル板13−t(可変波長の光チャネル板)の詳細構成例を示すブロック図であり、上述した第1の実施形態に係る図5との同一、対応部分には同一、対応符号を付して示している。
【0152】
この図23に示す予備の光チャネル板13−tは、光源として、可変波長(Tunable)のLD光源20Yを適用し、この可変波長LD光源20Yに、送信側制御信号処理部17からの波長指令を与えることで、所望の波長を有する光信号を送出し得るものとなっている。
【0153】
光スイッチ19(図22)は、送信側制御信号処理部17からの交換指令に応じ、光チャネル板13−1〜13−n、及び、予備の光チャネル板13−tの計n+1個の光チャネル板からの光信号から、n個の光信号を選択してWDM多重部15に与えるものである。
【0154】
例えば、本来伝送に用いられる光チャネル板13−1〜13−nに障害が発生していない状態では、光スイッチ19は、光チャネル板13−1〜13−nからの光信号をそのまま選択してWDM多重部15に与える。
【0155】
また例えば、光チャネル板13−1に障害が発生している状態では、光スイッチ19は、光チャネル板13−2〜13−n、予備の光チャネル板13−tからの光信号を選択してWDM多重部15に与える。
【0156】
この第3の実施形態の場合、光送信装置3Yの構成は、上述のように第1の実施形態とは異なっているが、光受信装置4の構成は、第1の実施形態と同一であて良い。
【0157】
(C−2)第3の実施形態の動作
次に、第3の実施形態の波長多重伝送システムの動作を説明する。なお、いずれかの光チャネル板に障害が発生した場合の動作を除いた動作は、第1の実施形態と同様であるので、その説明は省略する。
【0158】
図24は、いずれかの光チャネル板に障害が発生した場合の動作を示すフローチャートである。
【0159】
ネットワーク管理装置6は、光送信装置3からいずれかの光チャネル板(以下、13−1として説明を行う)に障害が発生したことを通知されると、又は、光送信装置3のいずれかの光チャネル板(13−1)に障害が発生したことを認識すると、障害が発生した光チャネル板13−1の各種パラメータ(例えば波長、ルート、パワー、伝送速度等)を予備の可変波長光チャネル板13−tに送付し、予備の可変波長光チャネル板13−tは、その各種パラメータに従った伝送を行い得る状態に設定される(ステップS40、S41)。
【0160】
この設定により、予備の可変波長光チャネル板13−tは、障害が発生した光チャネル板13−1に係る波長成分λ1の光信号を送出し得る状態になる。言い換えると、予備の可変波長光チャネル板13−tは、擬似的に光チャネル板13−1となる。
【0161】
また、ネットワーク管理装置6は、光スイッチ19に対しては、予備の可変波長光チャネル板13−tからの光信号を、障害が発生した光チャネル板13−1からの光信号を入力させていたWDM多重部15の入力ポートに入力させるような交換を指示し、これにより、光スイッチ19は、その指示に従った交換状態に変更する(ステップS42、S43)。
【0162】
ネットワーク管理装置6は、可変波長光チャネル板13−tや光スイッチ19が指示した状態変更等を実行したことを確認した後、信号振分け器12に対して、障害が発生した光チャネル板13−1に振り分けていた振分伝送信号を、予備の可変波長光チャネル板13−tに与えるように指示する(ステップS44)。
【0163】
これにより、可変波長光チャネル板13−tは、あたかも、障害が発生した光チャネル板13−1として振る舞う。
【0164】
なお、既に、予備の可変波長光チャネル板13−tが使用されている状態で、いずれかの光チャネル板に障害が発生した場合には、上述した第1の実施形態での動作が実行される。
【0165】
(C−3)第3の実施形態の効果
第3の実施形態の波長多重伝送システムによっても、第1の実施形態と同様な効果を奏することができる。さらに、第3の実施形態によれば、以下の効果を奏することができる。
【0166】
第3の実施形態も、第2の実施形態と同様に、予備の光チャネル板13−tを設けた構成ではあるが、予備の光チャネル板13−tが可変波長対応であるので、障害が発生した光チャネル板として擬似的に動作でき、その結果、光受信装置4には、予備の構成を設ける必要がない。また、WDM伝送網1も、予備の波長成分に対応するというような必要もない。
【0167】
(C−4)第3の実施形態の変形実施形態
なお、第1の実施形態の変形実施形態として挙げたものは、第3の実施形態の変形実施形態にもなっている。
【0168】
上記説明では、予備の可変波長光チャネル板を1個設けたものを示したが、複数設けるようにしても良い。このように複数の予備の可変波長光チャネル板を設ける場合において、波長の可変範囲を異なるようにさせても良い。例えば、第1の予備の可変波長光チャネル板が波長λ1〜λmに対応でき、第2の予備の可変波長光チャネル板が波長λ(m+1)〜λnに対応できるようにしても良い。
【0169】
また、上記では、予備の可変波長光チャネル板が光源そのものが可変波長のものを適用することで可変波長を達成するものを示したが、可変波長の達成構成は、これに限定されないことは勿論である。例えば、各波長成分の光源を有し、複数の光源からの信号を選択させることで可変波長の光チャネル板を実現するようにしても良い。
【0170】
さらに、上記では、光送信装置に予備の可変波長光チャネル板及び光スイッチを設けたものを示したが、光受信装置に光スイッチ及び予備の可変波長光受信板を設けるようにしても良い。すなわち、障害が発生した光受信板に係る波長成分の光信号を、光スイッチを介して、予備の可変波長光受信板に与え、予備の可変波長光受信板がその波長成分の光信号を受信処理するようにしても良い。
【0171】
(D)第4の実施形態
次に、本発明による波長多重伝送システムの第4の実施形態を図面を参照しながら簡単に説明する。
【0172】
第4の実施形態の波長多重伝送システムにおいて、その光送信装置及び光受信装置の構成はそれぞれ、上述した第1の実施形態に係る図4及び図6で表すことができる。
【0173】
しかしながら、この第4の実施形態の場合、光送信装置3における各光チャネル板13−1〜13−nの内部詳細構成が、第1の実施形態のものと異なっている。
【0174】
図25は、第4の実施形態の光チャネル板13Z(13−1〜13−n)の詳細構成を示すブロック図であり、上述した第1の実施形態に係る図5との同一、対応部分には同一、対応符号を付して示している。
【0175】
第4の実施形態の光チャネル板13Zには、第1の実施形態の光チャネル板13の構成に加えて、予備LD光源20Z及び光カプラ26が設けられている。
【0176】
予備LD光源20Zは、LD光源20の障害発生時に、LD光源20に代わって、LD光源20と同一の波長の連続発振光を射出するものである。ここでは、予備LD光源20ZがLD光源20の障害発生の検出機能を内蔵しているものとする。例えば、予備LD光源20Zの内部に、LD光源20からの射出光をモニタする受光素子を備え、その受光素子の受光パワーが閾値以下になったときに、LD光源20に障害が発生したとして予備LD光源20Zの射出動作を立ち上げる構成が内蔵されているとする。
【0177】
光カプラ26は、LD光源20から射出された連続発振光、又は、予備LD光源20Zから射出された連続発振光を光変調器21に導くものである。
【0178】
次に、ある光チャネル板13ZのLD光源20に障害が発生した際の動作を簡単に説明する。
【0179】
光チャネル板13ZのLD光源20に障害が生じた場合、光チャネル板13Z内の障害回避機能によって、LD光源20から予備LD光源20Zに切り換える。この予備LD光源20Zへの切換え期間中の情報は、送信側制御信号処理部17又はネットワーク管理装置6に通知され、この切換え期間中は、信号振分け器12を制御して、光チャネル板13Zを利用しない送信を行う。例えば、障害発生前において、n個の波長成分で振分伝送信号を送信している状態から、n−1個の波長成分で振分伝送信号を送信する状態に切り替える。なお、データを配分し直すのではなく、例えば、信号振分け器12から光チャネル板13Zへの出力を停止させる。
【0180】
その後、予備LD光源20Zへの切換えが完了したのを確認したら、光チャネル板13Zを利用した送信状態に復帰させる。すなわち、n−1個の波長成分で振分伝送信号を送信している状態から、n個の波長成分で振分伝送信号を送信する状態に切り替える。
【0181】
第4の実施形態の波長多重伝送システムによっても、第1の実施形態と同様な効果を奏することができる。さらに、第4の実施形態によれば、以下の効果を奏することができる。
【0182】
第4の実施形態によれば、光チャネル板の内部構成を僅かに変更するだけで、光チャネル板の障害に容易に対応することができる。実際上、光チャネル板において故障の多い部分はLD光源20であり、これに予備系を設けることで障害回避機能として十分な効果が得られる。
【0183】
また、LD光源20から予備LD光源20Zへの切換え期間中に信号振分け器12からの振分伝送信号の出力を停止し、その切換完了後に振分伝送信号の出力を再開するという単純な制御により、光源の障害に対する回避を行うことができる。
【0184】
なお、上記では、LD光源に予備系を設けたものを示したが、LD光源及び光変調器の光処理系部分の全体に予備系を設けるようにしても良い。
【0185】
(E)第5の実施形態
次に、本発明による波長多重伝送システムの第5の実施形態を図面を参照しながら詳述する。
【0186】
(E−1)第5の実施形態の構成
図26は、第5の実施形態の波長多重伝送システムの要部構成を示すブロック図であり、既述した実施形態に係る図面との同一、対応部分には、同一、対応符号を付して示している。
【0187】
図26において、第5の実施形態の波長多重伝送システムも、WDM伝送網1を挟んで、光送信装置3Wと光受信装置4Wとが対向している。
【0188】
光送信装置3Wは、運用系の光送信部3WAと、待機系の光送信部3WSと、系切替スイッチ7とを有する。なお、光送信装置3Wは、図26では省略しているが、送信端末(1個とは限らない)との各レイヤでのインタフェース回路なども有している。
【0189】
系切替スイッチ7は、基本的には、伝送信号を運用系の光送信部3WAに与えるものであり、運用系の光送信部3WAに交換を必要とする程度の障害が発生したときに、当該光送信装置3W内部の図示しない障害検出構成や、図示しないネットワーク管理装置などからの制御情報に基づいて、伝送信号を待機系の光送信部3WSに与えるものである。
【0190】
運用系の光送信部3WAは、信号振分け器(いわゆるIMP)12A、光チャネル板13−1A〜13−nA、WDM多重部15A、制御信号処理部17Aなどを有する。この第5の実施形態の場合、運用系の光送信部3WAは、全ての波長成分が同一ルートを通過するように送信するものであり、この点は、従来と同様である。
