JP4146778B2 - センサ付き培養容器、並びにそれを利用する培養装置、培養方法 - Google Patents

センサ付き培養容器、並びにそれを利用する培養装置、培養方法 Download PDF

Info

Publication number
JP4146778B2
JP4146778B2 JP2003320594A JP2003320594A JP4146778B2 JP 4146778 B2 JP4146778 B2 JP 4146778B2 JP 2003320594 A JP2003320594 A JP 2003320594A JP 2003320594 A JP2003320594 A JP 2003320594A JP 4146778 B2 JP4146778 B2 JP 4146778B2
Authority
JP
Japan
Prior art keywords
culture
sensor
medium
container
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003320594A
Other languages
English (en)
Other versions
JP2005087005A (ja
Inventor
理 小澤
勲夫 新藤
成夫 渡部
力 鈴木
靖 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2003320594A priority Critical patent/JP4146778B2/ja
Publication of JP2005087005A publication Critical patent/JP2005087005A/ja
Application granted granted Critical
Publication of JP4146778B2 publication Critical patent/JP4146778B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/06Plates; Walls; Drawers; Multilayer plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/08Flask, bottle or test tube
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/32Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of substances in solution

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は動物細胞の培養を行うための用具や方法に係り、特に再生医療に適用するための接着依存性の幹細胞などをディッシュやフラスコなどのプレート状の培養容器底面に接着させて培養する際における培養状態をモニタリングするためのセンサと、センサの使用方法に関する。
細胞などをプレート状の培養容器を用いて培養する際に細胞増殖や生存率を測定する方法としては、従来各種の構成からなる計測方法が使用されていた。例えば、非特許文献1には96ウェルU底オキシジェンバイオセンサープレートが記載されている。このウェル底部には蛍光性の酸素センサーを含むシリコンが埋設されており、培地中の細胞などが増殖して酸素を消費すると、シリコン中の酸素濃度が低下し、酸素センサーの蛍光強度が増加する。このプレートを蛍光計測装置と組み合わせることにより、酸素濃度のモニタリングが可能となる。
一方、タンク状の培養槽を用いて細胞などを培養する際に培地成分をモニタリングする方法としては、例えば特許文献1に記載の通り、pH電極などを培養槽の側面に設置し、培地のpHを連続的にモニタリングする方法が知られている。
また、非特許文献1と類似の光学的原理に基づくpHセンサの例としては、非特許文献2による光ファイバ型pHセンサなどが知られている。この製品システムは、透過型または反射型の指示薬色素フィルム(pH指示薬色素をセルロース担体に捕捉したもの)と、それを保持する光ファイバプローブ、光源、分光器などから構成される。プローブ形状はpH電極と類似であるが、検出原理はリトマス試験紙と同様であり、電線ではなく光ファイバを用いて信号を伝達する。
特許第2643314号
ベクトン・ディッキンソン バイオサイエンス社、バイオコートTM ファルコンTM カタログ、p.26−27 オーシャン オプティクス社、製品カタログ2003、p.45
非特許文献1の方法を用いて接着性細胞を培養する場合、細胞によってはウェル底面を形成するシリコン樹脂に対する接着性が不十分で、培養が良好に行えないという課題があった。例えシリコン樹脂への接着が十分な場合でも、特に再生医療応用を目的とした細胞を培養する場合、シリコン樹脂へ接着して培養された細胞の安全性を検証するのが煩雑である、という課題があった。
一方、特許文献1や非特許文献2の方法をプレート状の培養容器内部の培地成分のモニタリングへ応用する場合、第1にセンサコストの課題がある。即ち、特許文献1の様にタンク状の培養槽を用いて細胞を培養する場合は、例えば百Lの容積のタンク1つにpHセンサ1つを設置しても、10^10個規模の大量の細胞を得られるため、単位細胞数当たりのセンサコストは低い。一方、プレート状の培養容器では例えばT−75フラスコでも約10^6個規模の細胞しか得られないため、単位細胞数当たりのセンサコストが高い、という課題がある。第2に、操作性やセンサのサイズの課題がある。即ち、センサを滅菌し、無菌性を確保しつつ確実に着脱したり、コスト低減のためにセンサを滅菌して再利用する操作が必要である。上記と類似の理由により、タンク状の培養槽では単位細胞数当たりのpHセンサ設置の手間は少ないが、プレート状の培養容器の場合は、単位細胞数当たりでは煩雑である。関連して、単位細胞数当たりのサイズの課題がある。上記同様、タンク状の培養槽ではセンサのサイズは相対的に小さい。一方、プレート状の培養容器の場合はセンサのサイズが相対的に大きいため、多数のプレートを同時に培養する場合など、インキュベータの内容積のかなりの部分をセンサに占有されてしまい利用効率が低い、という課題がある。第3に、培地コストの課題がある。即ちpH電極の安定動作のためには電極先端の感応膜部分と参照電極の液絡部分を培地中に完全に浸す必要がある。しかし両部分を小型かつ互いに近接して形成することは一般に困難なため、両部分を培地中に完全に浸すためにはcmオーダーの厚さの培地が必要となる。非特許文献2に記載の光ファイバ式pHセンサの場合も、試料導入孔がプローブ先端から離れているため、やはりcmオーダーの厚さの培地が必要である。大量の培地を使用するタンク状の培養槽ではこれは問題にならないが、プレート状の培養容器では通常培地の必要量は厚さ約数mmで十分であることから、pHセンサを設置するためだけに高価な培地を大量に使用するのは経済性が低いという課題がある。
上記課題を回避する一つの方法としては、特許文献1のpH電極や非特許文献2における光ファイバ型pHセンサの代わりに、非特許文献1のごとく光学式のセンサ材料をプレート底面に設置して、外部に設けた光学的測定装置を用いて計測する方法が考えられる。同様の方式によりpH測定を行うには、例えば非特許文献2に記載の指示薬色素フィルムを転用し、このフィルム状の光学式センサをプレート底面に設置して使用する方法が考えられる。
しかしながら、フィルム状の光学式センサなどをプレート底面に設置して使用する場合、非特許文献1におけると同様の課題がある。即ちプレート底面におけるセンサ材料に対する細胞の接着性が不十分となり、培養が良好に行えない可能性がある。また例え接着が十分な場合でも、特に再生医療への応用を目的とした場合、センサ材料へ接触することによる細胞毒性は未解明であるため、センサ材料へ接着した状態で培養した細胞の安全性を検証するのが煩雑である、という課題があった。
さらに、従来公知の方法に共通する別の課題として、センサの校正法がある。即ち、従来例においてはpHセンサ類の校正については特に配慮がなされていない。従来の一般的な方法によれば、培養開始前に、まず校正液を用いてセンサを校正した後、滅菌し、培養容器に無菌的に設置するか、あるいはまずセンサを滅菌、無菌的に容器に設置し、容器内に無菌校正液を導入して校正を行い、校正液を排出する、という事前準備が必要であった。前者の場合は滅菌中に校正がずれて正確性が低下する危険性があり、後者の場合は無菌校正液が大量に必要で手間もかかる、という課題が残されていた。
本発明の目的は、接着依存性の幹細胞などをディッシュやフラスコなどのプレート状の培養容器底面に接着させて培養し、フィルム状の光学式センサを使用して培地成分のモニタリングを行う際、細胞の培養容器底面への接着を妨げることなく培地成分をモニタリング可能とし、またセンサに対する細胞の接触による悪影響を回避することにある。
本発明のもう一つの目的は、培養容器に設置するセンサの校正を簡単かつ正確に遂行する方法を提供することである。
本発明は、接着依存性の幹細胞などをプレート状の培養容器底面に接着させて培養し、低コスト、簡便、小型、培地使用量の少ない等の特長を有するフィルム状の光学式センサを使用して培地成分のモニタリングを行う場合において、培養容器底の側に形成された凹部の天井面に、培地をはさんで、培養容器底面に対向してセンサを設置し、培養容器もしくは培養プレートの底面にはセンサを設置しない、という特有の構成を採用した。また、本発明においては、センサを校正する場合において、培地そのものや、細胞を分散させた培地のpHを予め検定しておき、それらの検定値を用いてセンサを校正するか、或いは、実施例3の変形例の改良方式の通り、細胞を分散させた培地のpHを別途検定し、その結果を用いてセンサの校正を行うという特有の方法を採用した。本発明は、以上の構成と方法により、上記目的を達成するものである。
本発明によれば、接着依存性の幹細胞などをプレート状の培養容器底面に接着させて培養し、低コスト、簡便、小型、培地使用量の少ない等の特長を有するフィルム状の光学式センサを使用して培地成分のモニタリングを行う場合において、細胞の培養容器底面への接着を妨げず、培養が良好に行える。またセンサに対する細胞の接触を防止できるため、両者の接触に基づく悪影響を回避可能である。さらに、培養容器に設置するセンサの校正を簡単かつ正確に遂行できる、という効果がある。
本発明の第1の実施例を以下に説明する。図1は、本発明第1の実施例に基づく培養容器1の全体略図、図2は本発明第1の実施例に基づくセンサユニット7の概略平面図、図3は本発明第1の実施例に基づくセンサユニット7の概略側面図、図4は本発明第1の実施例に基づく培養容器1の概略縦断面図、図5は本発明第1の実施例に基づく培養装置の概略図である。
1は培養容器、2は容器側部、3は容器天部、4は容器蓋、5は培地、6は細胞、7はセンサユニット、8はpHセンサ、9はセンサホルダ、10は凹部、11は保持機構、12は培養装置、13は反射プローブ、14、15は光ファイバ、16は光ファイバ型分光光度計、17は固定棚である。本培養装置12にはこの他、温度調節機構、炭酸ガス濃度の計測制御機構が含まれる。またこの他に光ファイバ型分光光度計16や培養装置12など全体を統括制御する制御機構などを有するが、これら従来公知の構成要素は本発明の特徴事項ではないため、図示は省略した。
次に、本実施例を特徴づける要素である、培養容器1とそれに内蔵されるセンサユニット7の構造について図1〜4を用いて詳細に述べる。培養容器1は市販のT−75型フラスコと類似の構造であり、容器底部内面には細胞6を接着培養可能である。また容器蓋4には通気性の膜(図示省略)が設けられ、コンタミを起こすことなくガス交換が可能である。
本実施例ではpHセンサ8として非特許文献2に記載の光ファイバ型 pH センサシステムにおける反射式指示薬色素フィルムFR-PR型(フェノールレッド)を製造元から購入して使用した。このpHセンサ8はpHに応じて変色するため、反射光を分光計測することによりpHを求めることが出来る、いわゆるフィルム状の光学式化学センサである。開口部を有するステンレス製のセンサホルダ9にpHセンサ8を挟み、かしめて固定することにより、センサユニット7を製作した。このセンサホルダ9の開口部を通して、センサを観察可能であり、その吸光スペクトル変化を測定可能である。
本実施例では、容器側部2をポリスチレンのインジェクション成形により製作した。容器側部2の一部は張り出し、その下に凹部10が形成されている。凹部10に設けられている保持機構11を用いて、センサユニット7を凹部10の天井、即ち鉛直上方部分に、容器底面に対向して保持した。容器側部2の上に容器天部3を接着し、容器蓋4と組み合わせることにより培養容器1を組み立てた。製作の過程において適宜洗浄を行った。培養容器1をアルミラミネート包装に収納して真空脱気した後、アルミラミネート包装の開口部を熱熔着し、密封した。培養容器1を収納したアルミラミネート包装に約25キログレイのγ線を照射し、滅菌を行うことにより、センサユニット7ごと無菌化された培養容器1を製作した。
次に、本実施例における培養装置12の構造について図5を用いて説明する(図5では装置前面の扉は省略した)。培養装置12は基本的に市販の炭酸ガスインキュベータと同様であるが、培養容器1を固定可能な固定棚17と、センサの分光計測を行うための反射プローブ13、光ファイバ14、15、光ファイバ型分光光度計16、等を備える点が本実施例の特徴事項である。光ファイバ型分光光度計16には、励起光源が内蔵され、光ファイバ14を通して反射プローブ13から励起光を放射し、フィルム状の光学式センサを照射する。フィルム状の光学式センサからの反射光は反射プローブ13、光ファイバ15を通して光ファイバ型分光光度計16に戻り、フィルム状の光学式センサのスペクトル計測が行われる。
次に、本実施例の動作の一例を図1〜4を用いて説明する。本実施例においては、準備、細胞の播種、培養、継代、回収の操作を行った。以下それぞれの操作について詳述する。なお全ての操作において、動物細胞の操作に必要な、無菌培養のための注意を払った。
準備の操作の詳細は以下の通り。予め培養装置12を37℃、炭酸ガス濃度5%、酸素濃度約20%に設定、維持した。必要な試薬、器具を用意し、作業場所(クリーンベンチ)の準備を行った。以下1.〜5.の手順でpHセンサの校正を行った。
1.分光光度計の校正その1(100%校正試料による校正)。センサユニット7の代わりに、アルミ蒸着等により形成したミラーfを設置した100%校正用の培養容器1bを用意した(図示省略)。この100%校正用の培養容器1bを培養装置12の固定棚17へ設置し、反射スペクトルを計測した。
反射スペクトルの計測法は以下の通り。即ち、光ファイバ型分光光度計16に内蔵されたハロゲンランプからの光源光を光ファイバ14を通して反射プローブ13に導き、培養容器1bの底面から入射した。培養容器1bの内部に設置したミラーfで反射された反射光を、反射プローブ13で捕集し、光ファイバ15を通して光ファイバ型分光光度計16に導き、光ファイバ型分光光度計16内蔵の分光光度計により可視領域のスペクトルを測定した。
このミラーfによる100%反射スペクトルを、サンプルsについてのスペクトル、即ち波長λに対する関数
w(λ,s) 、ただしここでは s=f、 即ち w(λ,f)
として記憶した。
2.分光光度計の校正その2(0%校正試料による校正)。センサユニット7の代わりに、アルミ表面に黒アルマイト加工などにより無反射層を形成した吸光板zを設置した0%校正用の培養容器1cを用意した(図示省略)。この0%校正用の培養容器1cを培養装置12の固定棚17へ設置し、反射スペクトルを上記同様の手順により計測した。
この吸光板zによる0%反射スペクトルを、波長λに対する関数
w(λ,s) 、ただしここでは s=z、 即ち w(λ,z)
として記憶した。
3.pHセンサの校正。校正目的とするフィルム状の光学式センサであるpHセンサ8を保持したセンサユニット7を設置した培養容器1を用意し、滅菌した高pH標準液h(pH10に調製したホウ酸緩衝水溶液)を培養容器1に入れ、培養装置12の固定棚17へ設置し、反射スペクトルを上記同様の手順により計測した。計測後、高pH標準液hを純水を用いて培養容器1から洗脱した。
この高pH標準液hに対するpHセンサの反射スペクトルを、波長λに対する関数
w(λ,s) 、ただしここでは s=h、 即ち w(λ,h)
として記憶した。
4.透過率、吸光度、ベースライン補正ピーク吸光度の算出。上記高pH標準液hに対するpHセンサの透過率 T(λ,h) 、吸光度 A(λ,h) 、ベースライン補正ピーク吸光度 Ap(h) を、サンプルsに関する下記の一般式
T(λ,s) = ( w(λ,s) − w(λ,z) )/( w(λ,f) − w(λ,z) )、
A(λ,s) = - log T(λ,s)、
Ap(s) = A(p,s) − A(b,s)
において、 s=h を代入して下記の通り求めた。
T(λ,h) = ( w(λ,h) − w(λ,z) )/( w(λ,f) − w(λ,z) )、
A(λ,h) = - log T(λ,h)、
Ap(h) = A(p,h) − A(b,h)
ここでlogは常用対数を表す。また本実施例の場合、ベースライン波長bは780〜800nmとし、A(b,h)としてはλ=770〜800nmにおけるA(λ,h)の平均値を使用した。また、ピーク波長pは568〜572nmとし、A(p,h)としてはλ=568〜572nmにおけるA(λ,h)の平均値を使用した。(以下同様)
5.酸解離定数pKaの決定。本実施例では、センサの酸解離定数pKaとして、文献値である7.5を採用した。以上により、pHセンサの校正が完了した。
播種の動作の詳細は以下の通り。凍結保存された細胞接着性細胞を解凍し、直ちに培地に加え、遠心分離、上清を除去、ペレット状の細胞に培地を加えて再分散した。あるいは、継代操作の途中で得られた分散状態の細胞を使用した。細胞を分散させた培地中の生細胞の濃度(単位体積あたりの数)を計測した。接着面積あたりの生細胞数(播種密度)が所定値となるように、培養に使用する所定量の培地の中の細胞数を調節した。本実施例では培養容器1としてT−75フラスコ相当のものを使用し、底面積は約75 cm^2であった。細胞播種密度は5000個/cm^2としたため、約3.8x10^5個の生細胞を30mLの培地に分散させた。この細胞を分散させた培地を培養容器1へ導入し、培養容器1の容器蓋4を閉め、撹拌した。培養容器1に設けられた凹部10に気泡がある場合、傾けて震動を与えるなどして、気泡を除去した。
培養の操作の詳細は以下の通り。細胞を播種した培養容器ごと培養装置12の固定棚17へ設置して、静置して培養を行った。
ここで細胞の挙動を図4により説明する。培地30mLを底面積75cm^2の培養容器1に入れたため、培地5の厚さは約4mmとなった。本実施例における凹部10の高さは約2.5mmであったため、図4に図示した通り、培地は
凹部10の内部に完全に満たされ、凹部10の上の培地の厚さは約1.5mmであった。当初培地5中に分散されていた細胞6は、培地より比重が大きいため、次第に沈降し、最終的には培養容器1の底面に落下、接着して成長した。本実施例においてセンサユニット7は保持機構11により凹部10の天井、即ち鉛直上方部分に、培地をはさんで、保持されている。従って、センサユニット7はもちろん、その構成要素であるセンサホルダ9やpHセンサ8は細胞とは接触することなく、培養が行われた。
以降3〜4日に1回の割合で培地交換を行った。また細胞の増殖の様子を適宜観察し、コンフルエントになる前に、下に述べる継代の操作を行った。培地交換や観察、継代の操作を行わない間は、下記に述べる方法でpHの計測を間欠的に行い、即ちpHのモニタリングを行いながら、培養を継続した。
pHの計測の操作の詳細は以下の通り。
6.上記3と同様の手順により、ただし試料としては高pH標準液bの代わりに未知試料sを使用して、pHセンサの反射スペクトルを計測し、波長λに対する関数
w(λ,s)
として記憶した。
7.透過率、吸光度、ベースライン補正ピーク吸光度の算出。上記4と同様の手順により、未知試料sに対するpHセンサの透過率 T(λ,s) 、吸光度 A(λ,s) 、ベースライン補正ピーク吸光度 Ap(s) を、サンプルsに関する下記の一般式
T(λ,s) = ( w(λ,s) − w(λ,z) )/( w(λ,f) − w(λ,z) )、
A(λ,s) = - log T(λ,s)、
Ap(s) = A(p,s) − A(b,s)
として求めた。ここで上記4同様、A(b,s)、A(p,s)としてはb、pに対応するλの範囲におけるA(λ,s)の平均値を使用した(以下同様)。
8.pHの算出。下記の式により、解離度αと、pHを求めた。
α = Ap(s)/Ap(h)
pH = pKa + log ( α/(1−α) )
なお、pHの適正範囲は一般に7.0から7.4の範囲とされている。そこで、本実施例ではモニタリングの結果、pHが7.0以下や7.4以上になった場合、最適範囲を逸脱したと見なして、培地交換を行い、その事実と日時を記録した。培地交換を行ってもpHが適正範囲に収まらないか、あるいは直ぐにまた適正範囲から逸脱した場合、異常事態と見なして、操作者に警報を発して、異常事態の可能性があることを連絡すると共に、原因究明と対策を促した。
継代の操作の詳細は以下の通り。培養容器1をクリーンベンチに移し、Trypsin-EDTAを加え、37℃で5分間加温した後、培養容器1に軽い震動を与えて細胞を剥離した。直ちに培地を加えて反応を停止し、遠心分離、上清除去し、ペレットに培地を加えて再分散した。再分散後の操作は、細胞播種の操作に準じた。
回収の操作の詳細は以下の通り。上記継代操作の前半部分と同様の手順で細胞を剥離し、反応停止、培地に再分散させた。このまま、或いは必要に応じて培地をPBSなどに交換した後、細胞懸濁液として細胞を回収した。
なお本実施例ではセンサとして、フィルム状の光学式センサの1種である反射式指示薬色素フィルムFR-PR型を用いたが、本発明の適用範囲はこのセンサの例に限定されない。本発明に好適に適用可能な他のセンサの例としては、非特許文献2に記載の他の反射式指示薬色素フィルムなどがあり、特に目的とするpH範囲が異なる場合に好適に使用可能である。また、本実施例では反射プローブ13を使用したため反射式センサを採用したが、入射光と透過光を導く光ファイバを独立させ、それぞれを培養容器の表裏に設置することにより、透過モードでセンサの吸光スペクトルを測定することも可能である。この場合、センサとしては非特許文献2に記載の透過式指示薬色素フィルムが好適に使用可能である。pHを測定可能な光学式センサは、非特許文献2に記載のフィルム以外にも各種使用可能であり、特に指示薬色素を担体に共有結合により固定化したセンサは、長期安定性が高いという特徴がある。また、pH以外の項目をフィルム状の光学式センサによりモニタリングすることも本発明の範疇である。この例としては、光学式の酸素、炭酸ガス、アンモニアセンサなど各種のガスセンサ、ナトリウムイオン、カリウムイオン、塩化物イオンなどの各種のイオンセンサ、グルコース、アルコール等の中性の生体物質に対するセンサが知られており、上記同様の方法により、本発明に好適に使用できる。
本発明ではフィルム状の光学式センサユニット7を、培養容器1に設けられた凹部10の天井、即ち鉛直上方部分に、培地をはさんで保持するという特徴的な構成を採用することにより、細胞の培養容器底面への接着を妨げることなく培地のpHをモニタリング可能とし、またセンサに対する細胞の接触を防止し、細胞のセンサへの接触による悪影響の可能性を回避したが、本発明の精神は必ずしも上記構成に限定されない。同等の効果をもたらす他の構成の例としては、下記の変形例などがある。
・センサユニットの突出。センサユニット7は、必ずしも培養容器1に設けられた凹部10の天井部分に完全に収納されている必要はない。センサユニット7の一部が凹部10から横方向に突出していても、容器底面に対向して保持されていれば、上記同様の効果が得られる。センサホルダ9の開口部が凹部10の外に露出する場合は、その当該部分(上面)を被覆するか、あるいは上面開口部を無くして下面開口部のみとすることにより、pHセンサ8への細胞の付着を回避できる。
・培養容器1における凹部10は必須の構成要素ではない。例えば上面に開口部を持たないセンサユニット7を培養容器1の側部に固定し、水平方向に保持することにより、pHセンサ8を容器底面に対向して保持することが可能である。また、センサユニット7を培養容器1底面に設けた柱に固定することにより、容器底面に対向して保持することも可能である。さらに、センサホルダ9として断面が図3に示す直線状でなく、段差又は屈曲を有する形状のものを使用し、鉛直下方向の面を培養容器1底面に固定し、鉛直上方向の面にpHセンサ8を固定することにより、pHセンサ8を容器底面に対向して保持することも可能である。
・センサユニットの保持。上記実施例では培養容器1に設けられた凹部10の天井部分に保持機構11を設け、センサユニット7を保持機構11にはめることにより保持した。具体的には、保持機構11として溝を使用したが、センサユニット7の固定方法はこれに限定されない。保持機構11の他の例としては、接着材、ばねによる圧接、磁力、電磁力、ネジ、リベット、くさび、等、様々な方式がある。
本実施例特有の効果は、接着依存性の幹細胞などをプレート状の培養容器底面に接着させて培養しながらpHをモニタリングする際、上記のごときフィルム状の光学式pHセンサを用いることにより、pH電極や市販の光ファイバ型pHプローブを用いる場合と比較して、センサのコストが低く、センサを容易に滅菌可能であり、またコストが低いためにセンサをディスポーザブルにでき再利用の手間が省け、サイズが小さく、さらに培地コストも低い、という特長がある。また、センサが培養容器1に設けられた凹部10の天井、即ち鉛直上方部分に、培地をはさんで保持されているるため、細胞の培養容器底面への接着を妨げることなく培地のpHをモニタリング可能であり、またセンサに対する細胞の接触を防止し、細胞のセンサへの接触による悪影響の可能性を回避できる、という特長がある。
本発明の第2の実施例を以下に説明する。第2の実施例は上記第1の実施例と同様であるが、センサの校正方法が異なる。
即ち、第1の実施例ではセンサの校正手順のうち、手順1.から4.までを準備の操作の一環として、使用開始時に使用者が行い、Ap(h)を求めるとともに、手順5.においてpKaを文献値から求めた。
一方、第2の実施例では製造時に製造者が製造工程の一環として製造工程の途中(センサユニット7を凹部10の天井に保持した直後、容器側部2の上に容器天部3を接着する前の状態)で、手順1.〜4.を行ってAp(h)を求めた。また、手順1.と2.は準備の操作の一環として、使用開始時に使用者が再度行い、w(λ,f)、w(λ,z)を求め、手順3.と4.は省略した。またpKaについては文献値では無く、使用時に使用者が中性のpH標準液nを測定し、その結果からpKaを推測した(手順5’)。以下、特に手順5’即ちpKaの推定手順について詳細に説明する。
5’.酸解離定数pKaの推定。手順3.と同様に、滅菌した中性のpH標準液n(pH7に調製したリン酸緩衝水溶液)を培養容器1に入れ、培養装置12の固定棚17へ設置し、反射スペクトルを計測した。
この中性のpH標準液nに対するpHセンサの反射スペクトルを、波長λに対する関数
w(λ,s) 、ただしここでは s=n、 即ち w(λ,n)
として記憶した。
次に、上記4と同様の手順により、中性のpH標準液nに対するpHセンサの透過率 T(λ,n) 、吸光度 A(λ,n) 、ベースライン補正ピーク吸光度 Ap(n) を、下記の通り求めた
T(λ,n) = ( w(λ,n) − w(λ,z) )/( w(λ,f) − w(λ,z) )、
A(λ,n) = - log T(λ,n)、
Ap(n) = A(p,n) − A(b,n)
として求めた。ここでw(λ,f)、w(λ,z)としては準備の操作の一環として、使用開始時に使用者が再度行った手順1.と2.の結果を用いた。
最後に、pKaを下記により求めた。
α = Ap(n)/Ap(h)
pKa = pH(n) − log ( α/(1−α) )
ここでAp(h)は前述の通り製造者が求めた値、またpH(n)は中性のpH標準液nの検定pH値、即ち本実施例では7.0である。
これ以外の点については、実施例2は実施例1と同様である。
本実施例では、pH校正の手順の一部、即ち高pH標準液hを用いてAp(h)を求める手順を製造工程の一環として、センサ製造時に製造者が行った。従って、使用者が高pH標準液を操作する工程と、それが終了した後に高pH標準液を培養容器1から洗脱する工程を省略でき、安全性が高く、簡便である、という特有の効果がある。また、pKaとして文献値ではなく、直前に中性のpH標準液を計測して得られた実験データから求めた推定値を使用するため、pH測定結果の精度が高く信頼性が高い、という特有の効果がある。
本発明の第3の実施例を以下に説明する。第3の実施例は上記第2の実施例と同様であるが、pHセンサの校正法の一部が異なる。
即ち、第2の実施例では製造時に製造者が手順1.〜4.を行ってAp(h)を求めた。また使用開始時に使用者が準備の操作の一環として、手順1.と2.を行ってw(λ,f)、w(λ,z)を求め、さらに中性のpH標準液nを用いて手順5’.を行うことにより、pKaを求めた。
一方、第3の実施例では製造時に製造者が手順1.〜4.を行ってAp(h)を求め、また使用開始時に使用者が準備の操作の一環として、手順1.と2.を行ってw(λ,f)、w(λ,z)を求めた点は第2の実施例と同様である。
その後、中性のpH標準液nではなく、培地を用い、その結果からpKaを推測した(手順5”)。以下、特に手順5”即ちpKaの推定手順について詳細に説明する。
5”.酸解離定数pKaの推定。手順5’.と同様に、培地mを培養容器1に入れ、培養装置12の固定棚17へ設置し、反射スペクトルが十分に安定するのを待った後、反射スペクトルを計測した。
この培地mに対するpHセンサの反射スペクトルを、波長λに対する関数
w(λ,s) 、ただしここでは s=m、 即ち w(λ,m)
として記憶した。
次に、上記4と同様の手順により、培地mに対するpHセンサの透過率 T(λ,m) 、吸光度 A(λ,m) 、ベースライン補正ピーク吸光度 Ap(m) を、下記の通り求めた
T(λ,m) = ( w(λ,m) − w(λ,z) )/( w(λ,f) − w(λ,z) )、
A(λ,m) = - log T(λ,m)、
Ap(m) = A(p,m) − A(b,m)
として求めた。ここでw(λ,f)、w(λ,z)としては準備の操作の一環として、使用開始時に使用者が再度行った手順1.と2.の結果を用いた。
最後に、pKaを下記により求めた。
α = Ap(m)/Ap(h)
pKa = pH(m) − log ( α/(1−α) )
ここでAp(h)は前述の通り製造者が求めた値、またpH(m)は事前に求めておいた(安定化後の)培地のpH値、即ち本実施例では7.4である。
これ以外の点については、実施例2は実施例1と同様である。
なお、反射スペクトルの安定待ち時間を十分取ったのは、採用した培地が炭酸系緩衝溶液であるため、炭酸ガスインキュベータ中の炭酸ガスと十分なガス交換を行うまでは、pHが安定しないからである。
また、本実施例の変形例として、操作5”を準備の操作の一環として、使用開始時に行わう代わりに、培養の操作の初期に行う方法も採用できる。即ち、上記5”の操作を純粋な培地mを用いて準備の操作の一環として行う代わりに、細胞を培養容器1に播種して培養を開始した直後(モニタリング開始前)に、細胞を分散させた培地m’を用いて、上記5”同様の操作を行うことが出来る。事前検討の結果、培地m’の安定化後のpHはmと同じ7.4であったため、本変形例においても操作5”と同じ計算式でpKaを求めることが出来る。
なおこの変形例の改良方式として、m’のpHとして事前検討結果でなく、その時点における実測値を採用することも可能である。例えばm’の一部を培養装置12内に設けた(培養容器1とは異なる別の)容器に分注して、標準pH電極などの一次標準法で計測し、その値を採用する。この変形例の改良方式によると、m’のpHを実測することにより常に真値を用いてpHセンサを校正可能なため、極めて高精度な結果が得られる、という特長がある。
本実施例特有の効果は、使用者が中性のpH標準液を計測する工程を省略でき、簡便迅速であることである。また中性のpH標準液等が培養容器1に残留する可能性を排除できるため、培養に用いる培地成分を厳密に制御可能である、という特有の効果がある。また、本実施例の変形例特有の効果は、使用者が培地mを計測する工程を一切省略できるため、さらに簡便迅速であることである。また、本実施例の変形例の改良方式特有の効果は、校正に用いる培地m’のpHを標準法により検定することにより、極めて高精度な結果が得られることである。
本発明の第4の実施例を以下に説明する。第4の実施例は上記第1の実施例と同様であるが、培養容器1としてT−75型類似のフラスコではなく、円盤状の培養プレートを用い、また前記培養プレートを自動的に操作して細胞を自動的に培養可能な自動培養装置を用いる点が異なる。
図6はこの自動培養装置と円盤状の培養プレートの概略図、図7は円盤状の培養プレートの概略断面図である。18は円盤状の培養プレート、19は自動培養装置である。
図6に示したとおり、円盤状の培養プレート18は自動培養装置19に内蔵される。自動培養装置19にはこの他、反射プローブ13、光ファイバ14、15だけでなく、光ファイバ型分光光度計16も内蔵される。また図示は省略したが、本自動培養装置19にはこの他、培養プレート18の保持回転機構、培地等の試薬の自動分注機構、自動排出機構、温度調節機構、炭酸ガス濃度の計測制御機構、全体の制御機構などを有するが、これらの構成要素は本発明の特徴事項ではないため、図示は省略した。
図7に示したとおり、円盤状の培養プレート18の断面は概ね前記培養容器1と同等の構造を有する。最大の相違点は、培養容器1が単一の培養区画を有する容器であるのに対し、円盤状の培養プレート18は、中央部から外周部に向かって順次大きい区画が形成されていることである。中央部から外周部に向かう区画の間は流路で結合されており、不要な廃液を排出するための流路や、最外周部には細胞を回収する区画も形成されている(何れも図示省略)。また、継代数が同じ区画についても複数の区画に区分されており、それらの区画は互いにリブ状構造を有する容器側部2’によって互いに分離されている。図7には、容器側部2’により、2つの隣接する区画の間が区分されている様子を模式的に示した。以下簡単のため、主に個々の区画について説明するが、以下の説明は全ての区画に適用される。容器側部2’の一部は張り出し、その下に凹部10が形成され、凹部10に設けられている保持機構11を用いて、センサユニット7を凹部10の天井、即ち鉛直上方部分に保持した点は、前記第1から第3の実施例同様である。容器側部2’の上に容器天部3を接着することにより円盤状の培養プレート18を組み立てた。センサユニットを有する区画の割合は、全区画数の半分とした。なお、本実施例による円盤状の培養プレート18には、センサユニット7だけでなく、校正用のミラーfや、吸光板zなどを別途形成してある点も、第1から第3の実施例と異なる。ミラーfや、吸光板zは、センサユニット類似の形状とし、容器側部2’の別の部分に上記同様に形成した凹部ならびに保持機構を用いて、凹部の天井に保持した。
本発明の動作は、前記第1ないし第3の実施例と基本的に類似であるが、最初の細胞播種の操作と、最後の細胞回収の操作を手作業により行う以外は、全ての操作を円盤状の培養プレート18を回転又は揺動させることにより生じる遠心力を用いて自動的に行った点が、前記第1から第3の実施例と異なる。特に、剥離した細胞と上清との分離や、廃液の廃棄や、培地に再分散した細胞の移送などは回転による遠心力を利用して行った。また、上清から分離した細胞の培地への再分散、細胞を播種する際の均一化などは円盤状の培養プレート18を揺動させることにより行った。試薬の分注などは自動分注機構を用いて行った。
センサによるモニタリングは、基本的には第3の実施例の変形例の改良方式と同様の手順で行ったが、準備の操作以降、全ての操作を自動化した点が異なる。
即ち、まず製造時に製造者が自動培養装置19と同等の機能を有する自動検査装置19’(図示省略)に円盤状の培養プレート18(ただしセンサユニット7を凹部10の天井に保持した直後、容器側部2’の上に容器天部3を接着する前の状態)を設置した。自動検査装置19’は、自動的に手順1.〜4.を行い、Ap(h)を求めた。具体的には、手順1.において、センサユニット7と同一円周上に形成した校正用のミラーfに対して反射プローブ13が相対する様に円盤状の培養プレート18を回転させ、光ファイバ型分光光度計を用いて自動的に分光計測を行った。手順2.も同様に、吸光板zについて分光計測を行った。以上により、測光系の校正を完了した。手順3.は、自動分注機構を用いて高pH標準液hを円盤状の培養プレート18に導入し、全てのセンサユニット7について分光計測を行った。手順4.は、全てのセンサユニット7に関して自動的に計算を行い、それぞれについてのAp(h)を求めた。こうして求めた各々のAp(h)を、円盤状の培養プレート18に内蔵したメモリ(図示省略)に記録した。円盤状の培養プレート18を洗浄し、容器側部2’の上に容器天部3を接着後、アルミラミネート包装に収納して真空脱気した後、アルミラミネート包装の開口部を熱熔着し、密封した。円盤状の培養プレート18を収納したアルミラミネート包装に約25キログレイのγ線を照射し、滅菌を行うことにより、センサユニット7ごと無菌化された円盤状の培養プレート18を製作した。
円盤状の培養プレート18を受領した使用者は、使用開始時に準備の操作の一環として、円盤状の培養プレート18を自動培養装置19に設置した。以降、自動培養装置19は上記同様に自動的に手順1.と2.を行い、w(λ,f)、w(λ,z)を求め、即ち測光系の校正を完了した。
次に、細胞の播種、培養の操作を自動的に開始した。播種、培養の動作は、前記第3の実施例の変形例と同様である。培養の初期の動作について詳細に説明すると、まず使用開始するセンサユニット7の全てについて、細胞を分散させた培地m’を用いて、操作5”の操作を行った。なおここでAp(h)としては製造者が製造時に自動検査装置19’を用いて上述の通り行った手順1.〜4.結果として得られた値を円盤状の培養プレート18のメモリから読み出して使用した。またw(λ,f)、w(λ,z)としては使用開始時に自動培養装置19が準備の操作の一環として、上述の通り行った手順1.と2.の結果として得られた値を用いた。また培地m’に関する事前検討の結果得られたpH値を用いて、センサユニット7の全てについて、pKaを求めた。
以降3〜4日に1回の割合で培地交換を行った。また細胞の増殖の様子を適宜観察し、コンフルエントになる前に、第1の実施例に述べた継代の操作を行った。培地交換や観察、継代の操作を行わない間は、第1の実施例に述べた方法と同様のでpHの計測を間欠的に行い、即ちpHのモニタリングを行いながら、培養を継続した。またpHのモニタリング結果を自動的に判断し、許容範囲逸脱などの際は、自動的に培地交換や警報発令などの対処を行った。
なお、pHの計測の際のパラメータとしては、Ap(h)としては製造者が製造時に自動検査装置19’を用いて上述の通り行った手順1.〜4.結果得られた値を培養プレート18のメモリから読み出して使用した。またw(λ,f)、w(λ,z)としては使用開始時に自動培養装置19が準備の操作の一環として、上述の通り行った手順1.と2.の結果得られた値を用いた。またpKaとしては、培養開始時に自動培養装置19が上述の通り行った手順5”の結果得られた値を用いた点が、第1の実施例と異なる。
即ち、本実施例においてはpHセンサの校正やそれを用いた培地のpH測定など、操作は基本的に全て自動培養装置19等が自動的に執り行い、操作者は円盤状の培養プレート18を自動培養装置19に設置するだけでよい。なお本実施例においては円盤状の培養プレートと回転式の自動培養装置を用いたが、本発明の精神はこの特定の形状、方式の培養プレートや自動培養装置ばかりでなく、他の形状、方式の培養プレートや自動培養装置にも適用可能であることはいうまでもない。
なお本実施例4の改良方式として、実施例3の変形例の改良方式と同様、m’のpHとして事前検討結果でなく、その時点における実測値を採用することも可能である。例えばm’の一部を自動培養装置19内に設けた(円盤状の培養プレート18とは異なる別の)容器に分注して、標準pH電極などの一次標準法で計測し、その値を採用する。この実施例4の改良方式によると、m’のpHを実測することにより常に真値を用いてpHセンサを校正可能なため、極めて高精度な結果が得られる、という特長がある。
次に、本発明の効果について説明する。前述の通り、接着依存性の幹細胞などをディッシュやフラスコなどのプレート状の培養容器底面に接着させて培養し、低コスト、簡便、小型、培地使用量の少ない等の特長を有するフィルム状の光学式センサを使用して培地成分のモニタリングを行うする際、本発明は従来例と比較して以下の効果がある。
1.本発明は培養容器底の側に形成された凹部の天井面に、培地をはさんで、培養容器底面に対向してセンサを設置し、培養容器もしくは培養プレートの底面にはセンサを設置しない、という新規な構成を有する。従って、培養容器もしくは培養プレートの底面に対する細胞の接着性は良好で、培養が良好に行える、という特有の効果がある。
2.本発明は培養容器もしくは培養プレートの底面にはセンサを設置しないため、細胞はセンサ材料へ接触しない状態では培養される。従ってセンサへの接触による細胞毒性の心配が無く、細胞の安全性を容易に検証可能であり、再生医療などの用途へ好適に応用可能である、という特有の効果がある。
3.本発明の実施例3や、その変形例の通り、培地そのものや、細胞を分散させた培地のpHを予め検定しておき、それらの検定値を用いてセンサを校正するか、或いは、実施例3の変形例の改良方式の通り、細胞を分散させた培地のpHを別途検定し、その結果を用いてセンサの校正を行うことにより、校正液の導入、排出工程を省略可能であり、校正の正確性が高く、また校正のためだけの専用液を大量に必要としない、という特有の効果がある。
本発明は、動物細胞の培養のために広く一般に利用可能であり、特に再生医療に適用するための接着依存性の幹細胞などをプレート状の培養容器底面に接着させて培養する際における培養状態をモニタリングする際に、極めて好適に利用可能である。
第1の実施例に基づく培養容器1の全体略図。 第1の実施例に基づくセンサユニット7の概略平面図。 第1の実施例に基づくセンサユニット7の概略側面図。 第1の実施例に基づく培養容器1の概略縦断面図。 第1の実施例に基づく培養装置の概略図。 第4の実施例に基づく自動培養装置と円盤状の培養プレートの概略図。 第4の実施例に基づく円盤状の培養プレートの概略断面図。
符号の説明
1…培養容器、1b…100%校正用の培養容器、1c…0%校正用の培養容器、2…容器側部、2’…リブ状構造を有する容器側部、3…容器天部、4…容器蓋、5…培地、6…細胞、7…センサユニット、8…pHセンサ、9…センサホルダ、10…凹部、11…保持機構、12…培養装置、13…反射プローブ、14、15…光ファイバ、16…光ファイバ型分光光度計、17…固定棚、18…円盤状の培養プレート、19…自動培養装置。 f…ミラー、z…吸光板、h…高pH標準液、n…中性のpH標準液、b…ベースライン波長、p…ピーク波長、s…サンプル又は未知試料、m…培地、m’…細胞を分散させた培地。

Claims (6)

  1. 動物細胞の培養容器であって、
    反射光を計測することにより、培地の培養成分をモニタリングするセンサと、
    容器側部の一部が張り出されて形成される凹部と、前記凹部に設置され、容器底面に対向した面に前記培地を挟んで前記センサを保持する保持機構とを備え、前記培地は前記凹部内部を満たしていることを特徴とする培養容器。
  2. 前記センサが、フィルム状の光学式センサであり、培地の化学成分のモニタリングを行うことを特徴とする請求項1記載の培養容器。
  3. 前記センサは、前記培地を用いて校正されることを特徴とする請求項1記載の培養容器。
  4. 前記センサは、細胞を含む前記培地の測定対象成分濃度を検定し、校正されることを特徴とする請求項1記載の培養容器。
  5. 前記容器側部により、複数の区画に区分されていることを特徴とする請求項1記載の培養容器。
  6. 請求項1乃至請求項5に記載の培養容器を有する培養装置。
JP2003320594A 2003-09-12 2003-09-12 センサ付き培養容器、並びにそれを利用する培養装置、培養方法 Expired - Fee Related JP4146778B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003320594A JP4146778B2 (ja) 2003-09-12 2003-09-12 センサ付き培養容器、並びにそれを利用する培養装置、培養方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003320594A JP4146778B2 (ja) 2003-09-12 2003-09-12 センサ付き培養容器、並びにそれを利用する培養装置、培養方法

Publications (2)

Publication Number Publication Date
JP2005087005A JP2005087005A (ja) 2005-04-07
JP4146778B2 true JP4146778B2 (ja) 2008-09-10

Family

ID=34452508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003320594A Expired - Fee Related JP4146778B2 (ja) 2003-09-12 2003-09-12 センサ付き培養容器、並びにそれを利用する培養装置、培養方法

Country Status (1)

Country Link
JP (1) JP4146778B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320226A (ja) * 2005-05-18 2006-11-30 Hitachi Medical Corp 細胞培養装置
AU2007238829B2 (en) * 2006-04-11 2012-06-14 Cook Medical Technologies Llc Incubation condition monitoring device
JP2008220235A (ja) * 2007-03-12 2008-09-25 Sanyo Electric Co Ltd 培養装置
JP5253752B2 (ja) * 2007-03-30 2013-07-31 浜松ホトニクス株式会社 光合成サンプル計測容器及び容器ホルダ
US9605239B2 (en) 2009-12-17 2017-03-28 Ge Healthcare Bio-Sciences Ab Sensor attachment arrangement for flexible bags
JP5829816B2 (ja) * 2011-02-18 2015-12-09 日本光電工業株式会社 細胞培養器および培養状態監視システム
JPWO2012141202A1 (ja) * 2011-04-11 2014-07-28 学校法人東邦大学 細胞接着性光制御基材
US8545759B2 (en) * 2011-10-21 2013-10-01 Therapeutic Proteins International, LLC Noninvasive bioreactor monitoring
JP2013099278A (ja) * 2011-11-08 2013-05-23 Dainippon Printing Co Ltd 細胞培養容器の製造方法
JP5610312B2 (ja) * 2011-12-22 2014-10-22 株式会社日立製作所 包装容器
US10359415B2 (en) * 2014-05-02 2019-07-23 Rosemount Inc. Single-use bioreactor sensor architecture
JP6731172B2 (ja) * 2015-05-12 2020-07-29 横河電機株式会社 溶存酸素センサの校正方法
JP7234244B2 (ja) * 2018-02-12 2023-03-07 コーニング インコーポレイテッド 細胞培養のための遠隔モニタリングシステム
WO2022186239A1 (ja) * 2021-03-03 2022-09-09 テルモ株式会社 サンプリング装置、及び細胞培養システム

Also Published As

Publication number Publication date
JP2005087005A (ja) 2005-04-07

Similar Documents

Publication Publication Date Title
JP4146778B2 (ja) センサ付き培養容器、並びにそれを利用する培養装置、培養方法
JP7496770B2 (ja) バイオリアクタ用のセンサ保持体ならびにセンサ保持体を備えたバイオリアクタおよび生物学的材料を繁殖させるまたは培養する方法
TWI523950B (zh) 核酸分析裝置
US7812312B2 (en) Infrared measuring device, especially for the spectrometry of aqueous systems, preferably multiple component systems
TWI486570B (zh) 使用濁度光散射技術以確保樣品妥適性之技術
JP5797911B2 (ja) 溶液のpH計測方法及び溶液のpH計測装置
US8696990B2 (en) Device for the photometric examination of samples
US7688448B2 (en) Through-container optical evaluation system
CA2607086C (en) System for rapid analysis of microbiological materials in liquid samples
JP3187845B2 (ja) 少なくとも一つの生理的液体試料における少なくとも一つのパラメータを測定するための方法及びシステム、ホルダ、並びに、試験装置
EP2394147B1 (en) Optical measurement arrangement
US20080293091A1 (en) Apparatus and methods for automated diffusion filtration, culturing and photometric detection and enumeration of microbiological parameters in fluid samples
US11680240B2 (en) Container having wall protrusion and sensor region
US20050266516A1 (en) System for rapid analysis of microbiological materials in liquid samples
JPH0549180B2 (ja)
EP2887064B1 (en) Device for monitoring spatial coagulation of blood and of components thereof
JP2014530621A (ja) 非侵入的なバイオリアクターのモニタリング
US20190298317A1 (en) Instrumented receptacle apparatus for health analysis of body fluids
US10385305B2 (en) Device for measuring activity of cultured cells, microchamber and method of measuring activity of cultured cells
CN116209746A (zh) 用于固定床生物反应器的生物量测量系统和相关方法
RU123166U1 (ru) Устройство мониторинга постранственного свертывания крови и ее компонентов
NO179344B (no) Fremgangsmåte for undersökelse av en blodpröve og måling av polarisert fluorescensutstråling
JP5703072B2 (ja) 生化学分析用カートリッジおよび生化学分析装置
JP7417619B2 (ja) pH測定方法およびpH測定装置
US20240003869A1 (en) Plasmonic cell mass accumulation profiling platform for determining therapeutic response of cancer cells

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060628

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4146778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees