JP2004324895A - Static pressure magnetic combined bearing - Google Patents

Static pressure magnetic combined bearing Download PDF

Info

Publication number
JP2004324895A
JP2004324895A JP2004234964A JP2004234964A JP2004324895A JP 2004324895 A JP2004324895 A JP 2004324895A JP 2004234964 A JP2004234964 A JP 2004234964A JP 2004234964 A JP2004234964 A JP 2004234964A JP 2004324895 A JP2004324895 A JP 2004324895A
Authority
JP
Japan
Prior art keywords
bearing
magnetic
rotor
hydrostatic
static pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004234964A
Other languages
Japanese (ja)
Inventor
Nobuyuki Suzuki
伸幸 鈴木
Hiroyuki Yamada
裕之 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004234964A priority Critical patent/JP2004324895A/en
Publication of JP2004324895A publication Critical patent/JP2004324895A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact static pressure magnetic combined bearing combining superior dynamic rigidity and high rotating accuracy of a static pressure gas bearing and superior static rigidity of a magnetic bearing, allowing the setting of the optimum bearing gap by designing the material quality of a rotor and actualizing higher accuracy and more compactness of the static pressure gas bearing and the magnetic bearing, no heating due to a reduction in core loss and higher speed rotation. <P>SOLUTION: The magnetic bearing and the static pressure gas bearing 9 having a restrictor 15 in a bearing stator 12 of the magnetic bearing are provided side by side for supporting the rotor 4 in non-contact. The magnetic bearing has a displacement measuring means for measuring the displacement of the rotor 4 and generates electromagnetic force in accordance with a measured value for the displacement measuring means. A laminated silicon steel plate is used for the rotor 4 and a ceramics coating layer 33 of a thickness of 1 mm or less is applied onto the laminated silicon steel plate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、静圧気体軸受と磁気軸受とを組み合わせた静圧磁気複合軸受に関し、例えば、高速切削加工機のスピンドル装置等に用いられる静圧磁気複合軸受に関する。   The present invention relates to a hydrostatic magnetic composite bearing in which a hydrostatic gas bearing and a magnetic bearing are combined, and for example, to a hydrostatic magnetic composite bearing used for a spindle device or the like of a high-speed cutting machine.

磁気軸受は、大きな軸受ギャップを持つため回転によるトルクロスが極めて小さく、積分制御により大きな静剛性を付与できる特徴がある。
図26は、従来のアルミ材用高速ミーリング磁気軸受スピンドル装置を示す縦断面図である。この従来例のスピンドル装置は、タッチダウンベアリング251、工具252、変位センサ253、ラジアル磁気軸受254、スラスト磁気軸受255、モータ256、ラジアル磁気軸受257、変位センサ258、および主軸259を有する。この磁気軸受スピンドル装置は、最高回転数:4万rpm、出力:15kW、最大切削能力:1250cm3 /minの各性能を有し、上記用途として大変優れたものである。
Magnetic bearings have a large bearing gap, so that the torque loss due to rotation is extremely small, and large static stiffness can be imparted by integral control.
FIG. 26 is a longitudinal sectional view showing a conventional high-speed milling magnetic bearing spindle device for aluminum material. This conventional spindle device has a touchdown bearing 251, a tool 252, a displacement sensor 253, a radial magnetic bearing 254, a thrust magnetic bearing 255, a motor 256, a radial magnetic bearing 257, a displacement sensor 258, and a main shaft 259. This magnetic bearing spindle device has various performances of a maximum rotation speed: 40,000 rpm, an output: 15 kW, and a maximum cutting capacity: 1250 cm 3 / min, and is very excellent for the above-mentioned applications.

しかし、磁気軸受スピンドル装置は、加工中に主軸の曲げ固有振動数の影響を受け易く、そのため非常に複雑な制御系を構成する必要がある。したがって、様々な加工条件への対応が要求される汎用工作機用スピンドル装置としては適さない。   However, the magnetic bearing spindle device is easily affected by the natural frequency of bending of the spindle during machining, and therefore, it is necessary to configure a very complicated control system. Therefore, it is not suitable as a spindle device for a general-purpose machine tool which needs to cope with various processing conditions.

一方、非接触の軸受として、磁気軸受のほかに静圧気体軸受がある。静圧気体軸受は、回転精度が極めて高く優れた動的安定性を持っているが、圧縮性を有するために、静剛性および負荷容量が小さく、汎用工作機械用としてはほとんど適用例がない。   On the other hand, non-contact bearings include static pressure gas bearings in addition to magnetic bearings. The hydrostatic gas bearing has extremely high rotational accuracy and excellent dynamic stability, but has a small static rigidity and a small load capacity due to its compressibility, and has almost no application to general-purpose machine tools.

そこで、最近、高速加工機用スピンドル装置として、図27に縦断面図で示すような、静圧気体軸受と磁気軸受とを組合せた複合軸受スピンドル装置が提案され、実用化が検討されている。この従来例のスピンドル装置は、変位センサ263、ラジアル磁気軸受264、スラスト磁気軸受265、モータ266、ラジアル磁気軸受267、変位センサ268、変位センサ270、主軸271、および静圧気体軸受272,273を有する。   Therefore, as a spindle device for a high-speed processing machine, a composite bearing spindle device combining a hydrostatic gas bearing and a magnetic bearing as shown in a vertical sectional view in FIG. 27 has recently been proposed, and its practical use is being studied. This conventional spindle device includes a displacement sensor 263, a radial magnetic bearing 264, a thrust magnetic bearing 265, a motor 266, a radial magnetic bearing 267, a displacement sensor 268, a displacement sensor 270, a main shaft 271, and a hydrostatic gas bearing 272, 273. Have.

しかし、同図の複合軸受スピンドル装置では、磁気軸受264,267と、静圧気体軸受272,273とを、軸方向に並べて配置しているため、主軸271が長くなり、曲げ固有振動数が低くなるという問題点がある。また、磁気軸受を単独で適用するスピンドル装置の場合と全く同じ構造の制御系の構成を採用しているために、静圧気体軸受の動的安定性を損ね、むしろ外乱発生源として作用するという問題点もある。
また、このスピンドル装置で高回転精度を得るためには、磁気軸受用変位センサが高精度であることが要求されるが、通常、磁気軸受に使用される変位センサは渦電流センサなどの磁気センサが用いられ、分解能は1μm程度である。一方、高精度変位センサとしては静電容量型変位センサがあるが、高価で利用は難しい。
したがって、静圧気体軸受,磁気軸受の特長を生かしつつ、欠点を補い合うという目的は十分に達成されていないのが現状である。
However, in the composite bearing spindle device shown in the figure, since the magnetic bearings 264 and 267 and the hydrostatic gas bearings 272 and 273 are arranged in the axial direction, the main shaft 271 becomes longer and the natural frequency of bending becomes lower. There is a problem that becomes. In addition, because the control system configuration is exactly the same as that of the spindle device that uses the magnetic bearing alone, the dynamic stability of the hydrostatic gas bearing is impaired, and it rather acts as a disturbance source. There are also problems.
Also, in order to obtain high rotational accuracy with this spindle device, a displacement sensor for a magnetic bearing is required to have high accuracy, but a displacement sensor used for a magnetic bearing is usually a magnetic sensor such as an eddy current sensor. Is used, and the resolution is about 1 μm. On the other hand, there is a capacitance type displacement sensor as a high precision displacement sensor, but it is expensive and difficult to use.
Therefore, at present, the objective of making up for the disadvantages while utilizing the features of the static pressure gas bearing and the magnetic bearing has not been sufficiently achieved.

この発明の目的は、このような課題を解消し、静圧気体軸受の優れた動剛性および高回転精度と磁気軸受の優れた静剛性とを併せ持ち、コンパクト化が図れる静圧磁気複合軸受を提供することである。
この発明の他の目的は、ロータの材質等の工夫により、最適な軸受隙間の設定を可能とし、静圧気体軸受および磁気軸受の高精度化や、コンパクト化、鉄損の軽減による発熱防止、高速回転化等を実現可能とすることである。
SUMMARY OF THE INVENTION An object of the present invention is to solve such problems and provide a hydrostatic magnetic composite bearing having excellent dynamic stiffness and high rotational accuracy of a hydrostatic gas bearing and excellent static stiffness of a magnetic bearing and capable of achieving compactness. It is to be.
Another object of the present invention is to make it possible to set an optimal bearing clearance by devising a material of the rotor, etc., to increase the accuracy of the hydrostatic gas bearing and the magnetic bearing, to make the bearing compact, to reduce heat loss by reducing iron loss, That is, high-speed rotation can be realized.

この発明の静圧磁気複合軸受は、いずれもロータの変位を測定する変位測定手段を有し、この変位測定手段の測定値に従って電磁力を発生させる磁気軸受と、この磁気軸受の軸受ステータに絞りを有する静圧気体軸受とを併設することにより前記ロータを非接触支持するものである。このため、静圧気体軸受の優れた動剛性および回転精度と磁気軸受の優れた静剛性という両者の特長を生かした軸受とできる。なお、静圧気体軸受は、例えば静圧空気軸受とされる。
この発明の静圧磁気複合軸受は、ラジアル軸受であっても、アキシャル軸受であっても良い。
ラジアル軸受に適用した場合は、静圧による支持と磁気による支持とに、ロータとなる主軸に別の長さ部分を必要とせず、軸方向に短い複合軸受とでき、主軸長さを短くできる。これにより、曲げ固有振動数が高められ、より高速回転が可能となる。また、軸方向に対する磁気軸受の支持中心点と静圧気体軸受の支持中心点とを略一致させることができ、両軸受の制御が容易になる。
アキシャル軸受に適用した場合は、単に静圧気体軸受と磁気軸受とを径方向に並べて配置する場合に比べて、構成がコンパクトになり、ロータの軸受対向面の径を小さくできる。
The hydrostatic magnetic composite bearing of the present invention has a displacement measuring means for measuring the displacement of the rotor, a magnetic bearing for generating an electromagnetic force in accordance with the measured value of the displacement measuring means, and a restrictor for the magnetic bearing. The rotor is provided in a non-contact manner by being provided with a hydrostatic gas bearing having the following. For this reason, it is possible to provide a bearing that takes advantage of both of the excellent dynamic rigidity and rotational accuracy of the static pressure gas bearing and the excellent static rigidity of the magnetic bearing. The hydrostatic gas bearing is, for example, a hydrostatic air bearing.
The hydrostatic magnetic composite bearing of the present invention may be a radial bearing or an axial bearing.
When the present invention is applied to a radial bearing, a separate bearing is not required for a main shaft serving as a rotor for support by static pressure and support by magnetism, so that a composite bearing that is short in the axial direction can be obtained, and the length of the main shaft can be reduced. As a result, the bending natural frequency is increased, and higher-speed rotation becomes possible. Further, the support center point of the magnetic bearing in the axial direction and the support center point of the hydrostatic gas bearing can be made substantially coincident, and control of both bearings is facilitated.
When applied to an axial bearing, the configuration is more compact and the diameter of the bearing-facing surface of the rotor can be reduced as compared with a case where the hydrostatic gas bearing and the magnetic bearing are simply arranged side by side in the radial direction.

請求項1記載の静圧磁気複合軸受は、前記ロータに積層珪素鋼板を使用し、この積層珪素鋼板の上に1mm厚以下のセラミックスのコーティング層を施したものである。
ロータを積層珪素鋼板で構成することで、高速回転時の鉄損を軽減し、高速回転時のロータの発熱を抑えることができる。さらに、その外径にセラミックス材料をコーティングすることにより、軸受面とロータ間が接触した場合にも、ロータの損傷を最小限にとどめることができる。コーティング層をセラミックスとすることにより、磁気軸受の電磁石からの磁束による鉄損を発生させることがなく、高速回転に適用できる。さらに、コーティング層の外周面は、静圧気体軸受のロータ面、内周面は磁気軸受のロータ面となり、コーティング層の厚さを調整することで、最適な静圧気体軸受の軸受隙間と、磁気軸受の軸受隙間とを設定することができる。
According to a first aspect of the present invention, the rotor comprises a laminated silicon steel sheet, and a ceramic coating layer having a thickness of 1 mm or less is formed on the laminated silicon steel sheet.
By configuring the rotor with a laminated silicon steel sheet, iron loss during high-speed rotation can be reduced, and heat generation of the rotor during high-speed rotation can be suppressed. Further, by coating the outer diameter with a ceramic material, even when the bearing surface comes into contact with the rotor, damage to the rotor can be minimized. When the coating layer is made of ceramics, it can be applied to high-speed rotation without causing iron loss due to magnetic flux from the electromagnet of the magnetic bearing. Furthermore, the outer peripheral surface of the coating layer is the rotor surface of the hydrostatic gas bearing, and the inner peripheral surface is the rotor surface of the magnetic bearing.By adjusting the thickness of the coating layer, the optimal bearing gap of the hydrostatic gas bearing can be adjusted. The bearing clearance of the magnetic bearing can be set.

請求項2記載の静圧磁気複合軸受は、前記ロータに、低熱膨張性で軟磁性のむく材を使用し、このむく材の上に1mm厚以下のセラミックスのコーティング層を施したものである。ロータを主軸に設ける場合は、その主軸もロータと同じ材料のむく材とすることが好ましい。むく材には、例えばインバー材が使用できる。 このように、ロータにむく材を使用することにより、ロータの曲げ固有振動数が高めれら、より高速まで回転することが可能となる。さらに、ロータが発熱した場合にも低熱膨張性によって、軸受隙間の変化が小さく、安定した静圧気体軸受性能が確保できる。また、軸方向への膨張量も少ないために、工作機械用主軸に用いた場合には加工精度の向上に効果がある。   According to a second aspect of the present invention, there is provided a hydrostatic magnetic composite bearing wherein the rotor is made of a soft magnetic solid material having low thermal expansion and a ceramic coating layer having a thickness of 1 mm or less is provided on the solid material. When the rotor is provided on the main shaft, the main shaft is also preferably made of a solid material of the same material as the rotor. As the solid material, for example, an invar material can be used. As described above, by using a material that is solid for the rotor, the natural frequency of bending of the rotor can be increased, and the rotor can be rotated to a higher speed. Further, even when the rotor generates heat, the change in the bearing gap is small due to the low thermal expansion, so that stable static pressure gas bearing performance can be secured. Further, since the amount of expansion in the axial direction is small, it is effective in improving machining accuracy when used in a machine tool spindle.

この発明の静圧磁気複合軸受およびスピンドル装置は、いずれも静圧気体軸受と磁気軸受とを所定の関係で組み合わせたものであるため、静圧気体軸受の優れた動剛性と磁気軸受の優れた静剛性とを併せ持ちながら、構成がコンパクトになる。ラジアル軸受に適用した場合は、主軸長も短縮することができる。
また、ロータの材質等の工夫により、最適な軸受隙間の設定を可能とし、静圧気体軸受および磁気軸受の高精度化や、コンパクト化、鉄損の軽減による発熱防止、高速回転化等を実現できる。
Since the hydrostatic magnetic composite bearing and the spindle device of the present invention are each a combination of the hydrostatic gas bearing and the magnetic bearing in a predetermined relationship, the dynamic dynamic rigidity of the hydrostatic gas bearing and the magnetic bearing are excellent. The structure becomes compact while having both static rigidity. When applied to a radial bearing, the spindle length can also be reduced.
In addition, it is possible to set the optimal bearing clearance by devising the material of the rotor, etc., to realize high precision, compactness, prevention of heat generation by reducing iron loss, high speed rotation, etc. of the hydrostatic gas bearing and magnetic bearing. it can.

この発明の基礎となる第1の提案例を図1ないし図3と共に説明する。
図1はこの提案例にかかる静圧磁気複合軸受を応用したスピンドル装置の縦断面図を示す。この静圧磁気複合軸受スピンドル装置1は、工作機械のビルトインモータ形式のスピンドル装置であって、スピンドル台となる円筒状のハウジング2内に、モータ5の前後に配置された一対の静圧磁気複合軸受3,3と、後端のスラスト磁気軸受10とを介して主軸4を回転自在に支持したものである。主軸4は、静圧磁気複合軸受3のロータとなる。モータ5は、主軸4に一体に設けられたモータ部ロータ6と、ハウジング2に直接設置されたステータ7とで構成される。
ハウジング2の前後端にはフランジ21A,21Bが形成され、これらフランジ21A,21Bの内周面は潤滑性に優れた材料からなる保護用軸受面22とされている。これにより、複合軸受3に異常が生じて主軸4がタッチダウンした場合でも、主軸4の焼付きが防止される。
スラスト磁気軸受10は、主軸4に一体に設けた軸受ロータ19と、ハウジング2に設置され上記軸受ロータ19を軸方向に前後から挟む一対の軸受ステータ20A,20Bとからなる。軸受ステータ20A,20Bのコイル電流は、主軸4の軸方向変位を検出するスラスト変位センサ24の測定値で制御される。スラスト変位センサ24は、ハウジング2の後部壁23に設けられている。
A first proposal example on which the present invention is based will be described with reference to FIGS.
FIG. 1 is a longitudinal sectional view of a spindle device to which the hydrostatic magnetic composite bearing according to the proposed example is applied. This hydrostatic magnetic composite bearing spindle device 1 is a spindle device of a built-in motor type of a machine tool, and includes a pair of hydrostatic magnetic composite bearings disposed before and after a motor 5 in a cylindrical housing 2 serving as a spindle mount. The main shaft 4 is rotatably supported via bearings 3 and 3 and a thrust magnetic bearing 10 at the rear end. The main shaft 4 serves as a rotor of the hydrostatic composite bearing 3. The motor 5 is composed of a motor rotor 6 provided integrally with the main shaft 4 and a stator 7 provided directly on the housing 2.
Flanges 21A and 21B are formed at the front and rear ends of the housing 2, and inner peripheral surfaces of the flanges 21A and 21B are formed as protective bearing surfaces 22 made of a material having excellent lubricity. Thereby, even if an abnormality occurs in the composite bearing 3 and the main shaft 4 touches down, seizure of the main shaft 4 is prevented.
The thrust magnetic bearing 10 includes a bearing rotor 19 provided integrally with the main shaft 4 and a pair of bearing stators 20A and 20B installed in the housing 2 and sandwiching the bearing rotor 19 from front and rear in the axial direction. The coil current of the bearing stators 20A and 20B is controlled by a measurement value of a thrust displacement sensor 24 that detects an axial displacement of the main shaft 4. The thrust displacement sensor 24 is provided on the rear wall 23 of the housing 2.

前後の静圧磁気複合軸受3,3は、次のようにラジアル磁気軸受8とラジアル静圧気体軸受9とを、構成部品に兼用部分が生じるように一体化させたものである。静圧気体軸受9には静圧空気軸受が用いられている。なお、後述の各実施形態や提案例においても、各静圧気体軸受には静圧空気軸受を用いている。ラジアル磁気軸受8は、主軸4の外周に設けられた磁性体の軸受ロータ11と、ハウジング2に設置された軸受ステータ12とで構成される。軸受ステータ12は、コア13とコイル14とコイル覆い材18とでリング状に形成されている。コア13には固有抵抗の大きい軟磁性むく材が使用される。コア13は、図2に示すようにリング状部分から複数のヨーク部13aを内径側へ互いに放射状に突出させたものであり、各ヨーク部13aに前記コイル14が巻かれている。隣合うヨーク部13a,13a間の隙間は、樹脂モールド、または非磁性金属材料もしくはセラミックス材料からなる溶射による充填、または非磁性金属材料もしくはセラックス材料からなる隔壁、などからなるコア覆い材18によって充填される。コア覆い材18の内径面は、ヨーク部13aの先端面と共に同一円筒面に仕上げ加工されている。これらコア覆い材18とヨーク部13aとで軸受ステータ12の円筒面状の内径面を構成している。   The front and rear static pressure magnetic composite bearings 3 and 3 are obtained by integrating a radial magnetic bearing 8 and a radial static pressure gas bearing 9 so as to form a shared part in the components as follows. A static pressure air bearing is used for the static pressure gas bearing 9. In each of the embodiments and proposals described below, a hydrostatic air bearing is used for each hydrostatic gas bearing. The radial magnetic bearing 8 includes a magnetic bearing rotor 11 provided on the outer periphery of the main shaft 4 and a bearing stator 12 installed in the housing 2. The bearing stator 12 is formed in a ring shape by a core 13, a coil 14, and a coil covering member 18. For the core 13, a soft magnetic solid material having a large specific resistance is used. As shown in FIG. 2, the core 13 is formed by projecting a plurality of yoke portions 13a radially outward from a ring-shaped portion, and the coil 14 is wound around each yoke portion 13a. The gap between the adjacent yoke portions 13a, 13a is filled by a resin mold, or by thermal spraying made of a non-magnetic metal material or a ceramic material, or by a core covering material 18 made of a partition made of a non-magnetic metal material or a ceramic material. Is done. The inner diameter surface of the core covering member 18 is finished to the same cylindrical surface together with the distal end surface of the yoke portion 13a. The core covering member 18 and the yoke portion 13a form a cylindrical inner diameter surface of the bearing stator 12.

軸受ステータコア13のリング状部の内部には、全周にわたる給気通路16が形成され、この給気通路16から各々分岐して、軸受隙間に給気する絞り15が各ヨーク部13aの電磁力発生面である先端内径面に開口して設けられている。給気通路16は、周方向の1か所または複数箇所に設けた給気口17から、圧力流体である圧縮空気の供給源(図示せず)に配管等で接続されており、供給された圧縮空気は、軸受ステータ12の内径面と主軸4との間に形成される軸受隙間dに噴出される。
これら絞り15と、軸受隙間形成部材を兼用する軸受ステータコア13およびコア覆い材18とで、ラジアル静圧気体軸受9が構成される。また、軸受ステータコア13は、絞り15および給気通路16の形成部材を兼用する。
この構成により、静圧気体軸受9は、磁気軸受8の全体の軸方向幅内に配置されることになる。また、磁気軸受8のギャップは、軸受ステータコア13と主軸4との間の隙間となるので、静圧気体軸受9の軸受隙間dと、磁気軸受8のギャップとは、互いに主軸4の軸方向の同じ位置に設けられることになる。
図3に示すように、絞り15は自成絞りであり、コア13に設けられた給気孔15aと軸受隙間dとで構成される。給気孔15aは、内径が段付きに形成されて、コア13の内面からなる静圧気体軸受面に開口する部分が微細孔となっており、この微細孔部分は、直径1mm以下とされている。このように、静圧気体軸受の給気形式に自成絞りを用いた場合、ニューマティックハンマに対する安定性が向上し、高周波域の軸安定性すなわち動剛性を高めることができる。絞り15は主軸4の円周方向の少なくとも3か所に配置することが好ましい。
Inside the ring-shaped portion of the bearing stator core 13, an air supply passage 16 is formed over the entire circumference, and the throttle 15 branching off from the air supply passage 16 and supplying air to the bearing gap is formed by the electromagnetic force of each yoke portion 13 a. The opening is provided on the inner diameter surface of the tip, which is the generation surface. The air supply passage 16 is connected to a supply source (not shown) of compressed air as a pressurized fluid by a pipe or the like from an air supply port 17 provided at one or a plurality of positions in a circumferential direction. The compressed air is jetted into a bearing gap d formed between the inner diameter surface of the bearing stator 12 and the main shaft 4.
The radial static pressure gas bearing 9 is constituted by the throttle 15, the bearing stator core 13 and the core covering member 18 which also serves as a bearing gap forming member. The bearing stator core 13 also serves as a member forming the throttle 15 and the air supply passage 16.
With this configuration, the hydrostatic gas bearing 9 is disposed within the entire axial width of the magnetic bearing 8. Since the gap of the magnetic bearing 8 is a gap between the bearing stator core 13 and the main shaft 4, the bearing gap d of the hydrostatic gas bearing 9 and the gap of the magnetic bearing 8 are mutually different in the axial direction of the main shaft 4. It will be provided in the same position.
As shown in FIG. 3, the throttle 15 is a self-generated throttle, and includes an air supply hole 15 a provided in the core 13 and a bearing gap d. The air supply hole 15a has a stepped inner diameter, and a portion that opens to the hydrostatic gas bearing surface formed by the inner surface of the core 13 is a fine hole, and the diameter of the fine hole portion is 1 mm or less. . As described above, when the self-contained throttle is used as the air supply type of the static pressure gas bearing, stability against a pneumatic hammer is improved, and shaft stability in a high frequency range, that is, dynamic rigidity can be increased. It is preferable that the apertures 15 are arranged at at least three places in the circumferential direction of the main shaft 4.

なお、この提案例では、ヨーク部13aの全体をむく材としたが、図4に示すように、ヨーク部13aの絞り周囲部13aaのみをむく材で形成し、ヨーク部13aのその他の部分である絞り非近傍部13abは、積層珪素鋼板としても良い。いずれの場合も、微細孔で形成される自成絞り15の部分をむく材で製作するため、通常使用される積層鋼板で構成されたコアに加工する場合に比べて、このような微細孔の形成が容易に行え、精度良く静圧気体軸受を形成することができる。また、図4の例のように、絞り周囲部13aa以外に積層珪素鋼板を用いた場合は、全てむく材とする場合に比べてコア13で発生する鉄損を軽減できる。   In this proposed example, the whole yoke portion 13a is made of a material which is peeled off. However, as shown in FIG. 4, only the diaphragm peripheral portion 13aa of the yoke portion 13a is made of a material which is peeled off. A certain non-narrowing portion 13ab may be a laminated silicon steel sheet. In any case, since the part of the autonomous drawing 15 formed by the fine holes is made of a peeled material, compared with the case where the core is made of a laminated steel sheet which is usually used, such a small hole is formed. The formation can be easily performed, and the hydrostatic gas bearing can be formed with high accuracy. In addition, as in the example of FIG. 4, when the laminated silicon steel sheet is used for portions other than the drawing peripheral portion 13aa, the iron loss generated in the core 13 can be reduced as compared with the case where all the members are made of solid material.

この静圧磁気複合軸受3は、このように静圧気体軸受9と磁気軸受8とを組み合わせたものであるため、静圧気体軸受9の優れた動剛性および回転精度と磁気軸受8の優れた静剛性という両者の特長を生かした軸受とできる。
しかも、静圧気体軸受9と磁気軸受8とは、構成部品が兼用されているため、単に静圧気体軸受と磁気軸受とを軸方向に並べて配置する場合に比べて、構成がコンパクトになり、主軸4の長さ短縮できる。これにより、曲げ固有振動数が高められ、より高速回転が可能となる。特に、この提案例では、磁気軸受8の軸受ステータコア13およびコア覆い材18が静圧気体軸受9の軸受隙間形成部材を兼用し、かつ前記軸受ステータコア13が絞り15および給気通路16の形成部材を兼用するため、構成部品が高度に兼用化され、構成のコンパクト化の効果が高い。
Since the hydrostatic magnetic composite bearing 3 combines the hydrostatic gas bearing 9 and the magnetic bearing 8 in this manner, the dynamic dynamic rigidity and the rotational accuracy of the hydrostatic gas bearing 9 and the magnetic bearing 8 are excellent. A bearing that makes use of both features of static rigidity can be obtained.
In addition, since the static pressure gas bearing 9 and the magnetic bearing 8 also serve as components, the configuration becomes compact as compared with a case where the static pressure gas bearing and the magnetic bearing are simply arranged side by side in the axial direction. The length of the main shaft 4 can be reduced. As a result, the bending natural frequency is increased, and higher-speed rotation becomes possible. In particular, in this proposed example, the bearing stator core 13 and the core covering member 18 of the magnetic bearing 8 also serve as a bearing gap forming member of the hydrostatic gas bearing 9, and the bearing stator core 13 is a member forming the throttle 15 and the air supply passage 16. Therefore, the components are highly shared, and the effect of making the configuration compact is high.

前記静圧磁気複合軸受3の制御系を説明する。軸受ステータ12には、コア覆い材18を半径方向に貫通して軸受隙間dに開口する圧力検出用通気孔26が、絞り15の近くの周方向4か所に等間隔に設けられ、これに連通するセンサ装着孔25に圧力センサ27A〜27Dが設けられている。これら圧力センサ27A〜27Dは、互いに直径方向に対向する2つのセンサが1組となって、主軸4のラジアル変位を検出する差圧式のエアマイクロセンサとされている。すなわち、互いに直径方向に対向する圧力センサ27A,27Bが1つの組を、圧力センサ27C,27Dが他の1つの組をなし、一方の圧力センサ27A,27Bの組の間では、対応する通気孔26が開口する静圧気体軸受面での圧力差を測定し、これを主軸4のY軸方向の変位に換算する。また、他方の圧力センサ27C,27Dの組の間でも、対応する通気孔26が開口する静圧気体軸受面での圧力差を測定し、これを主軸4のX軸方向の変位に換算する。   A control system of the static pressure magnetic composite bearing 3 will be described. The bearing stator 12 is provided with pressure detection vents 26 which penetrate the core covering member 18 in the radial direction and open to the bearing gap d at four circumferential positions near the throttle 15 at equal intervals. Pressure sensors 27A to 27D are provided in the sensor mounting holes 25 communicating with each other. Each of the pressure sensors 27A to 27D is a differential pressure type air microsensor that detects a radial displacement of the main shaft 4 as a set of two sensors that are diametrically opposed to each other. That is, the pressure sensors 27A and 27B diametrically opposed to each other form one set, the pressure sensors 27C and 27D form another set, and one of the pressure sensors 27A and 27B has a corresponding vent. The pressure difference at the hydrostatic gas bearing surface where the opening 26 opens is measured, and this is converted into the displacement of the main shaft 4 in the Y-axis direction. Also, between the other pair of pressure sensors 27C and 27D, the pressure difference on the hydrostatic gas bearing surface where the corresponding vent hole 26 is opened is measured, and this is converted into the displacement of the main shaft 4 in the X-axis direction.

コントローラ28aおよびアンプ29などで構成される磁気軸受制御手段28は、Y軸方向およびX軸方向のフィードバック制御系を有しており、Y軸方向のフィードバック制御系では、上記圧力センサ27A,27Bにより検出される主軸4のY軸方向への変位に基づき、磁気軸受8のY軸方向のフィードバック制御が行われる。すなわち、主軸4の変位に応じて、アンプ29を経て圧力センサ27A,27Bに対応する位置のコイル14またはその近隣の幾つかのコイル14に供給する電流を加減し、主軸4がY軸方向に偏らないように制御する。すなわち、主軸4が目標位置に一致するように制御する。これと同様に、磁気軸受制御手段28のX軸方向のフィードバック制御系は、他の圧力センサ27C,27Dの測定値により、所定のコイル14の電流制御を行う。
このように、磁気軸受8の変位センサとして、軸受隙間dの静圧を検出する圧力センサ27A〜27Dを用いたエアマイクロセンサ方式を採用するため、磁気軸受8の制御系のゼロ点(目標値)と静圧気体軸受9の支持中心点(圧力平衡点)を容易に一致させることができ、複雑なセンサ調整が不要となる。また、他の方式のセンサで問題となるロータセンサターゲット面の磁気特性むらや真円度誤差は無関係となる。
The magnetic bearing control means 28 including the controller 28a and the amplifier 29 has a feedback control system in the Y-axis direction and the X-axis direction. In the feedback control system in the Y-axis direction, the pressure sensors 27A and 27B are used. Based on the detected displacement of the main shaft 4 in the Y-axis direction, feedback control of the magnetic bearing 8 in the Y-axis direction is performed. That is, in accordance with the displacement of the main shaft 4, the current supplied to the coil 14 at a position corresponding to the pressure sensors 27A and 27B or some of the coils 14 in the vicinity thereof via the amplifier 29 is adjusted so that the main shaft 4 moves in the Y-axis direction. Control so that there is no bias. That is, control is performed so that the spindle 4 coincides with the target position. Similarly, the feedback control system in the X-axis direction of the magnetic bearing control unit 28 controls a predetermined current of the coil 14 based on the measured values of the other pressure sensors 27C and 27D.
As described above, since the air microsensor system using the pressure sensors 27A to 27D for detecting the static pressure in the bearing gap d is used as the displacement sensor of the magnetic bearing 8, the zero point (the target value) of the control system of the magnetic bearing 8 is set. ) And the support center point (pressure equilibrium point) of the static pressure gas bearing 9 can be easily matched, and complicated sensor adjustment is not required. In addition, uneven magnetic characteristics and roundness errors on the target surface of the rotor sensor, which are problems with other types of sensors, are irrelevant.

磁気軸受制御手段28によるフィードバック制御は、積分動作または比例積分動作のみとされ、高周波における補償は行われない。また、圧力センサ27A,27Bのドリフト等により磁気軸受制御系のゼロ点と静圧気体軸受9の支持中心点がずれる場合は、積分制御において僅かな不感帯w(図5)を設けてもよい。不感帯wは、圧力センサ27A,27Bと磁気軸受制御手段28との間に図6のように不感帯回路31を設けることで設定しても、また磁気軸受制御手段28を構成する制御回路内に不感帯回路を設けることで設定しても良い。このように不感帯wを設けることにより、温度ドリフト等による磁気軸受8の誤動作を抑制することができる。すなわち、動剛性(高周波領域)を静圧気体軸受9で、静剛性(低周波領域)を磁気軸受8でそれぞれ分担して受け持つ役割分担が確実に行えて、両軸受8,9の特長が共に生かされ、互いに干渉することを回避できる。また、このように、磁気軸受8は積分動作または比例積分動作という低周波制御系となるため、比較的応答性の遅い圧力センサ27A〜27Dを変位センサとして用いることができる。
磁気軸受8の性能は、磁気軸受制御手段28の設定によって設定することができるが、一般に磁気軸受の場合、高周波域に有効に減衰力を発生させ、主軸を安定して浮上させることが難しいといった問題がある。そこで、この発明では、磁気軸受8は、その特長である低周波域での軸受剛性を高める役目だけに利用するようにしている。
The feedback control by the magnetic bearing control means 28 is only an integral operation or a proportional integral operation, and no compensation at a high frequency is performed. Further, when the zero point of the magnetic bearing control system and the support center point of the static pressure gas bearing 9 deviate due to drift of the pressure sensors 27A and 27B, a slight dead zone w (FIG. 5) may be provided in the integral control. The dead zone w can be set by providing a dead zone circuit 31 between the pressure sensors 27A, 27B and the magnetic bearing control unit 28 as shown in FIG. 6, or the dead zone can be set in the control circuit constituting the magnetic bearing control unit 28. The setting may be made by providing a circuit. By providing the dead zone w in this manner, malfunction of the magnetic bearing 8 due to temperature drift or the like can be suppressed. That is, the dynamic stiffness (high-frequency range) is shared by the static pressure gas bearing 9 and the static stiffness (low-frequency range) is shared by the magnetic bearing 8 so that the bearings can be reliably shared. It can be used to avoid interference with each other. Further, as described above, since the magnetic bearing 8 has a low frequency control system of an integral operation or a proportional integral operation, the pressure sensors 27A to 27D having relatively slow response can be used as displacement sensors.
The performance of the magnetic bearing 8 can be set by the setting of the magnetic bearing control means 28. In general, in the case of a magnetic bearing, it is difficult to effectively generate a damping force in a high frequency range and to stably float the main shaft. There's a problem. Therefore, in the present invention, the magnetic bearing 8 is used only for the purpose of enhancing the bearing rigidity in a low frequency range, which is a feature of the magnetic bearing 8.

磁気軸受8のコイル14に電流を供給するアンプ29には、電流−電磁力を線型化させるための線型化回路、例えば電流2乗フィードバック回路を有するものが用いられる。これにより、バイアス電流を流すことなく線形化でき、磁気軸受特有の負の剛性も発生しない。すなわち、磁気軸受8で負の剛性が発生するのを回避でき、その負の剛性により静圧気体軸受9の安定性が損なわれるのを防止できる。また、主軸4が回転したときにそのバイアス電流によって発生する主軸4内の鉄損を無くすことができ、高速回転が可能となる。
磁気軸受制御手段28には、主軸4の回転数に同期したバンドエリミネートフィルタ32(図7)を挿入しても良い。これにより、主軸4の回転時のロータアンバランスによる振れに対して、磁気軸受8の電磁石からの電磁力は作用しなくなる。前述したように、磁気軸受制御手段28を積分動作で構成した場合には高周波域での磁気軸受8の作用力は主軸4に対して、不安定力として働く。主軸4の回転時には主軸4の振れは回転同期成分が主成分となる。これを選択的に除去することで、主軸4を安定して回転させることが可能となる。
As the amplifier 29 for supplying a current to the coil 14 of the magnetic bearing 8, a circuit having a linearization circuit for linearizing the current-electromagnetic force, for example, a current square feedback circuit is used. Thereby, linearization can be performed without flowing a bias current, and negative rigidity peculiar to a magnetic bearing does not occur. That is, generation of negative rigidity in the magnetic bearing 8 can be avoided, and the stability of the hydrostatic gas bearing 9 can be prevented from being impaired by the negative rigidity. In addition, iron loss in the main shaft 4 caused by the bias current when the main shaft 4 rotates can be eliminated, and high-speed rotation can be performed.
A band elimination filter 32 (FIG. 7) synchronized with the rotation speed of the main shaft 4 may be inserted into the magnetic bearing control unit 28. As a result, the electromagnetic force from the electromagnet of the magnetic bearing 8 does not act on the run-out due to the rotor imbalance when the main shaft 4 rotates. As described above, when the magnetic bearing control means 28 is configured by an integral operation, the acting force of the magnetic bearing 8 in the high frequency range acts on the main shaft 4 as an unstable force. When the main shaft 4 rotates, the runout of the main shaft 4 mainly includes a rotation synchronization component. By selectively removing this, the main shaft 4 can be rotated stably.

なお、この提案例では、圧力センサ27A〜27Dで直接に主軸4の変位を検出するようにしたが、圧力センサによる測定値から換算して、主軸4と静圧気体軸受面との間の隙間の大きさを求め、この隙間の変化に応じて磁気軸受制御手段28による制御を行うようにしても良い。
また、圧力センサを前記のように磁気軸受8のコア13の内部に配置する代わりに、静圧気体軸受9の軸受隙間に連通するように中空パイプ(図示せず)を配置し、外部の圧力センサで圧力を測定するようにしても良い。軸受サイズが小さく、外部に圧力センサを収納するスペースがある場合は、この外部に配置する構成が好ましい。
さらに、図8に示すように、磁気軸受8の内径部、例えばコア覆い材18等の部分に直接に圧力センサ27を配置し、主軸4とコア13間の圧力を測定して主軸4の変位に換算するようにしても良い。
In this proposed example, the displacement of the main shaft 4 is directly detected by the pressure sensors 27A to 27D. However, the displacement between the main shaft 4 and the hydrostatic gas bearing surface is converted from the value measured by the pressure sensor. May be determined, and control by the magnetic bearing control unit 28 may be performed according to the change in the gap.
Instead of disposing the pressure sensor inside the core 13 of the magnetic bearing 8 as described above, a hollow pipe (not shown) is arranged so as to communicate with the bearing gap of the hydrostatic gas bearing 9, and an external pressure The pressure may be measured by a sensor. When the bearing size is small and there is a space for accommodating the pressure sensor outside, it is preferable to arrange the pressure sensor outside.
Further, as shown in FIG. 8, a pressure sensor 27 is disposed directly on the inner diameter portion of the magnetic bearing 8, for example, on a portion such as the core covering member 18, and measures the pressure between the main shaft 4 and the core 13 to displace the main shaft 4. You may make it convert to.

図9,図10は、他の提案例にかかる静圧磁気複合軸受を示す。この例は、ラジアル磁気軸受8Aの軸受ステータ12のコア13A内に、静圧気体軸受9Aの軸受隙間dへ給気する絞り15を形成した静圧磁気複合軸受3Aにおいて、ラジアル磁気軸受8の電磁石のコア13Aをいわゆる馬蹄形とし、その磁極13Aa,13Aaの対を、主軸4の軸方向に並べて配置した構造である。各磁極13Aaの同一円周上の極性は同じにしてある。この様にすることで、主軸4の回転に伴って主軸4で発生する鉄損を減少させることができる。その他の構成,効果は第1の提案例と同様である。コア13Aの個数は、換言すれば電磁石の個数は、円周方向に3個以上とすることが好ましい。
このように、磁気軸受8Aを構成する電磁石を3個以上有するものとし、各電磁石のコア13Aの磁極13Aaを回転軸方向に配置し、同一円周上における各磁極13Aaの極性を一致させることで、主軸4の回転に伴い、磁気軸受8Aの主軸部で発生するヒステリシス損および渦電流損を軽減できる。また、これらの損失による主軸4の発熱が抑制できるため、主軸4の熱膨張よる軸受隙間の減少を最小限に抑え、安定した静圧気体軸受9Aの性能を得ることができる。
9 and 10 show a hydrostatic magnetic composite bearing according to another proposed example. In this example, an electromagnet of the radial magnetic bearing 8 is used in a hydrostatic magnetic composite bearing 3A in which a throttle 15 for supplying air to a bearing gap d of a hydrostatic gas bearing 9A is formed in a core 13A of a bearing stator 12 of the radial magnetic bearing 8A. Has a so-called horseshoe shape, and a pair of magnetic poles 13Aa, 13Aa are arranged in the axial direction of the main shaft 4. The polarity of each magnetic pole 13Aa on the same circumference is the same. By doing so, it is possible to reduce iron loss generated in the main shaft 4 as the main shaft 4 rotates. Other configurations and effects are the same as those of the first proposed example. The number of cores 13A, in other words, the number of electromagnets is preferably three or more in the circumferential direction.
As described above, the magnetic bearing 8A has three or more electromagnets, the magnetic poles 13Aa of the core 13A of each electromagnet are arranged in the rotation axis direction, and the polarities of the magnetic poles 13Aa on the same circumference are matched. In addition, the hysteresis loss and the eddy current loss generated in the main shaft portion of the magnetic bearing 8A with the rotation of the main shaft 4 can be reduced. In addition, since heat generation of the main shaft 4 due to these losses can be suppressed, reduction of the bearing gap due to thermal expansion of the main shaft 4 can be minimized, and stable performance of the static pressure gas bearing 9A can be obtained.

図11〜図13の軸受3Bは、図9,図10の例に対して、ラジアル磁気軸受8Aのコア形状を改良したものである。主軸4の軸方向に配置したコア13Bのヨーク部13Ba,13Bbのうち、一方のヨーク部13Ba側を円周方向に隣り合うヨーク部と共通化し、形状を簡略化させている。このように電磁石を構成することで、電磁石のヨーク13Bの加工工数を減少できて、加工性を向上させることができると共に、主軸4の回転に伴い発生する磁気軸受主軸部分での鉄損をさらに軽減することができ、より高速回転に対応できる。   The bearing 3B of FIGS. 11 to 13 is obtained by improving the core shape of the radial magnetic bearing 8A with respect to the examples of FIGS. Of the yokes 13Ba, 13Bb of the core 13B arranged in the axial direction of the main shaft 4, one yoke 13Ba side is shared with the yoke adjacent in the circumferential direction to simplify the shape. By configuring the electromagnet in this manner, the number of steps for processing the yoke 13 </ b> B of the electromagnet can be reduced, the workability can be improved, and the iron loss in the magnetic bearing main shaft portion generated with the rotation of the main shaft 4 can be further reduced. It can be reduced and can cope with higher speed rotation.

図14は、この発明の第1の実施形態を示す。この実施形態では、前述の第1の提案例において、軸受3と対向する主軸4の表面にセラミックスのコーティング層33を施したものである。これにより、タッチダウン時の主軸4および軸受面の焼き付きを防止できる。さらに、コーティング層33がセラミックスであるため、磁気軸受8の動作中で主軸4が回転したときに、その主軸4の内部での、鉄損の発生を抑制でき、主軸4の高速回転に対応できる。また、コーティング層33の外周面は静圧気体軸受9のロータ面、内周面は磁気軸受8のロータ面となり、静圧気体軸受隙間と磁気軸受隙間とが異なる寸法となるため、コーティング層33の厚さを調整することで、最適な静圧気体軸受9と磁気軸受8の隙間を設定できる。このコーティング層33の厚さを1mm厚以下とすることで磁気軸受隙間d′が広くなることを制限すれば、コイル14の供給電流を増やすことなく所望の電磁力を発生させることができる。
また、主軸4の磁気軸受8におけるロータ部に積層珪素鋼板(図示せず)を使用し、その上にセラミックスコーティング層33を施しても良い。前記積層珪素鋼板からなるロータ部は、例えば主軸4の外周に設ける。その場合、積層珪素鋼板を使用したことで、高速回転時の鉄損を一層軽減し、高速回転時のロータの発熱を抑えることができる。
また主軸4の材質、またはその外周に前記のように設けるロータ部の材質に、低熱膨張軟磁性材たとえばインバー材を使用し、その外周面上にセラミックスのコーティング層33を施すことが好ましい。これにより、主軸4ないしロータの曲げ固有振動数が高められ、より高速まで回転することが可能になる。また、インバー材は、低熱膨張係数を有するため、主軸4に温度上昇があっても、主軸4の熱膨張による軸受隙間d′の減少量は小さく抑えることができ、かつ磁気軸受8に適した磁気特性を持つ。このため安定した静圧気体軸受性能が確保できる。しかも、軸方向への膨張量も少ないため、工作機械用のスピンドル装置に応用した場合には、加工精度の向上に効果がある。さらに、一般にセラミックスは低熱膨張係数を有することから、例えばフェライト系のステンレス鋼で製作した主軸4上にセラミックスコーティング層33を施すと、主軸4の熱膨張係数の差によって、セラミックスコーティング層33に割れが発生したり、剥がれ生じる可能性があるが、インバー材を使用することによりこのような問題は解決される。
FIG. 14 shows a first embodiment of the present invention. In this embodiment, a ceramic coating layer 33 is applied to the surface of the main shaft 4 facing the bearing 3 in the first proposal example described above. Thereby, seizure of the main shaft 4 and the bearing surface at the time of touchdown can be prevented. Further, since the coating layer 33 is made of ceramics, when the main shaft 4 rotates during the operation of the magnetic bearing 8, it is possible to suppress the occurrence of iron loss inside the main shaft 4 and to cope with high-speed rotation of the main shaft 4. . Further, the outer peripheral surface of the coating layer 33 is the rotor surface of the static pressure gas bearing 9 and the inner peripheral surface is the rotor surface of the magnetic bearing 8. By adjusting the thickness of the magnetic bearing 8, an optimal gap between the static pressure gas bearing 9 and the magnetic bearing 8 can be set. By limiting the thickness of the coating layer 33 to 1 mm or less to increase the magnetic bearing gap d ', a desired electromagnetic force can be generated without increasing the current supplied to the coil 14.
Further, a laminated silicon steel plate (not shown) may be used for the rotor part of the magnetic bearing 8 of the main shaft 4, and the ceramic coating layer 33 may be applied thereon. The rotor section made of the laminated silicon steel sheet is provided, for example, on the outer periphery of the main shaft 4. In that case, the use of the laminated silicon steel sheet can further reduce the iron loss during high-speed rotation and suppress the heat generation of the rotor during high-speed rotation.
It is preferable to use a low-thermal-expansion soft magnetic material, for example, an invar material, for the material of the main shaft 4 or the material of the rotor provided on the outer periphery thereof as described above, and to apply a ceramic coating layer 33 on the outer peripheral surface thereof. As a result, the bending natural frequency of the main shaft 4 or the rotor is increased, and it is possible to rotate to a higher speed. Further, since the invar material has a low coefficient of thermal expansion, even if the temperature of the main shaft 4 rises, the amount of decrease in the bearing gap d ′ due to the thermal expansion of the main shaft 4 can be suppressed to a small value, and the invar material is suitable for the magnetic bearing 8. Has magnetic properties. For this reason, stable static pressure gas bearing performance can be secured. In addition, since the amount of expansion in the axial direction is small, when applied to a spindle device for a machine tool, it is effective in improving machining accuracy. Further, since ceramics generally have a low coefficient of thermal expansion, when the ceramic coating layer 33 is applied on the main shaft 4 made of, for example, ferritic stainless steel, the ceramic coating layer 33 is cracked due to a difference in the coefficient of thermal expansion of the main shaft 4. However, such a problem can be solved by using an invar material.

なお、前記各静圧磁気複合ラジアル軸受の実施形態や提案例では、軸受ステータコア13に絞り15を設けたが、絞り15はコア13を避けてコイル覆い材18等に形成しても良い。
また、上記各静圧磁気複合ラジアル軸受の実施形態や提案例では、磁気軸受8と静圧気体軸受9とに部品を兼用させたが、磁気軸受と静圧気体軸受とは、必ずしも部品を兼用させなくても良く、磁気軸受の全体の軸方向幅内に静圧気体軸受を設け、または静圧気体軸受の全体の軸方向幅内に磁気軸受を設けても良い。あるいは、静圧気体軸受の軸受隙間dと、磁気軸受の軸およびステータコア間のギャップとを、互いに軸方向の略同じ位置に設ければ良い。部品の兼用を行わずに、磁気軸受と静圧軸受との幅に共通部分を持たせる構成は、磁気軸受を構成する部品と静圧軸受を構成する部品の配置を円周方向に異ならせることなどで実現される。
In the above-described embodiments and proposals of the hydrostatic magnetic composite radial bearing, the throttle 15 is provided on the bearing stator core 13. However, the throttle 15 may be formed on the coil covering member 18 or the like, avoiding the core 13.
Further, in the above-described embodiments and proposals of the hydrostatic magnetic composite radial bearing, the magnetic bearing 8 and the hydrostatic gas bearing 9 are used as parts, but the magnetic bearing and the hydrostatic gas bearing are not necessarily used as parts. The static pressure gas bearing may be provided within the entire axial width of the magnetic bearing, or the magnetic bearing may be provided within the entire axial width of the static pressure gas bearing. Alternatively, the bearing gap d of the hydrostatic gas bearing and the gap between the shaft of the magnetic bearing and the stator core may be provided at substantially the same position in the axial direction. The configuration in which the widths of the magnetic bearing and the hydrostatic bearing have a common part without sharing the parts is to make the arrangement of the parts constituting the magnetic bearing and the parts forming the hydrostatic bearing different in the circumferential direction. Etc. are realized.

図15は、この静圧磁気複合軸受をアキシャル軸受に適用した例を示す。この静圧磁気複合アキシャル軸受装置は、磁性体からなる主軸41の鍔状のスラスト支持部である軸受ロータ41aを軸方向両側から2つの静圧磁気複合アキシャル軸受部42,43で挟んで構成される。各静圧磁気複合アキシャル軸受42,43は、電磁石のコア44,45内にコイル46,47を収納し、このコア44,45内に絞り48を設けたものであって、主軸41の外周にリング状に設けられる。絞り48は自成絞りであり、コア44,45の軸受面に開口する先端が微細孔となった給気孔48aと、軸受隙間d1,d2とで構成される。前記のコア44,45とコイル46,47とで、アキシャル磁気軸受49の軸受ステータ52が構成され、コア44,45と絞り48とでアキシャル静圧気体軸受50が構成される。   FIG. 15 shows an example in which this hydrostatic composite bearing is applied to an axial bearing. This hydrostatic / magnetic composite axial bearing device is configured such that a bearing rotor 41a, which is a flange-shaped thrust support portion of a main shaft 41 made of a magnetic material, is sandwiched between two hydrostatic / magnetic composite axial bearing portions 42 and 43 from both axial sides. You. Each of the static pressure magnetic composite axial bearings 42 and 43 accommodates coils 46 and 47 in cores 44 and 45 of an electromagnet, and has a throttle 48 provided in the cores 44 and 45. It is provided in a ring shape. The restrictor 48 is a self-contained restrictor, and is composed of an air supply hole 48a having a fine hole at the tip end, which opens to the bearing surfaces of the cores 44 and 45, and bearing gaps d1 and d2. The cores 44 and 45 and the coils 46 and 47 constitute a bearing stator 52 of an axial magnetic bearing 49, and the cores 44 and 45 and the throttle 48 constitute an axial hydrostatic gas bearing 50.

コア44,45とロータ41a間にこの圧力流体を噴出させることにより、コア44,45とロータ41a間に圧力が発生する。また、自成絞り48を設けたことによって、コア44,45とロータ41a間の隙間d1,d2の変動によって、圧力および隙間の間隔が自動的に変化し、自動調芯機能を有する静圧気体軸受を形成できる。これにより、ロータ41aを安定浮上させることができる。 この場合に、コア44,45とロータ41a間の隙間d1,d2を0.1mm以下と微小することで、この静圧気体軸受による軸受剛性を高め、静圧気体軸受単独でも、ロータ41aは安定して浮上することができる。   By ejecting the pressure fluid between the cores 44, 45 and the rotor 41a, pressure is generated between the cores 44, 45 and the rotor 41a. In addition, the provision of the self-contained throttle 48 automatically changes the pressure and the gap between the cores 44 and 45 and the gaps d1 and d2 between the rotor 41a and the static pressure gas having an automatic centering function. A bearing can be formed. Thus, the rotor 41a can be stably levitated. In this case, by minimizing the gaps d1 and d2 between the cores 44 and 45 and the rotor 41a to 0.1 mm or less, the bearing rigidity of the hydrostatic gas bearing is increased, and the rotor 41a is stable even with the hydrostatic gas bearing alone. And can surface.

この静圧磁気複合軸受には、外部にコア44,45とロータ41a間の距離を測定する変位センサ51を設け、その変位センサ51の測定値に応じてコイル46,47に流す電流をフィードバック制御する磁気軸受制御手段53を設ける。磁気軸受制御手段53は、例えばアンプ54を介して電流制御する。これにより、静圧気体軸受と磁気軸受とを兼用した軸受構成が可能となる。この磁気軸受制御手段53は、第1の提案例等で説明した磁気軸受制御手段28と同様な機能のものを用いることができる。   This static pressure magnetic composite bearing is provided with a displacement sensor 51 for measuring the distance between the cores 44 and 45 and the rotor 41a, and the current flowing through the coils 46 and 47 is feedback controlled according to the measured value of the displacement sensor 51. Magnetic bearing control means 53 is provided. The magnetic bearing control means 53 controls the current through, for example, an amplifier 54. As a result, a bearing configuration that serves both as a static pressure gas bearing and a magnetic bearing is made possible. As the magnetic bearing control means 53, one having the same function as the magnetic bearing control means 28 described in the first proposal example or the like can be used.

この例の静圧磁気複合アキシャル軸受装置において、前記変位センサ51を設ける代わりに、静圧気体軸受面の圧力を測定し、この圧力によって静圧気体軸受50における軸受隙間d、すなわち電磁石のコア45とロータ41a間の隙間d(d1,d2)の大きさを換算して求めてもよい。この隙間dの大きさの検出結果により、磁気軸受制御手段53でコイル46,47の電流を制御する。 圧力測定による変位測定の場合、他の方式のセンサで問題となるロータセンサターゲット面の磁気特性むらによるセンサの誤動作がなく、高精度なセンシングが可能となる。   In the hydrostatic magnetic composite axial bearing device of this example, instead of providing the displacement sensor 51, the pressure of the hydrostatic gas bearing surface is measured, and this pressure is used to measure the bearing gap d in the hydrostatic gas bearing 50, that is, the core 45 of the electromagnet. It may be obtained by converting the size of the gap d (d1, d2) between the rotor and the rotor 41a. The current of the coils 46 and 47 is controlled by the magnetic bearing control means 53 based on the detection result of the size of the gap d. In the case of displacement measurement by pressure measurement, high-precision sensing is possible without malfunction of the sensor due to uneven magnetic characteristics of the target surface of the rotor sensor, which is a problem with other types of sensors.

この圧力測定のために、この例において、図16に示すように、電磁石のコア44,45の内部に圧力センサ55を配置し、直接に静圧気体軸受50の圧力を測定するようにしても良い。
図17に示すように、静圧気体軸受50に直結した形で、中空パイプ56を設け、外部の圧力センサ57で圧力を測定するようにしても良い。この場合、コア44などの静圧気体軸受50の軸受面の構成部材に圧力測定用の微細孔59を設け、この微細孔59に中空パイプ56を結合する。軸受サイズが小さく、外部に圧力センサのスペースがある場合には、外部に圧力センサ57を設けることが有利である。また、圧力測定用に設けた前記微細孔59の直径を1mm以下と規制することで、静圧気体軸受への影響を少なくし、またそれに接続するパイプ56の内径(直径)も1mm以下に規制することで、周波数特性を低下させずに圧力の測定が可能となる。
For this pressure measurement, in this example, as shown in FIG. 16, a pressure sensor 55 is disposed inside the cores 44 and 45 of the electromagnet, and the pressure of the hydrostatic gas bearing 50 is directly measured. good.
As shown in FIG. 17, a hollow pipe 56 may be provided directly connected to the static pressure gas bearing 50, and the pressure may be measured by an external pressure sensor 57. In this case, a fine hole 59 for pressure measurement is provided in a component on the bearing surface of the hydrostatic gas bearing 50 such as the core 44, and a hollow pipe 56 is connected to the fine hole 59. If the bearing size is small and there is space for the pressure sensor outside, it is advantageous to provide the pressure sensor 57 outside. Further, by regulating the diameter of the fine hole 59 provided for pressure measurement to 1 mm or less, the influence on the hydrostatic gas bearing is reduced, and the inner diameter (diameter) of the pipe 56 connected thereto is also regulated to 1 mm or less. By doing so, it is possible to measure the pressure without lowering the frequency characteristics.

図18は、図16のA−A断面を示した図である。この例では、センサ圧力測定個所を静圧磁気複合アキシャル軸受の静圧気体軸受面における同一円周上の等ピッチ3箇所以上(図18では3箇所の測定点a1,a2,a3)の圧力を測定し、各測定値から各部のロータ41aと電磁石コア44,45間の隙間d1,d2の値を換算し、その値の平均をとる。これにより、ロータ41aのアキシャル方向位置を正確に測定することができる。前記平均をとる演算は、例えば磁気軸受制御手段53で行う。   FIG. 18 is a diagram showing a cross section taken along line AA of FIG. In this example, the sensor pressure measurement points are set to three or more equal pitches (three measurement points a1, a2, and a3 in FIG. 18) on the same circumference on the hydrostatic gas bearing surface of the hydrostatic magnetic composite axial bearing. The values of the gaps d1, d2 between the rotor 41a of each part and the electromagnet cores 44, 45 are converted from the measured values, and the values are averaged. Thus, the axial position of the rotor 41a can be accurately measured. The calculation for taking the average is performed by, for example, the magnetic bearing control unit 53.

上記のように3か所で圧力を測定する代わりに、図19に示すように、円周上の180°離れた対向する2個所の測定点b1,b2で行うようにしても良い。 図19は図16のA−A断面に相当する図である。圧力測定点b1,b2をこのように円周上の180°離れた2点に設定することで、ロータ41aのピッチング運動もしくはヨーイング運動に影響されることなく、最小の圧力センサ個数でロータ41aのアキシャル方向位置を測定することができる。   Instead of measuring the pressure at three locations as described above, the pressure may be measured at two opposed measurement points b1 and b2 180 ° apart on the circumference as shown in FIG. FIG. 19 is a diagram corresponding to the AA cross section of FIG. By setting the pressure measurement points b1 and b2 at two points 180 ° apart on the circumference in this way, the rotor 41a is not affected by the pitching motion or the yawing motion of the rotor 41a and the number of pressure sensors is minimized. Axial position can be measured.

図16の例のようにロータ41aの両側に対向して静圧磁気複合アキシャル軸受部42,43を設ける場合、軸受隙間d1,d2の圧力を測定する測定点は、図20に示すように、各軸受隙間d1,d2について1個所ずつとしても良い。その場合、片方の軸受隙間d1の測定点c1と、もう片方の軸受隙間d2の測定点c2とは、投影面で同一円周上の180°離れた2点とする。また、磁気軸受制御手段53は、両測定点c1,c2の圧力測定値から求めた軸受隙間d1,d2の差分を計算して電流制御を行うようにする。これにより、ロータ41aのピッチング運動もしくはヨーイング運動に影響されることなく、さらにロータ41aに熱膨張があった場合にも、最小の圧力センサ個数でロータ41aのアキシャル方向位置を測定することができる。
これら図18ないし図20と共に説明した方法により、ロータ41aのアキシャル方向の変位を正確にかつ低コストで測定することができる。
When the hydrostatic magnetic composite axial bearings 42 and 43 are provided opposite to both sides of the rotor 41a as in the example of FIG. 16, the measurement points for measuring the pressure in the bearing gaps d1 and d2 are as shown in FIG. Each bearing gap d1, d2 may be provided at one location. In this case, the measurement point c1 of one bearing gap d1 and the measurement point c2 of the other bearing gap d2 are two points 180 ° apart on the same circumference on the projection plane. The magnetic bearing control means 53 calculates the difference between the bearing gaps d1 and d2 obtained from the pressure measurement values at the two measurement points c1 and c2, and performs current control. Accordingly, the axial position of the rotor 41a can be measured with the minimum number of pressure sensors even when the rotor 41a is thermally expanded without being affected by the pitching motion or the yawing motion of the rotor 41a.
By the method described with reference to FIGS. 18 to 20, the axial displacement of the rotor 41a can be measured accurately and at low cost.

なお、前記各実施形態および提案例において示した圧力センサ、例えば図15,図16の例や、図8の例の圧力センサ51,55,27は、半導体圧力センサを用いても良い。これにより、装置をコンパクトでかつその測定結果を電気信号で直接外部に取り出すことができる。   The pressure sensors shown in the embodiments and the proposals, for example, the pressure sensors 51, 55, and 27 of the examples of FIGS. 15 and 16 and the example of FIG. 8 may use semiconductor pressure sensors. This makes it possible to make the apparatus compact and to take out the measurement results directly to the outside by an electric signal.

図21はさらに他の提案例にかかる静圧磁気複合アキシャル軸受を示す。この例は、主軸41のロータ41aの片方のみを支えるアキシャル軸受としたものである。すなわち、磁気軸受49のステータコア45および静圧気体軸受50の絞り48をロータ41aの軸方向の片側のみに配置している。
この例では、磁気軸受49によるロータ41aへの作用力Fmは吸引力として働き、一方静圧気体軸受50によるロータ41aへの作用力Fsは反発力として作用する。よって、静圧気体軸受50の単独ではロータ軸方向が鉛直方向にあった場合には、ロータを支持することができない。しかし磁気軸受49と複合化することにより、軸受の据え付け方向に依らずロータ41aを支持することができる。このように、主軸41のスラスト支持部41aの片方のみに磁気軸受49および静圧気体軸受50を配置し、吸引力と反発力とを釣り合わせるようにした静圧磁気複合軸受とすることで、軸受構成がより一層コンパクトになる。
FIG. 21 shows a hydrostatic magnetic composite axial bearing according to still another proposed example. In this example, an axial bearing that supports only one of the rotors 41a of the main shaft 41 is used. That is, the stator core 45 of the magnetic bearing 49 and the throttle 48 of the static pressure gas bearing 50 are arranged only on one side in the axial direction of the rotor 41a.
In this example, the acting force Fm of the magnetic bearing 49 on the rotor 41a acts as an attraction force, while the acting force Fs of the static pressure gas bearing 50 on the rotor 41a acts as a repulsive force. Therefore, the rotor cannot be supported when the axial direction of the rotor is in the vertical direction by itself using the static pressure gas bearing 50. However, by combining with the magnetic bearing 49, the rotor 41a can be supported irrespective of the bearing installation direction. As described above, the magnetic bearing 49 and the hydrostatic gas bearing 50 are arranged only on one of the thrust support portions 41a of the main shaft 41, and the hydrostatic magnetic composite bearing is configured to balance the attractive force and the repulsive force. The bearing configuration becomes more compact.

図22は、他の応用例に係る静圧磁気複合軸受スピンドル装置の縦断面図を示す。この静圧磁気複合軸受スピンドル装置1は、図1の静圧磁気複合軸受スピンドル装置1において、モータ5と各軸受3,3,10の配置関係を変えたものであり、モータ5をハウジング2内の最後部に配置してある。スラスト磁気軸受10は、前後の静圧磁気複合軸受3,3の間に配置してある。その他の構成は前記提案例と同じである。
図1の例のモータ配置では、モータ5を高出力とした場合、モータ5のロータ6の肉厚,質量が大きくなって曲げ固有振動数を低下させることがあるが、図22の例のようにモータ5を主軸4の後端部に配置することで、これに対処できる。
FIG. 22 is a longitudinal sectional view of a hydrostatic magnetic composite bearing spindle device according to another application example. This hydrostatic magnetic composite bearing spindle device 1 differs from the hydrostatic magnetic composite bearing spindle device 1 of FIG. 1 in the arrangement of the motor 5 and the bearings 3, 3, and 10. Is located at the end of The thrust magnetic bearing 10 is disposed between the front and rear hydrostatic magnetic composite bearings 3, 3. Other configurations are the same as those of the above-mentioned proposal.
In the motor arrangement of the example of FIG. 1, when the motor 5 is set to a high output, the thickness and the mass of the rotor 6 of the motor 5 may be increased to lower the bending natural frequency, but as shown in the example of FIG. This can be dealt with by disposing the motor 5 at the rear end of the main shaft 4.

図23はさらに他の応用例を示す。この静圧磁気複合軸受スピンドル装置1は、図1の静圧磁気複合軸受スピンドル装置1において、軸受に対する主軸4のラジアル変位を検出するセンサとして、渦電流式の変位センサ30を用いたものである。各静圧磁気複合軸受3に対するセンサ30の設置位置は前後のどちらでも良いが、図示の例では、前部の静圧磁気複合軸受3に対するものは軸受前方とされ、後部の静圧磁気複合軸受3に対するものは軸受後方とされている。なお、上記渦電流式変位センサ30に代えて、リラクタンス式変位センサや静電容量式変位センサを用いてもよい。その他の構成は、図1の提案例と同じである。   FIG. 23 shows still another application example. This hydrostatic magnetic composite bearing spindle device 1 uses an eddy current type displacement sensor 30 as a sensor for detecting a radial displacement of the main shaft 4 with respect to the bearing in the hydrostatic magnetic composite bearing spindle device 1 of FIG. . The position of the sensor 30 with respect to each of the hydrostatic magnetic composite bearings 3 may be either before or after. However, in the illustrated example, the position with respect to the front hydrostatic magnetic composite bearing 3 is the front of the bearing, and the rear hydrostatic magnetic composite bearing is provided. The one for 3 is the rear of the bearing. Note that, instead of the eddy current displacement sensor 30, a reluctance displacement sensor or a capacitance displacement sensor may be used. The other configuration is the same as the proposed example of FIG.

図24は、静圧磁気複合軸受で構成したさらに他のスピンドル装置を示す。このスピンドル装置は、2組の静圧磁気複合ラジアル軸受65,66と、1組の静圧磁気複合アキシャル軸受67と、主軸68を回転させるモータ69から構成される。主軸68は静圧磁気複合アキシャル軸受67で支持される鍔状のロータ41aを有する。これら静圧磁気複合ラジアル軸受65,66および静圧磁気複合アキシャル軸受67には、前記各実施形態または提案例で説明したいずれのものを使用しても良い。
また、同図のスピンドル装置において、2組の静圧磁気複合ラジアル軸受65,66として、図25に示すように、コイル14の主軸軸方向の両側に自成絞り15を有する静圧磁気複合ラジアル軸受65A,66Aを用いても良い。図25の静圧磁気複合軸受スピンドル装置におけるその他の構成は図4に示すスピンドル装置と同じである。
なお、これらの例のスピンドル装置において、必ずしも全ての軸受を静圧磁気複合軸受で構成する必要はない。スラスト方向のみの静剛性を高める必要ある場合は、アキシャル軸受部のみを静圧磁気複合軸受で構成し、ラジアル方向の軸受支持を静圧気体軸受で構成すればよい。また、ラジアル方向のみの静剛性を高める必要のある場合は、スピンドル負荷側の端部に静圧磁気複合ラジアル軸受65を配置し、他の軸受支持部を静圧気体軸受で構成してもよい。
FIG. 24 shows still another spindle device constituted by a hydrostatic magnetic composite bearing. This spindle device includes two sets of hydrostatic magnetic composite radial bearings 65 and 66, one set of hydrostatic magnetic composite axial bearing 67, and a motor 69 for rotating a main shaft 68. The main shaft 68 has a flange-shaped rotor 41 a supported by a hydrostatic magnetic composite axial bearing 67. Any of the static pressure / magnetic composite radial bearings 65 and 66 and the static pressure / magnetic composite axial bearing 67 described in each of the above-described embodiments or the proposed examples may be used.
Also, in the spindle device shown in the figure, two sets of hydrostatic magnetic composite radial bearings 65 and 66 are provided, as shown in FIG. Bearings 65A and 66A may be used. Other configurations of the hydrostatic composite bearing spindle device of FIG. 25 are the same as those of the spindle device shown in FIG.
In the spindle devices of these examples, it is not always necessary to configure all bearings with a hydrostatic composite bearing. When it is necessary to increase the static rigidity only in the thrust direction, only the axial bearing portion may be constituted by a hydrostatic magnetic composite bearing, and the bearing support in the radial direction may be constituted by a hydrostatic gas bearing. When it is necessary to increase the static rigidity only in the radial direction, a hydrostatic magnetic composite radial bearing 65 may be arranged at the end on the spindle load side, and the other bearing support may be constituted by a hydrostatic gas bearing. .

この発明の基礎となる第1の提案例に係る静圧磁気複合軸受を応用したスピンドル装置の縦断面図である。1 is a longitudinal sectional view of a spindle device to which a hydrostatic magnetic composite bearing according to a first proposal example as a basis of the present invention is applied. その静圧磁気複合ラジアル軸受の横断面図と軸受制御系のブロック図とを組み合わせて示す説明図である。FIG. 3 is an explanatory diagram showing a combination of a cross-sectional view of the hydrostatic magnetic composite radial bearing and a block diagram of a bearing control system. 同静圧磁気複合ラジアル軸受の部分拡大図である。It is the elements on larger scale of the static pressure magnetic composite radial bearing. 同静圧磁気複合ラジアル軸受のヨーク部分の変形例の部分拡大図である。It is the elements on larger scale of the modification of the yoke part of the static pressure magnetic composite radial bearing. 同静圧磁気複合ラジアル軸受の電流制御例を示す説明図である。It is explanatory drawing which shows the example of current control of the static pressure magnetic composite radial bearing. 同静圧磁気複合ラジアル軸受の制御系の変形例を示すブロック図である。It is a block diagram which shows the modification of the control system of the static pressure magnetic composite radial bearing. 同静圧磁気複合ラジアル軸受の制御系の他の変形例を示すブロック図である。It is a block diagram showing another modification of the control system of the same static pressure magnetic composite radial bearing. 他の提案例に係る静圧磁気複合ラジアル軸受の断面図である。It is sectional drawing of the hydrostatic composite radial bearing which concerns on another proposal example. さらに他の提案例に係る静圧磁気複合ラジアル軸受の横断面図である。It is a cross-sectional view of a hydrostatic magnetic composite radial bearing according to yet another proposed example. その縦断面図である。It is the longitudinal section. さらに他の提案例にかかる静圧磁気複合ラジアル軸受の縦断面図である。It is a longitudinal cross-sectional view of the hydrostatic magnetic composite radial bearing concerning another proposal example. 図11のXII-XII 線断面図である。FIG. 12 is a sectional view taken along line XII-XII of FIG. 11. 図11のXII1-XII1 線断面図である。FIG. 12 is a sectional view taken along line XII1-XII1 of FIG. 11. この発明の第1の実施形態に係る静圧磁気複合ラジアル軸受の部分断面図である。FIG. 1 is a partial cross-sectional view of a hydrostatic magnetic composite radial bearing according to a first embodiment of the present invention. さらに他の提案例に係る静圧磁気複合アキシャル軸受の部分断面図と軸受制御系のブロック図とを組み合わせて示す説明図である。It is an explanatory view showing a partial sectional view of a hydrostatic magnetic composite axial bearing according to still another proposed example in combination with a block diagram of a bearing control system. さらに他の提案例に係る静圧磁気複合アキシャル軸受の部分断面図と軸受制御系のブロック図とを組み合わせて示す説明図である。It is an explanatory view showing a partial sectional view of a hydrostatic magnetic composite axial bearing according to still another proposed example in combination with a block diagram of a bearing control system. さらに他の提案例に係る静圧磁気複合ラジアル軸受の部分断面図である。FIG. 11 is a partial cross-sectional view of a hydrostatic magnetic composite radial bearing according to still another proposed example. その測定点の説明図である。It is an explanatory view of the measurement point. その測定点の他の例の説明図である。It is explanatory drawing of another example of the measurement point. (A),(B)は各々測定点の他の例の説明図である。(A), (B) is an explanatory view of another example of each measurement point. さらに他の提案例に係る静圧磁気複合ラジアル軸受の部分断面図である。FIG. 11 is a partial cross-sectional view of a hydrostatic magnetic composite radial bearing according to still another proposed example. この発明の基礎となる他の応用例に係る静圧磁気複合軸受スピンドル装置の縦断面図である。FIG. 11 is a longitudinal sectional view of a hydrostatic magnetic composite bearing spindle device according to another application example on which the present invention is based. さらに他の応用例に係る静圧磁気複合軸受スピンドル装置の縦断面図である。FIG. 13 is a longitudinal sectional view of a hydrostatic magnetic composite bearing spindle device according to still another application example. さらに他の応用例に係る静圧磁気複合軸受スピンドル装置の縦断面図である。FIG. 13 is a longitudinal sectional view of a hydrostatic magnetic composite bearing spindle device according to still another application example. さらに他の応用例に係る静圧磁気複合軸受スピンドル装置の縦断面図である。FIG. 13 is a longitudinal sectional view of a hydrostatic magnetic composite bearing spindle device according to still another application example. 従来例の縦断面図である。It is a longitudinal section of the conventional example. 他の従来例の縦断面図である。It is a longitudinal section of other conventional examples.

符号の説明Explanation of reference numerals

1…静圧磁気複合軸受スピンドル装置
2…ハウジング
3…静圧磁気複合軸受
4…主軸(ロータ)
8…ラジアル磁気軸受
9…ラジアル静圧気体軸受
10…スラスト磁気軸受
12…軸受ステータ
13…ステータコア
14…コイル
15…絞り
15a…給気孔
27A〜27D…圧力センサ(変位検出手段)
28…磁気軸受制御手段
33…コーティング層
41…主軸(ロータ)
41a…ロータ
44,45…ステータコア
46…コイル
48…絞り
49…磁気軸受
50…静圧気体軸受
53…磁気軸受制御手段
51…変位センサ
52…軸受ステータ
55…圧力センサ
d…軸受隙間
DESCRIPTION OF SYMBOLS 1 ... Hydrostatic composite bearing spindle device 2 ... Housing 3 ... Hydrostatic composite bearing 4 ... Spindle (rotor)
8 Radial magnetic bearing 9 Radial static pressure gas bearing 10 Thrust magnetic bearing 12 Bearing stator 13 Stator core 14 Coil 15 Throttle 15a Air supply holes 27A to 27D Pressure sensors (displacement detecting means)
28 ... magnetic bearing control means 33 ... coating layer 41 ... spindle (rotor)
41a rotor 44, 45 stator core 46 coil 48 throttle 49 magnetic bearing 50 hydrostatic gas bearing 53 magnetic bearing control means 51 displacement sensor 52 bearing stator 55 pressure sensor d bearing clearance

Claims (2)

ロータの変位を測定する変位測定手段を有し、この変位測定手段の測定値に従って電磁力を発生させる磁気軸受と、この磁気軸受の軸受ステータに絞りを有する静圧気体軸受とを併設することにより前記ロータを非接触支持し、前記ロータに積層珪素鋼板を使用し、この積層珪素鋼板の上に1mm厚以下のセラミックスのコーティング層を施した静圧磁気複合軸受。 By having a displacement measuring means for measuring the displacement of the rotor, a magnetic bearing for generating an electromagnetic force according to the measured value of the displacement measuring means, and a hydrostatic gas bearing having a throttle in the bearing stator of the magnetic bearing, A hydrostatic magnetic composite bearing in which the rotor is supported in a non-contact manner, a laminated silicon steel sheet is used for the rotor, and a ceramic coating layer having a thickness of 1 mm or less is provided on the laminated silicon steel sheet. ロータの変位を測定する変位測定手段を有し、この変位測定手段の測定値に従って電磁力を発生させ磁気軸受と、この磁気軸受の軸受ステータに絞りを有する静圧気体軸受とを併設併設することにより前記ロータを非接触支持し、前記ロータに低熱膨張性で軟磁性のむく材を使用し、このむく材の上に1mm厚以下のセラミックスのコーティング層を施した静圧磁気複合軸受。
It has displacement measuring means for measuring the displacement of the rotor, and a magnetic bearing which generates an electromagnetic force according to the measured value of the displacement measuring means, and a hydrostatic gas bearing having a throttle in a bearing stator of the magnetic bearing are provided side by side. A hydrostatic composite bearing comprising a non-contact support for the rotor, a soft magnetic material having a low thermal expansion, and a ceramic coating layer having a thickness of 1 mm or less provided on the material.
JP2004234964A 1997-04-28 2004-08-12 Static pressure magnetic combined bearing Pending JP2004324895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004234964A JP2004324895A (en) 1997-04-28 2004-08-12 Static pressure magnetic combined bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11082497 1997-04-28
JP2004234964A JP2004324895A (en) 1997-04-28 2004-08-12 Static pressure magnetic combined bearing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12196698A Division JP3609613B2 (en) 1997-04-28 1998-05-01 Hydrostatic magnetic compound bearing

Publications (1)

Publication Number Publication Date
JP2004324895A true JP2004324895A (en) 2004-11-18

Family

ID=33512733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004234964A Pending JP2004324895A (en) 1997-04-28 2004-08-12 Static pressure magnetic combined bearing

Country Status (1)

Country Link
JP (1) JP2004324895A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245166A (en) * 2009-04-02 2010-10-28 Disco Abrasive Syst Ltd Cutting apparatus
CN105422622A (en) * 2015-12-28 2016-03-23 宁波达奋精工轴承有限公司 Auxiliary device for magnetic bearing
CN105485165A (en) * 2015-12-28 2016-04-13 宁波达奋精工轴承有限公司 Magnetic bearing air auxiliary device
CN105485164A (en) * 2015-12-28 2016-04-13 宁波达奋精工轴承有限公司 Magnetic bearing air-assisted device
CN107237820A (en) * 2017-07-03 2017-10-10 燕山大学 A kind of passive journal bearing of dual suspension of electromagnetism hydrostatic
JP2019516920A (en) * 2016-05-17 2019-06-20 エル−シャフェイ,アリー Integrated journal bearing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245166A (en) * 2009-04-02 2010-10-28 Disco Abrasive Syst Ltd Cutting apparatus
CN105422622A (en) * 2015-12-28 2016-03-23 宁波达奋精工轴承有限公司 Auxiliary device for magnetic bearing
CN105485165A (en) * 2015-12-28 2016-04-13 宁波达奋精工轴承有限公司 Magnetic bearing air auxiliary device
CN105485164A (en) * 2015-12-28 2016-04-13 宁波达奋精工轴承有限公司 Magnetic bearing air-assisted device
JP2019516920A (en) * 2016-05-17 2019-06-20 エル−シャフェイ,アリー Integrated journal bearing
JP7043423B2 (en) 2016-05-17 2022-03-29 エル-シャフェイ,アリー Integrated journal bearing
CN107237820A (en) * 2017-07-03 2017-10-10 燕山大学 A kind of passive journal bearing of dual suspension of electromagnetism hydrostatic

Similar Documents

Publication Publication Date Title
JP3696398B2 (en) Hydrostatic magnetic compound bearing and spindle device
JP3662741B2 (en) Hydrostatic magnetic compound bearing
US7884521B2 (en) Rotor shaft for a magnetic bearing device
Cole et al. An active magnetic bearing for thin-walled rotors: vibrational dynamics and stabilizing control
US8729758B2 (en) Rotational machine, method for the determination of a tilting of a rotor of a rotational machine, as well as a processing plant
JPH1169717A (en) Brushless dc motor
Kim et al. Design and control of active magnetic bearing system with Lorentz force-type axial actuator
JPH07256503A (en) Spindle apparatus
JP3789650B2 (en) Processing machine and spindle device thereof
JP2004324895A (en) Static pressure magnetic combined bearing
JP3448416B2 (en) Built-in motor
US6518770B2 (en) System and method for measuring dynamic loads in a magnetic bearing
JP3609613B2 (en) Hydrostatic magnetic compound bearing
JP3609614B2 (en) Hydrostatic magnetic compound bearing and spindle device
JP2000263377A (en) Metal mold machining device
JPS5969245A (en) Device for detecting cutting condition
JP2002039176A (en) Static pressure/magnetic composite bearing spindle device
CN111220303A (en) Disc type hysteresis dynamometer
US6992416B2 (en) Bearing device
JP5273367B2 (en) Magnetic bearing control device
JP2002310153A (en) Rotating machine having magnetic bearing
JP4300344B2 (en) Magnetic bearing control device and control method
JP2004092752A (en) Magnetic bearing displacement measuring apparatus
JPH05231428A (en) Control method and control device for magnetic bearing
JP2004092752A6 (en) Magnetic bearing displacement measuring device