JP4146065B2 - Hydrostatic magnetic compound bearing spindle device - Google Patents

Hydrostatic magnetic compound bearing spindle device Download PDF

Info

Publication number
JP4146065B2
JP4146065B2 JP2000156449A JP2000156449A JP4146065B2 JP 4146065 B2 JP4146065 B2 JP 4146065B2 JP 2000156449 A JP2000156449 A JP 2000156449A JP 2000156449 A JP2000156449 A JP 2000156449A JP 4146065 B2 JP4146065 B2 JP 4146065B2
Authority
JP
Japan
Prior art keywords
bearing
main shaft
hydrostatic
spindle
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000156449A
Other languages
Japanese (ja)
Other versions
JP2001336527A (en
Inventor
伸幸 鈴木
裕之 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2000156449A priority Critical patent/JP4146065B2/en
Publication of JP2001336527A publication Critical patent/JP2001336527A/en
Application granted granted Critical
Publication of JP4146065B2 publication Critical patent/JP4146065B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Turning (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、高速切削加工装置や研削加工装置等に装備される静圧磁気複合軸受スピンドル装置に関し、特にタッチダウン時の保護を図るものである。
【0002】
【従来の技術】
高能率で高精度な加工を行うためには、高速回転が可能であって、高回転精度を有し、静剛性・動剛性が高いスピンドル装置が必要となる。この要求に対して静圧気体軸受と磁気軸受とを複合化したハイブリッド型の非接触軸受を提案した(特願平10−097505号など)。これによれば、静圧気体軸受の優れた動剛性および回転精度と、磁気軸受の優れた静剛性という両軸受の特長を生かしたコンパクトな軸受とできる。
【0003】
【発明が解決しようとする課題】
静圧磁気複合軸受は非接触軸受であるが、過大な負荷が作用した場合などに、主軸が軸受面に接触する恐れがある。このような主軸の接触をタッチダウンと呼んでいる。このタッチダウンに対して、従来の磁気軸受スピンドルでは、転がり軸受からなる保護軸受が使用されている。しかし、静圧磁気複合軸受は、磁気軸受部に静圧気体軸受を形成したものであるため、軸受部の主軸と磁気軸受ステータ間の隙間が、例えば数十ミクロン以下と狭く、磁気軸受スピンドルで通常使用されている転がり軸受からなる保護軸受が使用できない。
この問題は、静圧磁気複合軸受に限らず、静圧気体軸受の場合にも生じる。
なお、静圧磁気複合軸受の場合は、その静圧気体軸受面が磁気軸受の電磁石を形成することから、静圧気体軸受面の材質は潤滑性のない磁性金属に限られる。そのため、スピンドルに過大な負荷が印加された場合に、主軸と軸受面との接触によって、軸受部に悪影響を及ぼす恐れがより大きい。
【0004】
このようなタッチダウン時の保持を目的として、本出願人は、摺動材を静圧磁気複合軸受スピンドル装置に設けるものを提案した(特願平H11−071502号)。
しかしながら、摺動材としてカーボン等の縦弾性係数が小さなものを使用した場合、加工中における工具の破損、あるいは誤操作によるワークへの衝突などにより非常に大きな負荷が加わったときには、摺動材が変形してこの摺動材の設定隙間以上に主軸が変位してしまうことがある。この場合、摺動材による保護機能が果たされない恐れがある。
【0005】
この発明の目的は、軸受隙間の狭い静圧気体軸受部を有しながら、主軸に過大な負荷が作用し、主軸と静止側部材の間にタッチダウンがあった場合にも、軸受や主軸の摩耗や損傷を防止することができる静圧磁気複合軸受スピンドル装置を提供することである。
この発明の他の目的は、タッチダウン時保護用の転がり軸受の空回りによる不具合を無くすことである。
この発明のさらに他の目的は、スラスト型の静圧磁気複合軸受におけるタッチダウン時の保護を図ることである。
この発明のさらに他の目的は、主軸に過大な負荷が作用し、主軸と静止側部材の間にタッチダウンがあった場合にも、軸受や主軸の摩耗や損傷を防止することができる静圧気体軸受スピンドル装置を提供することである。
【0006】
【課題を解決するための手段】
この発明の静圧磁気複合軸受スピンドル装置は、静圧気体軸受と磁気軸受とが複合化されたラジアル型の静圧磁気複合軸受により主軸を支持したスピンドル装置において、予圧を与えた転がり軸受をハウジングに設け、この転がり軸受の内輪の内径面と主軸の外径面とのラジアル隙間を、静圧磁気複合軸受のラジアル隙間以下に設定し、上記主軸に設けられた鍔部に対面して主軸を支持するスラスト型の静圧磁気複合軸受を設け、このスラスト型の静圧磁気複合軸受における軸受面およびこの軸受面に対面する主軸の鍔面のいずれか一方の面に、モリブデンまたはカーボンの溶射層を設け、上記軸受面および主軸鍔面の他方の面にセラミックスの溶射層を施したものである。
この構成によると、主軸に過大な負荷が印加された場合も、主軸が静圧磁気複合軸受に接触する前に、転がり軸受によって支持される。そのため静圧磁気複合軸受の損傷が防止される。転がり軸受を用いるため、縦弾性係数が小さな摺動材を用いるものと異なり、負荷が大きくても変形の問題がなく、確実な保護が行える。また、転がり軸受は予圧を与えるため、静圧磁気複合軸受の軸受面と主軸との隙間が狭くても、通常回転時に転がり軸受が主軸に接触しない設計とできる。
上記転がり軸受は、上記予圧によって軸受隙間を零にすることが好ましい。これにより、静圧磁気複合軸受と主軸との隙間がより一層狭い場合にも対応可能となる。
【0007】
この発明において、上記転がり軸受の内輪の端面に圧接する摺動材をハウジングに設けても良い。このように、摺動材を設けることで、通常の運転時に、主軸回転によって発生する空気せん断トルクにより内輪が空回りすることが防止される。
【0008】
この発明において、上記転がり軸受が、複列のアンギュラ玉軸受であっても良い。複列のアンギュラ玉軸受は、正面を向き合う組み合わせであっても、背面を向き合う組み合わせであっても良い。複列のアンギュラ玉軸受を用いると、予圧を与えて軸受隙間を零とすることが容易である。
【0009】
記主軸に設けられた鍔部に対面して主軸を支持するスラスト型の静圧磁気複合軸受を設け、このスラスト型の静圧磁気複合軸受における軸受面およびこの軸受面に対面する主軸の鍔面のいずれか一方の面に、モリブデンまたはカーボンの溶射層を設け、上記軸受面および主軸の鍔面の他方の面にセラミックスの溶射層を施している。
スラスト型の静圧磁気複合軸受を設けた場合、主軸の運転時の支持が、完全に非接触で行える。この場合に、上記のように軸受面および主軸鍔面に上記材質の溶射層を設けることで、スラスト方向のタッチダウン時の耐摩耗,摺動特性を向上させることができる。スラスト軸受部に関しては、ラジアル軸受と同様にして並列に摺動部材を置くことは困難である。本来の軸受面積を減らすこと無く摺動部材を置くためには、主軸の鍔部の径を大きくすることになるが、固有振動数は著しく低下することになる。しかし、上記のように軸受面に溶射層を設けることにより、鍔径を大きくすることなく、タッチダウン時の保護が行える。
【0011】
【発明の実施の形態】
この発明の一実施形態を図1ないし図4と共に説明する。この静圧磁気複合軸受スピンドル装置1は、主軸4を、ハウジング5に設置された複数のラジアル型の静圧磁気複合軸受6,7と、スラスト型の静圧磁気複合軸受8,9とで支持し、スピンドル駆動源10を設けたものである。スピンドル駆動源10は、ハウジング5に内蔵のモータであって、主軸4に一体に設けられたロータ21と、ハウジング5に設置されたステータ22とで構成され、ビルトインモータ形式のスピンドル装置1を構成する。主軸4の先端には工具装着部11が設けられている。主軸4内を貫通したドローバ12は、主軸4の後方のアンクランプユニット13で操作される。
各軸受6〜9とスピンドル駆動源10の配置は、この例では、主軸4の前部(工具側部)および後部をラジアル型の静圧磁気複合軸受6,7で支持し、その中間をスラスト型の静圧磁気複合軸受8,9で支持し、後端にスピンドル駆動源10を配置した構成としてある。
【0012】
この構成のスピンドル装置1において、図2に拡大して示す示すように、タッチダウン保護用の転がり軸受41を、主軸4の先端近傍に位置してハウジング5に設置してある。転がり軸受41は、先端側の静圧磁気複合軸受6よりも主軸4の先端側に配置してある。転がり軸受41は、予圧を与えて軸受隙間を零とし、その内輪42の内径面と主軸4の外径面とのラジアル隙間d2を、静圧磁気複合軸受6のラジアル隙間d1以下に設定してある。
転がり軸受41は、深溝玉軸受からなり、内輪42と外輪43の間に、保持器(図示せず)に保持された転動体44を介在させたものである。転がり軸受41の予圧は、外輪43をハウジング5に締まり嵌めで固定することにより与えている。転がり軸受41は、具体的には、ハウジング5に設けられた円筒面からなる軸受取付面45に外輪43を締まり嵌めし、軸受取付面45に続くハウジング5の段部46と固定リング47とで外輪43を軸方向に挟み付けることにより固定している。固定リング47はハウジング5にボルト48で取付けられられる。
【0013】
各静圧磁気複合軸受6〜9の構成を説明する。前後のラジアル型の各静圧磁気複合軸受6,7は、互いに同じ構成のものである。静圧磁気複合軸受6,7は、各々静圧気体軸受6A,7Aと磁気軸受6B,7Bとを複合化させたものである。この明細書で言う複合化とは、静圧および磁気の両形式の軸受を共通部分が生じるように組み合わせることを意味し、例えば、静圧気体軸受面と磁気軸受面とに共通部分(ラジアル軸受では軸方向の重なり部分)を生じさせるか、あるいは両形式の軸受に少なくとも一部の部品が共通化されるものであれば良い。
【0014】
この実施形態では、図2に示すように、磁気軸受6Bの電磁石のコア23に、静圧気体軸受6Aの絞り24aを設けることで、コア23で静圧気体軸受面の一部を構成している。コア23は、軸方向に離れた一対の主コア部23a,23aと、これら主コア部23a,23aを連結した連結コア部23bとを有する。磁気軸受6Bは、コア23の連結コア部23bにコイル25を巻装したものである。コイル25は、樹脂材等の非磁性体26に埋め込まれている。なお、磁気軸受7Bおよび静圧気体軸受7Aは、それぞれ磁気軸受6Bおよび静圧気体軸受6Aと同じ構成である。
【0015】
静圧気体軸受6Aは、コア23および非磁性体26の内径側面で形成されて主軸4との間に軸受隙間d1を形成する静圧磁気受面6Aaと、コア23の各主コア部23a,23aに設けられて静圧軸受面6Aaに開口する絞り24aとで構成される。絞り24aは、各主コア部23aの外径側面に開口した給気孔24の先端に設けられている。
図3に階段断面を示すように、コア23は、主軸4の回りの円周方向複数箇所(同図の例では4箇所)に配置されてハウジング5に固定されている。円周方向に隣合うコア23間の隙間は、樹脂材等の非磁性体27で埋められている。この非磁性体27は、コイル25の周囲の非磁性体26(図2)と一体のものであっても良い。これら非磁性体26,27と、コア23とで、前記静圧磁気軸受面6Aaが構成される。
【0016】
図4は、スラスト型の静圧磁気複合軸受8,9の拡大図である。この一対の軸受8,9は、主軸4に設けられた鍔部4aの両面に対向してハウジング5内に設置されたものであり、互いに一つの両面式スラスト型静圧磁気複合軸受30を構成する。両側の静圧磁気複合軸受8,9は、互いに同じ構成のものである。これら静圧磁気複合軸受8,9は、各々静圧気体軸受8A,9Aと磁気軸受8B,9Bとを複合化させたものである。
この実施形態では、磁気軸受8B,9Bの電磁石のコア33に、静圧気体軸受8A,9Aの絞り34aを設けることで、軸受構成部品の共通化と共に、軸受面の一部が軸方向に重なるようにしてある。コア33は、スピンドル鍔部4aの対向面に開き部33dが生じるように、縦断面形状がC字状に形成され、その内部にコイル35が収められている。開き部33dは非磁性体で埋められている。コア33は、図示の例では断面L字状の内周コア部33aと外周コア部33bとの組立構成としてあるが、一体物であっても良い。コア33には軸方向に間座29が隣接している。
【0017】
スラスト型の静圧気体軸受8A,9Aは、コア33の側面で形成されてスピンドル鍔部4aとの間に軸受隙間d3を形成する静圧軸受面8Aa,9Aaと、コア33に設けられて静圧軸受面8Aa,9Aaに開口する絞り34aとで構成される。絞り34aは、コア33の外径側面に開口した給気孔34の先端に設けられている。
【0018】
スラスト型の静圧磁気複合軸受8,9における軸受面8Aa,9Aaには、モリブデンまたはカーボンの溶射層51を施し、主軸4の鍔面にはセラミックスの溶射層52を施してある。なお、溶射層51,52の材質は上記と互いに逆に、軸受面の溶射層51をセラミックス、主軸鍔面の溶射層52をモリブデンまたはカーボンとしても良い。
【0019】
図1の各静圧磁気複合軸受6〜9における静圧気体軸受6A〜9Aの給気孔24,34には、ハウジング5内に設けられた給気孔40の給気入口40aから、圧縮空気またはその他の圧縮気体が供給される。
【0020】
この構成のスピンドル装置1によると、タッチダウン防止用の転がり軸受41を設けたため、主軸4に過大な負荷が印加された場合も、主軸4が静圧磁気複合軸受6,7に接触する前に、転がり軸受41によって支持される。そのため静圧磁気複合軸受6,7の摩耗や損傷が防止される。転がり軸受41を用いるため、縦弾性係数が小さな摺動材を用いるものと異なり、負荷が大きくても変形の問題がなくて確実な保護が行える。また、転がり軸受41は予圧を与えるため、静圧磁気複合軸受6,7の軸受面と主軸4との隙間d1が狭くても、通常回転時に転がり軸受が主軸に接触しない設計とできる。予圧により、転がり軸受41の軸受隙間を零にした場合は、静圧磁気複合軸受6,7と主軸4との隙間d1がより一層狭い場合にも対応可能となる。
【0021】
また、スラスト型の静圧磁気複合軸受8,9には、軸受面にモリブデンまたはカーボンの溶射層51を施し、主軸鍔面にセラミックスの溶射層52を施したため、タッチダウン時にはこれらの溶射層51,52が接することになり、その滑りによって保護が行える。また、溶射層51,52を施したものであるため、タッチダウン保護用の摺動部材を静圧磁気複合軸受8,9と並べて設ける場合と異なり、鍔径を大きくすることなく、タッチダウン時の保護が行える。
【0022】
図5は、上記実施形態において、深溝玉軸受からなる転がり軸受41を設けた代わりに、複列のアンギュラ玉軸受からなる転がり軸受41A設けたものである。両列の軸受41Aa,41Abは、互いに正面を向けて組み合わせ、軸方向に予圧をかけてハウジング5に固定してある。軸方向の予圧は、ハウジング5の軸受取付面45に続く段部46と固定リング47とで両列の軸受41Aa,41Abの外輪43を軸方向に挟み付けることにより与えている。固定リング47は、ボルト48でハウジング5に取付けられる。両列の軸受41Aa,41Abにわたり、内輪42の内径面にはタッチダウン時の主軸接触用のリング部材49が締まり嵌め状態に嵌合させてある。このリング部材49と、各列の軸受41Aa,41Abの内輪42とで、複列のアンギュラ玉軸受からなる転がり軸受41Aの内輪50が構成される。この例では、上記リング部材49の内径面と主軸4との隙間d2が、静圧磁気複合軸受6,7の軸受隙間d1よりも小さくなるように設定される。
この構成の場合、転がり軸受41Aとして複列のアンギュラ玉軸受を用いたため、予圧が与え易く、軸受隙間を零とすることが容易である。そのため、静圧磁気複合軸受6,7の軸受隙間d1がより一層狭い場合にも適用できる。その他の構成,効果は、図1ないし図4に示す第1の実施形態と同じである。
なお、複列のアンギュラ玉軸受における両列の軸受41Aa,41Abの組み合わせは、背面を向き合うようにしても良い。モーメントの関係では、背面を向き合うように配置することが好ましい。
【0023】
図6,図7は、それぞれ図2および図5の実施形態において、転がり軸受41,41Aの内輪42,50の端面に摺動材60を圧接させた例を示す。摺動材60は、軸受41,41Aの外輪43をハウジング5に固定するリング部材48に取付けてある。すなわち、リング部材47の内径部の軸受対向面に環状凹部を形成し、その環状凹部にリング状の摺動材60を嵌合状態に取付けてある。摺動材60は、例えばカーボンやフッ素樹脂等の低摩擦係数の部材である。
このように摺動部材60を設けた場合、主軸4の回転によって発生する空気せん断トルクによって内輪42,50が回転することが防止される。そのため、無駄な内輪42,50の空回りによる不具合が防止される。
【0024】
なお、前記各実施形態は、ラジアル形式の静圧磁気複合軸受6,7を備える静圧磁気複合軸受スピンドル装置の場合につき説明したが、この発明は、静圧気体軸受スピンドル装置にも適用することができる。例えば、図1〜図4に示す第1の実施形態において、静圧磁気複合軸受6,7に代えて、図8に示すように静圧気体軸受66を設け、静圧気体軸受スピンドル装置としても良い。その場合に、スラスト形式の静圧磁気複合軸受8,9(図1)の代わりに、スラスト形式の静圧気体軸受(図示せず)を設けても良い。
【0025】
【発明の効果】
この発明の静圧磁気複合軸受スピンドル装置は、予圧を与えた転がり軸受をハウジングに設け、この転がり軸受の内輪の内径面と主軸の外径面とのラジアル隙間を、静圧磁気複合軸受のラジアル隙間以下に設定し、上記主軸に設けられた鍔部に対面して主軸を支持するスラスト型の静圧磁気複合軸受を設け、このスラスト型の静圧磁気複合軸受における軸受面およびこの軸受面に対面する主軸の鍔面のいずれか一方の面に、モリブデンまたはカーボンの溶射層を設け、上記軸受面および主軸鍔面の他方の面にセラミックスの溶射層を施したものであるから、軸受隙間の狭い静圧気体軸受部を有しながら、主軸に過大な負荷が作用し、主軸と静止側部材の間にタッチダウンがあった場合にも、軸受や主軸への影響を防止することができる
【図面の簡単な説明】
【図1】この発明の一実施形態にかかるスピンドル装置の縦断側面図である。
【図2】同スピンドル装置の主軸先端部付近の拡大断面図である。
【図3】同スピンドル装置おけるラジアル型の静圧磁気複合軸受の横断面図である。
【図4】同スピンドル装置おけるスラスト型の静圧磁気複合軸受の拡大断面図である。
【図5】この発明の他の実施形態にかかるスピンドル装置の部分断面図である。
【図6】この発明のさらに他の実施形態にかかるスピンドル装置の部分断面図である。
【図7】この発明のさらに他の実施形態にかかるスピンドル装置の部分断面図である。
【図8】この発明を静圧気体軸受スピンドル装置に適用した実施形態の部分断面図である。
【符号の説明】
1…スピンドル装置
4…主軸
5…ハウジング
6〜9…静圧磁気複合軸受
6A〜9A…静圧気体軸受
6B〜9B…磁気軸受
6Aa,7Aa…静圧気体軸受面
10…スピンドル駆動源
41…転がり軸受
51,52…溶射層
60…摺動材
d1,d2…ラジアル隙間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrostatic magnetic compound bearing spindle device equipped in a high-speed cutting device, a grinding device, or the like, and particularly to protect at the time of touchdown.
[0002]
[Prior art]
In order to perform high-efficiency and high-precision machining, a spindle device that can rotate at high speed, has high rotational accuracy, and has high static rigidity and dynamic rigidity is required. In response to this requirement, a hybrid non-contact bearing in which a static pressure gas bearing and a magnetic bearing are combined has been proposed (Japanese Patent Application No. 10-097505). According to this, it is possible to provide a compact bearing that takes advantage of the features of both bearings such as the excellent dynamic rigidity and rotational accuracy of the static pressure gas bearing and the excellent static rigidity of the magnetic bearing.
[0003]
[Problems to be solved by the invention]
Although the hydrostatic magnetic compound bearing is a non-contact bearing, the spindle may come into contact with the bearing surface when an excessive load is applied. Such contact of the main shaft is called touchdown. For this touchdown, the conventional magnetic bearing spindle uses a protective bearing made up of a rolling bearing. However, since the hydrostatic magnetic compound bearing is formed by forming a hydrostatic gas bearing in the magnetic bearing portion, the gap between the main shaft of the bearing portion and the magnetic bearing stator is narrow, for example, several tens of microns or less. Protective bearings consisting of normally used rolling bearings cannot be used.
This problem occurs not only in a hydrostatic magnetic composite bearing but also in a hydrostatic gas bearing.
In the case of a hydrostatic magnetic composite bearing, since the hydrostatic gas bearing surface forms an electromagnet of the magnetic bearing, the material of the hydrostatic gas bearing surface is limited to a magnetic metal having no lubricity. Therefore, when an excessive load is applied to the spindle, there is a greater possibility that the bearing portion will be adversely affected by the contact between the main shaft and the bearing surface.
[0004]
For the purpose of holding at such touchdown, the present applicant has proposed that a sliding member is provided in a hydrostatic magnetic compound bearing spindle device (Japanese Patent Application No. H11-071502).
However, if a sliding material with a low longitudinal elastic modulus such as carbon is used, the sliding material will be deformed when a very large load is applied due to damage to the tool during machining or collision with the workpiece due to misoperation. Then, the main shaft may be displaced more than the set clearance of the sliding material. In this case, there is a possibility that the protection function by the sliding material is not fulfilled.
[0005]
The object of the present invention is to provide a bearing or spindle having a static pressure gas bearing portion with a narrow bearing clearance even when an excessive load acts on the spindle and there is a touchdown between the spindle and the stationary member. It is an object of the present invention to provide a hydrostatic magnetic compound bearing spindle device that can prevent wear and damage.
Another object of the present invention is to eliminate problems caused by idle rotation of a rolling bearing for protection during touchdown.
Still another object of the present invention is to protect at the time of touchdown in a thrust type hydrostatic magnetic composite bearing.
Still another object of the present invention is to provide a static pressure capable of preventing the bearing and the spindle from being worn and damaged even when an excessive load acts on the spindle and there is a touchdown between the spindle and the stationary member. It is to provide a gas bearing spindle device.
[0006]
[Means for Solving the Problems]
A hydrostatic magnetic compound bearing spindle device according to the present invention is a spindle device in which a spindle is supported by a radial type hydrostatic magnetic compound bearing in which a hydrostatic gas bearing and a magnetic bearing are combined. The radial clearance between the inner diameter surface of the inner ring of the rolling bearing and the outer diameter surface of the main shaft is set to be equal to or less than the radial clearance of the hydrostatic magnetic composite bearing, and the main shaft is faced to the flange portion provided on the main shaft. A thrust type hydrostatic magnetic compound bearing is provided, and a thermal spray layer of molybdenum or carbon is formed on one of the bearing surface of the thrust type hydrostatic magnetic compound bearing and the flange surface of the main shaft facing the bearing surface. And a ceramic sprayed layer is applied to the other surface of the bearing surface and the main shaft collar surface .
According to this configuration, even when an excessive load is applied to the main shaft, the main shaft is supported by the rolling bearing before it contacts the hydrostatic magnetic composite bearing. This prevents damage to the hydrostatic magnetic composite bearing. Since a rolling bearing is used, unlike a sliding material having a small longitudinal elastic modulus, there is no problem of deformation even when the load is large, and reliable protection can be performed. In addition, since the rolling bearing gives a preload, even if the clearance between the bearing surface of the hydrostatic magnetic composite bearing and the main shaft is narrow, the rolling bearing can be designed not to contact the main shaft during normal rotation.
The rolling bearing preferably has zero bearing clearance by the preload. As a result, it is possible to cope with a case where the gap between the hydrostatic magnetic composite bearing and the main shaft is much narrower.
[0007]
In the present invention, the housing may be provided with a sliding material that is in pressure contact with the end face of the inner ring of the rolling bearing. Thus, by providing the sliding material, it is possible to prevent the inner ring from spinning due to the air shearing torque generated by the rotation of the main shaft during normal operation.
[0008]
In the present invention, the rolling bearing may be a double row angular ball bearing. The double row angular contact ball bearing may be a combination facing the front or a combination facing the back. When a double-row angular ball bearing is used, it is easy to apply a preload to make the bearing gap zero.
[0009]
Facing the flange portion provided in the upper Symbol spindle provided a thrust-type combined externally pressurized gas and magnetic bearing assembly of supporting the main shaft flange of the spindle facing the bearing surface and the bearing surface in the thrust-type combined externally pressurized gas and magnetic bearing assembly A sprayed layer of molybdenum or carbon is provided on one of the surfaces, and a ceramic sprayed layer is provided on the other surface of the bearing surface and the flange surface of the main shaft .
When a thrust type hydrostatic magnetic compound bearing is provided, the main shaft can be supported in a completely non-contact manner. In this case, as described above, by providing the bearing surface and the main shaft flange surface with the above-mentioned thermal sprayed layer, it is possible to improve the wear resistance and sliding characteristics at the time of touchdown in the thrust direction. Regarding the thrust bearing portion, it is difficult to place sliding members in parallel in the same manner as the radial bearing. In order to place the sliding member without reducing the original bearing area, the diameter of the flange portion of the main shaft is increased, but the natural frequency is significantly reduced. However, by providing the thermal spray layer on the bearing surface as described above, it is possible to protect at the time of touchdown without increasing the diameter.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS. In the hydrostatic magnetic compound bearing spindle device 1, the main shaft 4 is supported by a plurality of radial hydrostatic magnetic compound bearings 6 and 7 installed in a housing 5 and thrust hydrostatic magnetic compound bearings 8 and 9. A spindle drive source 10 is provided. Spindle drive source 10 is a motor built in the housing 5, a rotor 21 that is kicked set integrally with the main shaft 4, is composed of a stator 22 mounted on the housing 5, the spindle device 1 of the built-in motor type Constitute. A tool mounting portion 11 is provided at the tip of the main shaft 4. The draw bar 12 penetrating through the main shaft 4 is operated by an unclamping unit 13 behind the main shaft 4.
In this example, the bearings 6 to 9 and the spindle drive source 10 are arranged such that the front part (tool side part) and the rear part of the main shaft 4 are supported by radial hydrostatic magnetic composite bearings 6 and 7, and the middle is thrust. It is configured such that a spindle drive source 10 is arranged at the rear end, supported by static hydrostatic magnetic composite bearings 8 and 9.
[0012]
In the spindle device 1 having this configuration, as shown in an enlarged view in FIG. 2, a rolling bearing 41 for touchdown protection is installed in the housing 5 in the vicinity of the tip of the main shaft 4. The rolling bearing 41 is disposed closer to the distal end side of the main shaft 4 than the hydrostatic magnetic composite bearing 6 on the distal end side. The rolling bearing 41 applies a preload to make the bearing gap zero, and the radial gap d2 between the inner diameter surface of the inner ring 42 and the outer diameter surface of the main shaft 4 is set to be equal to or less than the radial gap d1 of the hydrostatic magnetic composite bearing 6. is there.
The rolling bearing 41 is formed of a deep groove ball bearing, and a rolling element 44 held by a cage (not shown) is interposed between an inner ring 42 and an outer ring 43. The preload of the rolling bearing 41 is given by fixing the outer ring 43 to the housing 5 with an interference fit. Specifically, in the rolling bearing 41, an outer ring 43 is tightly fitted to a bearing mounting surface 45 formed of a cylindrical surface provided in the housing 5, and a step 46 and a fixing ring 47 of the housing 5 following the bearing mounting surface 45. The outer ring 43 is fixed by being sandwiched in the axial direction. The fixing ring 47 is attached to the housing 5 with bolts 48.
[0013]
The configuration of each hydrostatic magnetic composite bearing 6-9 will be described. The front and rear radial type hydrostatic magnetic composite bearings 6 and 7 have the same configuration. The hydrostatic magnetic composite bearings 6 and 7 are obtained by combining hydrostatic gas bearings 6A and 7A and magnetic bearings 6B and 7B, respectively. The term “composite” as used in this specification means that both static pressure and magnetic bearings are combined so that a common part is generated. For example, a common part (radial bearing) is formed on a static pressure gas bearing surface and a magnetic bearing surface. Then, the axial overlapping portion) may be generated, or at least a part of components may be shared by both types of bearings.
[0014]
In this embodiment, as shown in FIG. 2, the diaphragm 23 of the static pressure gas bearing 6 </ b> A is provided in the core 23 of the electromagnet of the magnetic bearing 6 </ b> B, so that the core 23 constitutes a part of the static pressure gas bearing surface. Yes. The core 23 includes a pair of main core portions 23a and 23a that are separated in the axial direction, and a connecting core portion 23b that connects the main core portions 23a and 23a. The magnetic bearing 6 </ b> B is obtained by winding a coil 25 around a connecting core portion 23 b of the core 23. The coil 25 is embedded in a nonmagnetic material 26 such as a resin material. The magnetic bearing 7B and the static pressure gas bearing 7A have the same configuration as the magnetic bearing 6B and the static pressure gas bearing 6A, respectively.
[0015]
The hydrostatic gas bearing 6A includes a hydrostatic magnetic bearing surface 6Aa formed on the inner surface of the core 23 and the nonmagnetic body 26 to form a bearing gap d1 between the main shaft 4 and the main core portions 23a of the core 23. And a diaphragm 24a that is provided at 23a and opens to the hydrostatic bearing surface 6Aa. The restrictor 24a is provided at the tip of the air supply hole 24 opened on the outer diameter side surface of each main core portion 23a.
As shown in the stepped cross section in FIG. 3, the cores 23 are arranged at a plurality of circumferential locations around the main shaft 4 (four locations in the example in the figure) and are fixed to the housing 5. A gap between adjacent cores 23 in the circumferential direction is filled with a nonmagnetic material 27 such as a resin material. The nonmagnetic material 27 may be integrated with the nonmagnetic material 26 (FIG. 2) around the coil 25. The non-magnetic members 26 and 27 and the core 23 constitute the hydrostatic magnetic bearing surface 6Aa.
[0016]
FIG. 4 is an enlarged view of the thrust type hydrostatic magnetic composite bearings 8 and 9. The pair of bearings 8 and 9 are installed in the housing 5 so as to face both surfaces of the flange portion 4 a provided on the main shaft 4, and constitute a double-sided thrust type hydrostatic magnetic bearing 30. To do. The hydrostatic magnetic composite bearings 8 and 9 on both sides have the same configuration. These hydrostatic magnetic composite bearings 8 and 9 are obtained by combining hydrostatic gas bearings 8A and 9A and magnetic bearings 8B and 9B, respectively.
In this embodiment, by providing the diaphragm 33a of the static pressure gas bearings 8A and 9A on the core 33 of the electromagnet of the magnetic bearings 8B and 9B, the bearing components are shared and a part of the bearing surface overlaps in the axial direction. It is like that. The core 33 is formed in a C-shaped longitudinal section so that an opening 33d is formed on the surface facing the spindle flange 4a, and a coil 35 is accommodated therein. The opening 33d is filled with a nonmagnetic material. In the illustrated example, the core 33 has an assembly configuration of an inner peripheral core portion 33a and an outer peripheral core portion 33b having an L-shaped cross section, but may be a single piece. A spacer 29 is adjacent to the core 33 in the axial direction.
[0017]
The thrust type static pressure gas bearings 8A and 9A are provided on the core 33 and static pressure bearing surfaces 8Aa and 9Aa which are formed on the side surface of the core 33 and form a bearing gap d3 with the spindle flange 4a. The diaphragm 34a is open to the pressure bearing surfaces 8Aa and 9Aa. The restrictor 34 a is provided at the tip of the air supply hole 34 that opens to the outer diameter side surface of the core 33.
[0018]
The thrust-type hydrostatic magnetic composite bearings 8 and 9 have a thermal spray layer 51 of molybdenum or carbon on the bearing surfaces 8Aa and 9Aa, and a thermal spray layer 52 of ceramics on the flange surface of the main shaft 4. The material of the sprayed layers 51 and 52 may be made of ceramics for the sprayed layer 51 on the bearing surface and molybdenum or carbon for the sprayed layer 52 on the spindle surface opposite to the above.
[0019]
In the static pressure gas bearings 6A to 9A in the static pressure magnetic compound bearings 6 to 9 in FIG. 1, compressed air or other is supplied from the supply inlet 40a of the supply hole 40 provided in the housing 5. Of compressed gas is supplied.
[0020]
According to the spindle device 1 having this configuration, since the rolling bearing 41 for preventing touchdown is provided, even when an excessive load is applied to the main shaft 4, the main shaft 4 comes into contact with the hydrostatic magnetic composite bearings 6 and 7. It is supported by the rolling bearing 41. Therefore, wear and damage of the hydrostatic magnetic composite bearings 6 and 7 are prevented. Since the rolling bearing 41 is used, unlike the case of using a sliding material having a small longitudinal elastic modulus, there is no problem of deformation even when the load is large, and reliable protection can be performed. Further, since the rolling bearing 41 applies preload, even if the gap d1 between the bearing surface of the hydrostatic magnetic composite bearings 6 and 7 and the main shaft 4 is narrow, the rolling bearing can be designed not to contact the main shaft during normal rotation. When the bearing clearance of the rolling bearing 41 is reduced to zero by preloading, it is possible to cope with a case where the clearance d1 between the hydrostatic magnetic composite bearings 6 and 7 and the main shaft 4 is further narrowed.
[0021]
Further, the thrust type hydrostatic magnetic composite bearings 8 and 9 are provided with a thermal spray layer 51 of molybdenum or carbon on the bearing surface and a thermal spray layer 52 of ceramics on the surface of the main shaft. , 52 are in contact with each other and can be protected by sliding. Further, since the thermal spray layers 51 and 52 are provided, unlike the case where the sliding member for touchdown protection is provided side by side with the hydrostatic magnetic composite bearings 8 and 9, the touchdown is not performed without increasing the diameter. Can be protected.
[0022]
FIG. 5 shows an embodiment in which a rolling bearing 41A made up of a double row angular ball bearing is provided instead of the rolling bearing 41 made up of a deep groove ball bearing. Both rows of bearings 41Aa and 41Ab are combined with their fronts facing each other, and are fixed to the housing 5 by applying a preload in the axial direction. The axial preload is given by sandwiching the outer ring 43 of the bearings 41Aa and 41Ab in both rows in the axial direction by the stepped portion 46 and the fixing ring 47 that follow the bearing mounting surface 45 of the housing 5. The fixing ring 47 is attached to the housing 5 with a bolt 48. A ring member 49 for contacting the main shaft at the time of touchdown is fitted in an interference fit state on the inner diameter surface of the inner ring 42 across the bearings 41Aa and 41Ab in both rows. The ring member 49 and the inner ring 42 of each row of bearings 41Aa and 41Ab constitute an inner ring 50 of a rolling bearing 41A composed of a double row angular ball bearing. In this example, the gap d2 between the inner diameter surface of the ring member 49 and the main shaft 4 is set to be smaller than the bearing gap d1 of the hydrostatic magnetic composite bearings 6 and 7.
In the case of this configuration, a double row angular contact ball bearing is used as the rolling bearing 41A. Therefore, preload is easily applied, and the bearing clearance is easily made zero. Therefore, the present invention can also be applied when the bearing gap d1 of the hydrostatic magnetic composite bearings 6 and 7 is further narrowed. Other configurations and effects are the same as those of the first embodiment shown in FIGS.
In addition, the combination of the bearings 41Aa and 41Ab in both rows in the double row angular ball bearings may face the back. In terms of moment, it is preferable to arrange the backs to face each other.
[0023]
6 and 7 show examples in which the sliding member 60 is pressed against the end faces of the inner rings 42 and 50 of the rolling bearings 41 and 41A in the embodiments of FIGS. 2 and 5, respectively. The sliding member 60 is attached to a ring member 48 that fixes the outer ring 43 of the bearings 41, 41 </ b> A to the housing 5. That is, an annular recess is formed in the bearing-facing surface of the inner diameter portion of the ring member 47, and a ring-shaped sliding member 60 is attached to the annular recess in a fitted state. The sliding member 60 is a member having a low coefficient of friction such as carbon or fluorine resin.
When the sliding member 60 is provided in this manner, the inner rings 42 and 50 are prevented from rotating by the air shear torque generated by the rotation of the main shaft 4. For this reason, problems due to idle rotation of the useless inner rings 42 and 50 are prevented.
[0024]
The above embodiments have been described with respect to the case of the hydrostatic magnetic compound bearing spindle device including the radial hydrostatic magnetic compound bearings 6 and 7. However, the present invention is also applicable to a hydrostatic gas bearing spindle device. Can do. For example, in the first embodiment shown in FIGS. 1 to 4, instead of the static pressure magnetic composite bearings 6 and 7, a static pressure gas bearing 66 is provided as shown in FIG. good. In this case, a thrust type static pressure gas bearing (not shown) may be provided instead of the thrust type static pressure magnetic composite bearings 8 and 9 (FIG. 1).
[0025]
【The invention's effect】
The hydrostatic magnetic compound bearing spindle device of the present invention is provided with a rolling bearing provided with a preload in a housing, and a radial gap between the inner diameter surface of the inner ring of the rolling bearing and the outer diameter surface of the main shaft is set to a radial diameter of the hydrostatic magnetic compound bearing. A thrust type hydrostatic magnetic composite bearing is provided that is set to a clearance or less and faces the flange portion provided on the main shaft so as to support the main shaft, and the bearing surface of the thrust type hydrostatic magnetic composite bearing and the bearing surface thereof are provided. on one side one of the flange surfaces of the opposing main spindle is provided with a sprayed layer of molybdenum or carbon, because were subjected to thermal spray layer of ceramic on the other side of the bearing surface and the spindle flange face, the bearing clearance Even when a narrow static pressure gas bearing portion is provided, an excessive load acts on the main shaft, and even when there is a touchdown between the main shaft and the stationary side member, the influence on the bearing and the main shaft can be prevented .
[Brief description of the drawings]
FIG. 1 is a longitudinal side view of a spindle device according to an embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view in the vicinity of the tip end portion of the spindle device of the spindle device.
FIG. 3 is a transverse sectional view of a radial type hydrostatic magnetic compound bearing in the spindle device.
FIG. 4 is an enlarged sectional view of a thrust type hydrostatic magnetic compound bearing in the spindle device.
FIG. 5 is a partial sectional view of a spindle device according to another embodiment of the present invention.
FIG. 6 is a partial sectional view of a spindle device according to still another embodiment of the present invention.
FIG. 7 is a partial cross-sectional view of a spindle device according to still another embodiment of the present invention.
FIG. 8 is a partial cross-sectional view of an embodiment in which the present invention is applied to a static pressure gas bearing spindle device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Spindle apparatus 4 ... Main shaft 5 ... Housing 6-9 ... Static pressure magnetic compound bearing 6A-9A ... Static pressure gas bearing 6B-9B ... Magnetic bearing 6Aa, 7Aa ... Static pressure gas bearing surface 10 ... Spindle drive source 41 ... Rolling Bearings 51, 52 ... sprayed layer 60 ... sliding material d1, d2 ... radial gap

Claims (4)

静圧気体軸受と磁気軸受とが複合化されたラジアル型の静圧磁気複合軸受により主軸を支持したスピンドル装置において、予圧を与えた転がり軸受をハウジングに設け、この転がり軸受の内輪の内径面と主軸の外径面とのラジアル隙間を、静止磁気複合軸受のラジアル隙間以下に設定し、主軸が過大な負荷によって静圧側の部材に接触するタッチダウンに対する保護を上記転がり軸受で行うようにし、上記主軸に設けられた鍔部に対面して主軸を支持するスラスト型の静圧磁気複合軸受を設け、このスラスト型の静圧磁気複合軸受における軸受面およびこの軸受面に対面する主軸の鍔面のいずれか一方の面に、モリブデンまたはカーボンの溶射層を設け、上記軸受面および主軸鍔面の他方の面にセラミックスの溶射層を施した静圧磁気複合軸受スピンドル装置。In a spindle device that supports a main shaft by a radial type hydrostatic magnetic compound bearing in which a hydrostatic gas bearing and a magnetic bearing are combined, a rolling bearing with a preload is provided in a housing, and an inner diameter surface of an inner ring of the rolling bearing is the radial clearance between the outer diameter surface of the main shaft, and set the following radial clearance still magnetic composite bearing, the protection against touch down the main shaft contacts the members of the static pressure side by an excessive load to perform in the rolling bearing, the A thrust-type hydrostatic magnetic composite bearing that supports the main shaft is provided facing the flange portion provided on the main shaft, and the bearing surface of the thrust-type hydrostatic magnetic composite bearing and the shaft surface of the main shaft facing the bearing surface are provided. on one side, molybdenum or provided sprayed layer of carbon, combined externally pressurized gas and magnetic axial subjected to thermal spray layer of ceramic on the other side of the bearing surface and the spindle flange surface Spindle device. 上記予圧により上記転がり軸受の軸受隙間を零にした請求項1に記載の静圧磁気複合軸受スピンドル装置。  2. The hydrostatic magnetic compound bearing spindle device according to claim 1, wherein a bearing clearance of the rolling bearing is made zero by the preload. 上記転がり軸受の内輪の端面に圧接する摺動材をハウジングに設け、主軸回転時に生じる空気剪断トルクで内輪が空回りすることを防止した請求項1または請求項2に記載の静圧磁気複合軸受スピンドル装置。  3. The hydrostatic magnetic compound bearing spindle according to claim 1, wherein a sliding member that presses against an end face of the inner ring of the rolling bearing is provided in the housing to prevent the inner ring from idling due to an air shearing torque generated when the spindle rotates. apparatus. 上記転がり軸受が、複列のアンギュラ玉軸受である請求項1ないし請求項3のいずれかに記載の静圧磁気複合軸受スピンドル装置。  4. The hydrostatic magnetic compound bearing spindle device according to claim 1, wherein the rolling bearing is a double row angular ball bearing. 5.
JP2000156449A 2000-05-26 2000-05-26 Hydrostatic magnetic compound bearing spindle device Expired - Fee Related JP4146065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000156449A JP4146065B2 (en) 2000-05-26 2000-05-26 Hydrostatic magnetic compound bearing spindle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000156449A JP4146065B2 (en) 2000-05-26 2000-05-26 Hydrostatic magnetic compound bearing spindle device

Publications (2)

Publication Number Publication Date
JP2001336527A JP2001336527A (en) 2001-12-07
JP4146065B2 true JP4146065B2 (en) 2008-09-03

Family

ID=18661242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000156449A Expired - Fee Related JP4146065B2 (en) 2000-05-26 2000-05-26 Hydrostatic magnetic compound bearing spindle device

Country Status (1)

Country Link
JP (1) JP4146065B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5862411B2 (en) * 2012-03-28 2016-02-16 株式会社Ihi Magnetic bearing spindle device
CN107237820A (en) * 2017-07-03 2017-10-10 燕山大学 A kind of passive journal bearing of dual suspension of electromagnetism hydrostatic
CN109322918A (en) * 2018-11-05 2019-02-12 南京航空航天大学 A kind of magnetic suspension bearing radial protection structure
CN111022499B (en) * 2019-12-31 2023-09-29 淮阴工学院 Radial large bearing capacity hybrid magnetic bearing
CN111817482B (en) * 2020-06-24 2021-12-24 库卡机器人制造(上海)有限公司 High-speed driving device
CN114673728B (en) * 2020-12-24 2024-01-26 迈格钠磁动力股份有限公司 Permanent magnet thrust suspension bearing and control method thereof

Also Published As

Publication number Publication date
JP2001336527A (en) 2001-12-07

Similar Documents

Publication Publication Date Title
EP1029709B1 (en) Bearing unit for wheel and manufacturing method thereof
US6672679B2 (en) Bearing unit for wheel and method of manufacturing the same
JP4146065B2 (en) Hydrostatic magnetic compound bearing spindle device
US6102575A (en) Compound bearing apparatus
US10302128B2 (en) Combined ball bearing, main spindle device, and machine tool
US6181513B1 (en) Spindle motor and a hard disk drive apparatus including such a motor
JP5638331B2 (en) Preload adjustment structure for rolling bearings
EP0982508B1 (en) A compound shaft/bearing apparatus, and a spindle motor and a swing arm for a hard disk drive means including such bearing apparatus
EP1167787B1 (en) Bearing apparatus
JPH11108055A (en) Rolling bearing device
JPH1113755A (en) Rolling bearing device applied with pre-load
JP2012117567A (en) Bearing device
JP2000263359A (en) Static pressure magnetic combined bearing spindle device
JP2002005163A (en) Noncontact bearing spindle device
JP2021099282A (en) Bearing device, spindle device, bearing, and spacer
JP2002098136A (en) Double row ball bearing
WO2024080215A1 (en) Bearing device and spindle device with bearing device
US11143238B2 (en) Bearing structure
JP4356611B2 (en) Bearing device
JPS60172720A (en) Pressurized bearing device
JPH0280809A (en) Bearing unit and magnetic disc device equipped with the bearing
JPH0246312A (en) Bearing device and method for giving pre-load thereto
JP2002316505A (en) Bearing unit for wheel
JP2008095794A (en) Creep preventing rolling bearing and rolling bearing device
JP2016036892A (en) Main spindle device and machine tool having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080619

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees