JP4145696B2 - Piezoelectric oscillator - Google Patents
Piezoelectric oscillator Download PDFInfo
- Publication number
- JP4145696B2 JP4145696B2 JP2003097419A JP2003097419A JP4145696B2 JP 4145696 B2 JP4145696 B2 JP 4145696B2 JP 2003097419 A JP2003097419 A JP 2003097419A JP 2003097419 A JP2003097419 A JP 2003097419A JP 4145696 B2 JP4145696 B2 JP 4145696B2
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- piezoelectric
- oscillator
- series
- capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Oscillators With Electromechanical Resonators (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、圧電発振器に関し、さらに詳しくは、圧電発振器の周波数調整範囲を広くする回路構成に関するものである。
【0002】
【従来の技術】
図4は、従来技術のインバータ発振回路の一例である。本回路は入出力間を高抵抗R11により接続した信号反転増幅器10の出力端子11より、コンデンサC11を介して接地すると共に、圧電振動子Xtalと周波数調整用コンデンサC14を介して信号反転増幅器10の入力端子12に接続し、更にその入力端子12をコンデンサC12を介して接地する。尚、出力信号は抵抗R12とコンデンサC13の直列回路を介して取り出す構成になっている。
本回路では、信号反転増幅器10の入出力間に圧電振動子Xtalと周波数調整用コンデンサC14を挿入して発振させる構成であり、信号反転増幅器10の利得を高くして、入出力端インピーダンスを高く保つために圧電振動子Xtalの並列共振点近くで発振する。即ち本回路では、圧電振動子端子間の負荷容量が小さいため、C14の変化に対して周波数調整範囲が十分広く得られないという問題が発生する場合があった。
【0003】
【発明が解決しようとする課題】
このように、基準信号源としての圧電発振器は基準信号源として用いられることから、例えば完成前に、必要とする基凖周波数を発振するよう調整するのが一般的な使い方である。そのとき、可変周波数範囲が狭い場合、圧電振動子の個体間における発振周波数のバラツキによっては、周波数調整が不可能となる。従って、できるだけ負荷容量を大きくして周波数調整範囲を広くすることが肝要である。
本発明は、かかる課題に鑑み、簡単な回路構成で負荷容量を大きくして周波数調整範囲を広くする圧電発振器を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明はかかる課題を解決するために、請求項1は、所定の周波数で励振される圧電素子を備えた圧電振動子と、該圧電素子に電流を流して前記圧電素子を励振させる信号反転増幅器と、を備えた圧電発振器であって、前記信号反転増幅器の出力端子を容量と並列同調回路とを直列接続した回路を介して接地し、前記容量と並列同調回路との接続点を直列接続した2つの容量を介して前記信号反転増幅器の入力端子に接続し、前記直列接続された2つの容量の接続点を前記圧電振動子と周波数調整素子を介して接地することを特徴とする。
従来のインバータ発振回路は、インバータの入出力間に振動子と周波数調整素子を挿入して発振させていた。そのため、入出力端インピーダンスを高く保つため振動子の並列共振点近くで発振し、負荷容量が小さくなり周波数調整範囲が狭くなってしまった。そこで本発明では、振動子のインバータ接続側はコンデンサを介して180°位相がずれた出力に接続して、負荷容量を大きくして周波数調整範囲を広くするものである。
かかる発明によれば、振動子のインバータ接続側はコンデンサを介して180°位相がずれた出力に接続するので、負荷容量を大きくでき、その結果周波数調整範囲を広くすることができる。
請求項2は、前記2つの容量の接続点から見た場合、前記2つの容量の1つと前記並列同調回路により直列共振回路を構成することを特徴とする。
直列共振回路は、発振周波数に共振するとインピーダンスが最小となり、回路電流が最大となる。これにより、負性抵抗が増加して発振の起動を容易にすることができる。
かかる発明によれば、圧電振動子のループ内に直列共振回路を形成するので、負性抵抗が増加して発振の起動を容易にすることができる。
請求項3は、前記圧電振動子が水晶振動子であることを特徴とする。
かかる発明によれば、圧電振動子に水晶振動子を使用することにより、安価で、周波数安定度の高い発振器を実現することができる。
【0005】
【発明の実施の形態】
以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載される構成要素、種類、組み合わせ、形状、その相対配置などは特定的な記載がない限り、この発明の範囲をそれのみに限定する主旨ではなく単なる説明例に過ぎない。また、以下の実施形態では圧電発振器(振動子)の一例として水晶発振器について説明しているが、本発明は水晶以外の圧電発振器一般に適用可能である。
図1は、本発明の実施形態に係るインバータ発振回路の回路図である。尚、以下に回路要素符号と共に一例として示した回路素子値は後述する発振器電気的特性を確認した際の設計条件である。このインバータ発振回路は、入出力間を高抵抗R1により接続したインバータ1の出力端子2より、コンデンサC1及びコンデンサC2とインダクタL1との並列同調回路から成る直列回路を介して接地し、この直列回路の接続点よりコンデンサC3とC4を介してインバータ1の入力端子3に接続し、前記直列接続されたコンデンサC3とC4の接続点より圧電振動子Xtalと周波数調整用コンデンサC7を介して接地する。尚、この回路では出力を抵抗R2とコンデンサC6の直列回路を介して取り出す構成になっている。
次に、本実施形態の動作について説明するが、発振動作については周知の技術であるのでここでは詳細な説明は省略する。先ず、インバータ1に電源VCC5Vが投入されると、圧電素子Xtalの固有振動数に従って振動を開始し、インバータ1の出力端子2にレベルの高い電圧が発生する。その発振条件はコンデンサC1を通過して並列同調回路から成るリアクタンス性回路に基づき決定されるものであるから、例えば、10MHzの発振周波数近辺において並列同調回路がインダクタンス成分となるよう容量C2及びインダクタL1との値を設定すれば負荷容量を大きな値に設定することができる。
尚、本実施形態の発振回路の各定数は、Xtal:At−cut水晶振動子 1st 10MHzにおいて、C2:200pF、L1:1μHとした。
【0006】
図2は、図1のインバータ発振回路の各定数を変化させた場合の、負性抵抗値と発振器の入力レベルとの関係を表す図である。横軸は発振器の入力レベル(mV)、縦軸は負性抵抗(Ω)を表す。そして各特性の定数は、符号R1はC1:51pF、C2:163pF、C3:3pF、C4:∞pF、L1:1μH、符号R2はC1:10000pF、C2:0pF、C3:3pF、C4:∞pF、L1:1μH、符号R3はC1:51pF、C2:120pF、C3:12pF、C4:6pF、L1:1μHである。
この図から明らかなように符号R1の場合が最も負性抵抗が大きく、発振器の入力レベルが10mVのときに最大−900Ωを示し、次に符号R2で約−600Ω、最も小さいのが符号R3で−500Ωを示す。これは起動時に発振が如何に容易に強く発振するかを表しており、特に抵抗R1の値を調整することにより発振し易い条件が容易に得られる。
図3は図1の回路定数のときの回路容量と発振器の入力レベルとの関係を表す図である。横軸は発振器の入力レベル(mV)、縦軸は回路容量(pF)を表す。この図から明らかなように、発振器の入力レベルの変化に対して漸減はするが高いレベルを維持しているのが解る。これは直列共振回路に近い定数設定が可能になることにより、負荷容量を大きくすることができ、それにより発振動作するに十分な負性抵抗を得ることができる。
【0007】
【発明の効果】
以上記載のごとく請求項1の発明によれば、負荷容量をみかけ上大きくでき、その結果周波数調整範囲を広くすることができる。
また請求項2では、圧電振動子のループ内に直列共振回路を形成するので、負性抵抗が増加して発振の起動を容易にすることができる。
また請求項3では、圧電振動子に水晶振動子を使用することにより、安価で、周波数安定度の高い発振器を実現することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係るインバータ発振回路の回路図である。
【図2】図1のインバータ発振回路の各定数を変化させた場合の、負性抵抗値と発振器の入力レベルとの関係を表す図である。
【図3】図1の回路定数のときの回路容量と発振器の入力レベルとの関係を表す図である。
【図4】従来技術のインバータ発振回路の実施回路図である。
【符号の説明】
Xtal 圧電素子
C1、C2、C3、C4、C6、C7 コンデンサ
1 インバータ
R1 帰還抵抗器
R2 固定抵抗器
L1 インダクタ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piezoelectric oscillator, and more particularly to a circuit configuration that widens the frequency adjustment range of a piezoelectric oscillator.
[0002]
[Prior art]
FIG. 4 is an example of a conventional inverter oscillation circuit. This circuit is grounded via the capacitor C11 from the output terminal 11 of the
In this circuit, the piezoelectric vibrator Xtal and the frequency adjusting capacitor C14 are inserted between the input and output of the
[0003]
[Problems to be solved by the invention]
Thus, since the piezoelectric oscillator as the reference signal source is used as the reference signal source, for example, it is a general usage to adjust so as to oscillate a necessary base frequency before completion. At that time, when the variable frequency range is narrow, frequency adjustment is impossible depending on the variation of the oscillation frequency between the individual piezoelectric vibrators. Therefore, it is important to widen the frequency adjustment range by increasing the load capacity as much as possible.
The present invention has been made in view of the above problems, and an object of the present invention is to provide a piezoelectric oscillator that has a simple circuit configuration and increases the load capacity to widen the frequency adjustment range.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a piezoelectric vibrator having a piezoelectric element excited at a predetermined frequency, and a signal inverting amplifier for exciting the piezoelectric element by passing a current through the piezoelectric element. The output terminal of the signal inverting amplifier is grounded via a circuit in which a capacitor and a parallel tuning circuit are connected in series, and the connection point between the capacitor and the parallel tuning circuit is connected in series. It is connected to the input terminal of the signal inverting amplifier via two capacitors, and the connection point of the two capacitors connected in series is grounded via the piezoelectric vibrator and the frequency adjusting element.
The conventional inverter oscillation circuit oscillates by inserting a vibrator and a frequency adjusting element between the input and output of the inverter. For this reason, in order to keep the input / output terminal impedance high, the oscillator oscillates near the parallel resonance point of the vibrator, the load capacitance is reduced, and the frequency adjustment range is narrowed. Therefore, in the present invention, the inverter connection side of the vibrator is connected to an output that is 180 ° out of phase via a capacitor to increase the load capacity and widen the frequency adjustment range.
According to this invention, the inverter connection side of the vibrator is connected to the output that is 180 ° out of phase via the capacitor, so that the load capacity can be increased, and as a result, the frequency adjustment range can be widened.
According to a second aspect of the present invention, when viewed from the connection point of the two capacitors, a series resonance circuit is constituted by one of the two capacitors and the parallel tuning circuit.
When the series resonant circuit resonates at the oscillation frequency, the impedance is minimized and the circuit current is maximized. As a result, the negative resistance can be increased and the oscillation can be easily started.
According to this invention, since the series resonance circuit is formed in the loop of the piezoelectric vibrator, the negative resistance can be increased and the oscillation can be easily started.
According to a third aspect of the present invention, the piezoelectric vibrator is a quartz crystal vibrator.
According to this invention, it is possible to realize an inexpensive and high frequency stability oscillator by using a crystal resonator as the piezoelectric resonator.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the components, types, combinations, shapes, relative arrangements, and the like described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention only unless otherwise specified. . In the following embodiments, a crystal oscillator is described as an example of a piezoelectric oscillator (vibrator), but the present invention is applicable to general piezoelectric oscillators other than crystals.
FIG. 1 is a circuit diagram of an inverter oscillation circuit according to an embodiment of the present invention. In addition, the circuit element value shown as an example with the circuit element code | symbol below is a design condition at the time of confirming the oscillator electrical characteristic mentioned later. This inverter oscillation circuit is grounded from an output terminal 2 of an inverter 1 whose input and output are connected by a high resistance R1 via a series circuit composed of a capacitor C1 and a parallel tuning circuit of a capacitor C2 and an inductor L1, and this series circuit. Is connected to the input terminal 3 of the inverter 1 via the capacitors C3 and C4, and is grounded via the piezoelectric vibrator Xtal and the frequency adjusting capacitor C7 from the connection point of the capacitors C3 and C4 connected in series. In this circuit, the output is taken out through a series circuit of a resistor R2 and a capacitor C6.
Next, the operation of this embodiment will be described. Since the oscillation operation is a well-known technique, a detailed description thereof will be omitted here. First, when the power supply VCC5V is input to the inverter 1, vibration starts according to the natural frequency of the piezoelectric element Xtal, and a high level voltage is generated at the output terminal 2 of the inverter 1. Since the oscillation condition is determined based on a reactance circuit including a parallel tuning circuit through the capacitor C1, for example, the capacitor C2 and the inductor L1 so that the parallel tuning circuit becomes an inductance component in the vicinity of the oscillation frequency of 10 MHz. If the value is set, the load capacity can be set to a large value.
In addition, each constant of the oscillation circuit of this embodiment was set to C2: 200 pF and L1: 1 μH in the Xtal: At-cut
[0006]
FIG. 2 is a diagram showing the relationship between the negative resistance value and the input level of the oscillator when each constant of the inverter oscillation circuit of FIG. 1 is changed. The horizontal axis represents the input level (mV) of the oscillator, and the vertical axis represents the negative resistance (Ω). The constants of each characteristic are as follows: sign R1 is C1: 51 pF, C2: 163 pF, C3: 3 pF, C4: ∞ pF, L1: 1 μH, sign R2 is C1: 10000 pF, C2: 0 pF, C3: 3 pF, C4: ∞ pF , L1: 1 μH, R3 is C1: 51 pF, C2: 120 pF, C3: 12 pF, C4: 6 pF, L1: 1 μH.
As is clear from this figure, the case of the symbol R1 has the largest negative resistance, and shows a maximum of -900Ω when the input level of the oscillator is 10 mV, then the symbol R2 is about -600Ω, and the smallest is the symbol R3. -500 Ω. This represents how easily the oscillation oscillates strongly at the time of start-up, and in particular, by adjusting the value of the resistor R1, a condition that oscillates easily can be easily obtained.
FIG. 3 is a diagram showing the relationship between the circuit capacity and the input level of the oscillator when the circuit constants of FIG. 1 are used. The horizontal axis represents the input level (mV) of the oscillator, and the vertical axis represents the circuit capacitance (pF). As is apparent from this figure, it can be seen that although the input level of the oscillator is gradually decreased, the high level is maintained. This makes it possible to set a constant close to that of a series resonance circuit, thereby increasing the load capacity, thereby obtaining a negative resistance sufficient for an oscillation operation .
[0007]
【The invention's effect】
As described above, according to the invention of claim 1, the load capacity can be apparently increased, and as a result, the frequency adjustment range can be widened.
According to the second aspect of the present invention, since the series resonance circuit is formed in the loop of the piezoelectric vibrator, the negative resistance can be increased and the oscillation can be easily started.
According to the third aspect of the present invention, an inexpensive and high frequency stability oscillator can be realized by using a crystal resonator as the piezoelectric resonator.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of an inverter oscillation circuit according to an embodiment of the present invention.
2 is a diagram illustrating a relationship between a negative resistance value and an input level of an oscillator when each constant of the inverter oscillation circuit of FIG. 1 is changed.
3 is a diagram illustrating a relationship between a circuit capacity and an input level of an oscillator when the circuit constants in FIG. 1 are used.
FIG. 4 is an implementation circuit diagram of a conventional inverter oscillation circuit.
[Explanation of symbols]
Xtal Piezoelectric element C1, C2, C3, C4, C6, C7 Capacitor 1 Inverter R1 Feedback resistor R2 Fixed resistor L1 Inductor
Claims (3)
前記信号反転増幅器の出力端子を容量と並列同調回路とを直列接続した回路を介して接地し、前記容量と並列同調回路との接続点を直列接続した2つの容量を介して前記信号反転増幅器の入力端子に接続し、前記直列接続された2つの容量の接続点を前記圧電振動子と周波数調整素子を介して接地することを特徴とする圧電発振器。A piezoelectric oscillator comprising: a piezoelectric vibrator including a piezoelectric element excited at a predetermined frequency; and a signal inverting amplifier for exciting the piezoelectric element by passing a current through the piezoelectric element,
The output terminal of the signal inverting amplifier is grounded through a circuit in which a capacitor and a parallel tuning circuit are connected in series, and the connection point between the capacitor and the parallel tuning circuit is connected in series through two capacitors. A piezoelectric oscillator, wherein the piezoelectric oscillator is connected to an input terminal, and a connection point between the two capacitors connected in series is grounded via the piezoelectric vibrator and a frequency adjusting element.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003097419A JP4145696B2 (en) | 2003-03-31 | 2003-03-31 | Piezoelectric oscillator |
US10/802,628 US7088192B2 (en) | 2003-03-31 | 2004-03-17 | Inverter oscillator circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003097419A JP4145696B2 (en) | 2003-03-31 | 2003-03-31 | Piezoelectric oscillator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004048669A JP2004048669A (en) | 2004-02-12 |
JP4145696B2 true JP4145696B2 (en) | 2008-09-03 |
Family
ID=31712407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003097419A Expired - Fee Related JP4145696B2 (en) | 2003-03-31 | 2003-03-31 | Piezoelectric oscillator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4145696B2 (en) |
-
2003
- 2003-03-31 JP JP2003097419A patent/JP4145696B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004048669A (en) | 2004-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5896718B2 (en) | Piezoelectric oscillator | |
KR20070061233A (en) | Low phase noise differential lc tank vco with current negative feedback | |
EP1220440A2 (en) | Apparatus and method for reducing phase noise in oscillator circuits | |
US6380816B1 (en) | Oscillator and voltage controlled oscillator | |
JP2004527976A (en) | Wideband voltage controlled crystal oscillator | |
US7049899B2 (en) | Temperature compensated piezoelectric oscillator and electronic device using the same | |
EP1777808A1 (en) | High frequency Colpitts oscillation circuit | |
JP4145696B2 (en) | Piezoelectric oscillator | |
Apte et al. | Optimizing phase-noise performance: Theory and design techniques for a crystal oscillator | |
CN115051650B (en) | S-band frequency-doubling low-phase-noise voltage-controlled oscillator and signal generating device | |
JP2012095284A (en) | Oscillator | |
JP5465891B2 (en) | Crystal oscillation circuit | |
JP2007103985A (en) | Crystal oscillator | |
JP4165127B2 (en) | Oscillation circuit and electronic equipment using the same | |
JP2004048643A (en) | Temperature compensation piezoelectric oscillator | |
JP2553281B2 (en) | Oscillation circuit with crystal oscillator | |
JP4145695B2 (en) | Piezoelectric oscillator | |
US9077281B2 (en) | Oscillator circuit | |
JP2004289207A (en) | Crystal oscillator | |
JP2004104631A (en) | Crystal oscillator circuit | |
JP2004048667A (en) | Piezoelectric oscillator | |
JP2006157077A (en) | Oscillator | |
JPH03131104A (en) | Voltage controlled oscillator | |
JP2003037439A (en) | High-frequency piezoelectric oscillator | |
JP2002374126A (en) | Piezoelectric oscillator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071218 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080205 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080520 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080618 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 4 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130627 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130627 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |