JP2002005163A - Noncontact bearing spindle device - Google Patents

Noncontact bearing spindle device

Info

Publication number
JP2002005163A
JP2002005163A JP2000180888A JP2000180888A JP2002005163A JP 2002005163 A JP2002005163 A JP 2002005163A JP 2000180888 A JP2000180888 A JP 2000180888A JP 2000180888 A JP2000180888 A JP 2000180888A JP 2002005163 A JP2002005163 A JP 2002005163A
Authority
JP
Japan
Prior art keywords
bearing
main shaft
sliding member
contact
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000180888A
Other languages
Japanese (ja)
Inventor
Nobuyuki Suzuki
伸幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2000180888A priority Critical patent/JP2002005163A/en
Publication of JP2002005163A publication Critical patent/JP2002005163A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To protect a spindle in touch down, and to prevent contact of the spindle with a sliding member for protecting the spindle by thermal expansion. SOLUTION: Radial type static pressure magnetic composite bearings 6 and 7 support the spindle 4. A housing 5 is provided with the sliding member 41 closing to the spindle 4 via a radial clearance. The radial clearance d3 of the sliding member 41 is set lower than a bearing clearance d of bearing surfaces 6A and 7A forming the magnetic composite bearings 6 and 7. The sliding member 41 is provided with an air supply hole 51 for supplying cooling air between the sliding member 51 and the spindle 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、高速切削加工装
置や研削加工装置等に装備される静圧磁気複合軸受スピ
ンドル装置等の非接触軸受スピンドル装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact bearing spindle device such as a hydrostatic magnetic composite bearing spindle device provided in a high-speed cutting device or a grinding device.

【0002】[0002]

【従来の技術】高能率で高精度な加工を行うためには、
高速回転が可能であって、高回転精度を有し、静剛性・
動剛性が高いスピンドル装置が必要となる。この要求に
対して本出願人は、静圧気体軸受と磁気軸受とを複合化
したハイブリッド型の非接触軸受を提案した(特願平1
0−097505号など)。これによれば、静圧気体軸
受の優れた動剛性および回転精度と、磁気軸受の優れた
静剛性という両軸受の特長を生かしたコンパクトな軸受
とできる。
2. Description of the Related Art In order to perform highly efficient and highly accurate machining,
High-speed rotation is possible, with high rotation accuracy,
A spindle device with high dynamic rigidity is required. In response to this demand, the present applicant has proposed a hybrid type non-contact bearing in which a hydrostatic gas bearing and a magnetic bearing are combined (Japanese Patent Application No. Hei 10 (1994) -197686).
0-097505). According to this, it is possible to provide a compact bearing that utilizes the characteristics of both bearings, that is, excellent dynamic rigidity and rotational accuracy of the hydrostatic gas bearing, and excellent static rigidity of the magnetic bearing.

【0003】[0003]

【発明が解決しようとする課題】静圧磁気複合軸受は非
接触軸受であるが、過大な負荷が作用した場合などに、
主軸が軸受面に接触する恐れがある。このような主軸の
接触、いわゆるタッチダウンに対して、従来の磁気軸受
スピンドルでは、転がり軸受からなる保護軸受が使用さ
れている。しかし、静圧磁気複合軸受は、磁気軸受部に
静圧気体軸受を形成したものであるため、軸受部の主軸
と磁気軸受ステータ間の隙間が、例えば数十ミクロン以
下と狭く、磁気軸受スピンドルで通常使用されている転
がり軸受からなる保護軸受が使用できない。また、その
静圧気体軸受面が磁気軸受の電磁石を形成することか
ら、静圧気体軸受面の材質は潤滑性のない磁性金属に限
られる。そのため、スピンドルに過大な負荷が印加され
た場合には、主軸と軸受面との接触によって、軸受部に
悪影響を及ぼす恐れがある。
The static pressure magnetic composite bearing is a non-contact bearing. However, when an excessive load is applied,
The main shaft may contact the bearing surface. For such contact of the main shaft, so-called touchdown, a conventional magnetic bearing spindle uses a protection bearing composed of a rolling bearing. However, since the hydrostatic magnetic composite bearing is formed by forming a hydrostatic gas bearing on the magnetic bearing portion, the gap between the main shaft of the bearing portion and the magnetic bearing stator is narrow, for example, tens of microns or less. Protective bearings consisting of commonly used rolling bearings cannot be used. Further, since the static pressure gas bearing surface forms the electromagnet of the magnetic bearing, the material of the static pressure gas bearing surface is limited to a magnetic metal having no lubrication. Therefore, when an excessive load is applied to the spindle, contact between the main shaft and the bearing surface may adversely affect the bearing portion.

【0004】このようなタッチダウン時の保護を目的と
して、本出願人は、摺動材を静圧磁気複合軸受スピンド
ル装置に設けることを提案した(特願平11−7150
2号)。しかし、摺動材と主軸の間の微小な隙間(軸受
隙間以下)を介して主軸が高速回転すると、軸受内にお
ける空気摩擦熱により主軸が膨張し、摺動材に接触して
しまう恐れがある。このような課題は、静圧磁気複合軸
受を用いる場合に限らず、静圧気体軸受など、微小隙間
を介して主軸を支持する非接触軸受を用いるスピンドル
装置一般に生じる。また、上記提案例は、ラジアル軸受
への対策であり、スラスト軸受部の保護については考慮
されていなかった。
For the purpose of protection during such touchdown, the present applicant has proposed to provide a sliding member in a hydrostatic magnetic composite bearing spindle device (Japanese Patent Application No. 11-7150).
No. 2). However, when the main shaft rotates at a high speed through a minute gap (below the bearing clearance) between the sliding material and the main shaft, the main shaft may expand due to air frictional heat in the bearing and may come into contact with the sliding material. . Such a problem occurs not only in the case of using a hydrostatic magnetic composite bearing but also in a spindle device generally using a non-contact bearing that supports a main shaft through a minute gap, such as a hydrostatic gas bearing. Further, the above-mentioned proposal example is a measure for the radial bearing, and does not consider protection of the thrust bearing portion.

【0005】この発明の目的は、軸受隙間が微小な非接
触軸受を用いながら、主軸タッチダウ時における軸受や
主軸への影響が防止でき、またその影響防止用の摺動材
に主軸が熱膨張によって接触することを防止できる非接
触軸受スピンドル装置を提供することである。この発明
の他の目的は、スラスト型の非接触軸受におけるタッチ
ダウン時の耐摩耗性,摺動特性を向上させることであ
る。
An object of the present invention is to use a non-contact bearing having a small bearing clearance to prevent an influence on the bearing and the spindle during touchdown of the spindle, and to provide a sliding member for preventing the influence by thermal expansion of the spindle. An object of the present invention is to provide a non-contact bearing spindle device capable of preventing contact. Another object of the present invention is to improve wear resistance and sliding characteristics at the time of touchdown in a thrust type non-contact bearing.

【0006】[0006]

【課題を解決するための手段】この発明の非接触軸受ス
ピンドル装置は、主軸をラジアル形式の非接触軸受で支
持したスピンドル装置において、主軸にラジアル隙間を
介して近接する摺動材を、上記非接触軸受の設置された
ハウジングに設け、この摺動材のラジアル隙間を、上記
非接触軸受のラジアル軸受隙間以下に設定し、上記摺動
材の上記ラジアル隙間に冷却気体を供給する冷却気体供
給手段を設けたことを特徴とする。この構成によると、
主軸に過大な負荷が印加し、タッチダウン、つまり主軸
と静止側の部材との間に機械的接触があった場合にも、
その機械的接触は摺動材と主軸との接触に止まる。摺動
材は、例えばカーボンまたは黒鉛など、摩擦係数の小さ
い材質が使用でき、そのためスピンドル装置は、タッチ
ダウンによっても、主軸にも、軸受面や摺動材にも損傷
が生じない。摺動材と主軸との隙間は微小隙間となる
が、摺動材と主軸間のラジアル隙間に冷却気体を供給す
る冷却気体供給手段を設けたため、微小隙間内における
空気摩擦熱による主軸の熱膨張が抑制できる。このた
め、主軸が熱膨張して摺動材に接触することが回避され
る。
A non-contact bearing spindle device according to the present invention is a spindle device in which a main shaft is supported by a radial type non-contact bearing. Cooling gas supply means provided in a housing provided with a contact bearing, wherein a radial gap of the sliding member is set to be smaller than a radial bearing gap of the non-contact bearing, and a cooling gas is supplied to the radial gap of the sliding member. Is provided. According to this configuration,
When an excessive load is applied to the spindle and touchdown occurs, that is, when there is mechanical contact between the spindle and the stationary member,
The mechanical contact is limited to the contact between the sliding member and the main shaft. As the sliding material, a material having a small coefficient of friction such as carbon or graphite can be used. Therefore, the spindle device does not damage the spindle, the bearing surface, or the sliding material even by touchdown. Although the gap between the sliding material and the main shaft is a minute gap, the cooling gas supply means for supplying cooling gas to the radial gap between the sliding material and the main shaft is provided, so that the thermal expansion of the main shaft due to air frictional heat in the minute gap Can be suppressed. Therefore, it is possible to prevent the main shaft from thermally expanding and coming into contact with the sliding member.

【0007】上記冷却気体供給手段は、上記摺動材の内
周面に開口する給気孔と、この給気孔に冷却気体を供給
する冷却気体供給路とを有するものであっても良い。こ
のように摺動材の内周面に開口する給気孔を設けること
で、簡単な構成で摺動材と主軸間の微小な隙間に効率的
に冷却気体を供給することができる。このように給気孔
を設ける場合に、上記摺動材の内周面を、上記給気孔か
ら吐出する気体による静圧で主軸を支持する静圧気体軸
受面としても良い。摺動材の内周面を静圧気体軸受面と
すると、摺動材と主軸との正確な心合わせがなされてい
なくても、静圧による自動調心作用が得られる。そのた
め、摺動材を交換した場合に、取付誤差による微小な偏
心で主軸との微小隙間が局部的に小さくなりすぎること
がなく、摺動材の交換が実際的に可能になる。
[0007] The cooling gas supply means may have an air supply hole opened on the inner peripheral surface of the sliding member, and a cooling gas supply path for supplying a cooling gas to the air supply hole. By providing the air supply hole opened in the inner peripheral surface of the sliding member in this manner, it is possible to efficiently supply the cooling gas to the minute gap between the sliding member and the main shaft with a simple configuration. When the air supply hole is provided in this manner, the inner peripheral surface of the sliding member may be a static pressure gas bearing surface that supports the main shaft with a static pressure of gas discharged from the air supply hole. If the inner peripheral surface of the sliding member is a hydrostatic gas bearing surface, an automatic centering action by static pressure can be obtained even if the sliding member and the main shaft are not accurately aligned. Therefore, when the sliding member is replaced, the minute gap between the main shaft and the small eccentricity due to the mounting error does not become too small locally, and the sliding member can be replaced in practice.

【0008】この発明において、上記非接触軸受は、静
圧気体軸受と磁気軸受とが複合化されたラジアル型の静
圧磁気複合軸受であり、上記摺動材のラジアル隙間を、
上記静圧磁気複合軸受を構成する静圧気体軸受および磁
気軸受のラジアル軸受隙間以下に設定したものであって
も良い。静圧磁気複合軸受は、静圧気体軸受の優れた動
剛性および回転精度と、磁気軸受の優れた静剛性という
両軸受の特長を生かしたコンパクトな軸受とできるが、
その反面、静圧気体軸受の軸受面と主軸間の隙間が微小
となる。そのため、摺動材と主軸の隙間がそれ以上に微
小となり、上記の空気摩擦熱による主軸の熱膨張による
接触の問題が生じ易いが、上記のように冷却気体供給手
段を設けて主軸を冷却することにより、主軸の膨張によ
る接触を防止できる。上記非接触軸受が静圧気体軸受で
ある場合も、静圧磁気複合軸受と同様に摺動材と主軸の
隙間を非常に小さくする必要があるが、冷却気体供給手
段を設けて主軸を冷却することにより、主軸の膨張によ
る接触を防止できる。
In the present invention, the non-contact bearing is a radial-type hydrostatic composite bearing in which a hydrostatic gas bearing and a magnetic bearing are combined, and the radial clearance of the sliding member is
The bearing may be set to be equal to or less than the radial bearing gap between the static pressure gas bearing and the magnetic bearing constituting the above-described static pressure magnetic composite bearing. The hydrostatic magnetic composite bearing can be a compact bearing that takes advantage of the characteristics of both bearings: the excellent dynamic rigidity and rotational accuracy of a hydrostatic gas bearing, and the excellent static rigidity of a magnetic bearing.
On the other hand, the gap between the bearing surface of the hydrostatic gas bearing and the main shaft becomes minute. For this reason, the gap between the sliding member and the main shaft becomes smaller than that, and the problem of contact due to the thermal expansion of the main shaft due to the above-mentioned air frictional heat is likely to occur. This can prevent contact due to expansion of the main shaft. Even when the non-contact bearing is a hydrostatic gas bearing, it is necessary to make the gap between the sliding member and the main shaft very small as in the case of the hydrostatic magnetic composite bearing. However, cooling gas supply means is provided to cool the main shaft. This can prevent contact due to expansion of the main shaft.

【0009】この発明の非接触軸受スピンドル装置は、
上記主軸に形成された鍔に対面して主軸を非接触で支持
するスラスト型の非接触軸受を設け、このスラスト型の
非接触軸受における軸受面およびこの軸受面に対面する
主軸の鍔面のいずれか一方の面に、モリブデンまたはカ
ーボンの溶射層を設け、上記軸受面および主軸鍔面の他
方の面にセラミックスの溶射層を施しても良い。スラス
ト型の非接触軸受を設けた場合、ラジアル型の非接触軸
受の使用とあいまって、主軸の運転時の支持が完全に非
接触で行える。この場合に、上記のように軸受面および
主軸鍔面に上記材質の溶射層を設けることで、スラスト
方向のタッチダウン時の耐摩耗性,摺動特性を向上させ
ることができる。スラスト軸受部に関しては、ラジアル
軸受と同様にして並列に摺動材を置くことは困難であ
る。本来の軸受面積を減らすこと無く摺動材を置くため
には、主軸の鍔部の径を大きくすることになるが、固有
振動数は著しく低下することになる。しかし、上記のよ
うに軸受面に溶射層を設けることにより、鍔径を大きく
することなく、タッチダウン時の保護が行える。
[0009] The non-contact bearing spindle device of the present invention comprises:
A thrust type non-contact bearing for supporting the main shaft in a non-contact manner facing the flange formed on the main shaft is provided, and either a bearing surface of the thrust type non-contact bearing or a flange surface of the main shaft facing the bearing surface is provided. A sprayed layer of molybdenum or carbon may be provided on one of the surfaces, and a sprayed layer of ceramic may be provided on the other surface of the bearing surface and the flange surface of the main shaft. When the thrust type non-contact bearing is provided, the support of the spindle during operation can be performed completely non-contact with the use of the radial type non-contact bearing. In this case, by providing the sprayed layer of the above-described material on the bearing surface and the spindle flange surface as described above, it is possible to improve wear resistance and sliding characteristics at the time of touchdown in the thrust direction. As for the thrust bearing, it is difficult to place sliding members in parallel in the same manner as the radial bearing. In order to place the sliding material without reducing the original bearing area, the diameter of the flange of the main shaft must be increased, but the natural frequency will be significantly reduced. However, by providing the sprayed layer on the bearing surface as described above, it is possible to provide protection during touchdown without increasing the flange diameter.

【0010】[0010]

【発明の実施の形態】この発明の一実施形態を図1ない
し図4と共に説明する。この非接触軸受スピンドル装置
1は、主軸4を、ハウジング5に設置された複数のラジ
アル型の非接触軸受である静圧磁気複合軸受6,7と、
スラスト型の非接触軸受である静圧磁気複合軸受8,9
とで支持し、スピンドル駆動源10を設けた静圧磁気複
合軸受スピンドル装置である。スピンドル駆動源10
は、ハウジング5に内蔵のモータであって、主軸4に一
体に設けられたロータ21と、ハウジング5に設置され
たステータ22とで構成され、ビルトインモータ形式の
スピンドル装置1を構成する。主軸4の先端には、工具
11を取付けるチャック12が設けられている。各軸受
6〜9とスピンドル駆動源10の配置は、この例では、
主軸4の前部(工具側部)および後部をラジアル型の静
圧磁気複合軸受6,7で支持し、その中間をスラスト型
の静圧磁気複合軸受8,9で支持し、後端にスピンドル
駆動源10を配置した構成としてある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS. The non-contact bearing spindle device 1 includes a main shaft 4 and a plurality of radial type non-contact bearings, which are static pressure magnetic composite bearings 6 and 7 installed in a housing 5.
Hydrostatic magnetic composite bearings 8, 9 as thrust type non-contact bearings
And a hydrostatic magnetic composite bearing spindle device provided with a spindle drive source 10. Spindle drive source 10
Is a motor built in the housing 5 and includes a rotor 21 provided integrally with the main shaft 4 and a stator 22 provided in the housing 5, and constitutes a spindle device 1 of a built-in motor type. A chuck 12 for attaching a tool 11 is provided at the tip of the main shaft 4. The arrangement of each of the bearings 6 to 9 and the spindle drive source 10 is, in this example,
The front part (tool side part) and the rear part of the main shaft 4 are supported by radial type hydrostatic composite bearings 6 and 7, the middle of which is supported by thrust type hydrostatic composite bearings 8 and 9, and a spindle is provided at the rear end. The configuration is such that the drive source 10 is arranged.

【0011】この構成のスピンドル装置1において、主
軸4に内径面がラジアル隙間を介して近接する摺動材4
1をハウジング5に設置してある。摺動材41は、ラジ
アル型静圧磁気複合軸受6,7の並びよりも主軸4の前
端側および後端側に各々配置してある。各摺動材41
は、リング状の部材であって、ハウジング5に設けられ
た摺動材嵌合部に嵌合状態に取付けられている。摺動材
41の内径面41aは円筒面状とされ、この内径面41
aと主軸4の外径面との間のラジアル隙間d3(図3)
は、ラジアル型の各静圧磁気複合軸受6,7を構成する
静圧気体軸受6A,7Aおよび磁気軸受6B,7Bのラ
ジアル軸受隙間d以下(図3)に設定してある。摺動材
41の材質は、カーボンまたは黒鉛であって、硬さがシ
ェア硬度で50以上、曲げ強さが400Kgf/cm2 以上、
圧縮強さが700Kgf/cm2 以上で、かつ熱膨張係数が5
×10-6以下としてある。
In the spindle device 1 having this configuration, the sliding member 4 whose inner diameter surface is close to the main shaft 4 through the radial gap.
1 is installed in the housing 5. The sliding member 41 is arranged on the front end side and the rear end side of the main shaft 4 with respect to the arrangement of the radial type hydrostatic magnetic composite bearings 6 and 7, respectively. Each sliding material 41
Is a ring-shaped member, which is fitted to a sliding member fitting portion provided on the housing 5 in a fitted state. The inner surface 41a of the sliding member 41 is formed in a cylindrical shape.
a and a radial gap d3 between the outer diameter surface of the main shaft 4 (FIG. 3)
Is set to be equal to or less than the radial bearing gap d (FIG. 3) between the static pressure gas bearings 6A, 7A and the magnetic bearings 6B, 7B constituting the radial type static pressure magnetic composite bearings 6, 7. The material of the sliding material 41 is carbon or graphite, the hardness of which is 50 or more in shear hardness, the bending strength is 400 kgf / cm 2 or more,
Compressive strength is 700 kgf / cm 2 or more and thermal expansion coefficient is 5
× 10 -6 or less.

【0012】摺動材41には、ラジアル隙間d3に冷却
気体を供給する冷却気体供給手段50が設けられてい
る。図3において、冷却気体供給手段50は、摺動材4
1の内周面に開口する給気孔51と、この給気孔51に
冷却気体を供給する冷却気体供給路52とを有し、冷却
気体供給源53に接続されている。摺動材41の内周面
41aは、給気孔51から吐出される気体による静圧で
主軸4を支持する静圧気体軸受面とされている。給気孔
51は、摺動材41の円周方向複数箇所に設けられてい
る。これら各給気孔51は、一つの冷却気体供給路52
から分岐されている。冷却気体供給源53は、空気等の
冷却気体を供給するものであり、ポンプまたはブロワー
等が用いられる。冷却気体供給源53は、静圧磁気複合
軸受6,7に作動気体を供給する静圧軸受用気体供給源
を兼ねるものであっても、静圧軸受用気体供給源とは別
に設けられたものであっても良い。
The sliding member 41 is provided with cooling gas supply means 50 for supplying a cooling gas to the radial gap d3. In FIG. 3, the cooling gas supply means 50 is
1 has an air supply hole 51 opened on the inner peripheral surface thereof and a cooling gas supply path 52 for supplying a cooling gas to the air supply hole 51, and is connected to a cooling gas supply source 53. The inner peripheral surface 41 a of the sliding member 41 is a static pressure gas bearing surface that supports the main shaft 4 by static pressure due to gas discharged from the air supply hole 51. The air supply holes 51 are provided at a plurality of positions in the circumferential direction of the sliding member 41. Each of these air supply holes 51 is provided with one cooling gas supply passage 52.
From the branch. The cooling gas supply source 53 supplies a cooling gas such as air, and a pump or a blower is used. The cooling gas supply source 53 is provided separately from the gas supply source for the static pressure bearing, even if the cooling gas supply source 53 also serves as the gas supply source for the static pressure bearing that supplies the working gas to the static pressure magnetic composite bearings 6 and 7. It may be.

【0013】図1の各静圧磁気複合軸受6〜9の構成を
説明する。ラジアル型の各静圧磁気複合軸受6,7は、
互いに同じ構成のものであり、片方の軸受6につき、図
2に横断面を示すと共に、図3に縦断面を拡大して示
す。静圧磁気複合軸受6,7は、各々静圧気体軸受6
A,7Aと磁気軸受6B,7Bとを複合化させたもので
ある。この明細書で言う複合化とは、静圧および磁気の
両形式の軸受を共通部分が生じるように組み合わせるこ
とを意味し、例えば、静圧気体軸受面と磁気軸受面とに
共通部分(ラジアル軸受では軸方向の重なり部分)を生
じさせるか、あるいは両形式の軸受に少なくとも一部の
部品が共通化されるものであれば良い。
The configuration of each of the hydrostatic magnetic composite bearings 6 to 9 in FIG. 1 will be described. Each of the radial type hydrostatic magnetic composite bearings 6, 7
FIG. 2 shows a cross section of one of the bearings 6, and FIG. 3 shows an enlarged vertical section of one of the bearings. The hydrostatic magnetic composite bearings 6 and 7 are each a hydrostatic gas bearing 6
A, 7A and magnetic bearings 6B, 7B are combined. The term "combination" as used in this specification means that both types of bearings of a static pressure type and a magnetic type are combined so as to generate a common part. For example, a common part (a radial bearing) In this case, an axially overlapping portion may be generated, or at least a part of parts may be shared by both types of bearings.

【0014】この実施形態では、図3に示すように、磁
気軸受6B,7Bの電磁石のコア23に、静圧気体軸受
6A,7Aの絞り24aを設けることで、コア23で静
圧気体軸受面の一部を構成している。コア23は、軸方
向に離れた一対の主コア部23a,23aと、これら主
コア部23a,23aを連結した連結コア部23bと、
両主コア部23a,23aの主軸側端から対向して延び
る延出部23c,23cとで、縦断面がC字状に形成さ
れている。主コア部23aと延出部23cの内径側面
は、主軸4と所定の磁気ギャップを形成する円筒面とさ
れている。磁気軸受6B,7Bは、このコア23の連結
コア部23bにコイル25を巻装したものである。コイ
ル25は、樹脂材等の非磁性体26に埋め込まれてい
る。
In this embodiment, as shown in FIG. 3, the throttle 23a of the hydrostatic gas bearings 6A, 7A is provided on the core 23 of the electromagnet of the magnetic bearings 6B, 7B, so that the hydrostatic gas bearing surface is formed on the core 23. Is part of. The core 23 includes a pair of main core portions 23a, 23a separated in the axial direction, a connection core portion 23b connecting the main core portions 23a, 23a,
Extending portions 23c, 23c extending from the main shaft side ends of both main core portions 23a, 23a to face each other have a C-shaped vertical section. The inner diameter side surfaces of the main core portion 23a and the extension portion 23c are cylindrical surfaces forming a predetermined magnetic gap with the main shaft 4. The magnetic bearings 6B and 7B are formed by winding a coil 25 around a connecting core portion 23b of the core 23. The coil 25 is embedded in a non-magnetic body 26 such as a resin material.

【0015】静圧気体軸受6A,7Aは、コア23およ
び非磁性体26の内径側面で形成されて主軸4との間に
軸受隙間dを形成する静圧磁気受面6Aa,7Aaと、
コア23の各主コア部23a,23aに設けられて静圧
軸受面6Aa,7Aaに開口する絞り24aとで構成さ
れる。絞り24aは、各主コア部23aの外径側面に開
口した給気孔24の先端に設けられている。図2に階段
断面を示すように、コア23は、主軸4の回りの円周方
向複数箇所(同図の例では4箇所)に配置されてハウジ
ング5に固定されている。円周方向に隣合うコア23間
の隙間は、樹脂材等の非磁性体27で埋められている。
この非磁性体27は、コイル25の周囲の非磁性体26
(図4)と一体のものであっても良い。これら非磁性体
26,27と、コア23とで、前記静圧磁気軸受面6A
a,7Aaが構成される。
The static pressure gas bearings 6A, 7A are formed on the inner diameter side surface of the core 23 and the non-magnetic body 26 and form a bearing gap d between the main shaft 4 and the static pressure magnetic bearing surfaces 6Aa, 7Aa.
The diaphragm 23 is provided on each of the main core portions 23a, 23a of the core 23 and opens on the hydrostatic bearing surfaces 6Aa, 7Aa. The throttles 24a are provided at the ends of the air supply holes 24 opened on the outer diameter side surfaces of the main core portions 23a. As shown in a stepped cross section in FIG. 2, the cores 23 are arranged at a plurality of circumferential positions around the main shaft 4 (four in the example of FIG. 2) and fixed to the housing 5. The gap between the circumferentially adjacent cores 23 is filled with a non-magnetic material 27 such as a resin material.
The non-magnetic body 27 is formed around the non-magnetic body 26 around the coil 25.
(FIG. 4). The non-magnetic members 26 and 27 and the core 23 form the static pressure magnetic bearing surface 6A.
a and 7Aa.

【0016】磁気軸受6B,7Bは、主軸4とコア23
との磁気ギャップの変位を検出する変位検出手段28を
有している。この変位検出手段28は、変位量を直接に
検出するものであっても良いが、この例では、静圧軸受
隙間dの静圧(気体の圧力)を検出することで、その圧
力検出値を変位量に換算して磁気ギャップの変位を検出
するものとしてある。具体的には、変位検出手段28
は、静圧軸受隙間dに先端が開口した圧力検出用の通気
路28aと、この通気路28aに連通したセンサ28b
とで構成される。センサ28bは、図1のようにコア2
3から軸方向に離れた位置に配置されている。通気路2
8aは、細孔またはパイプで形成されていて、静圧軸受
隙間dにはコア23の延出部23c,23c間における
非磁性体26の部分で開口している。図2は、図面を見
易くするために絞り24aと通気路28aの開口位置を
周方向にずらせて図示してあるが、実際は互いに周方向
の同じ位置とされている。
The magnetic bearings 6B and 7B are composed of a main shaft 4 and a core 23.
And a displacement detecting means 28 for detecting the displacement of the magnetic gap between them. The displacement detecting means 28 may directly detect the displacement amount, but in this example, the static pressure (gas pressure) of the static pressure bearing gap d is detected, and the pressure detection value is detected. The displacement of the magnetic gap is detected by converting the displacement into a displacement amount. Specifically, the displacement detecting means 28
Is a pressure detection air passage 28a having an open end at the static pressure bearing gap d, and a sensor 28b communicating with the air passage 28a.
It is composed of The sensor 28b is, as shown in FIG.
3 is disposed at a position axially distant from 3. Ventilation path 2
Numeral 8a is formed by a fine hole or a pipe, and is opened in the hydrostatic bearing gap d at the portion of the nonmagnetic body 26 between the extending portions 23c of the core 23. In FIG. 2, the opening positions of the throttle 24 a and the air passage 28 a are shifted in the circumferential direction for easy viewing of the drawing, but they are actually at the same position in the circumferential direction.

【0017】図4は、スラスト型の静圧磁気複合軸受
8,9の拡大図である。この一対の軸受8,9は、主軸
4に設けられた鍔部4aの両面に対向してハウジング5
内に設置されたものであり、互いに一つの両面式スラス
ト型静圧気体軸受30を構成する。両側の静圧磁気複合
軸受8,9は、互いに同じ構成のものである。これら静
圧磁気複合軸受8,9は、各々静圧気体軸受8A,9A
と磁気軸受8B,9Bとを複合化させたものである。こ
の実施形態では、磁気軸受8B,9Bの電磁石のコア3
3に、静圧気体軸受8A,9Aの絞り34aを設けるこ
とで、軸受構成部品の共通化と共に、軸受面の一部が軸
方向に重なるようにしてある。コア33は、スピンドル
鍔部4aの対向面に開き部33dが生じるように、縦断
面形状がC字状に形成され、その内部にコイル35が収
められている。開き部33dは非磁性体で埋められてい
る。コア33は、図示の例では断面L字状の内周コア部
33aと外周コア部33bとの組立構成としてあるが、
一体物であっても良い。コア33には軸方向に間座29
が隣接している。
FIG. 4 is an enlarged view of the thrust-type hydrostatic magnetic bearings 8 and 9. The pair of bearings 8, 9 are opposed to both surfaces of a flange 4 a provided on the
And constitute one double-sided thrust-type hydrostatic gas bearing 30. The hydrostatic composite bearings 8 and 9 on both sides have the same configuration. These static pressure magnetic composite bearings 8 and 9 are respectively composed of static pressure gas bearings 8A and 9A.
And the magnetic bearings 8B and 9B. In this embodiment, the core 3 of the electromagnet of the magnetic bearings 8B and 9B is used.
By providing throttles 34a for the static pressure gas bearings 8A and 9A in 3, the bearing components are shared and a part of the bearing surface is overlapped in the axial direction. The core 33 has a C-shaped longitudinal section so that an opening 33d is formed on the surface facing the spindle flange 4a, and the coil 35 is accommodated therein. The opening 33d is filled with a non-magnetic material. The core 33 has an assembling configuration of an inner peripheral core portion 33a and an outer peripheral core portion 33b having an L-shaped cross section in the illustrated example.
It may be one piece. The core 33 has a spacer 29 in the axial direction.
Are adjacent.

【0018】スラスト型の静圧気体軸受8A,9Aは、
コア33の側面で形成されてスピンドル鍔部4aとの間
に軸受隙間d2を形成する静圧軸受面8Aa,9Aa
と、コア33に設けられて静圧軸受面8Aa,9Aaに
開口する絞り34aとで構成される。絞り34aは、コ
ア33の外径側面に開口した給気孔34の先端に設けら
れている。
The thrust type hydrostatic gas bearings 8A and 9A are:
Hydrostatic bearing surfaces 8Aa, 9Aa formed on the side surface of the core 33 and forming a bearing clearance d2 with the spindle flange 4a.
And a restrictor 34a provided on the core 33 and opening on the hydrostatic bearing surfaces 8Aa and 9Aa. The throttle 34 a is provided at the tip of an air supply hole 34 opened on the outer diameter side surface of the core 33.

【0019】スラスト型の静圧磁気複合軸受8,9にお
ける軸受面8Aa,9Aaには、モリブデンまたはカー
ボンの溶射層61を施し、主軸4の鍔面にはセラミック
スの溶射層62を施してある。なお、溶射層61,62
の材質は、上記と互いに逆に、軸受面の溶射層61をセ
ラミックス、主軸鍔面の溶射層62モリブデンまたはカ
ーボンとしても良い。
The bearing surfaces 8Aa and 9Aa of the thrust type hydrostatic magnetic bearings 8 and 9 are provided with a sprayed layer 61 of molybdenum or carbon, and the flanged surface of the main shaft 4 is provided with a sprayed layer 62 of ceramics. The thermal spray layers 61 and 62
The material may be such that the sprayed layer 61 on the bearing surface is made of ceramics, the sprayed layer 62 on the main shaft flange surface is molybdenum or carbon.

【0020】スラスト型の磁気軸受8B,9Bは、図1
に示すように、スピンドル鍔部4aとコア33との磁気
ギャップの変位を検出する変位検出手段38を有してい
る。この変位検出手段38も、変位量を直接に検出する
ものであっても良いが、この例では、静圧軸受隙間d2
の静圧を検出することで、その圧力検出値を変位量に換
算して磁気ギャップの変位を検出するものとしてある。
具体的には、変位検出手段38は、静圧軸受隙間d2に
先端が開口した圧力検出用の通気路38aと、この通気
路38aに連通したセンサ38bとで構成される。
The thrust type magnetic bearings 8B and 9B are shown in FIG.
As shown in (1), there is a displacement detecting means 38 for detecting the displacement of the magnetic gap between the spindle flange 4a and the core 33. The displacement detecting means 38 may directly detect the amount of displacement, but in this example, the static pressure bearing gap d2
By detecting the static pressure of the magnetic gap, the detected pressure value is converted into a displacement amount to detect the displacement of the magnetic gap.
Specifically, the displacement detecting means 38 is composed of a pressure detection air passage 38a having a distal end opened in the static pressure bearing gap d2, and a sensor 38b communicating with the air passage 38a.

【0021】図1の各静圧磁気複合軸受6〜9における
静圧気体軸受6A〜9Aの給気孔24,34には、ハウ
ジング5内に設けられた給気孔40の給気入口40aか
ら、圧縮空気またはその他の圧縮気体が供給される。
In the static pressure gas bearings 6A to 9A of the static pressure magnetic composite bearings 6 to 9 in FIG. 1, the air supply holes 24 and 34 are compressed from the air supply inlet 40a of the air supply hole 40 provided in the housing 5. Air or other compressed gas is supplied.

【0022】この構成のスピンドル装置1によると、主
軸4に近接する摺動材41を設け、そのラジアル隙間d
3(図3)を、各ラジアル型静圧磁気複合軸受6,7の
静圧気体軸受面6Aa,7Aaのラジアル隙間d以下に
したため、主軸4に過大な負荷が印加し、主軸4と静止
側の部材との間に機械的接触があった場合にも、その機
械的接触は摺動材41と主軸4との接触に止まる。ま
た、摺動材41はカーボンまたは黒鉛であるため、摩擦
係数が小さい。そのためスピンドル装置1は、前記接触
によっても、主軸4にも、また軸受面6Aa,7Aaや
摺動材41にも損傷が生じない。
According to the spindle device 1 having this configuration, the sliding member 41 is provided in the vicinity of the main shaft 4, and the radial gap d
3 (FIG. 3) is smaller than the radial gap d between the hydrostatic gas bearing surfaces 6Aa and 7Aa of the radial type hydrostatic magnetic composite bearings 6 and 7, so that an excessive load is applied to the main shaft 4 and the main shaft 4 and the stationary side Mechanical contact between the sliding member 41 and the main shaft 4 is stopped. Further, since the sliding member 41 is made of carbon or graphite, the coefficient of friction is small. Therefore, the spindle device 1 does not damage the main shaft 4, the bearing surfaces 6Aa and 7Aa, and the sliding member 41 by the contact.

【0023】磁気軸受6B,7Bのコア23で静圧気体
軸受面6Aa,7Aaを形成したため、軸受構成が簡素
化されるが、静圧気体軸受面6Aa,7Aaの材質は潤
滑性のない磁性金属に限られ、主軸4との接触回避が重
要となる。そのため、摺動材41で主軸4を受けること
による損傷防止が効果的である。また摺動材41を静圧
磁気複合軸受6,7の並びよりも主軸端部側に配置した
ため、主軸4が過大なラジアル負荷で傾きを生じた場合
でも、摺動材41で主軸4を確実に受け、主軸4が軸受
面6Aa,7Aaに接触することが防止される。摺動材
41は、硬さがシェア硬度で50以上、曲げ強さが40
0Kgf/cm2 以上、圧縮強さが700Kgf/cm2 以上で、か
つ熱膨張係数が5×10-6以下であるが、このような硬
さ、曲げ強さ、および圧縮強さを持つ材質とすること
で、主軸4の接触が生じた場合の摺動材41の損傷が防
止される。また摺動材41の熱膨張係数を上記の範囲と
することで、静圧磁気複合軸受6,7の磁気軸受6B,
7Bのコア23に一般に用いられる軟磁性金属に対して
熱膨張係数が同等以下となり、摺動材41の熱膨張に伴
う内径の増大がコア23と同等以下となる。そのため、
温度上昇時に主軸4に過大なラジアル負荷が作用して
も、確実に摺動材41で受けることができる。カーボン
および黒鉛は、上記の各材質上の要求を満足するものと
できる。
Since the static pressure gas bearing surfaces 6Aa and 7Aa are formed by the cores 23 of the magnetic bearings 6B and 7B, the bearing configuration is simplified. However, the material of the static pressure gas bearing surfaces 6Aa and 7Aa is a magnetic metal having no lubricity. And avoiding contact with the main shaft 4 is important. Therefore, it is effective to prevent the sliding member 41 from being damaged by receiving the main shaft 4. Further, since the sliding member 41 is disposed closer to the end of the main shaft than the arrangement of the hydrostatic magnetic composite bearings 6 and 7, even if the main shaft 4 is tilted due to an excessive radial load, the main shaft 4 can be securely fixed by the sliding member 41. The main shaft 4 is prevented from contacting the bearing surfaces 6Aa and 7Aa. The sliding material 41 has a hardness of 50 or more in shear hardness and a bending strength of 40 or more.
0 kgf / cm 2 or more, compressive strength is 700 kgf / cm 2 or more, and thermal expansion coefficient is 5 × 10 -6 or less, and a material having such hardness, bending strength, and compressive strength This prevents the sliding member 41 from being damaged when the main shaft 4 comes into contact. Further, by setting the coefficient of thermal expansion of the sliding member 41 within the above range, the magnetic bearings 6B, 6B,
The thermal expansion coefficient is equal to or less than that of the soft magnetic metal generally used for the 7B core 23, and the increase in the inner diameter due to the thermal expansion of the sliding member 41 is equal to or less than that of the core 23. for that reason,
Even if an excessive radial load acts on the main shaft 4 when the temperature rises, the sliding member 41 can reliably receive the load. Carbon and graphite can satisfy the above requirements for each material.

【0024】また、摺動材41と主軸4との隙間d3は
微小隙間となるが、この隙間に冷却気体供給手段50で
冷却気体を供給するようにしたため、微小隙間内におけ
る空気摩擦熱による主軸4の熱膨張が抑制できる。この
ため、主軸4が熱膨張して摺動材41に接触することが
回避される。冷却気体供給手段50は、摺動材41の内
周面41aに開口する給気孔51で構成したため、簡単
な構成で摺動材41と主軸4間の微小な隙間に効率的に
冷却気体を供給することができる。また、摺動材41の
内周面41aを静圧気体軸受面としたため、摺動材41
と主軸4との正確な心合わせがなされていなくても、静
圧による自動調心作用が得られる。そのため、摺動材4
1を交換した場合に、取付誤差による微小な偏心で主軸
4との微小隙間が局部的に小さくなりすぎることがな
く、摺動材41の交換が実際的に可能になる。
A gap d3 between the sliding member 41 and the main shaft 4 is a minute gap. Since the cooling gas is supplied to the gap by the cooling gas supply means 50, the main shaft due to the frictional heat of the air in the minute gap. 4 can suppress thermal expansion. Therefore, the main shaft 4 is prevented from thermally expanding and coming into contact with the sliding member 41. Since the cooling gas supply means 50 is constituted by the air supply holes 51 opened in the inner peripheral surface 41a of the sliding member 41, the cooling gas is efficiently supplied to the minute gap between the sliding member 41 and the main shaft 4 with a simple configuration. can do. Also, since the inner peripheral surface 41a of the sliding member 41 is a hydrostatic gas bearing surface,
The self-aligning action by the static pressure can be obtained even if the center of the shaft and the main shaft 4 are not accurately aligned. Therefore, the sliding material 4
When 1 is replaced, the minute gap between the main shaft 4 and the small eccentricity due to the mounting error does not become too small locally, and the replacement of the sliding member 41 becomes practically possible.

【0025】スラスト型の静圧磁気複合軸受8,9に
は、軸受面にモリブデンまたはカーボンの溶射層61を
施し、主軸鍔面にセラミックスの溶射層62を施したた
め、スラスト方向のタッチダウン時にはこれらの溶射層
61,62が接することになり、その滑りによって保護
が行える。また、溶射層61,62を施したものである
ため、タッチダウン保護用の摺動材を静圧磁気複合軸受
8,9と並べて設ける場合と異なり、主軸鍔径を大きく
することなく、タッチダウン時の保護が行える。
The thrust-type hydrostatic magnetic bearings 8 and 9 are provided with a sprayed layer 61 of molybdenum or carbon on the bearing surface and a sprayed layer 62 of ceramic on the flange surface of the main shaft. Of the thermal sprayed layers 61 and 62 are in contact with each other, and the sliding can provide protection. Further, since the thermal sprayed layers 61 and 62 are provided, unlike the case where the sliding material for touchdown protection is provided side by side with the hydrostatic magnetic composite bearings 8 and 9, the touchdown can be performed without increasing the diameter of the spindle flange. Time protection can be provided.

【0026】なお、上記実施形態では、摺動材41に設
ける冷却気体供給手段50は、摺動材41の内周面41
aに開口する給気孔51で構成したが、冷却気体供給手
段50は、例えば図5に示すように、摺動材41の外部
から摺動材41と主軸4の隙間に向けて冷却気体を供給
するノズル51Aを用いたものでであっても良い。
In the above embodiment, the cooling gas supply means 50 provided on the sliding member 41 is provided on the inner peripheral surface 41 of the sliding member 41.
The cooling gas supply means 50 supplies the cooling gas from outside the sliding member 41 to the gap between the sliding member 41 and the main shaft 4 as shown in FIG. 5, for example. The nozzle 51A may be used.

【0027】図6は、この発明の他の実施形態にかかる
静圧磁気複合軸受スピンドル装置1Aを示す。同図の例
において、図1の実施形態と対応する部分には同一の符
号を付してある。この実施形態では、主軸4を支持した
前後のラジアル型の静圧磁気複合軸受6,7の中間にス
ピンドル駆動装置10を配置し、後方の静圧磁気複合軸
受7よりも端部側にスラスト型の静圧磁気複合軸受8,
9が配置してある。摺動材41は、これらの静圧磁気複
合軸受6〜9の並びよりも前端側および後端側に位置し
てハウジング5に設けられている。また、この実施形態
では、静圧磁気複合軸受6〜9の変位検出手段43,4
4は、渦電流センサ等の磁気的に主軸4の変位を検出す
るものが使用されている。この実施形態における各静圧
磁気複合軸受6〜9の具体的構成は、図1の例とは異な
るが、いずれも静圧気体軸受6A〜9Aと磁気軸受6B
〜9Bを複合化させ、また磁気軸受6B〜9Bの電磁石
コア23,33で静圧気体軸受面の一部を構成したもの
である。この実施形態における摺動材41のラジアル隙
間と各ラジアル型静圧磁気複合軸受6,7のラジアル隙
間との関係、および摺動材41の材質は、図1の実施形
態と同じである。また、摺動材41には、前記各実施形
態と同様に冷却気体供給手段50が設けられている。こ
の冷却気体供給手段50は、摺動材41の内周面に開口
する給気孔51およびこの給気孔51へ給気する給気経
路(図示せず)を備える。
FIG. 6 shows a hydrostatic composite bearing spindle device 1A according to another embodiment of the present invention. In the example of FIG. 7, the same reference numerals are given to the portions corresponding to the embodiment of FIG. In this embodiment, a spindle drive device 10 is disposed between the radial type hydrostatic magnetic bearings 6 and 7 which support the main shaft 4, and the thrust type is located closer to the end than the hydrostatic magnetic bearing 7 behind. Hydrostatic magnetic composite bearing 8,
9 are arranged. The sliding member 41 is provided in the housing 5 at a position closer to the front end and the rear end than the arrangement of the static pressure magnetic composite bearings 6 to 9. Further, in this embodiment, the displacement detecting means 43, 4 of the hydrostatic magnetic composite bearings 6 to 9 are provided.
Reference numeral 4 denotes an eddy current sensor or the like that magnetically detects the displacement of the main shaft 4. The specific configuration of each of the hydrostatic magnetic composite bearings 6 to 9 in this embodiment is different from the example of FIG. 1, but all of them are the hydrostatic gas bearings 6A to 9A and the magnetic bearing 6B.
9B, and a part of the hydrostatic gas bearing surface is constituted by the electromagnet cores 23 and 33 of the magnetic bearings 6B to 9B. The relation between the radial gap of the sliding member 41 and the radial gap of each of the radial-type hydrostatic composite bearings 6, 7 in this embodiment, and the material of the sliding member 41 are the same as those in the embodiment of FIG. Further, the sliding member 41 is provided with a cooling gas supply means 50 as in the above embodiments. The cooling gas supply means 50 includes an air supply hole 51 opened on the inner peripheral surface of the sliding member 41 and an air supply path (not shown) for supplying air to the air supply hole 51.

【0028】上記実施形態では、ラジアル形式の静圧磁
気複合軸受6,7を備える静圧磁気複合軸受スピンドル
装置の場合につき説明したが、この発明は、静圧気体軸
受スピンドル装置にも適用することができる。例えば、
図1〜図4に示す第1の実施形態において、静圧磁気複
合軸受6,7に代えて、図7に示すように静圧気体軸受
66を設け、静圧気体軸受スピンドル装置としても良
い。その場合に、スラスト形式の静圧磁気複合軸受8,
9(図1)の代わりに、スラスト形式の静圧気体軸受
(図示せず)を設けても良い。
In the above embodiment, the case of the hydrostatic magnetic composite bearing spindle device provided with the radial type hydrostatic magnetic composite bearings 6 and 7 has been described. However, the present invention is also applicable to the hydrostatic gas bearing spindle device. Can be. For example,
In the first embodiment shown in FIGS. 1 to 4, instead of the hydrostatic magnetic composite bearings 6 and 7, a hydrostatic gas bearing 66 may be provided as shown in FIG. In that case, the thrust type hydrostatic magnetic composite bearing 8,
9 (FIG. 1), a thrust type hydrostatic gas bearing (not shown) may be provided.

【0029】[0029]

【発明の効果】この発明の非接触軸受スピンドル装置
は、主軸をラジアル形式の非接触軸受で支持したスピン
ドル装置において、主軸にラジアル隙間を介して近接す
る摺動材を、上記非接触軸受の設置されたハウジングに
設け、この摺動材のラジアル隙間を、上記非接触軸受の
ラジアル軸受隙間以下に設定し、上記摺動材の上記ラジ
アル隙間に冷却気体を供給する冷却気体供給手段を設け
たため、軸受隙間が微小な非接触軸受を用いながら、主
軸タッチダウ時における軸受や主軸への影響が防止で
き、またその影響防止用の摺動材に主軸が熱膨張によっ
て接触することを防止できる。上記冷却気体供給手段
が、上記摺動材の内周面に開口する給気孔と、この給気
孔に冷却気体を供給する冷却気体供給路とを有するもの
である場合は、簡単な構成で摺動材と主軸間の微小な隙
間に効率的に冷却気体を供給できる。この場合に、上記
摺動材の内周面を静圧気体軸受面とした場合は、静圧気
体による調心作用ため、摺動材の取付け精度の厳さが幾
分緩和され、摺動材の交換が可能となる。非接触軸受が
静圧磁気複合軸受である場合は、静圧気体軸受の優れた
動剛性および回転精度と、磁気軸受の優れた静剛性とい
う両軸受の特長を生かしたコンパクトな軸受となり、種
々の性能に優れたコンパクトなスピンドル装置になる。
上記主軸に形成された鍔に対面して主軸を非接触で支持
するスラスト型の非接触軸受を設け、このスラスト型の
非接触軸受における軸受面およびこの軸受面に対面する
主軸の鍔面のいずれか一方の面に、モリブデンまたはカ
ーボンの溶射層を設け、上記軸受面および主軸鍔面の他
方の面にセラミックスの溶射層を施した場合は、スラス
ト型の非接触軸受におけるタッチダウン時の耐摩耗性,
摺動特性を向上させることができる。
According to the non-contact bearing spindle device of the present invention, in a spindle device in which a main shaft is supported by a radial type non-contact bearing, a sliding member close to the main shaft through a radial gap is installed. Provided in the housing, the radial gap of the sliding material is set to be equal to or less than the radial bearing gap of the non-contact bearing, and cooling gas supply means for supplying a cooling gas to the radial gap of the sliding material is provided. While using a non-contact bearing with a small bearing gap, it is possible to prevent the bearing and the spindle from being affected when the spindle is touched down, and to prevent the spindle from coming into contact with a sliding member for preventing the influence due to thermal expansion. When the cooling gas supply means has an air supply hole opened on the inner peripheral surface of the sliding material and a cooling gas supply path for supplying a cooling gas to the air supply hole, the cooling gas supply means can be slid with a simple configuration. The cooling gas can be efficiently supplied to the minute gap between the material and the main shaft. In this case, when the inner peripheral surface of the sliding member is a hydrostatic gas bearing surface, the strictness of the mounting accuracy of the sliding member is somewhat reduced due to the centering action by the static pressure gas, and the sliding member Can be exchanged. When the non-contact bearing is a hydrostatic / magnetic composite bearing, it becomes a compact bearing that takes advantage of the characteristics of both bearings, namely the excellent dynamic rigidity and rotational accuracy of the hydrostatic gas bearing, and the excellent static rigidity of the magnetic bearing. It becomes a compact spindle device with excellent performance.
A thrust type non-contact bearing for supporting the main shaft in a non-contact manner facing the flange formed on the main shaft is provided, and either a bearing surface of the thrust type non-contact bearing or a flange surface of the main shaft facing the bearing surface is provided. When a sprayed layer of molybdenum or carbon is provided on one surface, and a sprayed layer of ceramic is provided on the other surface of the bearing surface and the flange surface of the main shaft, wear resistance during touchdown in a thrust type non-contact bearing is provided. sex,
Sliding characteristics can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施形態にかかるスピンドル装置
の縦断側面図である。
FIG. 1 is a vertical sectional side view of a spindle device according to an embodiment of the present invention.

【図2】同スピンドル装置の横断正面図である。FIG. 2 is a cross-sectional front view of the spindle device.

【図3】ラジアル型の静圧磁気複合軸受の拡大断面図で
ある。
FIG. 3 is an enlarged sectional view of a radial type hydrostatic magnetic composite bearing.

【図4】スラスト型の静圧磁気複合軸受の拡大断面図で
ある。
FIG. 4 is an enlarged sectional view of a thrust type hydrostatic magnetic composite bearing.

【図5】この発明の他の実施形態にかかるスピンドル装
置の部分断面図である。
FIG. 5 is a partial sectional view of a spindle device according to another embodiment of the present invention.

【図6】この発明のさらに他の実施形態にかかるスピン
ドル装置の断面図である。
FIG. 6 is a sectional view of a spindle device according to still another embodiment of the present invention.

【図7】この発明のさらに他の実施形態にかかるスピン
ドル装置の断面図である。
FIG. 7 is a sectional view of a spindle device according to still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…スピンドル装置 4…主軸 5…ハウジング 6〜9…静圧磁気複合軸受 6A〜9A…静圧気体軸受 6B〜9B…磁気軸受 6Aa,7Aa…静圧気体軸受面 10…スピンドル駆動源 41…摺動材 41a…内周面 50…冷却気体供給手段 51…給気孔 52…給気経路 53…冷却気体供給源 d…軸受のラジアル隙間 d3…摺動材のラジアル隙間 DESCRIPTION OF SYMBOLS 1 ... Spindle device 4 ... Main shaft 5 ... Housing 6-9 ... Static pressure magnetic compound bearing 6A-9A ... Static pressure gas bearing 6B-9B ... Magnetic bearing 6Aa, 7Aa ... Static pressure gas bearing surface 10 ... Spindle drive source 41 ... Slide Moving material 41a Inner peripheral surface 50 Cooling gas supply means 51 Air supply hole 52 Air supply path 53 Cooling gas supply source d Radial clearance of bearing d3 Radial clearance of sliding material

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 主軸をラジアル形式の非接触軸受で支持
したスピンドル装置において、主軸にラジアル隙間を介
して近接する摺動材を、上記非接触軸受の設置されたハ
ウジングに設け、この摺動材のラジアル隙間を、上記非
接触軸受のラジアル軸受隙間以下に設定し、上記摺動材
の上記ラジアル隙間に冷却気体を供給する冷却気体供給
手段を設けたことを特徴とする非接触軸受スピンドル装
置。
In a spindle device in which a main shaft is supported by a radial type non-contact bearing, a sliding member close to the main shaft via a radial gap is provided in a housing provided with the non-contact bearing. Wherein the radial gap is set to be equal to or smaller than the radial bearing gap of the non-contact bearing, and cooling gas supply means for supplying a cooling gas to the radial gap of the sliding member is provided.
【請求項2】 上記冷却気体供給手段は、上記摺動材の
内周面に開口する給気孔と、この給気孔に冷却気体を供
給する冷却気体供給路とを有するものである請求項1記
載の非接触軸受スピンドル装置。
2. The cooling gas supply means has an air supply hole opened on the inner peripheral surface of the sliding member, and a cooling gas supply passage for supplying a cooling gas to the air supply hole. Non-contact bearing spindle device.
【請求項3】 上記摺動材の内周面を、上記給気孔から
吐出する気体による静圧で主軸を支持する静圧気体軸受
面とした請求項2記載の非接触軸受スピンドル装置。
3. The non-contact bearing spindle device according to claim 2, wherein the inner peripheral surface of the sliding member is a static pressure gas bearing surface for supporting a main shaft with static pressure by gas discharged from the air supply hole.
【請求項4】 上記非接触軸受は、静圧気体軸受と磁気
軸受とが複合化されたラジアル型の静圧磁気複合軸受で
あり、上記摺動材のラジアル隙間を、上記静圧磁気複合
軸受を構成する静圧気体軸受および磁気軸受のラジアル
軸受隙間以下に設定した請求項1ないし請求項3のいず
れかに記載の非接触軸受スピンドル装置。
4. The non-contact bearing is a radial type hydrostatic compound bearing in which a hydrostatic gas bearing and a magnetic bearing are compounded, and the radial gap of the sliding member is formed by the hydrostatic compound bearing. The non-contact bearing spindle device according to any one of claims 1 to 3, wherein the radial bearing clearance is set to be equal to or less than a radial bearing gap between the static pressure gas bearing and the magnetic bearing.
【請求項5】 上記非接触軸受が静圧気体軸受である請
求項1ないし請求項3のいずれかに記載の非接触軸受ス
ピンドル装置。
5. The non-contact bearing spindle device according to claim 1, wherein the non-contact bearing is a hydrostatic gas bearing.
【請求項6】 上記主軸に形成された鍔に対面して主軸
を非接触で支持するスラスト型の非接触軸受を設け、こ
のスラスト型の非接触軸受における軸受面およびこの軸
受面に対面する主軸の鍔面のいずれか一方の面に、モリ
ブデンまたはカーボンの溶射層を設け、上記軸受面およ
び主軸鍔面の他方の面にセラミックスの溶射層を施した
請求項1ないし請求項5のいずれかに記載の非接触軸受
スピンドル装置。
6. A thrust type non-contact bearing for supporting the main shaft in a non-contact manner facing a flange formed on the main shaft, a bearing surface of the thrust type non-contact bearing and a main shaft facing the bearing surface. 6. A sprayed layer of molybdenum or carbon is provided on one of the flange surfaces, and a sprayed layer of ceramic is formed on the other surface of the bearing surface and the flange surface of the main shaft. A non-contact bearing spindle device according to claim 1.
JP2000180888A 2000-06-16 2000-06-16 Noncontact bearing spindle device Pending JP2002005163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000180888A JP2002005163A (en) 2000-06-16 2000-06-16 Noncontact bearing spindle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000180888A JP2002005163A (en) 2000-06-16 2000-06-16 Noncontact bearing spindle device

Publications (1)

Publication Number Publication Date
JP2002005163A true JP2002005163A (en) 2002-01-09

Family

ID=18681889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000180888A Pending JP2002005163A (en) 2000-06-16 2000-06-16 Noncontact bearing spindle device

Country Status (1)

Country Link
JP (1) JP2002005163A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016536543A (en) * 2013-09-13 2016-11-24 グリーン リフリッジレイション エクィップメント エンジニアリング リサーチ センター オブ ズーハイ グリー シーオー., エルティーディー.Green Refrigeration Equipment Engineering Research Center of Zhuhai Gree Co., Ltd. Magnetic levitation bearing and centrifugal compressor
CN109058293A (en) * 2018-08-14 2018-12-21 珠海格力电器股份有限公司 Rotating shaft bearing structure and motor
CN109458394A (en) * 2017-09-06 2019-03-12 气体产品与化学公司 Bearing assembly

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016536543A (en) * 2013-09-13 2016-11-24 グリーン リフリッジレイション エクィップメント エンジニアリング リサーチ センター オブ ズーハイ グリー シーオー., エルティーディー.Green Refrigeration Equipment Engineering Research Center of Zhuhai Gree Co., Ltd. Magnetic levitation bearing and centrifugal compressor
EP3045752B1 (en) * 2013-09-13 2021-01-27 Green Refrigeration Equipment Engineering Research Center of Zhuhai Gree Co., Ltd. Magnetic suspension bearing and centrifugal compressor
CN109458394A (en) * 2017-09-06 2019-03-12 气体产品与化学公司 Bearing assembly
CN109058293A (en) * 2018-08-14 2018-12-21 珠海格力电器股份有限公司 Rotating shaft bearing structure and motor

Similar Documents

Publication Publication Date Title
US6373156B2 (en) Combined externally pressurized gas-magnetic bearing assembly and spindle device utilizing the same
WO2020168749A1 (en) Magnetic levitation centrifugal compressor and air conditioner
US6508614B1 (en) Spindle device and machine tool utilizing the same
US7789636B2 (en) Turbomachine, particularly exhaust gas turbocharger
JP2008082425A (en) Magnetic bearing device
JP2009210022A (en) Sealing device and rolling bearing device
JP2002005163A (en) Noncontact bearing spindle device
US6508590B2 (en) Externally pressurized gas bearing spindle
TW202219397A (en) Bearing device
JP3636746B2 (en) Magnetic bearing device
TW201338362A (en) Rotating electric machine
JP2000263359A (en) Static pressure magnetic combined bearing spindle device
JP4146065B2 (en) Hydrostatic magnetic compound bearing spindle device
CN110233536B (en) Electromagnetic actuating mechanism and motor on high-speed rotating shaft system
JP3733160B2 (en) Magnetic bearing device
US20220010803A1 (en) Bearing structure
WO2022059573A1 (en) Bearing device
EP4083456A1 (en) Bearing device, spindle device, bearing and spacer
US11143238B2 (en) Bearing structure
KR20050110506A (en) Active control magnetic bearing
JP4529129B2 (en) Hydrostatic air bearing spindle
JP3609613B2 (en) Hydrostatic magnetic compound bearing
JP2000263375A (en) Spindle device
JPH11103554A (en) Bearing unit for spindle motor
US20240297551A1 (en) Rotor for a high-speed electrical machine