JP4146656B2 - Solar cell element - Google Patents

Solar cell element Download PDF

Info

Publication number
JP4146656B2
JP4146656B2 JP2002078195A JP2002078195A JP4146656B2 JP 4146656 B2 JP4146656 B2 JP 4146656B2 JP 2002078195 A JP2002078195 A JP 2002078195A JP 2002078195 A JP2002078195 A JP 2002078195A JP 4146656 B2 JP4146656 B2 JP 4146656B2
Authority
JP
Japan
Prior art keywords
output extraction
solar cell
extraction portion
cell element
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002078195A
Other languages
Japanese (ja)
Other versions
JP2003282899A (en
Inventor
宏明 高橋
健次 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002078195A priority Critical patent/JP4146656B2/en
Publication of JP2003282899A publication Critical patent/JP2003282899A/en
Application granted granted Critical
Publication of JP4146656B2 publication Critical patent/JP4146656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は太陽電池素子に関し、特に裏面電極を帯状の出力取出部と集電部とで構成した太陽電池素子に関する。
【0002】
【従来の技術】
従来のシリコン太陽電池を図3に示す。図3に示すように、P型半導体基板1の表面近傍全面に一定の深さまでN型不純物を拡散させてN型を呈する拡散層2を形成するとともに、この拡散層2の表面に反射防止膜3を形成したものである。また、表面側には表面電極4が形成され、裏面側には出力取出部5と集電部6から成る裏面電極5、6が形成されている。
【0003】
この裏面電極5、6の形成方法については、特開平5−326990号公報、あるいは特表平6−509910号公報に開示されているように、半導体基板1の裏面の一領域に銀ペースト(5)を塗布して乾燥した後、その領域の周辺部の一部に重なるようにアルミニウムペースト(6)を塗布して乾燥して同時に焼成する方法、すなわち同時焼成法(一段階焼成)が用いられている。この従来の太陽電池素子では、裏面電極の出力取出部5は10μm程度の厚みに形成され、集電部6は50μm程度の厚みに形成され、重なり部は60μm程度の総厚に形成される。
【0004】
このようにして製造された太陽電池素子では、複数の素子同士を配線材を用いて直列に接続して電圧を昇圧して使用するのが一般的である。この素子間の接続にははんだが必要となるため、表面電極4と裏面電極5、6にはんだコーティングを行っている。このとき裏面電極の出力取出部5にはんだ濡れ性が良好な素材を用いてこれに配線材(不図示)をはんだ付けしている。
【0005】
【発明が解決しようとする課題】
ところが、上記のような裏面電極5、6の構造では、出力取出部5と集電部6を同時焼成するときに、集電部6の成分が出力取出部5の一部に拡散して合金層(不図示)が形成されるが、この合金層は焼結による収縮率が大きいため、これと接合する半導体基板1との界面で引張り応力が発生し、半導体基板1の一部に応力集中が起こる。そのため、焼成後の工程で出力取出部5と集電部6の重なり部を起点とするセル割れが多発するという問題があった。
【0006】
上記のような問題を回避するために、裏面電極の出力取出部5の焼成後の厚みを2μm以上6μm以下にすると有効であることが分かっている。しかし、裏面電極5、6の出力取出部5の全体の厚みを薄くすると、出力取出部5と半導体基板1の接着強度が低下するため、はんだコーティングやモジュール作成の際に出力取出部5aが剥離しやすくなるという問題があった。
【0007】
本発明は上記問題に鑑みてなされたものであり、出力取出部と集電部を一部重ねてスクリーン印刷して焼成して電極を形成すると、出力取出部と集電部との重なり部分を起点とするセル割れが発生するという従来の問題点を解消した太陽電池素子を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る太陽電池素子では、半導体基板の一主面側と他の主面側に異なる導電領域を形成して、一主面側に表面電極を形成するとともに、他の主面側に帯状の出力取出部とこの出力取出部が形成された領域以外の略全面に形成された集電部とで構成される裏面電極を設けた太陽電池素子において、前記出力取出部の周縁部と前記集電部とが重なるように設けるとともに、この出力取出部近傍の前記半導体基板の周縁部に、セル割れ防止層を前記集電部と重ならないように設けたことを特徴とする。
【0009】
上記太陽電池素子では、前記セル割れ防止層は、前記出力取出部の長手方向の延長線と交差する方向に形成されていることが望ましい。
【0010】
また、上記太陽電池素子では、前記出力取出部とセル割れ防止層とが銀を主成分として構成されるとともに、前記集電部がアルミニウムを主成分として構成されることが望ましい。
【0011】
また、上記太陽電池素子では、前記出力取出部の周縁部上に前記集電部が重なるように形成されていることが望ましい。
【0012】
【発明の実施の形態】
以下、本発明の実施形態を詳細に説明する。
本発明の太陽電池素子も基本構造は図3に示す従来の太陽電池素子の構造と同じである。すなわち、一導電型例えばP型の半導体基板1の表面近傍全面に一定の深さまで逆導電型例えばN型不純物を拡散させて逆導電型例えばN型を呈する拡散層2を形成するとともに、この拡散層2の表面に反射防止膜3を形成したものである。また、表面側には表面電極4が形成され、裏面側には出力取出部5と集電部6から成る裏面電極5、6が形成されている。
【0013】
半導体基板1は単結晶もしくは多結晶のシリコン基板などで構成される。この半導体基板1はp型、n型いずれでもよい。単結晶シリコンの場合は引き上げ法などで形成され、多結晶シリコンの場合は鋳造法などで形成される。多結晶シリコンは、大量生産が可能で製造コスト面で単結晶シリコンよりもきわめて有利である。引き上げ法や鋳造法で形成されたシリコンブロックを10cm×10cmもしくは15cm×15cm程度の大きさに切断してインゴットとし、300μm程度の厚みにスライスして半導体基板1とする。
【0014】
半導体基板1の表面側には、逆導電型半導体不純物が拡散された拡散層2が形成されている。この逆導電型半導体不純物が拡散された拡散層2は、半導体基板1内に半導体接合部を形成するために設けるものであり、例えばn型の不純物を拡散させる場合、POCl3を用いた気相拡散法、P25を用いた塗布拡散法、およびP+イオンを電界で基板1に直接導入するイオン打ち込み法などで形成される。この逆導電型半導体不純物を含有する拡散層2は0.3〜0.5μm程度の深さに形成される。
【0015】
また、半導体基板1の表面側には、反射防止膜3が形成されている。この反射防止膜3は、半導体基板1の表面で光が反射するのを防止して、半導体基板1内に光を有効に取り込むために設ける。この反射防止膜3は半導体基板1との屈折率差等を考慮して屈折率が2程度の材料で構成され、厚み500〜2000Å程度の窒化シリコン膜や酸化シリコン(SiO2)膜などで構成される。
【0016】
半導体基板1の裏面側には、一導電型半導体不純物が高濃度に拡散されたBSF層(不図示)を形成することが望ましい。この一導電型半導体不純物が高濃度に拡散されたBSF層は、半導体基板1の裏面近くでキャリアの再結合による効率の低下を防ぐために、半導体基板1の裏面側に内部電界を形成するものである。
【0017】
つまり、半導体基板1の裏面近くで発生したキャリアがこの電界で加速される結果、電力が有効に取り出されることとなり、特に長波長の光感度が増大すると共に、高温における太陽電池特性の低下を軽減できる。このように一導電型半導体不純物が高濃度に拡散されたBSF層が形成された半導体基板1の裏面側のシート抵抗は15Ω/□程度になる。
【0018】
半導体基板1の表面側および裏面側には、表面電極4および裏面電極5、6が形成されている。この表面電極4および裏面電極5、6は主にAg紛、バインダー、ガラスフリットなどからなるAgペーストをスクリーン印刷して焼成し、その上にはんだ層を形成する。表面電極4は、例えば幅200μm程度に、またピッチ3mm程度に形成される多数のフィンガー電極(不図示)と、この多数のフィンガー電極を相互に接続する2本のバスバー電極で構成される。この表面電極4は厚み10〜30μm程度に形成される。
【0019】
裏面電極は、例えば半導体基板1の略全長にわたって例えば幅10mm程度に形成された帯状の出力取出部5とこの出力取出部5以外の略全面にわたって形成された集電部6とで構成される。この出力取出部5は焼成後の厚みで10μm程度、集電部6は焼成後の厚みで50μm程度に形成される。
【0020】
本発明の太陽電池素子では、図1よび図2に示すように、帯状の出力取出部5とこの出力取出部5が形成された領域以外の略全面に形成された集電部6とから成る裏面電極5、6を、この集電部6が出力取出部5の周縁部に重なるように設けている。また、この出力取出部5近傍の半導体基板1の周縁部に、セル割れ防止層7を設けている。このセル割れ防止層7は、出力取出部5の長手方向の延長線と交差する方向に形成されている。すなわち、出力取出部5に連続して出力取出部5とT字状をなすように形成したり、出力取出部5とは非連続に出力取出部5とT字状をなすように形成したり、基板1の周縁部の全周にわたって形成する。
【0021】
このようなセル割れ防止層7を設けると、出力取出部5と集電部6を一部重ねてスクリーン印刷して焼成しても、基板1の周縁部がセル割れ防止層7で機械的に補強されていることから、後工程において出力取出部5と集電部6との重なり部分を起点とするセル割れが発生することを防止できる。
【0022】
このセル割れ防止層は、銀などから成り、出力取出部5と同時にパターニングされて同時に焼き付けられる。
【0023】
また、出力取出部5にはんだ塗れ性のよい銀を用いることで配線材のはんだ付けを容易にすると共に、集電部6にアルミニウムを用いることで、焼成時に半導体裏面にP+層を形成してキャリア再結合を防ぎ、セル特性を向上させることができる。
【0024】
次に、本発明に係る太陽電池素子の形成方法を説明する。
まず、図(a)のように一導電型例えばP型半導体基板を準備する。
そして、図(b)に示すように半導体基板1を逆導電型例えばN型不純物雰囲気中で熱処理などして、半導体基板1の表面近傍全面に一定の深さまでN型不純物を拡散させてN型を呈する拡散層2を形成する。
次に、図(c)に示すように、半導体基板1の表面にプラズマCVD法などで反射防止膜3を形成する。
【0025】
次に、拡散層2を分離した後、表面電極4を印刷して乾燥させる。
その後に、図1(a)に示した出力取出部5とセル割れ防止層7のパターンにガラスフリットを含む銀ペーストを印刷して乾燥させ、さらにその一部と重なるようにアルミニウムペースト(6)をスクリーン印刷して焼成することにより、図(d)に示すような太陽電池素子を得ることができる。
なお、セル割れ防止層7とアルミニウムペースト(6)は重ならないように形成してもよい。
【0026】
その後、半導体基板1をベルト炉等の焼成炉において焼成することによって、表面電極4および裏面電極5、6が同時に形成される。
このとき、アルミニウムから成る集電部6からアルミニウムが銀から成る出力取出部5に拡散してAg/Al合金層が形成される。
その後、各電極4、5、6が形成された半導体基板1をはんだ槽に浸漬して表面電極4と裏面電極の出力取出部5にはんだコーティング層(不図示)を形成する。
【0027】
本発明は上記実施形態に限定されるものではなく本発明の範囲内で上記実施形態に多くの修正および変更を加えうることはもちろんである。例えばアルミニウムペーストに代わる金属ペーストとして、ガリウム、インジウムをベースとした金属ペーストを使用することも可能である。また銀ペーストに代わる金属ペーストとして銅、金、白金をベースとした金属ペーストを使用することも可能である。また、図1の裏面電極パターンは例であって、この形状に制限されるものではない。
【0028】
【実施例】
以下に本発明の実施例を示す。
(a)に示すように半導体基板として15cm角で厚さ0.3mm、比抵抗1.5Ω・cmのP型シリコン基板を準備した。
そして図(b)に示すように熱拡散法でオキシ塩化リン(POCl)を拡散源として、深さ0.5μmのN型拡散層を形成した。
【0029】
次に、表面にプラズマCVD法で窒化シリコンの反射防止膜を800Åの厚さで形成した後、拡散層を分離した。
【0030】
次に、図1(a)〜(c)に示す構造で裏面に出力取出電極部5とセル割れ防止層7をAgを主体とした金属ペーストでスクリーン印刷し、この出力取出電極部5の一部を覆うように集電電極6をアルミニウムペーストでスクリーン印刷した。また、表面にも銀ペーストをスクリーン印刷して焼成することで電極を形成した。このとき、銀から成る出力取出部5とアルミニウムから成る集電部6の重なりは0.5mmで形成された。その後、200℃のはんだ浴槽に上記基板1を浸漬して引き上げることで、表面電極4と裏面電極の出力取出部5およびセル割れ防止層7をはんだ被覆して太陽電池素子を作成した。また、その太陽電池素子を用いて太陽電池モジュールを作成した。この太陽電池素子の電極焼成後の全後工程におけるセル割れの発生率および光電変換効率を従来の方法と比較して表1に示す。
【0031】
【表1】

Figure 0004146656
【0032】
表1に示すとおり、本発明の構造を用いた場合は、従来に比べて焼成後に発生するセル割れを軽減することができた。また、これらの太陽電池素子の光電変換効率は従来の方法を用いた場合とほぼ同等であった。
【0033】
【発明の効果】
以上のように、本発明に係る太陽電池素子によれば、裏面電極の集電部を出力取出部の周縁部に重なるように設けるとともに、この出力取出部近傍の半導体基板の周縁部にセル割れ防止層を設けたことから、この重なり部分を起点とする太陽電池素子の割れを防止できるとともに、裏面電極と半導体基板との間に十分な接着強度が強固となって裏面電極の剥離を防止することもできる。また、太陽電池素子の光電変換効率を損なうこともない。
【図面の簡単な説明】
【図1】本発明に係る太陽電池素子の裏面電極パターンを説明するための図である。
【図2】本発明に係る太陽電池素子の形成方法の工程を説明するための図である。
【図3】従来の太陽電池素子を示す図である。
【符号の説明】
1・・・半導体基板、2・・・n型拡散層、2a・・・接合分離部、3・・・反射防止膜、4・・・表面電極、5・・・出力取出部、6・・・集電部、7・・・セル割れ防止層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solar cell element, and more particularly to a solar cell element in which a back electrode is constituted by a strip-shaped output extraction part and a current collecting part.
[0002]
[Prior art]
A conventional silicon solar cell is shown in FIG. As shown in FIG. 3, an N-type diffusion layer 2 is formed by diffusing N-type impurities to the entire surface near the surface of a P-type semiconductor substrate 1 to form an N-type, and an antireflection film is formed on the surface of the diffusion layer 2. 3 is formed. Further, the front surface electrode 4 is formed on the front surface side, and the back surface electrodes 5 and 6 including the output extraction portion 5 and the current collecting portion 6 are formed on the back surface side.
[0003]
As for the method of forming the back electrodes 5 and 6, as disclosed in JP-A-5-326990 or JP-A-6-509910, a silver paste (5 ) Is applied and dried, and then the aluminum paste (6) is applied so as to overlap a part of the peripheral portion of the region, dried and simultaneously fired, that is, a simultaneous firing method (one-step firing) is used. ing. In this conventional solar cell element, the output extraction portion 5 of the back electrode is formed to a thickness of about 10 μm, the current collecting portion 6 is formed to a thickness of about 50 μm, and the overlapping portion is formed to a total thickness of about 60 μm.
[0004]
In the solar cell element manufactured in this way, it is general to use a plurality of elements connected in series using a wiring material to boost the voltage. Since solder is required for the connection between the elements, the front electrode 4 and the back electrodes 5 and 6 are coated with solder. At this time, a wiring material (not shown) is soldered to the output extraction portion 5 of the back electrode using a material having good solder wettability.
[0005]
[Problems to be solved by the invention]
However, in the structure of the back electrodes 5 and 6 as described above, when the output extraction portion 5 and the current collection portion 6 are fired simultaneously, the components of the current collection portion 6 diffuse into a part of the output extraction portion 5 and are alloyed. A layer (not shown) is formed, but since the alloy layer has a large shrinkage rate due to sintering, a tensile stress is generated at the interface with the semiconductor substrate 1 to be bonded to the alloy layer, and the stress is concentrated on a part of the semiconductor substrate 1. Happens. Therefore, there has been a problem that cell cracks frequently occur from the overlapping portion of the output extraction portion 5 and the current collecting portion 6 in the process after firing.
[0006]
In order to avoid the above problems, it has been found that it is effective to set the thickness of the output extraction portion 5 of the back electrode after firing to 2 μm or more and 6 μm or less. However, if the overall thickness of the output extraction portion 5 of the back electrodes 5 and 6 is reduced, the adhesive strength between the output extraction portion 5 and the semiconductor substrate 1 is reduced, so that the output extraction portion 5a is peeled off during solder coating or module creation. There was a problem that it was easy to do.
[0007]
The present invention has been made in view of the above problems, and when the electrode is formed by screen printing by partially overlapping the output extraction portion and the current collection portion, the overlapping portion between the output extraction portion and the current collection portion is formed. It aims at providing the solar cell element which eliminated the conventional problem that the cell crack which makes the starting point generate | occur | produces.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, in the solar cell element according to claim 1, different conductive regions are formed on one main surface side and the other main surface side of the semiconductor substrate, and a surface electrode is formed on the one main surface side. In addition, in the solar cell element provided with a back electrode composed of a strip-shaped output extraction portion on the other main surface side and a current collector formed on substantially the entire surface other than the region where the output extraction portion is formed, Provided so that the peripheral part of the output extraction part and the current collecting part overlap, and provided a cell crack prevention layer on the peripheral part of the semiconductor substrate in the vicinity of the output extraction part so as not to overlap the current collection part. It is characterized by.
[0009]
In the solar cell element, it is preferable that the cell crack preventing layer is formed in a direction intersecting with an extension line in a longitudinal direction of the output extraction portion.
[0010]
Moreover, in the said solar cell element, while the said output extraction part and a cell crack prevention layer are comprised by silver as a main component, it is desirable for the said current collection part to be comprised by aluminum as a main component.
[0011]
Moreover, in the said solar cell element, it is desirable to form so that the said current collection part may overlap on the peripheral part of the said output extraction part.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
The basic structure of the solar cell element of the present invention is the same as that of the conventional solar cell element shown in FIG. That is, a diffusion layer 2 exhibiting a reverse conductivity type, for example, N-type is formed by diffusing a reverse conductivity type, for example, N-type impurity, to a certain depth over the entire surface near the surface of a semiconductor substrate 1 of one conductivity type, for example, P-type. The antireflection film 3 is formed on the surface of the layer 2. Further, the front surface electrode 4 is formed on the front surface side, and the back surface electrodes 5 and 6 including the output extraction portion 5 and the current collecting portion 6 are formed on the back surface side.
[0013]
The semiconductor substrate 1 is composed of a monocrystalline or polycrystalline silicon substrate. The semiconductor substrate 1 may be either p-type or n-type. In the case of single crystal silicon, it is formed by a pulling method or the like, and in the case of polycrystalline silicon, it is formed by a casting method or the like. Polycrystalline silicon can be mass-produced and is extremely advantageous over single-crystal silicon in terms of manufacturing cost. A silicon block formed by a pulling method or a casting method is cut into a size of about 10 cm × 10 cm or 15 cm × 15 cm to form an ingot, and sliced to a thickness of about 300 μm to form a semiconductor substrate 1.
[0014]
On the surface side of the semiconductor substrate 1, a diffusion layer 2 in which reverse conductivity type semiconductor impurities are diffused is formed. The diffusion layer 2 in which the reverse conductivity type semiconductor impurity is diffused is provided to form a semiconductor junction in the semiconductor substrate 1. For example, when diffusing an n-type impurity, a gas phase using POCl 3 is used. It is formed by a diffusion method, a coating diffusion method using P 2 O 5 , or an ion implantation method in which P + ions are directly introduced into the substrate 1 by an electric field. The diffusion layer 2 containing the reverse conductivity type semiconductor impurity is formed to a depth of about 0.3 to 0.5 μm.
[0015]
An antireflection film 3 is formed on the surface side of the semiconductor substrate 1. The antireflection film 3 is provided to prevent light from being reflected from the surface of the semiconductor substrate 1 and to effectively take light into the semiconductor substrate 1. The antireflection film 3 is made of a material having a refractive index of about 2 in consideration of a difference in refractive index with the semiconductor substrate 1, and is made of a silicon nitride film or a silicon oxide (SiO 2 ) film having a thickness of about 500 to 2000 mm. Is done.
[0016]
On the back side of the semiconductor substrate 1, it is desirable to form a BSF layer (not shown) in which one conductivity type semiconductor impurity is diffused at a high concentration. The BSF layer in which the one-conductivity-type semiconductor impurity is diffused at a high concentration forms an internal electric field on the back surface side of the semiconductor substrate 1 in order to prevent a decrease in efficiency due to carrier recombination near the back surface of the semiconductor substrate 1. is there.
[0017]
That is, carriers generated near the back surface of the semiconductor substrate 1 are accelerated by this electric field. As a result, electric power is effectively extracted. In particular, photosensitivity of a long wavelength is increased, and deterioration of solar cell characteristics at high temperature is reduced. it can. As described above, the sheet resistance on the back surface side of the semiconductor substrate 1 on which the BSF layer in which one conductivity type semiconductor impurity is diffused at a high concentration is formed is about 15Ω / □.
[0018]
A front surface electrode 4 and back surface electrodes 5 and 6 are formed on the front surface side and the back surface side of the semiconductor substrate 1. The front electrode 4 and the back electrodes 5 and 6 are screen-printed and fired with an Ag paste mainly composed of Ag powder, a binder, glass frit and the like, and a solder layer is formed thereon. The surface electrode 4 is composed of, for example, a large number of finger electrodes (not shown) formed with a width of about 200 μm and a pitch of about 3 mm, and two bus bar electrodes that connect the large number of finger electrodes to each other. The surface electrode 4 is formed to a thickness of about 10 to 30 μm.
[0019]
The back electrode is composed of, for example, a strip-shaped output extraction portion 5 formed to have a width of, for example, about 10 mm over the substantially entire length of the semiconductor substrate 1 and a current collector portion 6 formed over substantially the entire surface other than the output extraction portion 5. The output extraction portion 5 is formed with a thickness after firing of about 10 μm, and the current collecting portion 6 is formed with a thickness after firing of about 50 μm.
[0020]
As shown in FIG. 1 and FIG. 2, the solar cell element of the present invention comprises a strip-shaped output extraction portion 5 and a current collector portion 6 formed on substantially the entire surface other than the region where the output extraction portion 5 is formed. The back electrodes 5 and 6 are provided so that the current collector 6 overlaps the peripheral edge of the output extraction portion 5. A cell crack prevention layer 7 is provided on the peripheral edge of the semiconductor substrate 1 in the vicinity of the output extraction portion 5. The cell crack prevention layer 7 is formed in a direction intersecting with the extension line in the longitudinal direction of the output extraction portion 5. That is, it is formed so as to form a T shape with the output extraction portion 5 continuously to the output extraction portion 5, or formed so as to form a T shape with the output extraction portion 5 discontinuously with the output extraction portion 5. And formed over the entire circumference of the peripheral edge of the substrate 1.
[0021]
When such a cell crack preventing layer 7 is provided, the peripheral portion of the substrate 1 is mechanically covered with the cell crack preventing layer 7 even if the output extraction portion 5 and the current collecting portion 6 are partially overlapped and screen-printed and fired. Since it is reinforced, it is possible to prevent the occurrence of cell cracks starting from the overlapping portion between the output extraction portion 5 and the current collecting portion 6 in the subsequent process.
[0022]
This cell crack prevention layer is made of silver or the like, and is patterned at the same time as the output extraction portion 5 and baked at the same time.
[0023]
In addition, the use of silver with good solderability for the output extraction part 5 facilitates the soldering of the wiring material, and the use of aluminum for the current collection part 6 forms a P + layer on the back surface of the semiconductor during firing. Thus, carrier recombination can be prevented and cell characteristics can be improved.
[0024]
Next, a method for forming a solar cell element according to the present invention will be described.
First, a one conductivity type such as P-type semiconductor substrate as shown in FIG. 2 (a).
Then, such heat treatment of the semiconductor substrate 1 at the opposite conductivity type such as N-type impurities in the atmosphere, as shown in FIG. 2 (b), to diffuse the N-type impurity to a predetermined depth in the surface vicinity entire surface of the semiconductor substrate 1 by N A diffusion layer 2 having a mold is formed.
Next, as shown in FIG. 2 (c), to form the anti-reflection film 3 in the surface of the semiconductor substrate 1 plasma CVD method or the like.
[0025]
Next, after separating the diffusion layer 2, the surface electrode 4 is printed and dried.
Thereafter, a silver paste containing glass frit is printed on the pattern of the output extraction portion 5 and the cell crack prevention layer 7 shown in FIG. 1A and dried, and further an aluminum paste (6) so as to overlap with a part thereof. the by firing by screen printing, it is possible to obtain a solar cell element as shown in Figure 2 (d).
The cell crack preventing layer 7 and the aluminum paste (6) may be formed so as not to overlap.
[0026]
Thereafter, the semiconductor substrate 1 is baked in a baking furnace such as a belt furnace, whereby the front electrode 4 and the back electrodes 5 and 6 are formed simultaneously.
At this time, aluminum is diffused from the current collector 6 made of aluminum to the output extraction portion 5 made of silver to form an Ag / Al alloy layer .
Thereafter, the semiconductor substrate 1 on which the electrodes 4, 5, 6 are formed is immersed in a solder bath to form a solder coating layer (not shown) on the front electrode 4 and the output extraction part 5 of the back electrode.
[0027]
The present invention is not limited to the above-described embodiment, and it goes without saying that many modifications and changes can be made to the above-described embodiment within the scope of the present invention. For example, a metal paste based on gallium or indium can be used as a metal paste instead of an aluminum paste. It is also possible to use a metal paste based on copper, gold or platinum as a metal paste instead of the silver paste. Moreover, the back surface electrode pattern of FIG. 1 is an example, Comprising: It does not restrict | limit to this shape.
[0028]
【Example】
Examples of the present invention are shown below.
Thickness 0.3mm at 15cm angle as the semiconductor substrate as shown in FIG. 2 (a), was prepared P-type silicon substrate having a specific resistance 1.5 [Omega · cm.
Then phosphorus oxychloride (POCl 3) as a diffusion source in the thermal diffusion method, as shown in FIG. 2 (b), to form an N-type diffusion layer depth 0.5 [mu] m.
[0029]
Next, a silicon nitride antireflection film having a thickness of 800 mm was formed on the surface by plasma CVD, and then the diffusion layer was separated.
[0030]
Next, the output extraction electrode portion 5 and the cell crack prevention layer 7 are screen-printed with a metal paste mainly composed of Ag on the back surface in the structure shown in FIGS. The collector electrode 6 was screen-printed with an aluminum paste so as to cover the part. Moreover, the electrode was formed by screen-printing and baking the silver paste also on the surface. At this time, the overlap between the output extraction portion 5 made of silver and the current collection portion 6 made of aluminum was formed to be 0.5 mm. Then, the said board | substrate 1 was immersed in a 200 degreeC solder bath and pulled up, the surface electrode 4, the output extraction part 5 of the back electrode, and the cell crack prevention layer 7 were solder-coated, and the solar cell element was created. Moreover, the solar cell module was created using the solar cell element. Table 1 shows the incidence of cell cracking and photoelectric conversion efficiency in all post-processes after electrode firing of this solar cell element in comparison with the conventional method.
[0031]
[Table 1]
Figure 0004146656
[0032]
As shown in Table 1, when the structure of the present invention was used, cell cracks generated after firing could be reduced as compared with the conventional case. Moreover, the photoelectric conversion efficiencies of these solar cell elements were almost the same as when the conventional method was used.
[0033]
【The invention's effect】
As described above, according to the solar cell element of the present invention, the current collecting part of the back electrode is provided so as to overlap the peripheral part of the output extraction part, and cell cracks are formed in the peripheral part of the semiconductor substrate in the vicinity of the output extraction part. Since the prevention layer is provided, it is possible to prevent the cracking of the solar cell element starting from this overlapping portion, and the sufficient adhesion strength between the back electrode and the semiconductor substrate is strengthened to prevent peeling of the back electrode. You can also. Moreover, the photoelectric conversion efficiency of the solar cell element is not impaired.
[Brief description of the drawings]
FIG. 1 is a view for explaining a back electrode pattern of a solar cell element according to the present invention.
FIG. 2 is a diagram for explaining a process of a method for forming a solar cell element according to the present invention.
FIG. 3 is a diagram showing a conventional solar cell element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 2 ... N type diffused layer, 2a ... Junction isolation | separation part, 3 ... Antireflection film, 4 ... Surface electrode, 5 ... Output extraction part, 6 ...・ Current collector, 7 ... Cell crack prevention layer

Claims (4)

半導体基板の一主面側と他の主面側に異なる導電領域を形成して、一主面側に表面電極を形成するとともに、他の主面側に帯状の出力取出部とこの出力取出部が形成された領域以外の略全面に形成された集電部とで構成される裏面電極を設けた太陽電池素子において、前記出力取出部の周縁部と前記集電部とが重なるように設けるとともに、この出力取出部近傍の前記半導体基板の周縁部に、セル割れ防止層を前記集電部と重ならないように設けたことを特徴とする太陽電池素子。Different conductive regions are formed on one main surface side and the other main surface side of the semiconductor substrate, surface electrodes are formed on one main surface side, and a strip-shaped output extraction portion and this output extraction portion on the other main surface side In the solar cell element provided with a back electrode composed of a current collector formed on substantially the entire surface other than the region where the current is formed, the peripheral portion of the output extraction portion and the current collector are overlapped with each other. A solar cell element, wherein a cell crack prevention layer is provided on the peripheral edge of the semiconductor substrate in the vicinity of the output extraction portion so as not to overlap the current collector . 前記セル割れ防止層は、前記出力取出部の長手方向の延長線と交差する方向に形成されていることを特徴とする請求項1に記載の太陽電池素子。  The solar cell element according to claim 1, wherein the cell crack preventing layer is formed in a direction intersecting with an extension line in a longitudinal direction of the output extraction portion. 前記出力取出部とセル割れ防止層とが銀を主成分として構成されるとともに、前記集電部がアルミニウムを主成分として構成されることを特徴とする請求項1または2に記載の太陽電池素子。  3. The solar cell element according to claim 1, wherein the output extraction portion and the cell crack prevention layer are composed of silver as a main component, and the current collector is composed of aluminum as a main component. . 前記出力取出部の周縁部上に前記集電部が重なるように形成されていることを特徴とする請求項1ないし3のいずれかに記載の太陽電池素子。  4. The solar cell element according to claim 1, wherein the current collector is formed so as to overlap a peripheral edge of the output extraction portion. 5.
JP2002078195A 2002-03-20 2002-03-20 Solar cell element Expired - Fee Related JP4146656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002078195A JP4146656B2 (en) 2002-03-20 2002-03-20 Solar cell element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002078195A JP4146656B2 (en) 2002-03-20 2002-03-20 Solar cell element

Publications (2)

Publication Number Publication Date
JP2003282899A JP2003282899A (en) 2003-10-03
JP4146656B2 true JP4146656B2 (en) 2008-09-10

Family

ID=29228271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002078195A Expired - Fee Related JP4146656B2 (en) 2002-03-20 2002-03-20 Solar cell element

Country Status (1)

Country Link
JP (1) JP4146656B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4557622B2 (en) * 2004-07-29 2010-10-06 京セラ株式会社 Solar cell element connection structure and solar cell module including the same

Also Published As

Publication number Publication date
JP2003282899A (en) 2003-10-03

Similar Documents

Publication Publication Date Title
JP5186192B2 (en) Solar cell module
JP2001068699A (en) Solar cell
JP6495649B2 (en) Solar cell element and solar cell module
JP4075410B2 (en) Solar cell
JP6644884B2 (en) Solar cell, solar cell manufacturing system, and solar cell manufacturing method
JP4780953B2 (en) Solar cell element and solar cell module using the same
JP2010027659A (en) Solar battery module, and manufacturing method therefor
JP2003273379A (en) Solar cell element
JP2001044459A (en) Solar battery
JP4185332B2 (en) Solar cell and solar cell module using the same
JP3732947B2 (en) Method for manufacturing solar cell element
JP2000340812A (en) Solar battery
JP2000164901A (en) Solar battery
JP2794141B2 (en) Method for manufacturing photoelectric conversion device
JP4658380B2 (en) Solar cell element and solar cell module using the same
JP4203247B2 (en) Method for forming solar cell element
JP4412842B2 (en) Solar cell
JP4146656B2 (en) Solar cell element
JP2003273378A (en) Solar cell element
JP2002198546A (en) Formation method for solar cell element
JP3847188B2 (en) Solar cell element
JP2002198547A (en) Method for manufacturing solar cell
JP2008053435A (en) Solar cell module and manufacturing method thereof
JPH11135812A (en) Formation method for solar cell element
JP2000164903A (en) Solar battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees