JP3609613B2 - Hydrostatic magnetic compound bearing - Google Patents
Hydrostatic magnetic compound bearing Download PDFInfo
- Publication number
- JP3609613B2 JP3609613B2 JP12196698A JP12196698A JP3609613B2 JP 3609613 B2 JP3609613 B2 JP 3609613B2 JP 12196698 A JP12196698 A JP 12196698A JP 12196698 A JP12196698 A JP 12196698A JP 3609613 B2 JP3609613 B2 JP 3609613B2
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- magnetic
- hydrostatic
- rotor
- main shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、静圧気体軸受と磁気軸受とを組み合わせた静圧磁気複合軸受に関し、例えば、高速切削加工機のスピンドル装置等に用いられる静圧磁気複合軸受に関する。
【0002】
【従来の技術と発明が解決しようとする課題】
磁気軸受は、大きな軸受ギャップを持つため回転によるトルクロスが極めて小さく、積分制御により大きな静剛性を付与できる特徴がある。
図26は、従来のアルミ材用高速ミーリング磁気軸受スピンドル装置を示す縦断面図である。この従来例のスピンドル装置は、タッチダウンベアリング251、工具252、変位センサ253、ラジアル磁気軸受254、スラスト磁気軸受255、モータ256、ラジアル磁気軸受257、変位センサ258、および主軸259を有する。この磁気軸受スピンドル装置は、最高回転数:4万rpm、出力:15kW、最大切削能力:1250cm3 /minの各性能を有し、上記用途として大変優れたものである。
【0003】
しかし、磁気軸受スピンドル装置は、加工中に主軸の曲げ固有振動数の影響を受け易く、そのため非常に複雑な制御系を構成する必要がある。したがって、様々な加工条件への対応が要求される汎用工作機用スピンドル装置としては適さない。
【0004】
一方、非接触の軸受として、磁気軸受のほかに静圧気体軸受がある。静圧気体軸受は、回転精度が極めて高く優れた動的安定性を持っているが、圧縮性を有するために、静剛性および負荷容量が小さく、汎用工作機械用としてはほとんど適用例がない。
【0005】
そこで、最近、高速加工機用スピンドル装置として、図27に縦断面図で示すような、静圧気体軸受と磁気軸受とを組合せた複合軸受スピンドル装置が提案され、実用化が検討されている。この従来例のスピンドル装置は、変位センサ263、ラジアル磁気軸受264、スラスト磁気軸受265、モータ266、ラジアル磁気軸受267、変位センサ268、変位センサ270、主軸271、および静圧気体軸受272,273を有する。
【0006】
しかし、同図の複合軸受スピンドル装置では、磁気軸受264,267と、静圧気体軸受272,273とを、軸方向に並べて配置しているため、主軸271が長くなり、曲げ固有振動数が低くなるという問題点がある。また、磁気軸受を単独で適用するスピンドル装置の場合と全く同じ構造の制御系の構成を採用しているために、静圧気体軸受の動的安定性を損ね、むしろ外乱発生源として作用するという問題点もある。
また、このスピンドル装置で高回転精度を得るためには、磁気軸受用変位センサが高精度であることが要求されるが、通常、磁気軸受に使用される変位センサは渦電流センサなどの磁気センサが用いられ、分解能は1μm程度である。一方、高精度変位センサとしては静電容量型変位センサがあるが、高価で利用は難しい。
したがって、静圧気体軸受,磁気軸受の特長を生かしつつ、欠点を補い合うという目的は十分に達成されていないのが現状である。
【0007】
この発明の目的は、このような課題を解消し、静圧気体軸受の優れた動剛性および高回転精度と磁気軸受の優れた静剛性とを併せ持ち、コンパクト化が図れる静圧磁気複合軸受を提供することである。
この発明の他の目的は、電磁石のコアの材質の選定や組み合わせにより、絞りの加工性の向上による静圧気体軸受の高精度化や、コンパクト化、鉄損の軽減による発熱防止を実現可能とすることである。
【0008】
【課題を解決するための手段】
この発明の静圧磁気複合軸受は、いずれもロータの変位を測定する変位測定手段を有し、この変位測定手段の測定値に従って電磁力を発生させる磁気軸受と、この磁気軸受の軸受ステータに絞りを有する静圧気体軸受とを併設することにより前記ロータを非接触支持するものである。このため、静圧気体軸受の優れた動剛性および回転精度と磁気軸受の優れた静剛性という両者の特長を生かした軸受とできる。なお、静圧気体軸受は、例えば静圧空気軸受とされる。静圧気体軸受は、磁気軸受の磁極面および隣合う磁極面間の非磁性部材面により円周面状の内径面に構成しても良い。
この発明の静圧磁気複合軸受は、ラジアル軸受であっても、アキシャル軸受であっても良い。
ラジアル軸受に適用した場合は、静圧による支持と磁気による支持とに、ロータとなる主軸に別の長さ部分を必要とせず、軸方向に短い複合軸受とでき、主軸長さを短くできる。これにより、曲げ固有振動数が高められ、より高速回転が可能となる。また、軸方向に対する磁気軸受の支持中心点と静圧気体軸受の支持中心点とを略一致させることができ、両軸受の制御が容易になる。
アキシャル軸受に適用した場合は、単に静圧気体軸受と磁気軸受とを径方向に並べて配置する場合に比べて、構成がコンパクトになり、ロータの軸受対向面の径を小さくできる。
【0009】
このうち請求項1記載の静圧磁気複合軸受は、磁気軸受の電磁石のコアにむく材を使用したものである。
むく材を使用すると、通常使用される積層鋼板で構成された磁気軸受のコアと比較し、自成絞り等の絞りが加工し易く、精度の良い静圧気体軸受を構成することができる。
【0010】
請求項2記載の静圧磁気複合軸受は、電磁石のコアにつき、全体をむく材とする代わりに、一部をむく材で構成し、このむく材の部分に静圧気体軸受の前記絞りを設け、前記コアのその他の部分を積層珪素鋼板としたものである。
これにより、電磁石のコアで発生する鉄損を軽減すると共に、静圧気体軸受の自成絞り等の絞りを容易に形成することができる。
【0013】
【発明の実施の形態】
この発明の第1の実施形態を図1ないし図3と共に説明する。
図1はこの実施形態にかかる静圧磁気複合軸受を応用したスピンドル装置の縦断面図を示す。この静圧磁気複合軸受スピンドル装置1は、工作機械のビルトインモータ形式のスピンドル装置であって、スピンドル台となる円筒状のハウジング2内に、モータ5の前後に配置された一対の静圧磁気複合軸受3,3と、後端のスラスト磁気軸受10とを介して主軸4を回転自在に支持したものである。主軸4は、静圧磁気複合軸受3のロータとなる。モータ5は、主軸4に一体に設けられたモータ部ロータ6と、ハウジング2に直接設置されたステータ7とで構成される。
ハウジング2の前後端にはフランジ21A,21Bが形成され、これらフランジ21A,21Bの内周面は潤滑性に優れた材料からなる保護用軸受面22とされている。これにより、複合軸受3に異常が生じて主軸4がタッチダウンした場合でも、主軸4の焼付きが防止される。
スラスト磁気軸受10は、主軸4に一体に設けた軸受ロータ19と、ハウジング2に設置され上記軸受ロータ19を軸方向に前後から挟む一対の軸受ステータ20A,20Bとからなる。軸受ステータ20A,20Bのコイル電流は、主軸4の軸方向変位を検出するスラスト変位センサ24の測定値で制御される。スラスト変位センサ24は、ハウジング2の後部壁23に設けられている。
【0014】
前後の静圧磁気複合軸受3,3は、次のようにラジアル磁気軸受8とラジアル静圧気体軸受9とを、構成部品に兼用部分が生じるように一体化させたものである。静圧気体軸受9には静圧空気軸受が用いられている。なお、後述の各実施形態においても、各静圧気体軸受には静圧空気軸受を用いている。ラジアル磁気軸受8は、主軸4の外周に設けられた磁性体の軸受ロータ11と、ハウジング2に設置された軸受ステータ12とで構成される。軸受ステータ12は、コア13とコイル14とコイル覆い材18とでリング状に形成されている。コア13には固有抵抗の大きい軟磁性むく材が使用される。コア13は、図2に示すようにリング状部分から複数のヨーク部13aを内径側へ互いに放射状に突出させたものであり、各ヨーク部13aに前記コイル14が巻かれている。隣合うヨーク部13a,13a間の隙間は、樹脂モールド、または非磁性金属材料もしくはセラミックス材料からなる溶射による充填、または非磁性金属材料もしくはセラックス材料からなる隔壁、などからなるコア覆い材18によって充填される。コア覆い材18の内径面は、ヨーク部13aの先端面と共に同一円筒面に仕上げ加工されている。これらコア覆い材18とヨーク部13aとで軸受ステータ12の円筒面状の内径面を構成している。
【0015】
軸受ステータコア13のリング状部の内部には、全周にわたる給気通路16が形成され、この給気通路16から各々分岐して、軸受隙間に給気する絞り15が各ヨーク部13aの電磁力発生面である先端内径面に開口して設けられている。給気通路16は、周方向の1か所または複数箇所に設けた給気口17から、圧力流体である圧縮空気の供給源(図示せず)に配管等で接続されており、供給された圧縮空気は、軸受ステータ12の内径面と主軸4との間に形成される軸受隙間dに噴出される。
これら絞り15と、軸受隙間形成部材を兼用する軸受ステータコア13およびコア覆い材18とで、ラジアル静圧気体軸受9が構成される。また、軸受ステータコア13は、絞り15および給気通路16の形成部材を兼用する。
この構成により、静圧気体軸受9は、磁気軸受8の全体の軸方向幅内に配置されることになる。また、磁気軸受8のギャップは、軸受ステータコア13と主軸4との間の隙間となるので、静圧気体軸受9の軸受隙間dと、磁気軸受8のギャップとは、互いに主軸4の軸方向の同じ位置に設けられることになる。
図3に示すように、絞り15は自成絞りであり、コア13に設けられた給気孔15aと軸受隙間dとで構成される。給気孔15aは、内径が段付きに形成されて、コア13の内面からなる静圧気体軸受面に開口する部分が微細孔となっており、この微細孔部分は、直径1mm以下とされている。このように、静圧気体軸受の給気形式に自成絞りを用いた場合、ニューマティックハンマに対する安定性が向上し、高周波域の軸安定性すなわち動剛性を高めることができる。絞り15は主軸4の円周方向の少なくとも3か所に配置することが好ましい。
【0016】
なお、この実施形態では、ヨーク部13aの全体をむく材としたが、図4に示すように、ヨーク部13aの絞り周囲部13aaのみをむく材で形成し、ヨーク部13aのその他の部分である絞り非近傍部13abは、積層珪素鋼板としても良い。いずれの場合も、微細孔で形成される自成絞り15の部分をむく材で製作するため、通常使用される積層鋼板で構成されたコアに加工する場合に比べて、このような微細孔の形成が容易に行え、精度良く静圧気体軸受を形成することができる。また、図4の例のように、絞り周囲部13aa以外に積層珪素鋼板を用いた場合は、全てむく材とする場合に比べてコア13で発生する鉄損を軽減できる。
【0017】
この静圧磁気複合軸受3は、このように静圧気体軸受9と磁気軸受8とを組み合わせたものであるため、静圧気体軸受9の優れた動剛性および回転精度と磁気軸受8の優れた静剛性という両者の特長を生かした軸受とできる。
しかも、静圧気体軸受9と磁気軸受8とは、構成部品が兼用されているため、単に静圧気体軸受と磁気軸受とを軸方向に並べて配置する場合に比べて、構成がコンパクトになり、主軸4の長さ短縮できる。これにより、曲げ固有振動数が高められ、より高速回転が可能となる。特に、この実施形態では、磁気軸受8の軸受ステータコア13およびコア覆い材18が静圧気体軸受9の軸受隙間形成部材を兼用し、かつ前記軸受ステータコア13が絞り15および給気通路16の形成部材を兼用するため、構成部品が高度に兼用化され、構成のコンパクト化の効果が高い。
【0018】
前記静圧磁気複合軸受3の制御系を説明する。軸受ステータ12には、コア覆い材18を半径方向に貫通して軸受隙間dに開口する圧力検出用通気孔26が、絞り15の近くの周方向4か所に等間隔に設けられ、これに連通するセンサ装着孔25に圧力センサ27A〜27Dが設けられている。これら圧力センサ27A〜27Dは、互いに直径方向に対向する2つのセンサが1組となって、主軸4のラジアル変位を検出する差圧式のエアマイクロセンサとされている。すなわち、互いに直径方向に対向する圧力センサ27A,27Bが1つの組を、圧力センサ27C,27Dが他の1つの組をなし、一方の圧力センサ27A,27Bの組の間では、対応する通気孔26が開口する静圧気体軸受面での圧力差を測定し、これを主軸4のY軸方向の変位に換算する。また、他方の圧力センサ27C,27Dの組の間でも、対応する通気孔26が開口する静圧気体軸受面での圧力差を測定し、これを主軸4のX軸方向の変位に換算する。
【0019】
コントローラ28aおよびアンプ29などで構成される磁気軸受制御手段28は、Y軸方向およびX軸方向のフィードバック制御系を有しており、Y軸方向のフィードバック制御系では、上記圧力センサ27A,27Bにより検出される主軸4のY軸方向への変位に基づき、磁気軸受8のY軸方向のフィードバック制御が行われる。すなわち、主軸4の変位に応じて、アンプ29を経て圧力センサ27A,27Bに対応する位置のコイル14またはその近隣の幾つかのコイル14に供給する電流を加減し、主軸4がY軸方向に偏らないように制御する。すなわち、主軸4が目標位置に一致するように制御する。これと同様に、磁気軸受制御手段28のX軸方向のフィードバック制御系は、他の圧力センサ27C,27Dの測定値により、所定のコイル14の電流制御を行う。
このように、磁気軸受8の変位センサとして、軸受隙間dの静圧を検出する圧力センサ27A〜27Dを用いたエアマイクロセンサ方式を採用するため、磁気軸受8の制御系のゼロ点(目標値)と静圧気体軸受9の支持中心点(圧力平衡点)を容易に一致させることができ、複雑なセンサ調整が不要となる。また、他の方式のセンサで問題となるロータセンサターゲット面の磁気特性むらや真円度誤差は無関係となる。
【0020】
磁気軸受制御手段28によるフィードバック制御は、積分動作または比例積分動作のみとされ、高周波における補償は行われない。また、圧力センサ27A,27Bのドリフト等により磁気軸受制御系のゼロ点と静圧気体軸受9の支持中心点がずれる場合は、積分制御において僅かな不感帯w(図5)を設けてもよい。不感帯wは、圧力センサ27A,27Bと磁気軸受制御手段28との間に図6のように不感帯回路31を設けることで設定しても、また磁気軸受制御手段28を構成する制御回路内に不感帯回路を設けることで設定しても良い。このように不感帯wを設けることにより、温度ドリフト等による磁気軸受8の誤動作を抑制することができる。すなわち、動剛性(高周波領域)を静圧気体軸受9で、静剛性(低周波領域)を磁気軸受8でそれぞれ分担して受け持つ役割分担が確実に行えて、両軸受8,9の特長が共に生かされ、互いに干渉することを回避できる。また、このように、磁気軸受8は積分動作または比例積分動作という低周波制御系となるため、比較的応答性の遅い圧力センサ27A〜27Dを変位センサとして用いることができる。
磁気軸受8の性能は、磁気軸受制御手段28の設定によって設定することができるが、一般に磁気軸受の場合、高周波域に有効に減衰力を発生させ、主軸を安定して浮上させることが難しいといった問題がある。そこで、この発明では、磁気軸受8は、その特長である低周波域での軸受剛性を高める役目だけに利用するようにしている。
【0021】
磁気軸受8のコイル14に電流を供給するアンプ29には、電流−電磁力を線型化させるための線型化回路、例えば電流2乗フィードバック回路を有するものが用いられる。これにより、バイアス電流を流すことなく線形化でき、磁気軸受特有の負の剛性も発生しない。すなわち、磁気軸受8で負の剛性が発生するのを回避でき、その負の剛性により静圧気体軸受9の安定性が損なわれるのを防止できる。また、主軸4が回転したときにそのバイアス電流によって発生する主軸4内の鉄損を無くすことができ、高速回転が可能となる。
磁気軸受制御手段28には、主軸4の回転数に同期したバンドエリミネートフィルタ32(図7)を挿入しても良い。これにより、主軸4の回転時のロータアンバランスによる振れに対して、磁気軸受8の電磁石からの電磁力は作用しなくなる。前述したように、磁気軸受制御手段28を積分動作で構成した場合には高周波域での磁気軸受8の作用力は主軸4に対して、不安定力として働く。主軸4の回転時には主軸4の振れは回転同期成分が主成分となる。これを選択的に除去することで、主軸4を安定して回転させることが可能となる。
【0022】
なお、この実施形態では、圧力センサ27A〜27Dで直接に主軸4の変位を検出するようにしたが、圧力センサによる測定値から換算して、主軸4と静圧気体軸受面との間の隙間の大きさを求め、この隙間の変化に応じて磁気軸受制御手段28による制御を行うようにしても良い。
また、圧力センサを前記のように磁気軸受8のコア13の内部に配置する代わりに、静圧気体軸受9の軸受隙間に連通するように中空パイプ(図示せず)を配置し、外部の圧力センサで圧力を測定するようにしても良い。軸受サイズが小さく、外部に圧力センサを収納するスペースがある場合は、この外部に配置する構成が好ましい。
さらに、図8に示すように、磁気軸受8の内径部、例えばコア覆い材18等の部分に直接に圧力センサ27を配置し、主軸4とコア13間の圧力を測定して主軸4の変位に換算するようにしても良い。
【0023】
図9,図10は、他の実施形態にかかる静圧磁気複合軸受を示す。この例は、ラジアル磁気軸受8Aの軸受ステータ12のコア13A内に、静圧気体軸受9Aの軸受隙間dへ給気する絞り15を形成した静圧磁気複合軸受3Aにおいて、ラジアル磁気軸受8の電磁石のコア13Aをいわゆる馬蹄形とし、その磁極13Aa,13Aaの対を、主軸4の軸方向に並べて配置した構造である。各磁極13Aaの同一円周上の極性は同じにしてある。この様にすることで、主軸4の回転に伴って主軸4で発生する鉄損を減少させることができる。その他の構成,効果は第1の実施形態と同様である。コア13Aの個数は、換言すれば電磁石の個数は、円周方向に3個以上とすることが好ましい。
このように、磁気軸受8Aを構成する電磁石を3個以上有するものとし、各電磁石のコア13Aの磁極13Aaを回転軸方向に配置し、同一円周上における各磁極13Aaの極性を一致させることで、主軸4の回転に伴い、磁気軸受8Aの主軸部で発生するヒステリシス損および渦電流損を軽減できる。また、これらの損失による主軸4の発熱が抑制できるため、主軸4の熱膨張よる軸受隙間の減少を最小限に抑え、安定した静圧気体軸受9Aの性能を得ることができる。
【0024】
図11〜図13の軸受3Bは、図9,図10の例に対して、ラジアル磁気軸受8Aのコア形状を改良したものである。主軸4の軸方向に配置したコア13Bのヨーク部13Ba,13Bbのうち、一方のヨーク部13Ba側を円周方向に隣り合うヨーク部と共通化し、形状を簡略化させている。このように電磁石を構成することで、電磁石のヨーク13Bの加工工数を減少できて、加工性を向上させることができると共に、主軸4の回転に伴い発生する磁気軸受主軸部分での鉄損をさらに軽減することができ、より高速回転に対応できる。
【0025】
図14は、第1の実施形態において、軸受3と対向する主軸4の表面にセラミックスのコーティング層33を施したものである。これにより、タッチダウン時の主軸4および軸受面の焼き付きを防止できる。さらに、コーティング層33がセラミックスであるため、磁気軸受8の動作中で主軸4が回転したときに、その主軸4の内部での、鉄損の発生を抑制でき、主軸4の高速回転に対応できる。また、コーティング層33の外周面は静圧気体軸受9のロータ面、内周面は磁気軸受8のロータ面となり、静圧気体軸受隙間と磁気軸受隙間とが異なる寸法となるため、コーティング層33の厚さを調整することで、最適な静圧気体軸受9と磁気軸受8の隙間を設定できる。このコーティング層33の厚さを1mm厚以下とすることで磁気軸受隙間d′が広くなることを制限すれば、コイル14の供給電流を増やすことなく所望の電磁力を発生させることができる。
また、主軸4の磁気軸受8におけるロータ部に積層珪素鋼板(図示せず)を使用し、その上にセラミックスコーティング層33を施しても良い。前記積層珪素鋼板からなるロータ部は、例えば主軸4の外周に設ける。その場合、積層珪素鋼板を使用したことで、高速回転時の鉄損を一層軽減し、高速回転時のロータの発熱を抑えることができる。
また主軸4の材質、またはその外周に前記のように設けるロータ部の材質に、低熱膨張軟磁性材たとえばインバー材を使用し、その外周面上にセラミックスのコーティング層33を施すことが好ましい。これにより、主軸4ないしロータの曲げ固有振動数が高められ、より高速まで回転することが可能になる。また、インバー材は、低熱膨張係数を有するため、主軸4に温度上昇があっても、主軸4の熱膨張による軸受隙間d′の減少量は小さく抑えることができ、かつ磁気軸受8に適した磁気特性を持つ。このため安定した静圧気体軸受性能が確保できる。しかも、軸方向への膨張量も少ないため、工作機械用のスピンドル装置に応用した場合には、加工精度の向上に効果がある。さらに、一般にセラミックスは低熱膨張係数を有することから、例えばフェライト系のステンレス鋼で製作した主軸4上にセラミックスコーティング層33を施すと、主軸4の熱膨張係数の差によって、セラミックスコーティング層33に割れが発生したり、剥がれ生じる可能性があるが、インバー材を使用することによりこのような問題は解決される。
【0026】
なお、前記各静圧磁気複合ラジアル軸受の実施形態では、軸受ステータコア13に絞り15を設けたが、絞り15はコア13を避けてコイル覆い材18等に形成しても良い。
また、上記各静圧磁気複合ラジアル軸受の実施形態では、磁気軸受8と静圧気体軸受9とに部品を兼用させたが、磁気軸受と静圧気体軸受とは、必ずしも部品を兼用させなくても良く、磁気軸受の全体の軸方向幅内に静圧気体軸受を設け、または静圧気体軸受の全体の軸方向幅内に磁気軸受を設けても良い。あるいは、静圧気体軸受の軸受隙間dと、磁気軸受の軸およびステータコア間のギャップとを、互いに軸方向の略同じ位置に設ければ良い。部品の兼用を行わずに、磁気軸受と静電軸受との幅に共通部分を持たせる構成は、磁気軸受を構成する部品と静電軸受を構成する部品の配置を円周方向に異ならせることなどで実現される。
【0027】
図15は、この静圧磁気複合軸受をアキシャル軸受に適用した例を示す。この静圧磁気複合アキシャル軸受装置は、磁性体からなる主軸41の鍔状のスラスト支持部である軸受ロータ41aを軸方向両側から2つの静圧磁気複合アキシャル軸受部42,43で挟んで構成される。各静圧磁気複合アキシャル軸受42,43は、電磁石のコア44,45内にコイル46,47を収納し、このコア44,45内に絞り48を設けたものであって、主軸41の外周にリング状に設けられる。絞り48は自成絞りであり、コア44,45の軸受面に開口する先端が微細孔となった給気孔48aと、軸受隙間d1,d2とで構成される。前記のコア44,45とコイル46,47とで、アキシャル磁気軸受49の軸受ステータ52が構成され、コア44,45と絞り48とでアキシャル静圧気体軸受50が構成される。
【0028】
コア44,45とロータ41a間にこの圧力流体を噴出させることにより、コア44,45とロータ41a間に圧力が発生する。また、自成絞り48を設けたことによって、コア44,45とロータ41a間の隙間d1,d2の変動によって、圧力および隙間の間隔が自動的に変化し、自動調芯機能を有する静圧気体軸受を形成できる。これにより、ロータ41aを安定浮上させることができる。 この場合に、コア44,45とロータ41a間の隙間d1,d2を0.1mm以下と微小することで、この静圧気体軸受による軸受剛性を高め、静圧気体軸受単独でも、ロータ41aは安定して浮上することができる。
【0029】
この静圧磁気複合軸受には、外部にコア44,45とロータ41a間の距離を測定する変位センサ51を設け、その変位センサ51の測定値に応じてコイル46,47に流す電流をフィードバック制御する磁気軸受制御手段53を設ける。磁気軸受制御手段53は、例えばアンプ54を介して電流制御する。これにより、静圧気体軸受と磁気軸受とを兼用した軸受構成が可能となる。この磁気軸受制御手段53は、第1の実施形態等で説明した磁気軸受制御手段28と同様な機能のものを用いることができる。
【0030】
この実施形態の静圧磁気複合アキシャル軸受装置において、前記変位センサ51を設ける代わりに、静圧気体軸受面の圧力を測定し、この圧力によって静圧気体軸受50における軸受隙間d、すなわち電磁石のコア45とロータ41a間の隙間d(d1,d2)の大きさを換算して求めてもよい。この隙間dの大きさの検出結果により、磁気軸受制御手段53でコイル46,47の電流を制御する。圧力測定による変位測定の場合、他の方式のセンサで問題となるロータセンサターゲット面の磁気特性むらによるセンサの誤動作がなく、高精度なセンシングが可能となる。
【0031】
この圧力測定のために、同実施形態において、図16に示すように、電磁石のコア44,45の内部に圧力センサ55を配置し、直接に静圧気体軸受50の圧力を測定するようにしても良い。
図17に示すように、静圧気体軸受50に直結した形で、中空パイプ56を設け、外部の圧力センサ57で圧力を測定するようにしても良い。この場合、コア44などの静圧気体軸受50の軸受面の構成部材に圧力測定用の微細孔59を設け、この微細孔59に中空パイプ56を結合する。軸受サイズが小さく、外部に圧力センサのスペースがある場合には、外部に圧力センサ57を設けることが有利である。また、圧力測定用に設けた前記微細孔59の直径を1mm以下と規制することで、静圧気体軸受への影響を少なくし、またそれに接続するパイプ56の内径(直径)も1mm以下に規制することで、周波数特性を低下させずに圧力の測定が可能となる。
【0032】
図18は、図16のA−A断面を示した図である。この例では、センサ圧力測定個所を静圧磁気複合アキシャル軸受の静圧気体軸受面における同一円周上の等ピッチ3箇所以上(図18では3箇所の測定点a1,a2,a3)の圧力を測定し、各測定値から各部のロータ41aと電磁石コア44,45間の隙間d1,d2の値を換算し、その値の平均をとる。これにより、ロータ41aのアキシャル方向位置を正確に測定することができる。前記平均をとる演算は、例えば磁気軸受制御手段53で行う。
【0033】
上記のように3か所で圧力を測定する代わりに、図19に示すように、円周上の180°離れた対向する2個所の測定点b1,b2で行うようにしても良い。図19は図16のA−A断面に相当する図である。圧力測定点b1,b2をこのように円周上の180°離れた2点に設定することで、ロータ41aのピッチング運動もしくはヨーイング運動に影響されることなく、最小の圧力センサ個数でロータ41aのアキシャル方向位置を測定することができる。
【0034】
図16の例のようにロータ41aの両側に対向して静圧磁気複合アキシャル軸受部42,43を設ける場合、軸受隙間d1,d2の圧力を測定する測定点は、図20に示すように、各軸受隙間d1,d2について1個所ずつとしても良い。その場合、片方の軸受隙間d1の測定点c1と、もう片方の軸受隙間d2の測定点c2とは、投影面で同一円周上の180°離れた2点とする。また、磁気軸受制御手段53は、両測定点c1,c2の圧力測定値から求めた軸受隙間d1,d2の差分を計算して電流制御を行うようにする。これにより、ロータ41aのピッチング運動もしくはヨーイング運動に影響されることなく、さらにロータ41aに熱膨張があった場合にも、最小の圧力センサ個数でロータ41aのアキシャル方向位置を測定することができる。
これら図18ないし図20と共に説明した方法により、ロータ41aのアキシャル方向の変位を正確にかつ低コストで測定することができる。
【0035】
なお、前記各実施形態において示した圧力センサ、例えば図15,図16の例や、図8の例の圧力センサ51,55,27は、半導体圧力センサを用いても良い。これにより、装置をコンパクトでかつその測定結果を電気信号で直接外部に取り出すことができる。
【0036】
図21はさらに他の実施形態にかかる静圧磁気複合アキシャル軸受を示す。この例は、主軸41のロータ41aの片方のみを支えるアキシャル軸受としたものである。すなわち、磁気軸受49のステータコア45および静圧気体軸受50の絞り48をロータ41aの軸方向の片側のみに配置している。
この例では、磁気軸受49によるロータ41aへの作用力Fmは吸引力として働き、一方静圧気体軸受50によるロータ41aへの作用力Fsは反発力として作用する。よって、静圧気体軸受50の単独ではロータ軸方向が鉛直方向にあった場合には、ロータを支持することができない。しかし磁気軸受49と複合化することにより、軸受の据え付け方向に依らずロータ41aを支持することができる。このように、主軸41のスラスト支持部41aの片方のみに磁気軸受49および静圧気体軸受50を配置し、吸引力と反発力とを釣り合わせるようにした静圧磁気複合軸受とすることで、軸受構成がより一層コンパクトになる。
【0037】
図22は、他の応用例に係る静圧磁気複合軸受スピンドル装置の縦断面図を示す。この静圧磁気複合軸受スピンドル装置1は、図1の静圧磁気複合軸受スピンドル装置1において、モータ5と各軸受3,3,10の配置関係を変えたものであり、モータ5をハウジング2内の最後部に配置してある。スラスト磁気軸受10は、前後の静圧磁気複合軸受3,3の間に配置してある。その他の構成は前記実施形態と同じである。
図1の例のモータ配置では、モータ5を高出力とした場合、モータ5のロータ6の肉厚,質量が大きくなって曲げ固有振動数を低下させることがあるが、図22の実施形態のようにモータ5を主軸4の後端部に配置することで、これに対処できる。
【0038】
図23はさらに他の応用例を示す。この静圧磁気複合軸受スピンドル装置1は、図1の静圧磁気複合軸受スピンドル装置1において、軸受に対する主軸4のラジアル変位を検出するセンサとして、渦電流式の変位センサ30を用いたものである。各静圧磁気複合軸受3に対するセンサ30の設置位置は前後のどちらでも良いが、図示の例では、前部の静圧磁気複合軸受3に対するものは軸受前方とされ、後部の静圧磁気複合軸受3に対するものは軸受後方とされている。なお、上記渦電流式変位センサ30に代えて、リラクタンス式変位センサや静電容量式変位センサを用いてもよい。その他の構成は、図1の実施形態と同じである。
【0039】
図24は、静圧磁気複合軸受で構成したさらに他のスピンドル装置を示す。このスピンドル装置は、2組の静圧磁気複合ラジアル軸受65,66と、1組の静圧磁気複合アキシャル軸受67と、主軸68を回転させるモータ69から構成される。主軸68は静圧磁気複合アキシャル軸受67で支持される鍔状のロータ41aを有する。これら静圧磁気複合ラジアル軸受65,66および静圧磁気複合アキシャル軸受67には、前記各実施形態で説明したいずれのものを使用しても良い。
また、同図のスピンドル装置において、2組の静圧磁気複合ラジアル軸受65,66として、図25に示すように、コイル14の主軸軸方向の両側に自成絞り15を有する静圧磁気複合ラジアル軸受65A,66Aを用いても良い。図25の静圧磁気複合軸受スピンドル装置におけるその他の構成は図4に示すスピンドル装置と同じである。
なお、これらの例のスピンドル装置において、必ずしも全ての軸受を静圧磁気複合軸受で構成する必要はない。スラスト方向のみの静剛性を高める必要ある場合は、アキシャル軸受部のみを静圧磁気複合軸受で構成し、ラジアル方向の軸受支持を静圧気体軸受で構成すればよい。また、ラジアル方向のみの静剛性を高める必要のある場合は、スピンドル負荷側の端部に静圧磁気複合ラジアル軸受65を配置し、他の軸受支持部を静圧気体軸受で構成してもよい。
【0040】
【発明の効果】
この発明の静圧磁気複合軸受およびスピンドル装置は、いずれも静圧気体軸受と磁気軸受とを所定の関係で組み合わせたものであるため、静圧気体軸受の優れた動剛性と磁気軸受の優れた静剛性とを併せ持ちながら、構成がコンパクトになる。ラジアル軸受に適用した場合は、主軸長も短縮することができる。
また、電磁石のコアの材質の選定,組み合わせにより、給気用の絞りの加工性の向上による静圧気体軸受の高精度化や、コンパクト化、あるいは鉄損の軽減による発熱防止が実現できる。
【図面の簡単な説明】
【図1】この発明の第1の実施形態に係る静圧磁気複合軸受を応用したスピンドル装置の縦断面図である。
【図2】その静圧磁気複合ラジアル軸受の横断面図と軸受制御系のブロック図とを組み合わせて示す説明図である。
【図3】同静圧磁気複合ラジアル軸受の部分拡大図である。
【図4】同静圧磁気複合ラジアル軸受のヨーク部分の変形例の部分拡大図である。
【図5】同静圧磁気複合ラジアル軸受の電流制御例を示す説明図である。
【図6】同静圧磁気複合ラジアル軸受の制御系の変形例を示すブロック図である。
【図7】同静圧磁気複合ラジアル軸受の制御系の他の変形例を示すブロック図である。
【図8】この発明の他の実施形態にかかる静圧磁気複合ラジアル軸受の断面図である。
【図9】この発明のさらに他の実施形態にかかる静圧磁気複合ラジアル軸受の横断面図である。
【図10】その縦断面図である。
【図11】この発明のさらに他の実施形態にかかる静圧磁気複合ラジアル軸受の縦断面図である。
【図12】図11のXII−XII 線断面図である。
【図13】図11のXII1−XII1 線断面図である。
【図14】この発明のさらに他の実施形態にかかる静圧磁気複合ラジアル軸受の部分断面図である。
【図15】この発明のさらに他の実施形態にかかる静圧磁気複合アキシャル軸受の部分断面図と軸受制御系のブロック図とを組み合わせて示す説明図である。
【図16】この発明のさらに他の実施形態にかかる静圧磁気複合アキシャル軸受の部分断面図と軸受制御系のブロック図とを組み合わせて示す説明図である。
【図17】この発明のさらに他の実施形態にかかる静圧磁気複合ラジアル軸受の部分断面図である。
【図18】その測定点の説明図である。
【図19】その測定点の他の例の説明図である。
【図20】(A),(B)は各々測定点の他の例の説明図である。
【図21】この発明のさらに他の実施形態にかかる静圧磁気複合ラジアル軸受の部分断面図である。
【図22】この発明の他の応用例に係る静圧磁気複合軸受スピンドル装置の縦断面図である。
【図23】この発明のさらに他の応用例に係る静圧磁気複合軸受スピンドル装置の縦断面図である。
【図24】この発明のさらに他の応用例に係る静圧磁気複合軸受スピンドル装置の縦断面図である。
【図25】この発明のさらに他の応用例に係る静圧磁気複合軸受スピンドル装置の縦断面図である。
【図26】従来例の縦断面図である。
【図27】他の従来例の縦断面図である。
【符号の説明】
1…静圧磁気複合軸受スピンドル装置
2…ハウジング
3…静圧磁気複合軸受
4…主軸(ロータ)
8…ラジアル磁気軸受
9…ラジアル静圧気体軸受
10…スラスト磁気軸受
12…軸受ステータ
13…ステータコア
14…コイル
15…絞り
15a…給気孔
27A〜27D…圧力センサ(変位検出手段)
28…磁気軸受制御手段
33…コーティング層
41…主軸(ロータ)
41a…ロータ
44,45…ステータコア
46…コイル
48…絞り
49…磁気軸受
50…静圧気体軸受
53…磁気軸受制御手段
51…変位センサ
52…軸受ステータ
55…圧力センサ
d…軸受隙間[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrostatic magnetic compound bearing in which a hydrostatic gas bearing and a magnetic bearing are combined. For example, the present invention relates to a hydrostatic magnetic compound bearing used in a spindle device of a high-speed cutting machine.
[0002]
[Prior art and problems to be solved by the invention]
Magnetic bearings have a large bearing gap, so that torque cross due to rotation is extremely small, and there is a feature that a large static rigidity can be imparted by integral control.
FIG. 26 is a longitudinal sectional view showing a conventional high-speed milling magnetic bearing spindle device for aluminum material. This conventional spindle device includes a touch-
[0003]
However, the magnetic bearing spindle device is easily affected by the bending natural frequency of the main shaft during processing, and therefore, it is necessary to construct a very complicated control system. Therefore, it is not suitable as a spindle device for a general-purpose machine tool that is required to cope with various machining conditions.
[0004]
On the other hand, as a non-contact bearing, there is a static pressure gas bearing in addition to a magnetic bearing. Static pressure gas bearings have extremely high rotational accuracy and excellent dynamic stability. However, since they have compressibility, static rigidity and load capacity are small, and there are almost no application examples for general-purpose machine tools.
[0005]
Therefore, recently, as a spindle device for a high-speed processing machine, a composite bearing spindle device in which a static pressure gas bearing and a magnetic bearing are combined as shown in a longitudinal sectional view in FIG. 27 has been proposed, and its practical application has been studied. This conventional spindle apparatus includes a
[0006]
However, in the compound bearing spindle device of the figure, since the
In order to obtain high rotational accuracy with this spindle device, it is required that the displacement sensor for magnetic bearings has high accuracy. Usually, the displacement sensors used for magnetic bearings are magnetic sensors such as eddy current sensors. Is used, and the resolution is about 1 μm. On the other hand, there is a capacitive displacement sensor as a high-precision displacement sensor, but it is expensive and difficult to use.
Therefore, at present, the objective of making up for the drawbacks while taking advantage of the features of the static pressure gas bearing and the magnetic bearing has not been sufficiently achieved.
[0007]
The object of the present invention is to provide a hydrostatic magnetic composite bearing that eliminates such problems and combines the excellent dynamic rigidity and high rotational accuracy of a hydrostatic gas bearing with the excellent static rigidity of a magnetic bearing, and can be made compact. It is to be.
Another object of the present invention is to provide an electromagnet coupling.ABy selecting and combining materials, the precision of static pressure gas bearings is improved by improving the workability of the throttle, and heat generation is prevented by downsizing and iron loss.StopTo make it feasible.
[0008]
[Means for Solving the Problems]
Each of the hydrostatic magnetic composite bearings of this invention has a displacement measuring means for measuring the displacement of the rotor, a magnetic bearing for generating an electromagnetic force in accordance with the measured value of the displacement measuring means, and a restriction on the bearing stator of this magnetic bearing. The rotor is supported in a non-contact manner by providing a hydrostatic gas bearing having For this reason, it can be a bearing that takes advantage of both the excellent dynamic rigidity and rotational accuracy of the static pressure gas bearing and the excellent static rigidity of the magnetic bearing. The static pressure gas bearing is, for example, a static pressure air bearing.The The static pressure gas bearing may be configured as a circumferential inner surface by a nonmagnetic member surface between the magnetic pole surface of the magnetic bearing and the adjacent magnetic pole surface.
ThisThe hydrostatic magnetic composite bearing of the present invention may be a radial bearing or an axial bearing.
When it is applied to a radial bearing, it is possible to provide a composite bearing that is short in the axial direction without requiring a separate length portion for the main shaft serving as the rotor for the support by static pressure and the support by magnetism, and the main shaft length can be shortened. As a result, the natural bending frequency is increased, and higher-speed rotation is possible. In addition, the support center point of the magnetic bearing and the support center point of the static pressure gas bearing with respect to the axial direction can be made substantially coincident, and control of both bearings becomes easy.
When applied to an axial bearing, the configuration is more compact and the diameter of the bearing-facing surface of the rotor can be made smaller than when the static pressure gas bearing and the magnetic bearing are arranged side by side in the radial direction.
[0009]
Among these, the hydrostatic magnetic composite bearing according to
When the stripping material is used, it is easy to process a diaphragm such as a self-contained diaphragm, and a highly precise hydrostatic gas bearing can be constructed as compared with a core of a magnetic bearing composed of normally used laminated steel sheets.
[0010]
The hydrostatic magnetic composite bearing according to
Thereby, while reducing the iron loss which generate | occur | produces in the core of an electromagnet, apertures, such as a self-contained aperture | diaphragm | restriction of a static pressure gas bearing, can be formed easily.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a longitudinal sectional view of a spindle apparatus to which a hydrostatic magnetic compound bearing according to this embodiment is applied. This hydrostatic magnetic compound bearing
The thrust
[0014]
The front and rear hydrostatic magnetic
[0015]
Inside the ring-shaped portion of the bearing
A radial static pressure gas bearing 9 is configured by the
With this configuration, the static pressure gas bearing 9 is disposed within the entire axial width of the
As shown in FIG. 3, the
[0016]
In this embodiment, the
[0017]
Since the hydrostatic magnetic
Moreover, since the static pressure gas bearing 9 and the
[0018]
A control system of the hydrostatic magnetic
[0019]
The magnetic bearing control means 28 including the
Thus, since the air micro sensor system using the
[0020]
The feedback control by the magnetic bearing control means 28 is only integral operation or proportional integral operation, and no compensation at high frequency is performed. Further, when the zero point of the magnetic bearing control system and the support center point of the static pressure gas bearing 9 are shifted due to the drift of the
The performance of the
[0021]
As the
A band elimination filter 32 (FIG. 7) synchronized with the rotational speed of the main shaft 4 may be inserted into the magnetic bearing control means 28. Thereby, the electromagnetic force from the electromagnet of the
[0022]
In this embodiment, the displacement of the main shaft 4 is directly detected by the
Further, instead of disposing the pressure sensor inside the
Further, as shown in FIG. 8, a
[0023]
9 and 10 show a hydrostatic magnetic composite bearing according to another embodiment. This example is an electromagnet of the radial
Thus, it is assumed that the
[0024]
The
[0025]
FIG. 14 shows a case where a
Alternatively, a laminated silicon steel plate (not shown) may be used for the rotor portion of the
Further, it is preferable to use a low thermal expansion soft magnetic material such as an invar material as the material of the main shaft 4 or the rotor portion provided on the outer periphery thereof as described above, and apply a
[0026]
In the embodiments of the hydrostatic magnetic composite radial bearings, the bearing
In the embodiments of the hydrostatic magnetic composite radial bearings described above, the
[0027]
FIG. 15 shows an example in which this hydrostatic magnetic composite bearing is applied to an axial bearing. This hydrostatic magnetic composite axial bearing device is configured by sandwiching a bearing
[0028]
By ejecting this pressure fluid between the
[0029]
This hydrostatic magnetic composite bearing is provided with a
[0030]
In the hydrostatic magnetic composite axial bearing device of this embodiment, instead of providing the
[0031]
In order to measure this pressure, in the same embodiment, as shown in FIG. 16, a
As shown in FIG. 17, a
[0032]
FIG. 18 is a view showing a cross section taken along line AA of FIG. In this example, the sensor pressure is measured at three or more equal pitches (three measurement points a1, a2, a3 in FIG. 18) on the same circumference of the static pressure gas bearing surface of the hydrostatic magnetic composite axial bearing. Measurement is performed, and the values of the gaps d1 and d2 between the
[0033]
Instead of measuring the pressure at three locations as described above, as shown in FIG. 19, the measurement may be performed at two opposing measurement points b1 and b2 that are 180 ° apart from each other on the circumference. FIG. 19 is a view corresponding to the AA cross section of FIG. By setting the pressure measurement points b1 and b2 to two points 180 ° apart on the circumference in this way, the minimum number of pressure sensors of the
[0034]
When the hydrostatic magnetic composite
18 to 20, the displacement in the axial direction of the
[0035]
Note that semiconductor pressure sensors may be used as the pressure sensors shown in the above embodiments, for example, the
[0036]
FIG. 21 shows a hydrostatic magnetic composite axial bearing according to still another embodiment. In this example, an axial bearing that supports only one of the
In this example, the acting force Fm on the
[0037]
FIG. 22 is a longitudinal sectional view of a hydrostatic magnetic compound bearing spindle device according to another application example. This hydrostatic magnetic compound bearing
In the motor arrangement of the example of FIG. 1, when the motor 5 has a high output, the thickness and mass of the
[0038]
FIG. 23 shows still another application example. This hydrostatic magnetic compound bearing
[0039]
FIG. 24 shows still another spindle apparatus constituted by a hydrostatic magnetic compound bearing. This spindle apparatus is composed of two sets of hydrostatic magnetic composite
Further, in the spindle apparatus shown in the figure, as shown in FIG. 25, as two sets of hydrostatic magnetic composite
In the spindle apparatus of these examples, it is not always necessary to configure all the bearings with hydrostatic magnetic compound bearings. When it is necessary to increase the static rigidity only in the thrust direction, only the axial bearing portion may be configured by a static pressure magnetic composite bearing, and the bearing support in the radial direction may be configured by a static pressure gas bearing. Further, when it is necessary to increase the static rigidity only in the radial direction, the hydrostatic magnetic composite
[0040]
【The invention's effect】
Since the hydrostatic magnetic compound bearing and the spindle device of the present invention are both a combination of a hydrostatic gas bearing and a magnetic bearing in a predetermined relationship, the hydrodynamic gas bearing has an excellent dynamic rigidity and an excellent magnetic bearing. The structure becomes compact while having both static rigidity. When applied to radial bearings, the spindle length can also be shortened.
In addition, the electromagnetABy selecting and combining materials, the precision of static pressure gas bearings is improved by improving the workability of the throttle for supplying air, and heat generation is prevented by downsizing or reducing iron loss.Stoprealizable.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a spindle device to which a hydrostatic magnetic composite bearing according to a first embodiment of the present invention is applied.
FIG. 2 is an explanatory view showing a combination of a cross-sectional view of the hydrostatic magnetic composite radial bearing and a block diagram of a bearing control system.
FIG. 3 is a partially enlarged view of the hydrostatic magnetic composite radial bearing.
FIG. 4 is a partially enlarged view of a modified example of a yoke portion of the hydrostatic magnetic composite radial bearing.
FIG. 5 is an explanatory diagram showing an example of current control of the hydrostatic magnetic composite radial bearing.
FIG. 6 is a block diagram showing a modification of the control system of the hydrostatic magnetic composite radial bearing.
FIG. 7 is a block diagram showing another modification of the control system of the hydrostatic magnetic composite radial bearing.
FIG. 8 is a cross-sectional view of a hydrostatic magnetic composite radial bearing according to another embodiment of the present invention.
FIG. 9 is a cross-sectional view of a hydrostatic magnetic composite radial bearing according to still another embodiment of the present invention.
FIG. 10 is a longitudinal sectional view thereof.
FIG. 11 is a longitudinal sectional view of a hydrostatic magnetic composite radial bearing according to still another embodiment of the present invention.
12 is a cross-sectional view taken along line XII-XII in FIG.
13 is a cross-sectional view taken along line XII1-XII1 of FIG.
FIG. 14 is a partial sectional view of a hydrostatic magnetic composite radial bearing according to still another embodiment of the present invention.
FIG. 15 is an explanatory view showing a combination of a partial cross-sectional view of a hydrostatic magnetic composite axial bearing according to still another embodiment of the present invention and a block diagram of a bearing control system.
FIG. 16 is an explanatory view showing a combination of a partial cross-sectional view of a hydrostatic magnetic composite axial bearing according to still another embodiment of the present invention and a block diagram of a bearing control system.
FIG. 17 is a partial sectional view of a hydrostatic magnetic composite radial bearing according to still another embodiment of the present invention.
FIG. 18 is an explanatory diagram of the measurement points.
FIG. 19 is an explanatory diagram of another example of the measurement points.
20A and 20B are explanatory diagrams of other examples of measurement points.
FIG. 21 is a partial cross-sectional view of a hydrostatic magnetic composite radial bearing according to still another embodiment of the present invention.
FIG. 22 is a longitudinal sectional view of a hydrostatic magnetic compound bearing spindle device according to another application example of the present invention.
FIG. 23 is a longitudinal sectional view of a hydrostatic magnetic compound bearing spindle device according to still another application example of the present invention.
FIG. 24 is a longitudinal sectional view of a hydrostatic magnetic compound bearing spindle device according to still another application example of the present invention.
FIG. 25 is a longitudinal sectional view of a hydrostatic magnetic compound bearing spindle device according to still another application example of the present invention.
FIG. 26 is a longitudinal sectional view of a conventional example.
FIG. 27 is a longitudinal sectional view of another conventional example.
[Explanation of symbols]
1 ... Static pressure magnetic compound bearing spindle device
2 ... Housing
3… Hydrostatic magnetic compound bearing
4 ... Spindle (rotor)
8. Radial magnetic bearing
9. Radial static pressure gas bearing
10. Thrust magnetic bearing
12 ... Bearing stator
13 ... Stator core
14 ... Coil
15 ... Aperture
15a ... Air supply hole
27A-27D ... Pressure sensor (displacement detection means)
28 ... Magnetic bearing control means
33 ... Coating layer
41 ... Spindle (rotor)
41a ... rotor
44, 45 ... stator core
46 ... Coil
48 ... Aperture
49 ... Magnetic bearing
50 ... Static pressure gas bearing
53. Magnetic bearing control means
51. Displacement sensor
52 ... Bearing stator
55 ... Pressure sensor
d ... Bearing clearance
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12196698A JP3609613B2 (en) | 1997-04-28 | 1998-05-01 | Hydrostatic magnetic compound bearing |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9-110824 | 1997-04-28 | ||
JP11082497 | 1997-04-28 | ||
JP12196698A JP3609613B2 (en) | 1997-04-28 | 1998-05-01 | Hydrostatic magnetic compound bearing |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09750598A Division JP3696398B2 (en) | 1997-04-28 | 1998-04-09 | Hydrostatic magnetic compound bearing and spindle device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004234964A Division JP2004324895A (en) | 1997-04-28 | 2004-08-12 | Static pressure magnetic combined bearing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1113761A JPH1113761A (en) | 1999-01-22 |
JP3609613B2 true JP3609613B2 (en) | 2005-01-12 |
Family
ID=26450356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12196698A Expired - Lifetime JP3609613B2 (en) | 1997-04-28 | 1998-05-01 | Hydrostatic magnetic compound bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3609613B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4595531B2 (en) * | 2004-12-24 | 2010-12-08 | 株式会社大阪真空機器製作所 | Magnetic bearing device |
JP6993552B1 (en) * | 2020-10-19 | 2022-01-31 | Rotorise合同会社 | Stator core of radial magnetic bearing |
CN113898604A (en) * | 2021-10-09 | 2022-01-07 | 广东美的暖通设备有限公司 | Bearing system, refrigeration equipment, centrifugal compressor and control method and device of centrifugal compressor |
CN117989238B (en) * | 2023-12-14 | 2024-07-02 | 中国船舶集团有限公司第七一九研究所 | Self-dehumidifying static pressure air bearing |
-
1998
- 1998-05-01 JP JP12196698A patent/JP3609613B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH1113761A (en) | 1999-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3696398B2 (en) | Hydrostatic magnetic compound bearing and spindle device | |
JP3662741B2 (en) | Hydrostatic magnetic compound bearing | |
Cole et al. | An active magnetic bearing for thin-walled rotors: vibrational dynamics and stabilizing control | |
US4942321A (en) | Radial magnetic bearing system | |
Schweitzer | Active magnetic bearings-chances and limitations | |
US7884521B2 (en) | Rotor shaft for a magnetic bearing device | |
Kim et al. | Design and control of active magnetic bearing system with Lorentz force-type axial actuator | |
JPH1169717A (en) | Brushless dc motor | |
JPH07256503A (en) | Spindle apparatus | |
JP2018132166A (en) | Magnetic bearing device and vacuum pump | |
Kuroki et al. | Miniaturization of a one-axis-controlled magnetic bearing | |
JP3609613B2 (en) | Hydrostatic magnetic compound bearing | |
Park et al. | Decoupled control of a disk-type rotor equipped with a three-pole hybrid magnetic bearing | |
JP3609614B2 (en) | Hydrostatic magnetic compound bearing and spindle device | |
JP2004324895A (en) | Static pressure magnetic combined bearing | |
KR20100001420A (en) | Hybrid type 3-pole active magnetic bearing, system and method for controlling hybrid type 3-pole active magnetic bearing | |
US6518770B2 (en) | System and method for measuring dynamic loads in a magnetic bearing | |
CN103411733B (en) | A kind of high-speed main shaft electromagnetic type spot dynamic balance device and method | |
CN115388089B (en) | Axial magnetic bearing and design method thereof | |
Horiuchi et al. | Development of magnetic bearing momentum wheel for ultra-precision spacecraft attitude control | |
JP2000263377A (en) | Metal mold machining device | |
JPS5969245A (en) | Device for detecting cutting condition | |
JP2001214934A (en) | Magnetic bearing device | |
JP2002039176A (en) | Static pressure/magnetic composite bearing spindle device | |
JP3197031B2 (en) | Linear motion magnetic support device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040603 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040615 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040811 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041012 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041014 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071022 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081022 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091022 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101022 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111022 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121022 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121022 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131022 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |