JP2006157077A - Oscillator - Google Patents

Oscillator Download PDF

Info

Publication number
JP2006157077A
JP2006157077A JP2003399740A JP2003399740A JP2006157077A JP 2006157077 A JP2006157077 A JP 2006157077A JP 2003399740 A JP2003399740 A JP 2003399740A JP 2003399740 A JP2003399740 A JP 2003399740A JP 2006157077 A JP2006157077 A JP 2006157077A
Authority
JP
Japan
Prior art keywords
oscillator
oscillation
frequency
resonator
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003399740A
Other languages
Japanese (ja)
Inventor
Mitsuaki Koyama
光明 小山
Hideo Hashimoto
英雄 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2003399740A priority Critical patent/JP2006157077A/en
Priority to TW93118551A priority patent/TWI283745B/en
Priority to PCT/JP2004/009450 priority patent/WO2005001440A1/en
Publication of JP2006157077A publication Critical patent/JP2006157077A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0256Adsorption, desorption, surface mass change, e.g. on biosensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0423Surface waves, e.g. Rayleigh waves, Love waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0426Bulk waves, e.g. quartz crystal microbalance, torsional waves

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oscillator capable of obtaining a stable oscillating frequency without being affected by a phase characteristic of a crystal vibrator even if employing the crystal vibrator with a low Q value and large series resistance. <P>SOLUTION: The oscillator is configured such that a resonator 7 with a resonance frequency equal to an oscillating frequency is inserted to an oscillation loop of an oscillation circuit oscillated by a resonance circuit comprising a coil 3 and a capacitor 4. Further, the oscillator is configured such that the crystal vibrator is interposed between an emitter of a transistor of a common gate connection employed by a Colpitts oscillation circuit and a series connecting point of split capacitors in the resonance circuit comprising the coil 3 and the capacitor 4. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は100MHz以上の高い共振周波数の水晶振動子を用いて安定かつ確実に発振することができる発振器に関する。   The present invention relates to an oscillator that can oscillate stably and reliably using a crystal resonator having a high resonance frequency of 100 MHz or higher.

従来の水晶発振回路では水晶振動子の位相特性を利用して発振させるようにしていた。
このような発振回路では、水晶振動子の位相特性が変化すると発振周波数も変化するので位相特性が変化する水晶振動子を用いると安定な発振周波数は得られない。
In a conventional crystal oscillation circuit, oscillation is performed using the phase characteristics of a crystal resonator.
In such an oscillation circuit, when the phase characteristic of the crystal resonator changes, the oscillation frequency also changes. Therefore, when a crystal resonator whose phase characteristic changes is used, a stable oscillation frequency cannot be obtained.

基本波周波数が100MHzを超える高い共振周波数の水晶振動子ではよほどうまく設計しないとDLDといわれる問題を生じることが多い。
DLDが発生すると周波数―電流特性にジャンプ現象や傾きが大きくなることがある。
A crystal resonator having a high resonance frequency whose fundamental wave frequency exceeds 100 MHz often causes a problem called DLD unless designed well.
When DLD occurs, a jump phenomenon or a slope may increase in the frequency-current characteristics.

また、直列抵抗―電流特性にもジャンプ現象を生じることがあり水晶振動子の信頼性を著しく損なう問題となる。
さらに、このようなジャンプ現象や周波数変化の大きな傾きは、水晶振動子の周波数―位相特性にも現れる。
In addition, a jump phenomenon may occur in the series resistance-current characteristic, which causes a problem that the reliability of the crystal resonator is significantly impaired.
Furthermore, such a jump phenomenon and a large gradient of frequency change also appear in the frequency-phase characteristics of the crystal resonator.

一方,基本波周波数が数10MHz程度の比較的低い周波数の水晶振動子のQ値に比して、基本波周波数が100MHzを超えるような高い共振周波数の水晶振動子のQ値はかなり低くなってしまう。   On the other hand, the Q value of a crystal resonator having a high resonance frequency such that the fundamental frequency exceeds 100 MHz is considerably lower than the Q value of a relatively low frequency crystal resonator having a fundamental frequency of about several tens of MHz. End up.

また、周波数安定化を目的に空間電極式を利用する方法や水晶片の駆動部に電極を形成せずに、その周囲に電極を配置した構造を採用した場合、Q値の低下とともに直列抵抗も増加する。
そして、このような水晶振動子を用いた発振回路は発振し難く環境条件の変化、たとえば温度変化によって発振が停止するおそれもある。
In addition, when a method using a spatial electrode method for frequency stabilization or a structure in which electrodes are not formed in the drive unit of the crystal piece and an electrode is arranged around it, the series resistance also decreases as the Q value decreases. To increase.
In addition, an oscillation circuit using such a crystal resonator is difficult to oscillate, and oscillation may stop due to a change in environmental conditions, for example, a temperature change.

水晶振動子の位相特性に影響されず、またQ値が低く、直列抵抗の大きな水晶振動子を用いても安定な発振周波数を得ることができる発振器を提供することを目的とするものである。   It is an object of the present invention to provide an oscillator that is not affected by the phase characteristics of a crystal resonator and that can obtain a stable oscillation frequency even when a crystal resonator having a low Q value and a large series resistance is used.

本発明の請求項1はコイルとコンデンサからなる共振回路で発振する発振回路の発振ループに発振周波数に等しい共振周波数の共振器を介挿したことを特徴とする発振器であり、請求項2は請求項1に記載のものにおいて、共振器は水晶振動子であることを特徴とする発振器である。   A first aspect of the present invention is an oscillator characterized in that a resonator having a resonance frequency equal to the oscillation frequency is inserted in an oscillation loop of an oscillation circuit that oscillates in a resonance circuit composed of a coil and a capacitor. The resonator according to item 1, wherein the resonator is a crystal resonator.

そして請求項3は請求項1に記載のものにおいて、共振器はSAWフィルタであることを特徴とする発振器であり、請求項4は請求項1に記載のものにおいて、発振回路の発振周波数は100MHz以上であることを特徴とする発振器であり、請求項5は請求項1に記載のものにおいて、コイルとコンデンサからなる共振回路で発振するエミッタ接地のコルピッツ発振回路の分割コンデンサの直列接続点とエミッタとの間に水晶振動子を介挿したことを特徴とする発振器である。   A third aspect of the present invention is the oscillator according to the first aspect, wherein the resonator is a SAW filter. A fourth aspect of the present invention is the oscillator according to the first aspect, wherein the oscillation frequency of the oscillation circuit is 100 MHz. An oscillator characterized by the above, and claim 5 according to claim 1, characterized in that the series connection point and the emitter of the split capacitor of the grounded Colpitts oscillation circuit that oscillates in the resonance circuit composed of the coil and the capacitor Is an oscillator characterized by interposing a quartz resonator between the two.

本発明はQ値が低く直列抵抗が大きく、またDLDを呈する水晶振動子を用いても確実に発振させることができ、しかも安定な発振周波数を得ることができる発振器を提供することができる。   The present invention can provide an oscillator that has a low Q value, a large series resistance, and can oscillate reliably even when a crystal resonator exhibiting a DLD is used, and can obtain a stable oscillation frequency.

以下本発明の一実施態様を、図1に示すコルピッツ発振回路に類似の回路図で共振器として水晶振動子を用いた例を参照して詳細に説明する。
1はPNPトランジスタでエミッタを抵抗2を介して接地している。
そしてベースをコイル3とコンデンサ4の直列共振回路を介して接地Eしている。
Hereinafter, an embodiment of the present invention will be described in detail with reference to an example in which a crystal resonator is used as a resonator in a circuit diagram similar to the Colpitts oscillation circuit shown in FIG.
Reference numeral 1 denotes a PNP transistor whose emitter is grounded via a resistor 2.
The base is grounded E through a series resonance circuit of the coil 3 and the capacitor 4.

またベースを2個の分割コンデンサ5、6を直列に介して接地Eしている。
そして分割コンデンサ5、6の直列接続点を水晶振動子7及びコンデンサ8を直列に介してエミッタに接続している。
またエミッタからコンデンサ9を介して発振出力OUTに接続している。
The base is grounded E through two divided capacitors 5 and 6 in series.
The series connection point of the divided capacitors 5 and 6 is connected to the emitter through the crystal resonator 7 and the capacitor 8 in series.
The emitter is connected to the oscillation output OUT via the capacitor 9.

そしてコレクタを電源Vccに接続し、電源Vccとベース及びベースと接地Eの間にそれぞれバイアス抵抗10、11を介挿している。
なおコイル3とコンデンサ4の直列共振回路の回路定数によって決定されるコルピッツ発振回路の発振周波数と水晶振動子7の共振周波数は概略一致させるようにしている。
The collector is connected to the power source Vcc, and bias resistors 10 and 11 are interposed between the power source Vcc and the base and between the base and the ground E, respectively.
Note that the oscillation frequency of the Colpitts oscillation circuit determined by the circuit constant of the series resonance circuit of the coil 3 and the capacitor 4 and the resonance frequency of the crystal resonator 7 are approximately matched.

このような構成であれば、分割コンデンサ5、6の直列接続点を直接エミッタに接続した場合は、周知のエミッタ接地のコルピッツ発振回路であり発振周波数はコイル3とコンデンサ4の直列共振回路の回路定数によって定まる。
そしてこのような発振回路の周波数安定度は、たとえば図2に示すグラフのようになり10.6ppmである。
With such a configuration, when the series connection point of the split capacitors 5 and 6 is directly connected to the emitter, it is a well-known emitter-grounded Colpitts oscillation circuit, and the oscillation frequency is a circuit of a series resonance circuit of the coil 3 and the capacitor 4. Determined by a constant.
The frequency stability of such an oscillating circuit is, for example, as shown in the graph of FIG. 2 and is 10.6 ppm.

そしてこの発振回路の発振ループである分割コンデンサ5、6の直列接続点とエミッタとの間に水晶振動子7とコンデンサ8を直列に介挿している。
したがってコルピッツ発振回路の発振周波数は水晶振動子7の共振周波数に規制されて安定な発振周波数を得ることができる。
Then, a crystal resonator 7 and a capacitor 8 are inserted in series between the series connection point of the split capacitors 5 and 6 that are the oscillation loop of the oscillation circuit and the emitter.
Therefore, the oscillation frequency of the Colpitts oscillation circuit is regulated by the resonance frequency of the crystal resonator 7, and a stable oscillation frequency can be obtained.

図3はこのような発振回路の周波数安定度を示すグラフで0.2ppmとなり著しく安定度が向上している。
またこの場合、水晶振動子7は発振周波数を規制するだけなのでDLD、Q値、位相特性の影響はほとんど受けない。
FIG. 3 is a graph showing the frequency stability of such an oscillation circuit, which is 0.2 ppm, and the stability is remarkably improved.
Further, in this case, since the crystal resonator 7 only regulates the oscillation frequency, it is hardly affected by the DLD, Q value, and phase characteristics.

図4はDLDを生じる水晶振動子を図1に示す発振回路に用いた発振器の周波数安定度を示すグラフで、極めて良好な周波数安定度を示している。
なお本発明は上記の実施の態様に限定されるものではなく、たとえば発振周波数を外部から制御する場合は第1図と同一部材には同一符号を付与して図5に示すような回路とすればよい。
FIG. 4 is a graph showing the frequency stability of an oscillator in which a crystal resonator that generates DLD is used in the oscillation circuit shown in FIG. 1, and shows very good frequency stability.
The present invention is not limited to the above embodiment. For example, when the oscillation frequency is controlled from the outside, the same members as those in FIG. That's fine.

すなわち水晶振動子7とコンデンサ8との間にバリキャップ・ダイオード12を介挿し、このカソード側に外部から制御電圧VCを印加し、アノードを帰路抵抗13を介して接地Eする。
このようにすれば制御電圧に応じて発振周波数を変化させることができる。
That is, a varicap diode 12 is inserted between the crystal resonator 7 and the capacitor 8, a control voltage VC is applied to the cathode side from the outside, and the anode is grounded E via the return resistor 13.
In this way, the oscillation frequency can be changed according to the control voltage.

なおこのようなものにおいて、予め温度変化に対する発振周波数の変化、すなわち周波数−温度特性を測定し、この特性に応じて一定の発振周波数を維持するような補償電圧を制御電圧VCとして与えれば温度補償発振器として動作することができる。   In such a case, a change in oscillation frequency with respect to a change in temperature, that is, a frequency-temperature characteristic is measured in advance, and a compensation voltage that maintains a constant oscillation frequency according to this characteristic is given as the control voltage VC. It can operate as an oscillator.

さらに図1に示す実施態様では共振器として水晶振動子を用いたものについて説明したが、共振器は目的周波数で共振特性が得られればよいので、たとえばSAW(弾性表面波)フィルタ、MCF(モノリシック・クリスタル・フィルタ)等も用いうることは勿論である。   Further, in the embodiment shown in FIG. 1, a description has been given of the case where a crystal resonator is used as a resonator. However, since the resonator only needs to obtain a resonance characteristic at a target frequency, for example, a SAW (surface acoustic wave) filter, MCF (monolithic). Of course, a crystal filter or the like can also be used.

本発明の一実施態様の発振器の回路図である。It is a circuit diagram of the oscillator of one embodiment of the present invention. コルピッツ発振回路の周波数安定度を示すグラフである。It is a graph which shows the frequency stability of a Colpitts oscillation circuit. 本発明の一実施態様の発振器の周波数安定度を示すグラフである。It is a graph which shows the frequency stability of the oscillator of one embodiment of this invention. 本発明の一実施態様の発振器にDLDを生じる水晶振動子を用いた場合の周波数安定度を示すグラフである。It is a graph which shows the frequency stability at the time of using the crystal oscillator which produces DLD for the oscillator of one embodiment of this invention. 本発明の他の実施態様の発振器の回路図である。It is a circuit diagram of the oscillator of the other embodiment of this invention.

符号の説明Explanation of symbols

1 トランジスタ
3 コイル(共振回路)
4 コンデンサ(共振回路)
5、6 分割コンデンサ
7 水晶振動子(共振器)
E 接地
Vcc 電源
OUT 発振出力
VC 制御電圧
1 Transistor 3 Coil (resonance circuit)
4 Capacitor (resonant circuit)
5, 6 Split capacitor 7 Crystal resonator (resonator)
E Ground Vcc Power supply OUT Oscillation output VC Control voltage

Claims (5)

コイルとコンデンサからなる共振回路で発振する発振回路の発振ループに発振周波数に等しい共振周波数の共振器を介挿したことを特徴とする発振器。 An oscillator comprising a resonator having a resonance frequency equal to the oscillation frequency inserted in an oscillation loop of an oscillation circuit that oscillates in a resonance circuit composed of a coil and a capacitor. 請求項1に記載のものにおいて、共振器は水晶振動子であることを特徴とする発振器。 2. The oscillator according to claim 1, wherein the resonator is a crystal resonator. 請求項1に記載のものにおいて、共振器はSAWフィルタであることを特徴とする発振器。 2. An oscillator according to claim 1, wherein the resonator is a SAW filter. 請求項1に記載のものにおいて、発振回路の発振周波数は100MHz以上であることを特徴とする発振器。 2. The oscillator according to claim 1, wherein the oscillation frequency of the oscillation circuit is 100 MHz or more. 請求項1に記載のものにおいて、コイルとコンデンサからなる共振回路で発振するエミッタ接地のコルピッツ発振回路の分割コンデンサの直列接続点とエミッタとの間に水晶振動子を介挿したことを特徴とする発振器。 2. The crystal resonator according to claim 1, wherein a crystal resonator is interposed between the series connection point of the split capacitor of the Colpitts oscillation circuit grounded in the emitter that oscillates in a resonance circuit including a coil and a capacitor, and the emitter. Oscillator.
JP2003399740A 2003-06-26 2003-11-28 Oscillator Pending JP2006157077A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003399740A JP2006157077A (en) 2003-11-28 2003-11-28 Oscillator
TW93118551A TWI283745B (en) 2003-06-26 2004-06-25 Crystal sensor
PCT/JP2004/009450 WO2005001440A1 (en) 2003-06-26 2004-06-28 Crystal sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003399740A JP2006157077A (en) 2003-11-28 2003-11-28 Oscillator

Publications (1)

Publication Number Publication Date
JP2006157077A true JP2006157077A (en) 2006-06-15

Family

ID=36634886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003399740A Pending JP2006157077A (en) 2003-06-26 2003-11-28 Oscillator

Country Status (1)

Country Link
JP (1) JP2006157077A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103457571A (en) * 2013-08-21 2013-12-18 长安大学 Surface acoustic wave oscillator based on multi-strip coupler
CN103873013A (en) * 2014-03-24 2014-06-18 长安大学 Application circuit of surface acoustic wave transducer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103457571A (en) * 2013-08-21 2013-12-18 长安大学 Surface acoustic wave oscillator based on multi-strip coupler
CN103457571B (en) * 2013-08-21 2016-03-30 长安大学 A kind of SAW (Surface Acoustic Wave) oscillator based on multistrip coupler
CN103873013A (en) * 2014-03-24 2014-06-18 长安大学 Application circuit of surface acoustic wave transducer

Similar Documents

Publication Publication Date Title
JP5896718B2 (en) Piezoelectric oscillator
JP4628878B2 (en) Crystal oscillation circuit
JP5232231B2 (en) Operating circuit for surface wave resonance circuit and oscillation circuit using the same
US20140125422A1 (en) Self-oscillation circuit
JP2003243932A (en) Temperature compensated crystal oscillator
JP2004297166A (en) Temperature-compensated piezoelectric oscillator and electronic equipment using the same
JP2006157077A (en) Oscillator
JP4499457B2 (en) Crystal oscillator
JP2007103985A (en) Crystal oscillator
JP2005217773A (en) Voltage-controlled piezoelectric oscillator
US9077281B2 (en) Oscillator circuit
US7292108B2 (en) Voltage controlled oscillator for frequency synthesizer
Rohde et al. Dynamic noise-feedback and mode-coupling mechanism silences the VCXOs phase noise
JPH0846427A (en) Voltage controlled crystal oscillator
JP3239776B2 (en) Temperature compensated piezoelectric oscillator
Rohde et al. Mode-selection and mode-feedback techniques optimizes VCXO (voltage controlled crystal oscillator) performances
JP3949482B2 (en) Oscillator with temperature compensation function
JP2004289207A (en) Crystal oscillator
Rohde et al. Voltage controlled crystal oscillator
JP4145696B2 (en) Piezoelectric oscillator
Rohde et al. Noise minimization techniques for voltage controlled crystal oscillator (VCXO) circuits
JP2006186860A (en) Piezoelectric oscillator
JP2002232234A (en) Complex crystal resonator and overtone crystal oscillator using the same
JP2004304667A (en) Piezoelectric oscillator
JP2015171080A (en) voltage-controlled oscillator