【0191】
運用系の光送信部3WAが従来と異なる点は、制御信号処理部17Aが、光チャネル板13−1A〜13−nAの障害を監視し、所定数(例えば1個)の光チャネル板の障害までは、その障害が発生していた振分伝送信号を他の光チャネル板に振り向けるように信号振分け器12Aに指示する点である。従って、信号振分け器12Aも、このような信号振分けの変更に応じられる点も従来とは異なっている。
【0192】
一方、待機系の光送信部3WSは、運用系の光送信部3WAにおける所定数を超えた光チャネル板の障害発生時に機能するものである。
【0193】
待機系の光送信部3WSは、信号振分け器12S、光チャネル板13−1S〜13−nS、WDM多重部15Sなどを有する。この第5の実施形態の場合、待機系の光送信部3WSは、全ての波長成分が同一ルートを通過するように送信処理するものであり、従来の光送信装置と同様なものである。
【0194】
光受信装置4Wは、運用系の光受信部4WAと、待機系の光受信部4WSと、系切替スイッチ8とを有する。なお、図26では省略しているが、受信端末(1個とは限らない)との各レイヤでのインタフェース回路なども有している。
【0195】
系切替スイッチ8は、運用系の光受信部4WAからの受信伝送信号及び待機系の光受信部4WSからの受信伝送信号を選択して、図示しない受信端末側に送出するものであり、すなわち、系の切り替え機能を担っている。
【0196】
運用系の光受信部4WA及び待機系の光受信部4WSはそれぞれ、WDM多重分離部30A、30S、受信板32−1A〜32−nA、32−1S〜32−nSなどを有するものであり、従来の光受信装置と同様な受信処理を行うものである。なお、図26に示すものでは、電気信号段階の多重部34は両系で共通なものとして示している。勿論、両系で別個に多重部を備えていても良い。
【0197】
(E−2)第5の実施形態の動作
第5の実施形態の波長多重伝送システムにおいて、運用系の光送信部3WAを用いた伝送状態で、運用系の光送信部3WAのいずれかの光チャネル板に障害が発生すると、制御信号処理部17Aは、信号振分け器12Aに、他のn−1個の光チャネル板に伝送信号を振り分けるように指示し、n−1個の波長成分でのWDM伝送信号の送信状態に切り替える。
【0198】
このような処理は、第1の実施形態に係る図11のフローチャートに示した処理とほぼ同様である。
【0199】
このような伝送信号の振分け数を変更した対応は、光チャネル板の障害発生数が所定数(例えば1)以下でとられる。
【0200】
運用系の光送信部3WAにおける光チャネル板13−1A〜13−nAの障害数が所定数を超えると、系切替スイッチ7によって、伝送信号が待機系の光送信部3WSに与えられ、待機系の光送信部3WSによる送信状態に切り替わる。
【0201】
なお、運用系の光送信部3WAがユニットや部品の交換などにより正常状態に復帰したときには、運用系の光送信部3WAの送信状態に戻す。
【0202】
(E−3)第5の実施形態の効果
第5の実施形態の波長多重伝送システムによれば、運用系の光送信部3WAにおける光チャネル板の障害が発生した場合でも、障害数が所定数以下の場合には、系を切り換えることなく障害を回避することができる。
【0203】
系の切り替えが不要なことは、例えば、系切替スイッチの故障時の回線断などのリスクを免れることができるという副次的な効果が得られる。また、障害が発生した光チャネル板だけの交換で正常に復帰させることができ、運用系の光送信部という大型部品を障害発生を考慮してストックしておく量も少なくて済む。
【0204】
また、単なる冗長構成を採用した場合であれば、運用系の光チャネル板に障害が発生した場合に直ちに帯域系への切替が行われ、待機系の光チャネル板にも障害が発生していた場合(2重障害が発生した場合)、伝送ができなくなるが、この第5の実施形態の場合、運用系の光送信部3WAにおける光チャネル板に障害が発生しても、所定数いないならば、運用系での伝送が継続され、待機系への切替は、さらなる障害発生時であるので、より冗長度が高くなっており、障害回避機能が充実している。
【0205】
(E−4)第5の実施形態の変形実施形態
上記説明では、運用系の光送信部だけが波長成分数(チャネル数)が少ない送信動作を実行できるものを示したが、図27に示すように、予備系の光送信部にも、制御信号処理部17Sを設け、その光チャネル板13−1S〜13nSの所定数以下の障害に、内部で対応できるようにしても良い。このようにした場合には、冗長度が一段と向上する。
【0206】
また、上記説明では、運用系の光送信部が内部の光チャネル板の障害時に、系の切替えを実行しないで対応できる構成を有するものを示したが、逆に、待機系の光送信部だけがそのような構成を備えるものであっても良い。
【0207】
さらに、上記説明では、光送信装置及び光受信装置間で、全ての波長成分が同じルートを通るものを示したが、上述した第1〜第4の実施形態のような波長成分毎にルートが定められる技術思想を導入しても良い。特に、運用系の光送信部及び運用系の光受信部として、上述した第1〜第4の実施形態の光送信装置及び光受信装置を適用することが好ましい。このようにすると、一部の光チャネル板に障害が発生しても、かなりの伝送品質を達成することができる。
【0208】
(F)第6の実施形態
次に、本発明による波長多重伝送システムの第6の実施形態を図面を参照しながら詳述する。
【0209】
(F−1)第6の実施形態の構成
図28は、第6の実施形態の波長多重伝送システムの要部構成を示すブロック図であり、上述した第5の実施形態に係る図26との同一、対応部分には、同一、対応符号を付して示している。
【0210】
この第6の実施形態の波長多重伝送システムは、上述した第5の実施形態の波長多重伝送システムに比較すると、運用系の光送信部3WAの構成が異なっている。
【0211】
第6の実施形態の場合、運用系の光送信部3WAは、第5の実施形態の構成に加えて、障害発生部材情報通信部50を有する。
【0212】
障害発生部材情報通信部50は、運用系の光送信部3WAにおける光チャネル板13−1A〜13−nAのいずれかに障害が発生したときに、当該光送信装置3Wやその光チャネル板の特定情報を含む障害発生部材情報を、保守用部材管理端末51に、所定の通信網(専用回線であっても良い)52を介して送信するものである。
【0213】
ここで、障害発生部材情報通信部50は、信号振分け器12Aや制御信号処理部17Aの一機能として実現していても良い。
【0214】
障害発生部材情報の伝送に供する通信網52は、WDM伝送網1であっても良く、また、WDM伝送網1とは異なる通信網であっても良い。
【0215】
障害発生部材情報の伝送に供する通信網52がWDM伝送網1である場合には、障害発生部材情報の伝送に供する専用の波長成分を定めておき、その波長成分の光信号を用いて、障害発生部材情報を伝送する。この場合、障害発生部材情報通信部50は、光チャネル板で構成される。
【0216】
保守用部材管理端末51は、例えば、保守用部材をストックしている倉庫や、当該光送信装置3Wを納品したいわゆるベンダ会社などに設けられているものである。すなわち、保守用部材管理端末51は、光チャネル板などの障害発生部材の交換処理を担う会社や部署などに設けられているものである。
【0217】
保守用部材管理端末51は、上述した障害発生部材情報の受信機能を有する情報処理装置で構成されている。保守用部材管理端末51は、障害発生部材情報を受信したときには、所定の交換処理を行う(交換処理の例は動作の項で説明する)。
【0218】
(F−2)第6の実施形態の動作
第6の実施形態においても、運用系の光送信部3WAにおける光チャネル板13−1A〜13−nAのいずれかに障害が発生したときには、障害が発生した光チャネル板を除いた他の光チャネル板に伝送信号を振分け直して光受信装置4Wに向けて送信する。
【0219】
この動作に加え、障害発生部材情報通信部50は、当該光送信装置3Wやその障害発生の光チャネル板の特定情報を含む障害発生部材情報を、保守用部材管理端末51に通信網52を介して送信する。
【0220】
このとき、保守用部材管理端末51は、警報音を鳴らして障害発生部材情報を表示する程度の処理を行っても良く、また、その障害発生部材情報に係る光チャネル板の在庫を確認し、在庫がある場合にその使用予約を設定し、在庫がない場合に、生産や他の倉庫からの取り寄せを指示するようにしても良く、さらには、保守作業員の日程表データ等を参照して交換作業日時を定めるようにしても良い。
【0221】
また、保守用部材管理端末51は、必要に応じて、他の装置に、障害発生部材情報を転送するようにしても良い。
【0222】
(F−3)第6の実施形態の効果
第6の実施形態によっても、第5の実施形態の効果と同様な効果を奏することができる。さらに、以下の効果を奏することができる。
【0223】
第6の実施形態によれば、光チャネル板の障害発生時に、障害発生部材情報通信部50が障害発生部材情報を保守用部材管理端末51に通知するようにしたので、光チャネル板の交換を迅速に行うことができるようになる。また、障害発生部材情報がリアルタイムで通知される分だけ、在庫管理や生産管理がし易いものとなり、在庫ストック量の少量かが期待できる。
【0224】
(F−4)第6の実施形態の変形実施形態
なお、上記では、運用系の光送信部3WAに障害発生部材情報通信部50に設けたものを示したが、これに加え、又は、これに代え、待機系の光送信部3WSに障害発生部材情報通信部を設けるようにしても良い。また、運用系の光受信部4WAや待機系の光受信部4WSに障害発生部材情報通信部を設けるようにしても良い。さらには、第1〜第4の実施形態のような運用系及び待機系の冗長構成を採用していないシステムにおける光送信装置や光受信装置に障害発生部材情報通信部を設けるようにしても良い。当然に、障害発生部材情報の通信が実行される部材は、光チャネル板に限定されるものではない。
【0225】
さらにまた、波長多重伝送システム以外の伝送システムに係る送信装置や受信装置に、障害発生部材情報通信部を設けるようにしても良い。
【0226】
(G)他の実施形態
上記各実施形態の説明では、光送信装置や光受信装置に接続されている送信端末や受信端末が1個のイメージで説明したが、複数の送信端末や受信端末が接続されているものであっても良い。この場合において、送信端末間の伝送信号の切替機能や、受信端末間への受信伝送信号の切替機能も、バッファメモリを内蔵する信号振分け器12や多重部34が行うようにしても良い。
【0227】
また、組合せが可能であるならば、ある実施形態の光送信装置と他の実施形態の光受信装置とを組み合わせて、波長多重伝送システムを構築するようにしても良い。
【0228】
さらに、上記では、光送信装置及び光受信装置間での1対1通信の場合を示したが、1対N通信に対しても本発明の技術思想を適用することができる。
【0229】
さらにまた、上記では、光送信装置から任意の光受信装置へ通信し得るものを示したが、光送信装置の通信相手の光受信装置が固定化されている場合にも本発明の技術思想を適用できる。この場合であれば、光送信装置や光受信装置をシステムに組み込んだ際に、波長成分毎の最適ルートの検索などを行うようにしても良い。
【0230】
また、WDM伝送網の構成は、スター状、ループ状、メッシュ状、複数のループの多重網など任意であり、また、中間ノードに、上記各実施形態の光送信装置や光受信装置などが設けられていても良い。例えば、中間ノードにAdd/Drop回路や光クロスコネクト(OXC)が存在していても本発明の技術思想をを適用することができる。
【0231】
【発明の効果】
以上のように、本発明によれば、光送信装置が送信しようとする伝送信号を複数の波長成分に振り分けてWDM信号に変換してWDM伝送網に送信し、WDM伝送網からのWDM信号を光受信装置が上記伝送信号に戻す波長多重伝送システムにおいて、波長成分毎にWDM伝送網を伝送するルートを設定する波長成分別ルート設定装置を有するので、全ての波長成分が同一ルートでない分、伝送特性の向上が期待でき、ネットワークエレメントの障害や、光送信装置や光受信装置の波長成分毎の構成要素の障害に対しても、波長成分毎の対応がとれて容易に障害を回避することができる。
【図面の簡単な説明】
【図1】第1の実施形態のシステム構成を示すブロック図である。
【図2】従来技術の課題の説明図である。
【図3】第1の実施形態のWDM伝送網のノードの交換処理の説明図である。
【図4】第1の実施形態の光送信装置の詳細構成を示すブロック図である。
【図5】第1の実施形態の光チャネル板の詳細構成を示すブロック図である。
【図6】第1の実施形態の光受信装置の詳細構成を示すブロック図である。
【図7】第1の実施形態のネットワーク管理装置の機能的詳細構成を示すブロック図である。
【図8】第1の実施形態の初期のルート選択動作を示すフローチャートである。
【図9】第1の実施形態の信号振分け動作を示すフローチャートである。
【図10】第1の実施形態の伝送品質の評価、制御動作を示すフローチャートである。
【図11】第1の実施形態の光チャネル板の障害発生時の再ルーティング動作を示すフローチャートである。
【図12】第1の実施形態のネットワークエレメントの障害発生時の再ルーティング動作を示すフローチャートである。
【図13】第1の実施形態の変形実施形態での光送信装置(1)の要部構成を示すブロック図である。
【図14】第1の実施形態の変形実施形態での光送信装置(2)の要部構成を示すブロック図である。
【図15】第1の実施形態の変形実施形態での光送信装置(3)の要部構成を示すブロック図である。
【図16】第1の実施形態の変形実施形態での光受信装置(1)の要部構成を示すブロック図である。
【図17】第1の実施形態の変形実施形態での光受信装置(2)の要部構成を示すブロック図である。
【図18】第1の実施形態の変形実施形態での光受信装置(3)の要部構成を示すブロック図である。
【図19】第2の実施形態の光送信装置の要部構成を示すブロック図である。
【図20】第2の実施形態の光受信装置の要部構成を示すブロック図である。
【図21】第2の実施形態の光チャネル板の障害発生時の動作を示すフローチャートである。
【図22】第3の実施形態の光送信装置の要部構成を示すブロック図である。
【図23】第3の実施形態の予備の光チャネル板(可変波長の光チャネル板)の詳細構成例を示すブロック図である。
【図24】第3の実施形態の光チャネル板の障害発生時の動作を示すフローチャートである。
【図25】第4の実施形態の光チャネル板の詳細構成例を示すブロック図である。
【図26】第5の実施形態の波長多重伝送システムの構成を示すブロック図である。
【図27】第5の実施形態の変形実施形態のシステム構成を示すブロック図である。
【図28】第6の実施形態の波長多重伝送システムの構成を示すブロック図である。
【符号の説明】
1…WDM伝送網、
2…送信端末、
3、3X、3Y、3W…光送信装置、
3WA、3WS…光送信部、
4、4X、4W…光受信装置、
4WA、4WS…光受信部、
5…受信端末、
6…ネットワーク管理装置、
7、8…系切替スイッチ、
12、12A、13S…信号振分け器(IMP)、
13、13−1〜13−n、13−s、13Z、13−1A〜13−nA、13−1S〜13−nS…光チャネル板、
13−t…可変波長の光チャネル板、
15、15A、15S…WDM多重部、
17、17A、17S…送信側制御信号処理部、
18、18−1〜18−n、37、37−1〜37−n…光カプラ、
20、20Z…LD(レーザダイオード)光源、
21…光変調器、
24…信号選択部、
25…評価信号発生部、
30、30A、30S…WDM多重分離部、
32−1〜32−n、32−s、32−1A〜32−nA、32−1S〜32−nS…光受信板、
32−t…可変波長の光受信板、
33…遅延補償部、
34…多重部、
35…受信側制御信号処理部、
40…情報記憶手段、
41…最適ルート選択手段、
42…伝送効率最適化手段、
43…ルート伝送品質調整手段、
50…障害発生部材情報通信部、
51…保守用部材管理端末。

Claims (15)

  1. 光送信装置が送信しようとする伝送信号を複数の波長成分に振り分けてWDM信号に変換してWDM伝送網に送信し、WDM伝送網からのWDM信号を光受信装置が上記伝送信号に戻す波長多重伝送システムにおいて、
    上記波長成分毎に上記WDM伝送網を伝送するルートを設定する波長成分別ルート設定装置を有することを特徴とする波長多重伝送システム。
  2. 上記光送信装置が、振り分けられた伝送信号を所定波長の光信号に変換する上記波長成分毎の複数の光チャネルユニットと、伝送信号を複数に区分して複数の上記光チャネルユニットに振り分ける信号振分け手段とを有し、上記波長成分毎の光チャネルユニットが、出力する光信号内に自己に設定されたルートのラベリング情報を含めることを特徴とする請求項1に記載の波長多重伝送システム。
  3. 上記光受信装置が、該当する波長成分の光信号を電気信号でなる振分伝送信号に変換する上記波長成分毎の複数の光受信ユニットと、上記各光受信ユニットからの振分伝送信号の伝搬遅延の相違を吸収する遅延補償部とを有することを特徴とする請求項1又は2に記載の波長多重伝送システム。
  4. 上記波長成分別ルート設定装置は、ルート別の伝送特性に応じて、上記WDM伝送網を伝送する上記波長成分毎のルートを設定することを特徴とする請求項1〜3のいずれかに記載の波長多重伝送システム。
  5. 上記光送信装置及び上記光受信装置には、各ルートの所定波長成分での伝送特性を評価する評価信号を授受して評価する伝送特性評価手段の構成要素を備え、
    上記波長成分別ルート設定装置は、上記伝送特性評価手段の評価結果に応じて、上記WDM伝送網を伝送する上記波長成分毎のルートを設定する
    ことを特徴とする請求項4に記載の波長多重伝送システム。
  6. 上記波長成分別ルート設定装置は、上記伝送特性評価手段に波長成分毎の1又は複数の空きルートを評価させてルートを設定することを特徴とする請求項5に記載の波長多重伝送システム。
  7. 上記信号振分け手段は、上記伝送特性評価手段による設定ルートの評価結果に応じて、各波長成分へ振り分けるデータ量を決定することを特徴とする請求項4〜6のいずれかに記載の波長多重伝送システム。
  8. 上記伝送信号に係るWDM信号の伝送中において、波長成分毎の伝送品質を評価して波長成分毎の伝送速度を制御する伝送速度制御手段を伝送品質管理手段を有することを特徴とする請求項4〜7のいずれかに記載の波長多重伝送システム。
  9. 上記伝送速度制御手段の評価対象の波長成分が、空き帯域が所定以下のものであることを特徴とする請求項8に記載の波長多重伝送システム。
  10. 上記伝送信号に係るWDM信号の伝送中において、上記信号振分け手段は、上記伝送特性評価手段による設定ルートの評価結果に応じて、各波長成分へ振り分けるデータ量を制御することを特徴とする請求項4〜9のいずれかに記載の波長多重伝送システム。
  11. いずれかの上記光チャネルユニット又は上記光受信ユニットの障害時に、その障害部材の波長成分への振分伝送信号のデータ量を、上記信号振分け手段が、波長成分毎の空き帯域に応じて、他の光チャネルユニットに振分け直すことを特徴とする請求項2〜10のいずれかに記載の波長多重伝送システム。
  12. 上記光送信装置が、いずれかの上記光チャネルユニット又は上記光受信ユニットの障害時に、その障害部材の波長成分を担当する上記光チャネルユニットに代わって機能する予備の光チャネルユニットを有すると共に、上記光受信装置が、上記障害部材の波長成分を担当する上記光受信ユニットに代わって機能する予備の光受信ユニットを有することを特徴とする請求項2〜10のいずれかに記載の波長多重伝送システム。
  13. 上記予備の光チャネルユニット及び上記予備の光受信ユニットが、予備用の固定波長成分を処理するものであることを特徴とする請求項12に記載の波長多重伝送システム。
  14. 上記予備の光チャネルユニット及び上記予備の光受信ユニットが処理し得る波長を変化し得るものであり、障害部材の波長成分に設定されて動作することを特徴とする請求項12に記載の波長多重伝送システム。
  15. 上記波長成分別ルート設定装置は、上記WDM伝送網におけるネットワークエレメントの障害時に、そのネットワークエレメントを要素とするルートに係る全ての上記波長成分について、上記WDM伝送網を伝送するルートを設定し直すことを特徴とする請求項1〜14のいずれかに記載の波長多重伝送システム。
JP2000211326A 2000-07-12 2000-07-12 波長多重伝送システム Expired - Fee Related JP4147730B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000211326A JP4147730B2 (ja) 2000-07-12 2000-07-12 波長多重伝送システム
US09/824,643 US7139482B2 (en) 2000-07-12 2001-04-04 Wavelength division multiplex transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000211326A JP4147730B2 (ja) 2000-07-12 2000-07-12 波長多重伝送システム

Publications (2)

Publication Number Publication Date
JP2002026822A JP2002026822A (ja) 2002-01-25
JP4147730B2 true JP4147730B2 (ja) 2008-09-10

Family

ID=18707448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000211326A Expired - Fee Related JP4147730B2 (ja) 2000-07-12 2000-07-12 波長多重伝送システム

Country Status (2)

Country Link
US (1) US7139482B2 (ja)
JP (1) JP4147730B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9545655B2 (en) 2010-02-04 2017-01-17 Crown Packaging Technology, Inc. Can manufacture
US9555459B2 (en) 2010-04-12 2017-01-31 Crown Packaging Technology, Inc. Can manufacture

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2419477C (en) 2002-02-28 2010-05-04 Nippon Telegraph And Telephone Corporation Node used in photonic network, and photonic network
ES2283775T3 (es) 2002-05-10 2007-11-01 Siemens Aktiengesellschaft Procedimiento y disposicion para reducir la degradacion de señal de una señal optica de multiplexacion por polarizacion.
JP2004172783A (ja) * 2002-11-19 2004-06-17 Fujitsu Ltd 波長分割多重光伝送ネットワークシステムにおける経路の伝送可否検証システム
WO2004114554A1 (ja) 2003-06-19 2004-12-29 Fujitsu Limited 光信号伝送システムにおけるルート決定方法
JP4532950B2 (ja) * 2004-03-24 2010-08-25 富士通株式会社 光スイッチ及びそれを備えたネットワークシステム
GB2419758B (en) * 2004-10-29 2009-08-12 Agilent Technologies Inc Optical transmitter
JP4558634B2 (ja) * 2005-11-25 2010-10-06 日本電信電話株式会社 光ネットワークにおける媒体選定装置、媒体選定方法、媒体選定プログラム、および媒体選定プログラムを記録した記録媒体
JP4802158B2 (ja) * 2007-08-22 2011-10-26 日本電信電話株式会社 通信媒体選定装置、通信媒体選定方法および通信媒体選定プログラム
WO2011018926A1 (ja) * 2009-08-12 2011-02-17 日本電気株式会社 ネットワーク管理装置および波長パス設定方法
US8724990B2 (en) * 2009-09-15 2014-05-13 Cisco Technology, Inc. Power save mode for lightpaths
JP2011142584A (ja) * 2010-01-08 2011-07-21 Fujitsu Optical Components Ltd 光伝送装置
WO2012031334A1 (en) * 2010-09-10 2012-03-15 Ausanda Communications Pty Ltd Method and apparatus for multi-bit per symbol optical modulation and transmission
JP5703957B2 (ja) * 2011-05-19 2015-04-22 富士通株式会社 光パケット信号伝送装置およびwdm光通信ネットワーク
JP5994294B2 (ja) * 2012-03-06 2016-09-21 富士通株式会社 光伝送装置および光伝送方法
US20170163371A1 (en) * 2014-06-25 2017-06-08 Nec Corporation Multicarrier optical transmitter, multicarrier optical receiver, and multicarrier optical transmission method
JP2016076795A (ja) * 2014-10-03 2016-05-12 株式会社Kddi研究所 光パケットネットワークの制御装置
JP6387835B2 (ja) 2015-01-07 2018-09-12 富士通株式会社 伝送装置および伝送方法
WO2016142994A1 (ja) * 2015-03-06 2016-09-15 東芝三菱電機産業システム株式会社 データ収集システム
JP6454216B2 (ja) * 2015-04-30 2019-01-16 日本電信電話株式会社 光伝送装置、光伝送方法、および、光伝送システム
JP6645077B2 (ja) 2015-09-03 2020-02-12 富士通株式会社 光伝送システムおよびビット割当方法
JP6925520B2 (ja) * 2018-05-18 2021-08-25 三菱電機株式会社 管理装置、通信システム、制御方法、及び制御プログラム
US11153669B1 (en) 2019-02-22 2021-10-19 Level 3 Communications, Llc Dynamic optical switching in a telecommunications network

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10209964A (ja) * 1997-01-28 1998-08-07 Fujitsu Ltd 波長多重送受信装置、光伝送システム及びその冗長系切替え方法
US5995256A (en) * 1997-09-30 1999-11-30 Mci Communications Corporation Method and system for managing optical subcarrier reception
US6466985B1 (en) * 1998-04-10 2002-10-15 At&T Corp. Method and apparatus for providing quality of service using the internet protocol
IL124639A (en) * 1998-05-25 2001-09-13 Handelman Doron Optical communication method and system using wavelength division multiplexing
US6545781B1 (en) * 1998-07-17 2003-04-08 The Regents Of The University Of California High-throughput, low-latency next generation internet networks using optical label switching and high-speed optical header generation, detection and reinsertion
IL129031A (en) * 1999-03-17 2003-02-12 Handelman Doron Network control system for optical communication networks

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9545655B2 (en) 2010-02-04 2017-01-17 Crown Packaging Technology, Inc. Can manufacture
US9555459B2 (en) 2010-04-12 2017-01-31 Crown Packaging Technology, Inc. Can manufacture

Also Published As

Publication number Publication date
JP2002026822A (ja) 2002-01-25
US7139482B2 (en) 2006-11-21
US20020005967A1 (en) 2002-01-17

Similar Documents

Publication Publication Date Title
JP4147730B2 (ja) 波長多重伝送システム
JP4046462B2 (ja) 波長多重伝送システム
US7274869B1 (en) System and method for providing destination-to-source protection switch setup in optical network topologies
CA2744851C (en) Device and method for correcting a path trouble in a communication network
US8750706B2 (en) Shared photonic mesh
US7174096B2 (en) Method and system for providing protection in an optical communication network
US7609964B2 (en) Power level management in optical networks
JP3905402B2 (ja) パスルーティング方法及びデータ処理システム
US8406622B2 (en) 1:N sparing of router resources at geographically dispersed locations
JP2013511181A (ja) 光バースト交換式(OpticalBurstSwitched:OBS)通信ネットワークにおける仮想的光学経路の監視のためのスイッチシステム及び方法
Lopez et al. On the benefits of multilayer optimization and application awareness
Bouillet et al. Wavelength usage efficiency versus recovery time in path-protected DWDM mesh networks
El Asghar et al. Survivable inter-datacenter network design based on network coding
JP2000078176A (ja) 通信ネットワ―ク及び通信ネットワ―ク・ノ―ド装置
Krishnamurthy et al. Restoration mechanisms based on tunable lasers for handling channel and link failures in optical WDM networks
US7242859B1 (en) Method and system for providing protection in an optical ring communication network
JP3551115B2 (ja) 通信ネットワークノード
Carrozzo et al. A pre-planned local repair restoration strategy for failure handling in optical transport networks
JP2004254339A (ja) 通信ネットワーク及び通信ネットワーク・ノード装置
Hailemariam et al. Localized failure restoration in mesh optical networks
Bukva et al. An on-line path computation algorithm for a protected GMPLS enabled multi-layer network
Nleya et al. Survivability: wavelength recovery for node and link failure in all optical networks
Kanungoe et al. Author's Accepted Manuscript
Lackovic et al. Overview of resilience schemes in photonic transmission network
Mukherjee et al. Present issues & challenges in survivable WDM optical mesh networks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4147730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees